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Abstract


A tool for extracting sequential patterns with temporal and content
constraints from logs is presented. The heart of the tool is a new algorithm
capable of handling temporal constraints and itemsets with multiple oc-
currences of the same item. Applications of the system are discussed in the
context of monitoring logs registered by a platform supporting distributed
processes, developed within the European project BRITE.


1 Introduction


In many application contexts, processes, which need a distributed interactive
execution, are supported by an infrastructure capable of handling the transmis-
sion of data and requests. The logging of actions performed by means of the
infrastructure can provide a collection of information extremely useful for mon-
itoring the application processes. More than that, suitable analysis techniques
can provide hints for discovering anomalous behaviors and opportunities for re-
designing the processes themselves. The principal characteristic of the logs is
that they contain both content related information and time related informa-
tion. As a consequence the analysis tools need to handle both features related
to the semantics of logged actions and features related to the time flow.
The goal of this paper is to present a tool supporting knowledge discovery from
logs. The heart of the tool is an algorithm for extracting frequent sequential
patterns keeping temporal constraints into account and allowing itemsets with
multiple occurrences of the same item and with timestamps bound to each item.
Our work was inspired by problems coming out in the European IP project
BRITE[1]. The general goal of the project is to set up an innovative infras-
tructure for supporting the European Business Registers, that is the offices in
charge of registering the operations of private companies, e.g. changing the seat,
maybe from one country to another one, or opening a branch, again possibly
in another country, and so on. The BRITE platform is also required to offer a
dashboard for monitoring the processes and offering the possibility of perform-
ing analyses on the logged actions. One of the purposes of the analysis is to
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discover anomalous behaviors, for example for supporting the anti money laun-
dering actions required by the European Union. As an example, the opening of
multiple companies in a row by the same legal entity.
Another purpose is the detection of possible bottlenecks in the processes and
the discovery of the possibilities of streamlining procedures.


The paper is organized as follows: Sec.2 reports on the state of the art
about algorithms for mining frequent sequential patterns. Sec. 3 presents our
algorithm while Sec. 4 discusses its performance in terms of execution time and
extracted patterns. Sec. 5 discusses the handling of content constraints and
Sec.6 reports some conclusions and ideas for future extensions.


2 Related Work


Many studies have contributed to the efficient mining of sequential patterns or
other frequent patterns in time-related data. There are essentially two meth-
ods for mining sequential patterns: Apriori based and pattern growth methods.
These two families differ mostly for the way the patterns are discovered. Apriori-
like algorithms [4, 8, 6, 12, 9, 13] are based on the Apriori principle [3], with all
its strengths and weaknesses. Among the weaknesses there is the huge amount
of candidate patterns that can be generated on large sequence databases, and
the need of multiple database scans during the mining. These two problems
can be tackled by pattern growth methods. The first proposed pattern growth
method was FreeSpan [10], which reduces the efforts of candidate subsequence
generation. Han et al. proposed a second and more efficient method, called
PrefixSpan [11].It is based on the growth of the prefix (the sequential pattern
found at the previous step) by appending an item x to it, if this item occurs at
least a number of times greater than minimum support. Notice that the item
has to be searched only over sequences where the prefix occurs. In general a
i-length frequent sequential pattern p can be grown by any item found frequent
over the set of the sub-sequences that are p-suffix. This set of sequences is
called the projected database of prefix p. An item x can be appended to the
prefix in two different ways: serial and parallel. Serial means that the prefix is
grown appending a new itemset containing that item; parallel means that the
prefix is grown by appending the item x to the last itemset of the prefix. In
order to deal with gap constraints a revised version of PrefixSpan has been pro-
posed in [5] as the GenPrefixSpan algorithm: a generalization of prefix-growth
methods for sequential pattern mining with gap constraints. GenPrefixSpan is
based on the redefinition of the method used to construct projected databases:
instead of looking only for the first occurrence of the item used to grow the
prefix, every further occurrence is considered. An evolution of this algorithm
was proposed by the same authors as GenPrefixGrowth[7] which, besides gap
constraints, deals with temporal gap and content constraints (generated by a
context-free language). When the sequence database is composed of a significant
number of sequences with the same element repeated several times, GenPrefix-
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Growth projection method (the same as in GenPrefixSpan when dealing with
gap constraints) becomes prohibitive in terms of memory. It happens because
the projected database for each different element may be much bigger than the
original database, thus violating the assumption that the size of the projected
database cannot exceed that of the original one, as it is the case of the original
version of PrefixSpan. A projection method that tackle this problem is that
proposed in the PrefixTime algorithm[?]. PrefixTime deals with temporal gap
constraints guaranteeing that the size of the projected database does not be-
come greater than the one computed in the previous step. The projection idea
of PrefixTime is based on the ”alternative prefix search”. Given a projected
database related to a prefix p and a sequence s in it and a locally frequent item
x, when PrefixTime tries to grow the prefix p with x it searches for the first
occurrence of x in s. If it finds it and the current x occurrence does not satisfy
the gap constraints, then PrefixTime searches for a further x occurrence until a
valid x occurrence is found or the end of the sequence s is reached. In this last
case PrefixTime tries to search an alternative prefix for each x occurrence found
in the previous s scan. The search for an alternative prefix is done backward in s
starting from the itemset which contains the item x considered in that moment.
We chose to develop a prefix-growth based method because such methods have
no candidate generation phase: they only grow longer sequential patterns from
the shorter frequent ones. Furthermore, sequences shrink quickly: generally
a projected database is smaller than the original one because only the suffix
sub-sequences of a frequent prefix are projected into a projected database, and
the number of sequences where current x item occurs is smaller or equal than
the size of the projected database at the previous step. These are the main
reasons why, having to handle huge sequence databases, we focused on prefix
growth methods. In particular we propose an algorithm based on the Prefix-
Time ”alternative prefix search” idea. Our algorithm differs from PrefixTime
on the notion of itemset and on the use of a max window time constraint.


