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Abstract


XML is the standard language for representing semi-structured data.
With the spreading of XML sources, mining XML data can be an impor-
tant objective in the near future. This paper presents a project focussed
on designing a general-purpose query language in support of mining XML
data. In our framework, raw data, mining models and domain knowledge
are represented by way of XML documents and stored inside XML native
databases. Data mining tasks are expressed in an extension of XQuery.
Special attention is given to the frequent pattern discovery problem, and
a way of exploiting domain-dependent optimizations and efficient data
structures as deeper as possible in the extraction process is presented.
We report the results of a first bunch of experiments, showing that a good
trade-off between expressiveness and efficiency in XML data mining is not
a chimera.


1 Introduction


Data Mining (DM) is a technique for inferring knowledge via a generalization
of the information in the database. The process of searching for knowledge is
usually called Knowledge Discovery in Databases (KDD). KDD and DM tech-
nologies have reached a maturity state as far as the design of efficient knowledge
extraction algorithms is concerned. This is witnessed by the large number of
commercial tools and RDBMS offering KDD algorithms ([3, 29, 18], only to cite
a few ones). On the contrary, the design of applications is still an “art”, aimed
at smoothly composing algorithm libraries, proprietary APIs, SQL queries and
stored procedure calls to RDBMS, and “much much code”. This is the main
motivation that inspired Imielinski and Mannila to launch the idea of Inductive
Databases (IDBs), general purpose databases in which both the data and the
knowledge are represented, retrieved, and manipulated together or separately
[20]. IDBs should help the analyst in the hard task of producing a KDD ap-
plication as a mixture of data pre-processing, data mining and post-processing
steps.


A critical aspect is the choice of what kind of formalism is more suited to
represent models, data sources, as well as the queries one might want to apply
on them. Because data typically reside in relational databases, a considerable
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number of different efforts propose to integrate a mining tool in a relational
DBMS [3, 9, 13, 21, 26, 35]. According to the closure principle of IDBs, both
the source data and the induced models are represented as database relations,
while queries are specified in an SQL-like language.


However, the simplicity of the relational data model does not provide an easy
way to manage different models, as well as complex domain knowledge. Further-
more, the database support need not be necessarily provided by a relational one.


Why mining XML data? The past few years have seen a growth in the adop-
tion of the eXtensible Markup Language (XML), thanks to its ability to provide
a standardized, extensible mean of including semantics information within semi-
structured data. The flexible nature of XML makes it an ideal basis for defining
arbitrary languages. One such example is the Predictive Modelling Markup
Language (PMML) [30], an industry standard for the representation of mined
models as XML documents.


This feature allows to represent raw data and patterns in an uniform and
flexible way. In addition, the use of XML permits the description of complex
formats, such as trees or clusters, as well as the domain knowledge. From
this perspective, ontologies in DM seems a natural choice for representing the
semantics of a given domain. For example, supermarkets can use ontologies to
classify products in sections and brands and the mined models may be composed
by sections and brands of the items bought by the users.


Moreover, the increasing adoption of XML has also raised new challenges.
One of the key issues is the capability of mining large collections of semi-
structured data and, in general, data for which an XML representation is less
cumbersome and more optimal compared to the relational format. As an exam-
ple, geographical and spatial data are becoming increasingly important, due to
the pervasiveness of location-acquisition technologies such as GPS, GSM net-
works, etc.


How mining XML data? From the XML querying point of view, a relevant
on-going effort of the W3C organization is the design of a standard query lan-
guage for XML, called XQuery [33], which is drawing much research and for
which a large number of implementations already exists. From the XML data
warehousing point of view, native XML databases are designed for seamless
storage, retrieval and manipulating of XML data.


The goal of our research effort is the design and implementation of a mining
language and system where an XML native database is used as a storage for
KDD entities, i.e. both models and raw data, while DM tasks are expressed
in an XQuery-like language, in the same way mining languages on relational
databases are expressed in an SQL-like format.


In short, the contributions of our project can be summarized as follows.


• We propose an XQuery-like language powerful enough to support complex
mining tasks, including the specification of domain entities, parameters of
the operations and, complex queries on the domain knowledge. Features


2







of the language are: (i) an intuitive syntax, inspired by the XQuery world;
(ii) flexibility to specify a variety of different mining tasks in a declarative
fashion; (iii) a grammar that accepts a certain degree of extensibility in
order to introduce user-defined functions in the statements; (iv) capabil-
ity of using (both explicit or implicit) intrinsic optimizations over native
XML databases, like as instance indexes; (v) a coherent formalism capable
of dealing uniformly with raw data, induced knowledge and background
knowledge.


• We propose an approach capable of providing both a direct specification
of mining algorithms in XQuery and the use of separate functions for
the efficient implementation of critical aspects. Arguably, XQuery is the
most promising programming language for this purpose and this kind of
solution has the advantage of avoiding “black box” implementations of
mining algorithms. As we will show later, some adaptations over the
XQuery language are required in order to allow the specification of the
general schema of preprocessing and mining algorithms. However, the
above strategy allows both the exploitation of domain knowledge within
the algorithm specification, for domain-dependent optimizations, and the
deferment of the implementation of critical points to user-defined func-
tions, for domain-independent optimizations.


• As a case study, the paper presents how such a technique can be used to
implement the Apriori [2] algorithm. Despite its datedness, the algorithm
is still a significant example of how the background knowledge can be
encapsulated as deeply as possible into the extraction process, to help
in improving the performance of the mining. In this respect, particular
attention is given to the evaluation of the capability of our framework to
accept optimizations proposed in the past literature. At the same time, the
performance should be comparable to the performance of similar works.


Paper organization. Section 2 presents the proposed language by means of
several examples that illustrate its expressive power and versatility. Section 3
discusses details of the implementation and of the system architecture. Section
4 provides an overview of related work. Section 5 compares the performance
of the Apriori with an existing solution based on a different approach. Finally,
Section 6 contains the final remarks and suggests avenues for future works. In
the remainder, it is assumed that the reader is familiar whit the fundamentals
of data mining, XML and XQuery.


2 XQuake


In this section, the XQuake (XQUery-based Applications for Knowledge Ex-
traction) mining language is presented. Due to space restrictions, we present
the basic idea behind the language and some examples of the query language at
work.
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All examples assume the availability of XML data in a native XML database.
Specifically, Figure 1a shows a fragment of the online dblp database1 containing
bibliographic information on major computer science journals and proceedings.
Figure 1b depicts a sample document including various information about re-
searchers in a university department. Finally, the XML document mondial2 of
Figure 1c contains a collection of XML tags each of them storing geographical,
economic and political characteristic of a country.


2.1 The XQuake philosophy


XQuake adopts an XQuery-like syntax to facilitate high level DM and in-deep
integration within XML native databases. Essentially, XQuery expressions are
used to identify XML sources, to express constraints on the domain knowledge,
to specify interesting measures and the format of the XML output. We con-
sciously chose the most basic KDD techniques and a couple of fundamental
methodologies in each category: the equal-frequency and equal-width methods
for discretization, the random and stratified sampling, the Apriori [2] and the
ID3 [25] (Chapter 3) algorithms for frequent itemsets mining and decision tree
classification, respectively. Moreover, extracted models can be applied to “new”
instances to predict features or to select data accordingly to the knowledge
stored in the model.


A mining query begins with a collection of XQuery functions and variables
declarations followed by an XQuake operator. The syntax of each operator in-
cludes five basic statements that specify of five major activities in DM: (i) task
and method specification, (ii) domain entities identification, (iii) data filtering,
(iv) constraints on domain knowledge and interesting measures specification
and, finally, (v) output construction. The outline of a generic operator is ex-
plained below. The reader is referred to Appendix A for the syntax of the
operators presented in this paper.


Task and method specification. Each XQuake operator starts specifying
the kind of KDD activity. The <prepare> keyword indicates operators for
data preprocessing, <mine> includes operators to extract a mining model and
<apply> is used for modeling application the input data. Several other kinds
of constructs are possible to deal with knowledge filtering, model evaluation or
model meta-reasoning. As an instance, the following XQuake fragment denotes
a data sampling task:


prepare sampling doc("my-out") using alg:my-sampling-alg(my-params ...)


The doc("my-out") expression directs the result of the mining task to a specific
native XML database for further processing or analysis. The using statement
indicates the kind of mining or preprocessing algorithm used, together with


1http://dblp.uni-trier.de/xml/.
2http://www.dbis.informatik.uni-goettingen.de/Mondial/.