3 The Algorithm


SPMTCC (Sequential Pattern Mining with Temporal and Content Constraints)
is a prefix-growth algorithm for the discovery of sequential patterns with ex-
istential, temporal and content constraints. On the discovered patterns some
constraints can be specified: a sequence can become a valid pattern only if
satisfies the constraints. In SPMTCC, existential constraints are expressed by
specifying a minimum or maximum support; temporal constraints are expressed
by specifying a value for the following gap: min-gap (minimum temporal gap
between two consecutive itemsets), max-gap (maximum temporal gap between
two consecutive itemsets), max-span (maximum temporal gap between the first
and the last itemset of the patterns to be extracted), max-win (maximum tem-
poral distance between items of the same itemset). Temporal gap constraints
are exemplified in Figure 1 Temporal gaps can have different time granularity
which can be: hour, day, week , month , year.
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Figure 1: Temporal gap constraints.


Temporal gap constraints, on which the relations mingap < maxgap, maxgap <
maxspan and maxwin < maxgap must hold, are dealt within the mining pro-
cess. Content constraints are dealt in the post processing phase.


Before describing the algorithm, we briefly recall the basic general concepts.
An item is an element from a totally ordered set Σ (the items collection). Items
can be ”aggregated” within an itemset that is defined as a non empty sequence
of distinct items. A sequence is an ordered list of itemsets. When we deal with
temporal data the concept of itemset is included in that of event, which is a pair
composed of an itemset and a timestamp. When we talk about sequences as or-
dered lists of events also the timestamps associated to the events in the sequence
must be ordered ( α =< a1, a2, . . . , an > ∀iε[1, n− 1].ai.T ime < ai+1.T ime). The
concepts of subsequence and maximality can be defined among the sequences
of itemsets. A sequence α is said to be a subsequence of another sequence β
if for all itemsets in α there exist an itemset in β which contains the one in
α maintaining the ordering. A sequence α is said to be maximal in a set S of
sequences if it does not exist in S any sequence β such that α is a subsequence
of β.
The following two definitions are a slightly different version of those in [11].
Given a sequence α =< e1, e2, . . . , en > (where each ei corresponds to a fre-
quent itemset in database S), a sequence β =< e′1, . . . , e


′
m > (m ≤ n) is called


a prefix of α if and only if 1) e′i = ei (i ≤ m − 1); 2) e′m ⊆ em; Given a se-
quence α =< e1, e2, . . . , en > (where each ei corresponds to a frequent itemset
in database S), let β =< e1, e2, . . . , em−1, e


′
m > (m ≤ n) be the prefix of α. Se-


quence γ =< e′′m, em+1, . . . , en > is called the suffix of α with regards to prefix
β, where e′′m = (em − e′m). Note that, if β is not a subsequence of α, the suffix
of α with respect to β is empty.


The main differences with respect to other algorithms are the notion of item-
set and the way of dealing with window-size constraints. We consider an itemset
as a set of items where 1) each item has its timestamp, 2) items can have differ-
ent timestamps, 3) two items with the same value and/or the same timestamp
can coexist, 4) items are time ordered, 5) the time difference between the last
and the first item within an itemset is ≤ max-win.
Example: let time-granularity = day and max-win = 3 days, (a11Nov08, a11Nov08,
b11Nov08, c12Nov08, a12Nov08, b13Nov08, c14Nov08) is an itemset.