4







(a) (b)


(c)


Figure 1: XML fragments of the dblp dataset (a), the departments dataset (b)
and the mondial dataset (c).


atomic parameters such as the minimum support for association rule mining
algorithms or the confidence for pruning in classification tasks.
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Domain entities identification. Any KDD task may need to specify the set
of relevant entities as input of the analysis. They include the physical data
sources and the mined patterns, as well as logical elements such as the type of
the attributes or the domain knowledge. The language offers a powerful and
versatile way to locate the input objects of a mining task. The syntax is an
adaptation of the standard XQuery FLOWR syntax, in which the result of the
evaluation of an expression is linked to a variable in for and let clauses. For
instance, here is a simple fragment statement that can be used to locate both
transactions in an association rule mining task or training instances in a clus-
tering activity (we use a different font to indicate an XQuery expression).


for data $my-tuple in < XQuery expression >


let active field $my-field := < XQuery expression on $my-tuple >


Input data is typically a sequence of XML nodes. The <for> expression above
binds the variable $my-tuple to each item during the evaluation of the operator,
while the <let> clause identifies an attribute of the data. From the DM point
of view, the keyword after the <let> refers to the role of such attribute in the
mining activity of interest. More specifically:


• <active> specifies that the field is used as input of the analysis;


• <predicted> specifies that it is a prediction attribute;


• <supplementary> states that it holds additional descriptive information;


• <group> is used to group attributes;


• <metadata> defines a special field, used to bind domain knowledge infor-
mation to an existent single-value field.


Since we refer here to a classical DM approach, mining fields in input to the
mining task are typically required to be atomic, i.e. an instance of one of the
built-in data types defined by XML schemas, such as string, integer, decimals
and date. A richer set of types may be available by extending the data types
of XQuery, for example considering ordering or cyclical data types. Moreover,
XQuake respects the typing philosophy of XQuery by offering a method to equip
attributes with logical information. In the example below, an explicit type is
specified by the user for the field $has-kdd-keyword.


for data $paper in doc("dblp")//article


let active field $has-kdd-keyword as xs:boolean :=


some $keyword in $paper/keywords/keyword satisfies $keyword eq ’KDD’


Either if an input field has an explicit or an implicit type, it is validated against
a required type, that depends on the context in which it appears. As instance,
the target attribute of a classification task is required to be discrete. An error is
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raised whenever the type of an expression does not match that expected type.
The grammar also allows us to specify other kinds of qualifiers for an attribute,
for example in order to assign an weight before the construction of a model.


Another important aspect in defining logical attributes concerns missing val-
ues. In XQuake, sequences of length zero may be used to represent missing or
unknown information (i.e. missing XML elements or attributes), in much the
same way that null values are used in relational systems. The specific algo-
rithm will take care of handling such missing values according to the targets of
the analysis. In the next query fragment below, we specify a numeric attribute
$gdp that admits missing values if the homonym XML element is absent.


for data $country in doc("mondial")//country


let active field $gdp as xs:double? :=


if empty($country/gdp) then () else $country/gdp cast as xs:double


As mentioned, a special syntax is used to specify domain knowledge, partic-
ularly useful for the definition of domain-based constraints. In contrast to active
and predicted mining fields, a metadata field may include also non-atomic types,
such as XML nodes or attributes. For example, below we assign an hypothetical
XML hierarchy to a table column as metadata information.


for data $country in doc("mondial")//country


let active field $capital := string($country//city[@is-capital=’yes’])


let metadata field $cap-hier := doc("hierarchy")/root/city[.=$capital]


From the mining models perspective, a similar syntax may be used to locate
(parts of) a (new or extracted) PMML model.


let tree $model := doc("my-tree-model")


let supplementary field $ms := pmml:get-mining-schema($model)


In the example above, the construct automatically binds - by means of the
get-mining-schema built-in function - the mining schema XML element of
my-tree-model to the variable $ms. The type of the variable and the loca-
tion of such an element are implicit, since XQuake fixes the input and output
knowledge to be a PMML model. This seems an appropriate choice for two
main reasons. First, it becomes very difficult to encode a model as the output
of a mining query, since, typically, its nested structure is complex and hard
to specify. Second, PMML is becoming a primary standard for actual models
representation as XML documents, adopted by major commercial suites.


Data filtering. For operators accepting as input sources data, XQuake offers
an optional <where> statement, used to specify data filtering constraints. The
user specifies them through an XQuery condition, that is typically processed
before the mining task.
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Constraints on domain knowledge and interest measures. Generally
speaking, the language must allow complex querying on the domain knowledge
as well as an easy and elegant way to express user preferences. The key idea of
XQuake is the integration of XQuery expressions inside an ad-hoc custom state-
ment that depends on the kind of target and on the kind of knowledge to be
mined. For example, for frequent itemsets, it allows the specification of domain-
dependent constraints on the format of the input itemsets (see also Section 2.3).


Output construction. A complete mining language needs a facility for con-
structing and customizing the output results, according to the focus of the task.
XQuake offers a <return> clause with element and attribute constructors as
they are an extremely common way to produce XML output in XQuery. As
mentioned before, we permit a customized output only for operators returning
XML data (e.g. preprocessing operators), since we fix the output of the other
kinds of operator to be a PMML model.


2.2 XML data preprocessing


Data preprocessing [27] is a time-consuming phase of the KDD process, includ-
ing tasks such as data selection, filtering, merging, cleaning, aggregating and
many others. At the time of writing, XQuake offers two operators for data dis-
cretization and sampling.


Data discretization. As a first example, we consider the problem of unsuper-
vised discretization that has the objective of producing k intervals of a numeric
attribute.


Example 2.1. In the mondial dataset, the tags population and inflation have
continuous values. In order to exploit classification tasks, we need a preprocess-
ing phase in which a mapping of the continuous values to discrete intervals is
provided. The problem can be solved by means of the <prepare discretization>
operator.


prepare discretization doc("europe-discr") using alg:natural-binning()


for data $country in doc("mondial")/mondial/country


where some $j in $country/encompassed continent satisfies $j eq ’europe’


let active field $inf := xs:double($country/inflation)


let active field $pop := xs:double($country/population)


having bin $inf-d in (’low’, ’med’, ’high’),


bin $pop-d in discr:format-bins(100)


return <country> {
for $i in $country/*


return if ($i/fn:name() eq ’population’)


then <population @discr-as="{$pop-d}"> {$pop} </population>


else if ($i/fn:name() eq ’inflation’)


then <inflation @discr-as="{$inf-d}"> {$inf} </inflation>
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else $i} </country>


The algorithm used here is the natural binning discretization. The <for> clause
selects the XML nodes that constitute the data set, i.e. the set of countries.
For each node, a nonempty set of <let active> clauses denotes - again through
XQuery expressions - the fields that will be considered for the discretization, i.e.
the ones that are active in this mining task. The $pop and $inf variables are
implicitly labelled as numeric types, and missing tags for the <population>
or <inflation> XML elements are directly treated as unknown values by the
discretization algorithm.


The user preferences are specified in the <having> construct through a
nonempty set of <bin> clauses. Specifically, we aim at computing three distinct
bins for the inflation attribute and 100 distinct bins for the population attribute.
Only in the first case nominal labels are explicit. In the latter case, labels
for the intervals are automatically provided by the built-in XQuery function
format-bins of the discr library, that takes as input the number of required
intervals, k > 0, and returns a sequence of string items of length k. Labels
may be also expressed by means of complex user-defined functions, since the
body of the <bin> clauses accepts any XQuery expression whose returning type
is string+. Each clause automatically binds the result of the discretization
to a variable (respectively inf-d and pop-d in the example) whose expected
type is string?, i.e. missing input field values will be labelled with missing
discretized values. Notice that the scope of such variables is the <return>
clause, that is evaluated for each country that satisfies the condition expressed
in the <where> clause to produce a collection of XML nodes. Specifically, the
latter one eliminates all the non European countries from the output.


An example of fragment of the output produced by the above operator is
the following.


<country>


<name>Greece</name>


<population @discr-as="[10000000, 20000000]">10538594</population>


<inflation @discr-as="high">8.1</inflation>


...


</country>


<country>


<name>Italy</name>


<population @discr-as="[50000000, 60000000]">57460274</population>


<inflation @discr-as="med">5.4</inflation>


...


</country>


Example 2.2. We aim at discretizing the measurement of population per unit
area of the top ten provinces in a country, ordered according to the number of
cities, into two distinct bins.


prepare discretization doc("human-density") using alg:equal-frequency()


for data $country in doc("mondial")/mondial/country
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where count($country/province) >= 10


let group field $r := let $ord := for $i in $country/province


order by count($i/city) descending


return $i/population div $i/area


return for $j in (1 to 10) return $ord[$j]


having bin $r-d in (’low-density’, ’high-density’)


return <r @n="{$country/name}"> {for $i in $r-d return <d>{$i}</d>} </r>


In contrast to the Example 2.1, the usage of the <group> keyword in the <let>
clause avoids the specification of each single active field, since it groups into a
numeric sequence, $r, every value to be discretized. The XQuake system con-
strains the sequence to have the same length at each iteration. In this example,
the <where> clause ensures that the countries having less than ten regions are
eliminated from the discretization process.


Data sampling. Sampling is another widely used task: for an input table, a
subset of rows is selected according to a strategy.