SPMTCC takes a file in input where each row has the form: customer id,
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Figure 2: Algorithm Pseudo code


item, timestamp (in terms of date and time). This file is pre-processed and
sequences are built by grouping rows by customer id. Each sequence is composed
by a list of 1-length itemsets.
The next step is the call to a recursive procedure that performs the projection
of the input database. SPMTCC includes two kinds of projection procedures
for searching frequent or infrequent sequential patterns.
The following procedure refers to the case of frequent sequential pattern search,
where a value for min support is specified. At the beginning db is the database
built by the pre-processing phase. At each recursive step the prefix is grown
by appending to it, either in serial or in parallel, a frequent item. In order to
apply the alternative prefix approach, each sequence in each projected database
has the following mining variables associated: lastseed that is the pointer to
the last prefix itemset, lastseedelem that is the pointer to the last item of
lastseed itemset, firstseed that is the pointer to the first itemset prefix, and
firstseedelem that is the pointer to the first item of firstseed itemset.
In the following we call a sequential pattern valid if it satisfies the support
and all temporal constraints. Let ρ be a valid sequential pattern computed at
the nth recursive step and ρ db be its projected database. Let x be a frequent
item in ρ db. Two databases are created: ρ


′
db and ρ


′′
db for containing all the


projected sequences: in the first case related to the pattern ρ
′


given by prefix
ρ with x appended in parallel, and in the second case related to the pattern
ρ” given by prefix ρ with x serially appended, ρ


′
db (ρ


′′
db) is filled with ρ db


sequences where a valid pattern ρ
′
(ρ
′′
) occurs.


”Serial frequent items”, denoted by the freq S set, are those items that ver-
ify the minimun support and that may be serially appended to the prefix and
are searched from the itemset that follows lastseed until the end of the sequence.
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”Parallel frequent items”, denoted by the freq P set, are those items that can
be appended in parallel to the prefix. freqP contains both the items in freqS
and those ones the occurrence of which, forward wrt lastseedelem and backward
wrt lastseed (in this last case the items have to have the same timestamp as
lastseedelem), respect the minimum support.
The serial projection of a sequence S is performed by searching for a valid pat-
tern composed of the prefix appended with item x. All the possible values for
x and possibly alternative prefixes are checked until a valid pattern is found or
no more combinations are possible. When a valid pattern is found, the mining
variables associated to a copy of S are modified in order to take into account the
information about the new prefix. The same holds for the parallel projection of
S, except for but the items being appended in parallel.


Execution example Consider the input db of Figure 3 (the first on the left
of the Figure) and the following gap constraints: max-win = 3, min-gap = 4,
max-gap = 10, max-span = 12 and min-sup = 3.


Figure 3: Example of execution.


First of all the set of frequent items is found over the input table and, for each
of them, an operation of projection is performed. For the sake of the example
and just to present the method, we show only some of the operation performed
for growing the item (prefix) c. The second table from the left in Figure 3
shows the projected db computed for the prefix c. The sets S and P above the
table represent the sets of frequent serial and parallel items. Note that a is a
candidate to be appended in parallel to the prefix because it occurs forward in
sequences 2 and 3, and backward in sequence 1 with the same timestamp of c.
Thus, putting it after c0 produces no loss of temporal information, so sequence
1 is updated exchanging the position of a0 and c0 to respect the order of the
pattern (ca), thus pattern ca is a valid pattern. The items between a0 and c0
are left in the same itemset of the new prefix (ca). Consider now the projection
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step for (cb). The first occurrence in sequence 2 after c1 of item b (b6) cannot
be appended in parallel because the max-win constraint is not satisfied, so we
search for an alternative prefix for b6. First we search for an alternative lastseed
item (c) around b6. Searching backward from b6, we do not find any item c
that satisfies the temporal constraints with b6 while searching forward, we find
the item c6 that has the same timestamp of b6. So sequence 2 is updated by
exchanging b6 and c6, putting this two items together in the same itemset, and
erasing all the items that do not have the same timestamp of lastseedelem. The
only item that is not erased is a6, which is used to validate the pattern (cba).
b6 becomes the new lastseedelem and c6 the new firstseedelem, while the item
c1 is no more considered for this prefix in sequence 2. For the mining of pattern
cb note that in sequence 1 there is no occurrence of b after prefix c0 and in
Sequence 3 the only occurrence of b is b10, but it satisfies max-win with respect
to prefix c8, so it can be appended in parallel only. No alternative item c exists
for b10. Thus only in sequences 2 and 4 we found a valid pattern cb but they
are not enough to satisfy the min sup constraint. All the other projection steps
follow the same reasoning seen so far.