Example 2.3. Below an XQuake query selecting two different samples from all
the proceedings papers of the dblp database by using a random strategy is pre-
sented. The samples have respectively 50% and 25% cases over the total number
of proceedings.


prepare sampling doc("s-proceedings") using alg:random-sampling(false())


for data $paper in doc("dblp")//Inproceedings


having samples $s in (0.50, 0.25)


return let $t1 := if ($s[1]=1) then <train> {$paper} </train> else ()


let $t2 := if ($s[2]=1) then <test> {$paper} </test> else ()


return ($t1, $t2)


The binary parameter of the algorithm indicates a “without replacement” pol-
icy, in which papers are equally likely to be extracted. Inside the <having>
expression, the <samples> clause binds, to the variable $s, the indexes of the
samples in which the current paper has been included, according to the sampling
strategy. More formally, let (v1, . . . , vn) be the input XML nodes for which a
sampling is required. Let (p1, . . . , pm) be the percentages of the samples with
m ≥ 1 and 0 ≤ ∑m


i=1 pi ≤ 1. For each node vi, 1 ≤ i ≤ n, the operator defines
si = (si


1, . . . , s
i
m) where si


j is the number of the times the value vi has been
included into the sample j, 1 ≤ j ≤ m. A simple random sampling ensures
that: ∀j ∈ [1..m],


∑n
i=1 si


j ' n · pj , while in a “without replacement” strategy,
the operator also ensures that: ∀i ∈ [1..n],


∑m
j=1 si


j ≤ 1.
As in the discretization task, any XQuery expression may be placed in the


body of the <samples> clause. For example, in the fragment of query below, a
partition of 100 equal-size samples is created.
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having samples $index in for $i in (1 to 100) return 0.01.


2.3 XML data mining


Constraints-based pattern mining. Nowadays, one of the most important
open issue in frequent itemset mining is the too large number of generated
patterns. The constraint-based pattern mining paradigm has been introduced
with the aim of providing the analyst with a domain-dependent tool for driving
the discovery process directly towards potentially interesting patterns.


In this section, we present an operator to handle constrained itemset mining
from XML data. We focus on the semantic aspects and on the expressiveness
offered by the operator here, whereas in Section 3.2 we discuss how to speed-up
the computation by incorporating such constraints directly into the Apriori al-
gorithm.


Example 2.4. We wish to discover correlations among authors in the dblp
database. In our analysis, we consider only the patterns with a minimum sup-
port of 10% in which occurs some “leader” author and in which at most two
authors received a PhD after 2002. We consider as “leader” those authors that
have been awarded by the “IEEE” society or, alternatively, are directors of an
active project. The resulting XQuake expression is the following.


mine itemsets doc("leader-co-authors") using alg:apriori(0.1)


for data $paper in doc("dblp")/(inproceedings|article)


for item $aut in $paper/Author


let active field $aut-name := fn:concat($aut/FirstName,’ ’, $aut/LastName)


let metadata field $employee :=


let $dept := collection("Dep")/Deparment[@id=$aut/@dep]


return $dept//Employee[//Name=$aut-name]


having at least 1 item satisfies


(some $award in $employee/Awards/* satisfies $award=’IEEE’ or


some $p in $employee/Projects/* satisfies


$p/@active=’yes’ and $p/@is-director=’yes’),


at most 2 item satisfies $employee/PhD/@year > 2002


The query is not hard to understand for readers familiar with XQuery. The
algorithm used is the Apriori, with the relative minimum support expressed as
a parameter (<using> clause).


The set of involved XML transactions, i.e. both proceeding and journal
papers, is specified through the <for data> clause. The next statement uses a
similar syntax to identify items of a transaction, i.e. the authors of a publication,
binding each XML node Author to the variable $author. The keyword <item>
specifies in this case that we are iterating over the items of a transaction. The
<let active> clause uses a built-in function to format the required author name,
i.e. the atomic values in the itemset. In addition, we bind to the variable
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$employee an XML element encoding the domain knowledge (i.e. the employee
information of the department of interest to each distinct author - see also
Figure 1b). This is achieved through the <let metadata> statement containing,
in the body, an XQuery expression that first searches the department of interest
among the collection of the various departments, and then searches the author
name among its employees. Notice the use of both the $aut and $aut-name
variables in the body expression.


The set of the itemset constraints occur in the <having> clause. Specifically,
they constraint the number of the items of an itemset that satisfy a particular
condition to have a certain threshold. They have the following format.


having at least < positive integer > item satisfies < XQuery predicate >


The operator <at least> (similar operators are <at most> and <exactly>) is
true for all itemsets which have at least a specified number of items that satisfy
the XQuery predicate. The latter one can be expressed on the variables previ-
ously defined that, in the example 2.4, denote both the author’s name and the
employee metadata. The examples below explain their usage.


exactly 1 item satisfies $aut-name eq "William Shakespeare"


at least 4 item satisfies fn:true()


at most fn:round($ALL div 2) item satisfies


count($employee/Projects/Project[@active]="yes") > 1


exactly $ALL item satisfies $aut/@dep eq "Cambridge"


The first condition above finds out who publishes frequently together with
“William Shakespeare”. The next clause looks for itemsets of length at least
4. The third condition imposes that at most half of the authors in the itemset
are involved in at least two active projects. The special variable $ALL stands
for the length of the current itemset that should be validated against the con-
straint. Finally, the last predicate finds correlations among the publications of
the authors in the Cambridge University.


As a further requirement, we restrict the source data to the papers appeared
in journals or proceedings focussed on the “KDD” field. Notice that the latter
one is a data filtering constraint, in contrast to knowledge constraints expressed
on the itemsets.


for data $article in db("DBLP")/(inproceedings|article)


where fn:contains($article/(abstract|title), ’KDD’)


Notice that now the resulting transactions are a subset of the original ones and
the relative minimum support assumes the right meaning on the new set of data.
Also observe the use of the built-in XQuery function fn:contains. It makes
it easier to write specific full-text queries and typically its implementation is
based on physical indexes to speed-up the execution.


In the above queries we have supposed the availability of metadata. In
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several cases, XQuery can be also used to build metadata from scratch. The
variable below stores an XML element containing the number of publications
for each distinct author in the dblp database.


declare variable local:np as node()* :=


for $author in distinct-values(doc("dblp")//author)


return element publication {


<name>{$author}</name>,


<number>{count(/dblp/*[aut=$author])}</number>};


The fragment of the XQuake query below returns all itemsets which have “Al-
bert Einstein” as an author, and at least one co-author with a number of pub-
lications greater than 30.


let metadata field $n as xs:decimal := local:np/number[./name=$aut-name]


having exactly 1 item satisfies $aut-name eq ’Albert Einstein’,


at least 1 item satisfies $aut-name ne ’Albert Einstein’ and $n > 30


The predicate below aims at extracting frequent itemsets in which it does not
exist one author that is also editor.


let metadata field $is-editor := not(empty(doc("dblp")//editor[.=$aut]))


having exactly $ALL item satisfies not($is-editor)


The versatility of the <mine itemsets> operator permits to easily comply with
the domain and the interpretation of the items. For example, if we aim at find-
ing the correlations among the research topics that have been investigated in
recent years, we can use the following query.


mine itemsets doc("topics") using alg:apriori(0.01)


for data $paper in doc("dblp")/(inproceedings|article)


for item $keyword in $t/keywords/*.


let active field $item := string($keyword)


The output contains patterns like {data mining, databases} supp=0.02, which
states that, in the dblp database, the papers that focus on “data mining” and
also on “databases” are 2% of the total.


In the next example, we exploit categorical attributes, instead of boolean
ones.


Example 2.5. In the mondial dataset, we are interested in finding correlations
among the kind of religions and the government type of a country. In other
terms, we are interested in itemsets such as: {Orthodox = medium, Catholic
= high, government = monarchy} supp=0.35.


mine itemsets doc("co-religions") using alg:apriori(0.25)


for data $country in doc("mondial")/Country
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for item $religion in $country/(government|religions)


let active field $item := local:format($religion)


In this query, each country denotes a transaction, while an item is either the
government type or the religion followed by a certain population percentage.
Inside the <let> clause, a user-defined function transforms the input XML el-
ement into a “categorical version” of the item.


Tree classification. Let’s us now consider another typical data mining prob-
lem, the classification problem. A generic classification task consists of two
phases: the training phase in which a set of classified data is analyzed in order
to extract a classification model, and a predictive phase, in which the model is
used to predict the class label of unknown records. In the rest of this section we
focus on the training phase, and, especially, on the issue of specifying the input
to a decision tree algorithm in the <mine tree> XQuake operator.


The example below selects the mondial database as an XML table suitable
as an input to a classification algorithm intended to build a model of the geo-
graphical, economic and political information of the countries.


Example 2.6. The goal is to classify new countries in two different categories: the
countries that are good candidates to become a new member of the UNESCO
and those that are not. The classification scenario is as follows. Records of
the training set are the countries located by means of the homonymous XML
element. The set of the attributes includes country’s properties like:


1. the government type;


2. the discretized values of the population and the level of inflation (see
example 2.1);


3. a binary attribute indicating whether the country is a member of the FAO;


4. a binary attribute indicating whether the capital of the country has an
extension greater than a fixed value.


The data mining task that leads to the generation of the classification model
can be specified by means of the <mine tree> operator:


mine tree doc("is-unesco-member") using alg:id3()


for data $c in doc("europe-discr")/country


let active field $government := string($c/government)


let active field $population := $c/population/@disr-as


let active field $inflation := $c/inflation/@discr-as


let active field $is-fao := if (fn:contains($c/memberships, ’org-FAO’))


then ’yes’ else ’no’


let active field $ext-cap := let $c-d := $c//city[@is-capital = ’yes’]/gdp


return if ($c-d > 10000) then ’t’ else ’f’
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let predictive field $class := if (fn:contains($c/memberships, ’UNESCO’))


then ’yes’ else ’no’


The statement can be read as follows. The <using> clause specifies the mining
algorithm, ID3 [25] in this case. The <for> clause identifies the XML nodes
that denote the records of the training set. Each <let> element specifies the
attributes in the source data set tat are considered for mining, i.e. the mining
schema. Since the ID3 algorithm is restricted to deal with discrete sets of values,
the operator forces the type of each field to be xs:string. In this example,
attributes are explicit, but the operator also admits the specification of group
attributes.


2.4 XML post-processing enhancement


An extremely important feature in database mining is the ability to correlate
the generated knowledge with further data.


The <apply itemsets> operator in XQuake provides the capability of con-
necting the extracted itemsets with the data. It takes as input a PMML associ-
ation model and a set of XML transactions. For each transaction, the operator
gives information about the number of itemsets that are supported or violated
by that transaction. More formally, given an itemset I = {I1, . . . , In}, and a
transaction T = {I1, . . . , Im}, T supports I, i.e. support(T, I), if ∀i ∈ [1, n]:
Ii ∈ T . T violates I, i.e. violate(T, I), if ∀i ∈ [1, n]: Ii 6∈ T .


Example 2.7. With reference to the mondial dataset, the following query re-
turns as output the set of triplets, (c, v, s) where c is the country name and v
(resp. s) is the percentage of the itemsets that violate (resp. comply with) c,
over the total number of itemsets.


apply itemsets doc("info-supported-countries")


let association model $m := doc("co-religions")


let supplementary field $total := pmml:get-number-itemsets($m)


for data $country in doc("new-mondial")/Country


for item $religion in $country/(government|religions)


let active field $item := local:format($religion)


having supported is $s, violated is $v


return ($country/name, ($v div $total) * 100, ($s div $total) * 100)


After locating the input sources (itemsets, transactions and items), the seman-
tics of this operator amounts to an iterative execution over the input trans-
actions. For each country c, the operator binds the number of itemsets that
comply with (resp. violate) c to the variable $s (resp. $v). The <return>
clause uses such information to produce the output triplets.


A similar operator, namely <apply tree>, uses a decision tree to predict the
class label of unknown data. Both operators also permit one form of nesting
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within the mining query:


apply itemsets doc("my-doc-name-1")


let association model $m := (mine itemsets doc("my-doc-name-2") ...


< mine itemsets specification >)


< apply itemsets specification >


Generally, the language satisfies a closure principle, namely that any operator
returning type t can be used wherever an argument of type t is required.


3 The physical level


The implementation of the aforementioned operators is not straightforward and
it requires appropriate mechanisms integrated in the system architecture in
order both to use data structures in an efficient way and to embed domain-
dependent constraints in the right point of the mining process. Consider for
example the XQuake expression of the Example 2.4. It contains both a data
filtering condition, expressed by means of the <where> clause, and some knowl-
edge constraints located in the <having> clause. The data filtering may be
evaluated at preprocessing time, or more efficiently, during the first iteration of
the frequent itemset mining algorithm. Constraints on itemsets can be classified
according to the peculiar property they satisfy (e.g. monotone, anti-monotone,
succinct, convertible, etc.) [5]. For each of these classes, there exists a special-
ized algorithm which is able to take advantage of such properties, for instance,
by evaluating the constraint during the exploration of the search space instead
of at post-processing time.


In [1], the authors consider a spectrum of architectural alternatives for cou-
pling mining with database systems. Two orthogonal solutions are:


• the direct encoding of DM algorithms and complex operations within the
adopted language formalism. This depends on the type of paradigm used
(e.g. relational, logic) and, typically, amounts to extend the query lan-
guage (e.g. SQL, Datalog) with DM features (tightly-coupled approach);


• the adoption of an external ad-hoc algorithm implemented in an efficient
imperative language, like C or C++, running outside the DBMS on data
typically exported from the database into text or binary files in a propri-
etary format (loosely-coupled approach).


Both the solutions suffer of some limitations. The main limitation of the
first kind of approach is that they make it difficult to implement ad-hoc data
structures and procedures that allow physical optimizations for the algorithm
[1]. Over the last years, only the SQL-based language ATLaS [23] has been
designed to overcome this limitation, by means of well-defined mechanisms via
a tightly-coupled approach.


On the other side, loosely-coupled systems model mining algorithms as sepa-
rate modules. The interaction between the DM algorithm and the query system
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is provided by collecting the data to be mined in an ad-hoc format directly
readable by the algorithm. Typically, also the output of the algorithm should
be re-adapted. This “black box” approach does not allow a systematic inter-
action within the search process. For example, we cannot directly evaluate the
domain knowledge during the exploration of the search space, making the adop-
tion of domain-dependent constraints hard. Nowadays, there is a plethora of
high-level loosely-coupled DM systems (e.g. [36, 28, 11]). They offer a mixture
of preprocessing, mining and post-processing features, but they do not allow the
encapsulation of the background knowledge deeply in the mining process, nor
the rigorous formalization of mining constraints.


The XQuake system architecture is designed directly over native XML da-
tabases, and it uses a compromise between the two solutions: we define and
implement the mining operations via (extended) XQuery programs, while main-
taining the capability of implementing some complex functionalities by means
of a procedural language. As shown below, this strategy requires some adapta-
tions of the XQuery language for DM purposes. On the other hand, it allows
the exploitation of domain-specific constraints in the right point of the min-
ing process, since constraints are expressed (and evaluated) directly within the
“XQuery view” of the operator. Moreover, complex operations over data struc-
tures are implemented in an imperative language and the input/output of such
operators is integrated within the XQuery program by external functions. This
favours the implementation of all the cases in which maintaining data structures
directly encoded in XML is both inflexible and inefficient.


The remainder of this section is organized as follow. The purpose of Section
3.1 is to extend XQuery to support mining primitives. The goal is to have a
powerful extension that is appropriate for all use cases, including preprocessing
and mining algorithms. Section 3.2 discusses in detail the implementation of the
<mine itemsets> operator and in particular of the Apriori algorithm. Finally,
Section 3.3 presents the system architecture of XQuake.


3.1 Extending XQuery for a better implementation of data
mining primitives


Motivation. The capability of iterating on data is the basis of KDD algo-
rithms. Many base algorithms operate in the same way: (i) some variables are
initialized to contain a set of statistical indicators; (ii) for each single tuple the
indicators are updated according to the purpose of the task; (iii) when no more
tuples are available, a termination condition is evaluated on such variables to
determine whether they compute all the patterns or no further statistics can be
extracted. Typically we need to repeat this process more than once, evaluating
the termination condition at each iteration and updating statistics for each in-
put tuple. More specifically, this methodology can be summarized by means of
an iterative program over an input dataset D:


S := init();
do {
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for each tuple t in D {
S := f(S, t); (?)


}
} while(g(S));
return h(S);


where init, f , g and h are user-defined functions.
The above iterative schema is common to many frequent itemsets, sequential


patterns, classification and clustering algorithms. For example, at each iteration
of the Apriori algorithm, new candidates are computed by combining the fre-
quent itemsets extracted at the previous iteration and removing the infrequent
ones. The cycle terminates when the set of new candidate itemsets is empty.
The variable < S > refers to a complex data structure that stores the support
counts of the itemsets.


Several variants are possible. For example, we can repeat the init function
at each iteration of the external loop, or we can replace the for loop with a win-
dowing computation, in which the overall dataset is split into data windows (i.e.
a subset of contiguous tuples). For each window, an output item is returned as
a result of the computation. This feature is particularly useful for preprocessing
tasks (e.g. sampling, discretization, etc.), in which, typically, the output is a
new tuple for each (window of) tuple(s).


The above considerations bring up an interesting question: is XQuery capa-
ble of implementing a computation like (?)? By exploiting recursion and the
nesting property of XQuery, it is easy to define the external do-while cycle di-
rectly as an XQuery program. More complicated is the definition of the internal
loop. In fact, the main deficiencies of the traditional XQuery FLOWR expres-
sion are twofold. From one side, it is difficult to define queries over windows of
data and this complicates the implementation of data preparation tasks. From
the other side, also the managing of local temporary variables in an iterative
computation is not straightforward. Consider for example the following simple
FLOWR expression.


let $i := 0


for $j in (1,2,3)


let $i := $i + $j


return $i.


Users new to XQuery sometimes expect one evaluation of the body of a for
expression to affect later evaluations, as it would be in imperative program-
ming languages. So, they expect (1, 3, 6) as the result. The semantics of the
for expression in XQuery makes each evaluation independent from every other
evaluation, i.e. the environment at each iteration is the same (except for the
binding loop variable $j). As a consequence, the “surprising” result of the evalu-
ation is (1, 2, 3). This has the implication that it becomes difficult to implement
a computation like (?) in an intuitive way, since the value of the variable < S
> needs to be affected from previous iterations.
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In order to implement data-oriented tasks, we add to XQuery a new iter-
ative construct, namely wfor, as an alternative to standard FLOWR expression
and capable of overcoming the limitations reported above. We integrated such
extension into a Java-based open source XQuery engine (see Section 3.3).


Run-through examples. The wfor statement iterates over an input sequence
and it binds a variable with every iteration. In addition, the statement permits
to specify an init-next-close computation like for data cursors. A complete
grammar is given in Figure 2a.


The init clause declares and initializes a local variable with a syntax similar
to the standard let statement. The effect is to introduce the variable named
by the init - say state variable - and to initialize it with the value of the given
expression. The state variable is in the scope of all the rest of the wfor expres-
sion, i.e. for the next, close as well as for the open and until clauses when
present. The state variable is updated at each iteration with the result of the
next clause, whose aim is to consume the sequence item by item. Finally, the
close clause returns an output value of the overall computation. Observe that
any XQuery expression can be used in the init, open, next and close state-
ments, including FLOWR expressions or nested wfor expressions. This feature
allows one to iterate over an input sequence several times.


Example 3.1 (average absolute deviation). In order to compute the average
absolute deviation of a sequence of numeric values, $seq, the following query
can be used.


wfor $value1 in $seq


init $m as xs:int* := (0, 0)


next ($m[1] + $value1, $m[2] + 1)


close (let $mean := $m[1] div $m[2]


wfor $value2 in $seq


init $sum as xs:double := 0


next $sum + fn:abs($mean - $value2)


close $sum div $m[2]).


Two scans are performed over the input sequence. During the first iteration
(external wfor), we calculate the mean value. The $value1 variable is bound
to each item of the input sequence. The state variable, $m, stores the temporary
result of the computation and contains the current sum and the number of vis-
ited elements. init initializes the total sum and the count to 0. next consumes
an item of the sequence and updates $m until further items are available. close
terminates the first scan of data by computing the mean of the items. During
the second iteration (internal wfor), for each item the value of the state vari-
able is increased with the absolute difference between that item and the mean.
close returns the final result (a single value in this case).


In order to specify more complex computations, we permit the specification
of simple tumbling window queries3 by adding an until clause and an open


3In tumbling windows items do not overlap. There are other different kinds of windows,
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(a)


(b)


Figure 2: Syntax (a) and intuitive semantics (b) of the wfor iterator.


clause (see Figure 2a). Basically, the first one permits (i) to break the execu-
tion of next and (ii) to anticipate the evaluation of close by returning a new
value as output. At this point, if additional items exist in the input sequence,
the computation continues by opening a new data window and re-initializing the
state variable with the result of the evaluation of the body of the open statement.


Example 3.2 (on-line mean). The goal is to compute the on-line mean of a
numeric sequence, $seq, i.e. we define a query that returns the mean every 100
values count:


wfor $value in $seq


init $state as xs:int* := ()


open (0,0)


next ($state[1] + $value, $state[2] + 1) until $state[2] < 100


close $state[1] div $state[2].


In this example, a new window is opened at each evaluation of open by re-
initializing the state variable every time. next consumes an item and updates
$state as usual. Each time the until clause holds - i.e. the number of items


i.e. sliding windows and landmark windows. The state-of-the-art in extending XQuery with
window functions is out of the scope of this paper. We refer the interested reader to [6].
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read is 100 - close terminates the computation over the current window and it
returns as output the mean value. The iteration continues by evaluating open
on a new window of values, until the items of the input sequence are entirely
consumed.


Intuitively, the until specifies when the close clause should be evaluated
and a new value returned as output. In the previous example, the until clause
partitions the input sequence into windows of exactly (if any) 100 elements, so
one value is returned every 100 items read. If until is true or absent then
close is invoked only one time and a single value is returned as output. The
usage of the open clause states that its body expression is evaluated every time
a new window is created, thus re-initializing the state variable. When the open
is absent, the operator assumes a different semantics.


Example 3.3 (cumulative mean). Given a numeric sequence, we aim at com-
puting, for each item, the mean of all values in the current sequence up to and
including the current item. For example, if $seq is the sequence (10, 20, 30, 40),
the output sequence is (10, 15, 20, 25). The wfor expression is as follows.


wfor $value in $seq


init $state as xs:int* := (0,0)


next ($state[1] + $value, $state[2] + 1) until fn:false()


close $state[1] div $state[2].


The intuitive semantics of the wfor iterator can be better explained by means
of the automaton depicted in Figure 2b. The formal semantics is reported in
Appendix B.


wfor for data mining. In the following, we provide some examples on how
the wfor operator can facilitate the definition of DM tasks.


Data collections in KDD often contain a time series, that is a sequence of
observations which are ordered in time. For example, measuring the height of
the Piazza S. Marco in Venice above the sea level produces a time series. Inher-
ent in the collection of data taken over time is some form of random variation.
Methods do exist for reducing or eliminating the effect due to random variation.
Widely used techniques are smoothing techniques [27] (Chapter 9).


Example 3.4 (median smoothing). Given an input series X1, . . . , XN and a pos-
itive integer k, the median smoothing strategy consists of replacing Xi by:


X∗
i = median(Xi−k, . . . , Xi+k), for i = k + 1, . . . , N − k.


wfor $v at $k in $X


init $window as xs:double* := ()


open if (empty($window)) then () else fn:remove($window, 1)


next ($window, $v) until $pos < (2 * $k) + 1


close local:median($window).
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As $window moves through the sequence, the oldest item value is discarded
(open clause) and a new one is added (next clause). The median smoothing
strategy uses the median of the values in the window to replace the current
value (close clause). The until condition ensures that the median value is
computed on windows of size 2k + 1.


Example 3.5 (linear scaling transformation) The linear scaling normalization
[27] (Chapter 9) performs a linear transformation into the range [0, 1] over a
numeric attribute by computing v′ = v−minA


maxA−minA
where minA and maxA are


the minimum and maximum values for the attributes A, v is the instance value
and v′ is the normalized value.


wfor $i in $seq


init $min-max := ($i, $i)


next let $new-min := if ($min-max[1] < $i) then $min-max[1] else $i


let $new-max := if ($i > $min-max[2]) then $i else $min-max[2]


return ($new-min, $new-max)


close for $j in $seq


return ($j - $min-max[1]) div ($min-max[2] - $min-max[1]).


Example 3.6 (sorted-neighborhood method). The query of example 3.4 can be
also adapted to the problem of merging multiple datasets, frequently encoun-
tered in DM as a crucial first step of the KDD process. For example, the basic
sorted-neighborhood method [16] first sorts the records in the data list by using
a key, and then moves a fixed size window through the sequential list of records
limiting the comparisons for matching records to records in the window. The
close statement can be easily rewritten to ensure this task.


For efficiency purposes, we also conceived an XQuery implementation em-
bedded in a Java environment. The environment can provide external variables
and functions to XQuery. From the data mining point of view, this feature pro-
vides good opportunities for implementing and using complex data structures in
an efficient way. The only extensions needed are the enrichment of the system
type of XQuery with a new type, representing the reference to a Java object,
and to provide a mapping among the primitive types of XQuery and Java. For
example, the following code fragment defines a local variable that contains a
reference to a Java hash-table:


let $my-hash-table as java-object := java.utils.HashTable:new(10).


We can also use instance methods in an intuitive way:


let $value := java.utils.HashTable:get($my-hash-table, ’my-key’).


3.2 Implementation of the frequent pattern mining task


In providing an efficient implementation of the <mine itemsets> operator (Sec-
tion 2.3), and of the Apriori algorithm [2], we take two critical aspects into
consideration. First, we adopt optimized data structures, to speed-up the com-
putation especially during the candidate generation and the support counting
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phases. Second, we integrate domain specific optimizations by encapsulating
pruning strategies into the right point of the algorithm. More importantly, the
pruning is automatically driven from the constraints expressed by the user. In
both the cases, our goal is to exploit the best solutions available in the literature.


Data structures. In order to support complex mining operations, efficient
data structures can be adopted. For the implementation of the Apriori, we use
the following:


• t-map: a Java-encoded tree map structure used to store items. The key
is the item name found in the transactions. For each distinct item en-
countered during the first data iteration we store: (i) the support count
and (ii) for each atomic predicate of the mining constraints (<having>
clause), a boolean value indicating whether it holds on such an item.


• t-tree: an external total support tree [10] used to hold the total support
counts for itemsets. Basically, the t-tree imposes an ordering on items
and then it enumerates the itemsets according to this ordering. The im-
plementation can be optimized by storing levels in the tree in the form
of arrays, thus reducing the number of links needed and providing direct
indexing. The t-tree is implemented as a Java class.


• t-red: a list of integer values indicating the indexes of the transactions
in the database that have been selected as “reduced” (i.e. they have been
pruned from the input database). Since this data structure is very simple,
we implement it directly as an XQuery sequence.


Preparing the mining. During the first scan of data we find out frequent
1-itemsets and insert them into the t-tree. Transactions and items needed for
the mining are located by means of the <for data> and <for item> clauses,
respectively. Moreover, also data constraints (expressed in the <where> state-
ment) and mining constraints (expressed in the <having> statement) can be
(partially) evaluated before invoking the Apriori. We operate as follows.


We first create an instance of t-map and t-tree. Then we scan every trans-
action for which the <where> clause (if any) holds, storing in t-red the indexes
of pruned ones. As we scan through the items of each transaction, if the item
encountered is already contained in t-map, its support count is increased by
1. Otherwise, for each new distinct item encountered, we insert it into the
t-map, setting the count to 1 and joining that item value with the metadata
located through the <let metadata> clause(s). By using such information, we
are able to evaluate, during the first data iteration, the atomic predicates of the
mining constraints (i.e. the <satisfies> clauses of the <at least>, <at most>,
<exactly> conditions) that hold for the current item. The result of such evalua-
tions is stored in t-map. At the end of the first iteration, each item that does not
satisfy the minimum support constraint is marked as pruned. The remaining
ones are used to initialize the t-tree structure.
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1. declare function local:apriori($t-tree as java-object,


2. $t-map as java-object,


3. $t-red as xs:integer*,


4. $k as xs:integer) as node* {


5. wfor $t at $pos in mi:for-data()


6. init $s := TTree:candidateGen($t-tree, $k)


7. next if (functx:is-value-in-sequence($t-red, $pos))


8. then $s


9. else let $items as xs:string* := mi:format(mi:for-item($t))


10. return TTree:suppCounting($s, $items, ($k + 1), $t-map)


11. close if (TTree:AM-Pruning($s, $t-map, $k, $mi:min-supp) <= 1)


12. then TTree:M-Pruning($s, $t-map)


13. else local:apriori($s, $t-map, $t-red, ($k + 1))


14. };


Figure 3: The main procedure of the Apriori algorithm.


Notice that with this kind of solution we decided to evaluate the join of the
item value with the related metadata only at data preparation time, once for
each distinct item. We will use this information during the next scans of data.
This is an important aspect, since the join may be expressed by means of a
complex user-defined XQuery expression. The computation just described can
be easily implemented by using a FLOWR expression that incorporates external
functions over t-tree and t-map. We omit the code for sake of brevity.


The Apriori algorithm. The Apriori [2] operates in a level-wise fashion mov-
ing bottom-up in the itemset lattice, from small to large itemsets. It requires
several iterations on data, according to the size of the largest found itemset. The
main implementation of the Apriori is shown in fig. 3. The implementation re-
cursively extends the t-tree level by level, until no more frequent itemsets can
be found. The function takes the (references to) t-tree and t-map as well
as the t-red and an integer representing the current level of the computation
(initially 1). It returns the set of PMML elements representing the frequent
patterns computed.


The wfor routine scans the input transactions. The for-data (resp. the
for-item) function basically contains the code of the <for data> (resp. <for
item>) XQuake statement. The init clause extends the total tree to a new
level. The external function candidateGen($t-tree, $k) combines the fre-
quent k-itemsets in t-tree to generate the candidate itemsets of size k+1.


The next clause iterates over the input transactions for counting the occur-
rences of each candidate. First of all, we check whether the transaction has been
previously marked as reduced (line 7). If this is the case, we skip the support
counting phase for this transaction (line 8). Otherwise, we scan through each
item in the transaction (line 9), traversing the total tree and recursively finding
all itemsets that are supported by that item at the given level. Atomic values
of the items are obtained by means of the function format that encapsulates
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the code of the <let active> XQuake statement. The suppCounting($t-tree,
$items, $k, $t-map) (line 10) external function updates, at a given level $k,
the frequencies of each itemset in $t-tree according to the items $items con-
tained in the transaction. The t-map tree map is used to skip the support
counting for infrequent items in $items.


The close routine prunes the results and tests whether no more frequent
itemsets can be found. This is achieved by means of the external function
AM-Pruning($t-tree, $t-map, $k, $ms) (line 11), that uses the anti-mono-
tone property to filter out the candidates from $t-tree, at the given level $k,
according to the minimum support $ms. Observe that at this level, we can eval-
uate any kind of anti-monotone constraint in conjunction with the minimum
support constraint (see below). t-map can be used to check whether such a con-
straint holds. The function returns the number of itemsets, at the given level
$k, that survive the pruning. If there are surviving itemsets, then the Apriori
algorithm is invoked recursively (line 13) to extend the total tree to a new level
k+1 and the process is repeated until no more candidates can be found. At this
point, the function M-Pruning($t-tree, $t-map) (line 12) prunes the frequent
itemsets that do not satisfy a monotone constraint from t-tree. Again, t-map
encodes such information. The external function returns the frequent PMML
itemsets as a sequence of XML nodes.


Constraint evaluation. In the definition of the aforementioned Apriori schema
we considered the encapsulation of two important kinds of constraints: anti-
monotone and monotone ones.


Since any conjunction of anti-monotone constraints is anti-monotone, this
kind of constraints is exploited in conjunction with the frequency constraint, by
avoiding the generation of candidate itemsets that have an infrequent subset.
As before mentioned, we encapsulated such exploitation level by level in the
external function AM-Pruning of the Apriori schema. The monotone constraints
are exploited at post-processing time on the total tree t-tree, by means of the
external function M-pruning, and before producing the output itemsets.


Two essential questions arise: (i) Are the constraints defined in the <having>
clause monotone or anti-monotone? (ii) How can the <mine itemsets> opera-
tor exploits monotone constraints in conjunction with the anti-monotone con-
straints? In other words, how to use a more efficient synergy among this two
kinds of constraints?


In order to answer the first question, Figure 4a illustrates an example on
how the various kinds of constraints work. Given the itemset lattice from the
set of items M = {A,B,C, D}, the figure shows the portion of the search space
that each kind of constraint satisfies over a given generic condition cond. The
following proposition holds:


Proposition 3.1. In the <mine itemsets> operator, the <at most> clause is
anti-monotone. The <at least> clause is monotone. The <exactly> clause can
be treated as a conjunction of the <at least> and <at most> constraints.
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(a) (b)


Figure 4: Monotonicity and anti-monotonicity in the MINE ITEMSETS operator
(a) and the hierarchy of the itemset constraints (b)


On the other hand, the answer to the question (ii) is provided by the con-
strained itemsets mining literature. In fact, the evaluation of monotone con-
straints entirely at post-processing time may yield an efficient and sometimes
expensive mining and several proposals exploited the synergy between anti-
monotonicity and monotonicity [22, 8, 4, 5]. In this paper we implement, by
means of a simple wfor iterator, the preprocessing data reduction algorithm
ExAnte [4, 5], recently proposed by Bonchi et. al. as a means to reduce both
the search space and the input dataset in constrained frequent patterns mining.


The ExAnte property states that a transaction which does not satisfy the
given monotone constraint can be deleted by the input database since it will
never contribute to the support count of any solution (µ-reduction). A conse-
quence of reducing the input database is that it implicitly reduces the support
of a large amount of itemsets that do not satisfy the monotone constraint as
well, thus resulting in a reduced number of candidate itemsets generated during
the mining algorithm. In addition, for the same anti-monotonic property, infre-
quent singleton items can be deleted from all transactions in the input database
(α-reduction), thus reducing the probability that a transaction satisfies a mono-
tone constraint. We are inside a virtuous cycle, where two different kinds of
data-reductions cooperates to reduce the search space and the input database.


In Figure 5, we provide an XQuery implementation of the ex-ante procedure
as a preprocessing task. The function takes as input t-map and t-red initialized
during the mining preparation phase. Moreover, also the current number of
frequent items is recorded. During the init phase, we set the support count of
frequent items in t-map to 0 (line 5). The state variable contains the starting
list of transactions doomed to be removed (line 6).


Each transaction index is then tested against the state variable to check
whether it has been already pruned (line 7). Only if the transaction passes
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1. declare function local:ex-ante($t-map as java-object,


2. $old-n-items as xs:integer,


3. $t-red as xs:integer*) as xs:integer* {


4. wfor $t at $pos in mi:for-data()


5. init $reduced := let $i := j-items:reinitSupports($t-map)


6. return $t-red


7. next if (functx:is-value-in-sequence($t-red, $pos))


8. then $reduced


9. else let $items := mi:fomat(mi:for-item($t))


10. return if (j-items:M-pruning($t-map, $items))


11. then ($reduced, $pos)


12. else $reduced


13. close let $n-freq := j-items:pruneItems($t-map, $fi:min-supp)


14. return if ($n-freq < $old-n-items)


15. then local:ex-ante($t-map, $n-freq, $reduced)


16. else $reduced


17. };


Figure 5: The Ex-Ante procedure at the first level of the level-wise computation.


this test, it is then tested against the conjunction of monotone constraints (line
10). The external function M-pruning($t-map, $items) first deletes from the
overall items in the transaction, the ones that are infrequent (as stated before,
this information is encoded in $t-map). This is the α-reduction phase. Then,
the conjunction of monotone constraints is tested against the surviving items
of the current transaction. If they do not pass this test, such a transaction is
marked as reduced (line 11). This is the µ-reduction phase. Otherwise, the
support count of survived items in the transaction is increased by 1.


As soon as the input dataset is entirely checked, we filter out the items
that are infrequent (line 13) according to the anti-monotonicity of the support
constraint. The $n-freq variable stores the overall number of frequent items.
After this reduction of items, we have the opportunity of recursively reducing
again the dataset (line 15) until a fix point is reached and no more items are
found to have turned infrequent (line 16). The ex-ante function updates t-map
at each recursive invocation and it returns the new list of indexes of the reduced
transactions. At this point, the apriori function of Figure 3 runs on such data
structures and it computes the overall frequent itemsets.


Summing up, we built a recursive implementation of the Ex-Ante and Apri-
ori algorithms, demonstrating that the encapsulation of several kinds of both
domain-dependent and physical optimizations is possible in an XQuery-based
solution. Further kinds of constraints may be exploited in our environment
(see Figure 4b) by analyzing other interesting properties besides monotonicity
and anti-monotonicity. In this respect, our attention is particularly placed on
constraints over item hierarchies.
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Figure 6: XQuake system architecture.


3.3 System Architecture


The XQuake prototype is implemented in Java. The system is built on top of
BaseX [17], an open source native XML database developed by the Database
and Information Systems Group at the University of Konstanz. BaseX has been
chosen among several XQuery implementations, thanks to its compact storage
structures, the efficiency and a visual front-end, facilitating interactive access
to the data. In order to implement the wfor iterator presented in Section 3.1,
several adaptations were made to the BaseX engine involving the parser and the
run-time system. The XQuake architecture is schematically shown in Figure 6.


A mining task is expressed in XQuake via a specific text editor. A planned
extension is the implementation of a GUI according to the QBE philosophy.


No matter what kind of GUI the system adopts, a compiler automatically
generates the appropriate (extended) XQuery code that is then interpreted. The
compiler is designed to provide a good level of extensibility of the environment
whenever the definition of a new algorithm is provided. This is achieved by
splitting the implementation of each XQuake operator into a dynamic program
and a static program. Only the first component is generated by the compiler
since it is independent from the mining algorithm used and from the kind of
implementation provided. Essentially, the dynamic component encapsulates the
user-defined code fragments of each XQuake operator into XQuery functions.
For example, in the <mine itemsets> operator, the function for-data() (see
Figure 3) addresses the XQuery code contained in the <for data> XQuake
element. Such a function is invoked by the static program that is independent
from the user-defined code of the XQuake operator. As one could expect, adding
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a new mining or preprocessing algorithm to an existing language operator only
requires the design of the static component, so the compiler is not affected by
this integration.


The core of the mining process is performed by the mining engine that
contains the run-time support of the BaseX XQuery engine extended with the
wfor iterator. This component uses the external function module responsible for
providing an XQuery interface to external user-defined Java functions over data
structures. At the bottom, we have the BaseX native XML database containing
the input and output of mining tasks, as well as XML metadata. The database
is accessed by means of the XML access optimizer component that will contain
(proprietary or native) indexing techniques to speed-up the access to input data.
We remark that the process of integrating new indexes may be both manual (i.e.
encapsulated into the XQuake syntax) or automatic.


Finally, the XML visualizer module translates an XML documents stored
in the DB into a visualization form, accepted by data and model visualization
tools, and presented by means of an output GUI to the user. Currently, the
XML result is transformed into HTML browsable format via XSL style sheets.


4 Related Work


Our work is based on ideas and experience developed in the inductive databases
field. For example, the concept of a logic-based KDD environment and the idea
of integrating datalog with iterative user-defined predicates has been presented
in [15]. The wfor clause presented in Section 3.1 follows the original idea of
ATLaS [23], that uses the ability of defining User-Defined Aggregates (UDAs)
for implementing mining primitives in a relational DBMS. Finally, the XQuake
language presented in Section 2 has been partially inspired by the XMineRule
operator [7].


Mining from relational data. The idea of integrating knowledge discovery
into relational DBMS has been addressed in a considerable number of differ-
ent papers [3, 9, 13, 21, 26, 35]. All these approaches extend SQL with op-
erators for extracting models from relational data. The contributions of this
research includes (i) the capability of satisfying the closure property, and (ii)
the capability of providing a mixture of data pre-processing, mining and model
post-processing. However, the relational model suffers of some limitations.


On the one hand, past experiences in query optimizations have shown that
it is very difficult to extend the relational environments to handle powerful
optimizations and data structures. ATLaS [23] is a recent proposal for handling
data stream that also tries to answer the KDD needs. There are two main
advantages achieved by ATLaS. First of all, it shows how to obtain a good
degree of scalability in the implementation of mining algorithms via a tightly-
coupled approach. Second, ATLaS overcomes the lack of extensibility of the
other SQL-based approaches by extending SQL with UDAs. As mentioned,
UDAs have inspired the idea of wfor.
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On the other hand, SQL-based approaches generally suffers of low expressive-
ness in representing mining models and domain knowledge, and the extension
to deal with further models and new user-defined functionalities does not seem
so easy. At the best of our knowledge, this is still an open problem.


Mining from XML data. An important aspect to take into account in DM
is how to make all the heterogeneous patterns, sources of data and other KDD
objects coexist in a single framework. A solution considered in the last few years
is the exploitation of XML as a flexible instrument for IDBs [24, 28, 11, 7].


In [24] XML has been used as the basis on which a semi-structured data
model designed for KDD, called XDM, is defined. The model stores both data
and mining models in the same XML database. This allows the reuse of patterns
by the inductive database management system. The perspective suggested by
XDM is also taken in the KDDML [28] and Yale [11] view. Essentially, the
KDD process is modeled as an XML document and the description of an oper-
ator application is encoded via an XML element. The result achieved by these
proposals is a more flexible way to represent heterogeneous patterns as well as
the mining process, overcoming, in this respect, the relational model. Both
KDDML and XDM integrate XQuery expressions into the mining process. For
instance, XDM encodes XPath expressions into XML attributes to select sources
for the mining, while KDDML uses an XQuery expression to evaluate a condi-
tion on a mining model. In our opinion, XQuake offers a deeper amalgamation
with the XQuery language and consequently a better integration among data
mining and XML native databases.


One of the first attempts to extract association rules by implementing the
APriori algorithm directly using XQuery is [34]. The proposed work does not
offer an integrated mechanism to support efficient data-intensive computations,
and the Apriori implementation is highly inefficient.


The XMineRule operator [7] defines the basic concept of association rules for
XML documents. Two are the main differences with respect to XQuake. From
the physical point of view, XMineRule requires that the data are mapped to the
relational model and it uses SQL-oriented algorithms to do the mining. Also the
output rules are translated into an XML representation. As a consequence, the
loosely-coupled architecture of XMineRule makes it difficult to use optimizations
based on the pruning of the search space, since constraints can be evaluated only
at pre- or post-processing time. From the semantics perspective, items have
an XML-based hierarchical tree structure in which rules describe interesting
relations among fragments of the XML source [12]. In contrast, in our approach
items are denoted by using simple structured data from the domains of basic
data types, favouring both the implementation of efficient data structures and
the design of powerful domain-specific optimizations. Furthermore, knowledge
is linked to items through XML metadata elements.


30







5 Performance evaluation


In the following we analyze the impact of the architecture presented in Section 3
on the frequent itemsets problem. In order to compare the performance with an
existent Apriori implementation, we tested the effects of a very simple XQuake
query, without considering the encapsulation of any kind of constraints. Below,
we show a fragment of an input XML database used to test our Apriori together
with the <mine itemsets> operator for pattern extraction.


<data db_name="census">


<transaction id="123">


<item>age=1</item>


<item>workclass=Private</item>


...


</transaction>


<transaction id="124">


<item>age=2</item>


<item>workclass=Local-gov</item>


...


</transaction>


...


</data>


mine itemsets doc("my-out") using alg:apriori(0.01)


for data $data in doc("census")/data/*


for item $item in $data/*


let active field $field := string($item)


Datasets. We used both real and synthetic datasets stored into the native
database BaseX with proprietary standard indexes on XML elements and at-
tributes. The real datasets are from the UCI repository [31]. The synthetic
databases are generated by the IBM generator [19]. These datasets are named
in the form of “TxIyDz” according to the parameters x, y, z indicating the av-
erage number of items in the transactions, the average number of items in the
large itemsets, and the number of transactions in the database, respectively. A
summarization of the databases used in our experiments is outlined in Table 1,
in which the last two columns identify the lower minimum support threshold
used in the experiments and the number of extracted patterns. The choice of
the datasets is mainly motivated by the need to estimate the contribution of the
XQuake approach from dense datasets (Connect and Mushroom) to more sparse
ones (T20I6D300K).


Experiments. We carried out our tests on a dual core Athlon 4000+ running
Windows XP. We assigned 1.5Gbyte of memory to the Java Virtual Machine.
Appendix C illustrates the performance obtained on the datasets by varying the
value of the minimum support. In order to have an idea of the performance of
XQuake, we compared its execution time on the three real datasets with those
obtained by running the Java-based Weka system [36] (Figure 7, 8 and 9). We
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Name Real Avg Num Num Min Num
trans trans items supp (%) itemsets1


census yes 15 48,841 135 2 70,826
mushroom yes 23 8,122 119 10 574,513
connect-4 yes 43 67,556 129 88 55,115


T20I6D100K no 20 100,000 1,000 0.2 25,820
T30I10D100K no 30 100,000 1,000 0.2 108,634
T20I6D300K no 20 300,000 3,000 0.2 7,457


Table 1: Summary of datasets for experiments. 1The number of itemsets refers to
the minimum support used.


modified the Apriori source code of Weka to serialize output patterns in a text
file and to exclude the time for generating the association rules. Similarly, the
performance illustrated in the graphs includes for XQuake the time to produce
an XML file, but excludes the time needed to store such XML into the database.


The first group of experiments is good and promising, thanks both to the
excellent performance and indexing technique of BaseX and to the efficient data
structures used to hold the support counts of the itemsets [10]. When the min-
ing becomes hard, XQuake outperforms Weka and the differences between the
two implementations tend to increase with respect to lower values of the mini-
mum support threshold. The scalability is also acceptable on artificial datasets
(Figure 10), on which the performance of the algorithm resulted to be quite
stable. The performance overhead introduced by external Java functions inte-
grated in XQuery is modest. This is confirmed by the graph of Figure 11, that
reports the overall execution time on the testing datasets as a sum of: (i) the
initialization time, i.e. the time to compile the query and to prepare the data
structures; (ii) the data iteration time, i.e. the time to iterate over the data
several times, according to the number of cycles of the Apriori; (iii) the mining
time, i.e. the time to update data structures at each iteration; (iv) an estima-
tion of the overhead due to external functions and finally (v) the serialization
time to produce the output. The performance of the Apriori shows a worsening
when the number of generated patterns is very high - more than 500,000 item-
sets with 1,5GByte of memory (Figure 11b) . Such a behaviour is mainly due
to the encoding of the extracted patterns entirely in main memory and to the
context-switching overhead due to their serialization.


Note moreover that the overall performance also depends strictly on the
complexity of the XQuery fragments and an important issue is the optimization
of the execution of user-defined XQuery expressions, together or separately. As
an example, let us to consider the query of Example 2.4. Since path expressions
offer in general an efficient way to iterate over items, during the compilation
phase we can merge the <for item> and <let active> clauses over a joint path
expression, in the following way:
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$paper/Author[fn:concat(./FirstName,’ ’,./LastName)].


Experiments showed that such a modification brings an increasing of the per-
formance of about 13% in respect to the graphs reported in Appendix C. Even
if with its simplicity, the above example shows that a thorough modification of
the underlying XML optimizer needs to be investigated.


6 Conclusion


In this paper, we proposed a new query language as a solution to the XML data
mining problem. As a starting point, we referred to several past works on XML
and relational domains [23, 24, 7]. In our view, an XML native database is
used as a storage for KDD entities. DM tasks are expressed in an XQuery-like
language. Also we have determined what extensions are required for turning
XQuery into a language supportive of the implementation of DM primitives
(Section 3.1).


The first empirical assessment reported in Section 5 exhibits promising re-
sults, even if related to the XML frequent itemsets mining problem. In this
context, an in-depth study of how to provide high-level optimizations by means
of both a direct exploitation of background knowledge and efficient data struc-
tures has been conducted. In particular, the grammar of the language is flexible
enough to specify a variety of different mining tasks by means of user-defined
functions in the statements. These ones allow the user to provide personalized
sophisticated constraints, based, for example, on domain knowledge. In addi-
tion, we push constraints deeper inside the mining process and, more important,
this integration is automatic.


To conclude, our project has a general-purpose objective. Clearly, the study
of this feature is even more substantial in XML-based languages, since no
general-purpose XML mining language has been yet proposed (at the best of
our knowledge). An interesting on-going work includes the exploitation of on-
tologies to represent the metadata. As an example, ontologies may represent
enriched taxonomies, used to describe the application domain by means of data
and object properties. As a consequence, they may provide enhanced possibili-
ties to constrain the mining queries in a more expressive way. This opportunity
is even more substantial in our project, since ontologies are typically represented
via the Web Ontology Language (OWL) [32], de facto an XML-based language.
The challenge we are going to raise is whether XQuery may be versatile enough
to also support queries on OWL documents.
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A Syntax of the XQuake mining language


XQuakeMain ::= VarDecl* FuntionDecl* XQuakeOp


XQuakeOp ::= (DiscrOp | SamplingOp | MineItemsetsOp | MineTreeOp | ApplyItemsetsOp)


DiscrOp ::= "prepare" "discretization" "doc" "{" QName "}" UsingClause ForDataClause


WhereClause? LetFieldClause+ HavingDiscrClause? ReturnClause


HavingDiscrClause ::= "having" BinExpr ("," BinExpr)*


BinExpr ::= "bin" "$" VarName "in" ExprSingle


SamplingOp ::= "prepare" "sampling" "doc" "{" QName "}" UsingClause ForDataClause


WhereClause? LetFieldClause* HavingSamplingClause? ReturnClause


HavingSamplingClause ::= "having" "samples" "$" VarName "in" ExprSingle


MineItemsetsOp ::= "mine" "itemsets" "doc" "{" QName "}" UsingClause ForDataClause


WhereClause? ForItemClause LetFieldClause* HavingItemsetClause?


HavingItemsetClause ::= CardinalityExpr ("," CardinalityExpr)*


CardinalityExpr ::= ("at least"|"at most"|"exactly") ExprSingle "item"


"satisfies" ExprSingle


MineTreeOp ::= "mine" "tree" "doc" "{" QName "}" UsingClause ForDataClause


WhereClause? LetFieldClause*


ApplyItemsetsOp ::= "apply" "itemsets" "doc" "{" QName "}" UsingClause LetAssocClause


LetFieldClause* ForDataClause WhereClause? ForItemClause


LetFieldClause* HavingApplyItemsetsClause ReturnClause


HavingApplyItemsetsClause ::= "supported" "is" "$" VarName


("," "violated" "is" "$" VarName)?


UsingClause ::= "using" "alg:" QName "(" (ExprSingle ("," ExprSingle)*)? ")"


ForDataClause ::= "for" "data" "$" VarName TypeDeclaration? "in"


(ExprSingle | XQuakeOp)


ForItemClause ::= "for" "item" "$" VarName TypeDeclaration? "in" ExprSingle


LetFieldClause ::= "let" ("active"|"predicted"|"group"|"metadata"|"supplementary")


"field" "$" VarName TypeDeclaration? WeightDeclaration?


":=" ExprSingle


WeightDeclaration ::= "weight" Number


WhereClause ::= "where" ExprSingle


ReturnClause ::= "return" ExprSingle


LetAssocClause ::= "let" "association" "model" "$" VarName ":="


("doc" "{" QName "}" | XQuakeOp)
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B Dynamic semantics of wfor in XQueryU core
with tuples


This appendix provides the definition of the core semantics of wfor in XQueryU
[14].


B.1 Core semantics of wfor


As stated in [14], the dynamic semantics of the core is defined by the following
judgment, where Σ is the dynamic environment, σ is the store, e is a core
expression and v is a value:


Σ; σ ` e ⇒ v; σ
′
.


Let ewindow ≡ init$s := einit open eopen next enext until euntil close eclose,
the rules for providing the judgment of the wfor are:


⇒wfor-1


Σ; σ ` ein ⇒ (v1, . . . , vn); σ1 n > 0 Σ; σ1 ` einit ⇒ vinit; σinit
1


(Σ, $s 7→ vinit); σ1 ` eopen ⇒ vopen
1 ; σopen


1


∀i ∈ 1, . . . , n : ((Σ, $x 7→ vi), $s 7→ vopen
i ); σopen


i ` enext ⇒ vnext
i ; σnext


i


∀i ∈ 1, . . . , n− 1 : (Σ, $s 7→ vnext
i ); σnext


i ` ewindow ⇒ (vopen
i+1 , vout


i ); σopen
i+1


(Σ, $s 7→ vnext
n ); σnext


n ` eclose ⇒ vout
n ; σn+1


Σ; σ ` wfor $x in ein ewindow ⇒ (vout
1 , . . . , vout


n ); σn+1


⇒wfor-2
Σ; σ ` ein ⇒ (); σ


′


Σ; σ ` wfor $x in ein ewindow ⇒ (); σ
′


⇒window-true
Σ; σ ` euntil ⇒ v; σ


′
v 6= ()


Σ; σ ` ewindow ⇒ (Σ($s), ()); σ
′


⇒window-false


Σ; σ ` euntil ⇒ (); σ
′


Σ; σ
′ ` eclose ⇒ v; σ


′′


Σ; σ
′′ ` eopen ⇒ v


′
; σ
′′′


Σ; σ ` ewindow ⇒ (v
′
, v); σ


′′′
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C Performance graphs of XQuake


Figure 7: Runtime comparison among XQuake and Weka on the census dataset.


Figure 8: Runtime comparison among XQuake and Weka on the mushroom
dataset.
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Figure 9: Runtime comparison among XQuake and Weka on the connect-4
dataset.


Figure 10: XQuake performance on the synthetic datasets.
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(a) (b)


(c) (d)


Figure 11: Time breakdown on the census dataset (a), mushroom dataset (b),
connect-4 dataset (c) and T20I6D300K dataset (d).
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