4 Testing the algorithm


SPMT(C)C was tested on data obtained from the IBM Generator. We tested


Figure 4: Execution time.


the algorithm on different data varying the number of sequences (from 1000 to
10000) and the number of distinct items (from 50 to 10000), while the average
number of itemsets per sequence and the average itemset length were set as
fixed values (10 and 2.5). Figures 4 and 6 represent the algorithm average
behavior and show, respectively, the algorithm execution time and the number
of extracted patterns. The input file was composed of 1000 sequences with 250
distinct items.
The first series of graphs shows the mining time w.r.t. minsup (%), varying
the temporal gap constraints, while the second series of graphs illustrates the
number of sequential patterns returned w.r.t. minsup(%), varying the temporal
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gap constraints. We can note that the number of mined patterns depends on the
size of maxwin: by increasing maxwin we can extract more patterns because
of the higher number of combinations of the items within the itemsets. The


Figure 5: Number of extracted patterns.


execution time, instead, depends strongly on the distribution of the items within
the sequences and on their timestamp (this influences the number of times the
algorithm has to search for alternative prefixes), obviously weighted by the
temporal constraints settings. You can, in fact, notice that the line with a
square symbol, whose settings are considered always verified by the algorithm
for all the gap but maxwin, and the line with a triangle symbol, whose settings
for all the gap constraints are specified and the one for maxwin is equal to the
one of the line with a square symbol, differ for more than two minutes when
considering a support of about 0.4%. Note that we do not report any comparison
w.r.t. PrefixTime because we include in our code a call to PrefixTime when the
maxwin constraint is equal to 0. The PrefixTime code we link is a slightly
modified version of the original one, which allows for multiple occurrences of
the same item within an itemset.


5 Content constraint definition and inference rules


Content constraints are handled in a post-processing phase according to rules
that specify the acceptable semantics of itemsets while respecting the sequential-
ity of the actions found by the algorithm. Given that an elementary constraint
is a literal denoting the occurrence of an action, the content constraints can be
defined as follows: Given two content constraints C1 and C2, then


• C1 ∧ C2 is a content constraint


• C1 ∨ C2 is a content constraint


• ¬C1 is a content constraint


• (C1) is a content constraint
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Given a pattern P and a constraint C, the validity of P with respect to C is given
by a set of rules. These rules take a pattern P and a constraint C and return
True (T = P verifies C) or False (F = P does not verify C). In the following,
because of space constraints, we show only the definition for the ∧ rule:


C=C1∧C2,<P,C1>→F
<P,C>→F


If P does not verify C1 and C = C1 ∧ C2 than
P does not verify C.


C = C1 ∧ C2,
< P, C1 >→ T,


< P
′
, C2 >→ F ,


P
′
=P/{pi|∃mint.<p1...pt,C1>→T,0<i≤t}


<P,C>→F


If P verifies C1 but does not verify C2 and C =
C1 ∧ C2 than P does not verify C.


The last rule for the operator ∧ directly follows. Notice that we need to consider
P
′


because the constraints have to be verified in the order in which they are
given. Consider for example the constraint C = (a∧ b)∧ (d∨f) and the pattern
P = dceaqbeg. In this case C1 = (a ∧ b) and C2 = (d ∨ f). So one pattern
that verifies this constraint must contain the symbol a followed by b followed
by one among d or f. P verifies C1 and P


′
= eg does not verify C2. If we had


considered P when evaluating C2, the result would have been different since d
is present in P.


The following is an example of the application of SPMTCC with its post-
processing features on data (logs) recorded by the BRITE platform. The input


Figure 6: Patterns.


file is composed of 71 sequences obtained by aggregating 200 logs rows by the
ID of the legal person associated to the company that performed the action.
We executed the algorithm with several temporal gap settings, and we show the
result of the one with maxwin = 28 days. SPMT(C)C mined 1939 patterns of
which 34 were maximal. A fragment of the algorithm result is shown in Figure
6a). Over this patterns we apply the constraint open∧open∧open, which refers
to a specific money laundering checking, and we obtained the pattern in Figure
6b). We can use the information given by the actions that are not open, to
characterize a new possible malicious behavior, or to better specify the one we
already know.
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6 Conclusions and future work


The capability of using both very general time constraints and very general
content constraints in mining sequential patterns can be very useful in many
application contexts, when supported by a good performing system. We are cur-
rently addressing another application context stemming from another European
Project, MUSING [2], where one of the goals is to provide tools for support-
ing the evaluation of operational risk for small-medium enterprises. One of the
possible scenarios is controlling the failures of the network infrastructure of the
company, and we are studying how to use our tool for performing suitable anal-
yses of the logs recorded by the network infrastructure.
We are furthermore extending the system with a pre-filtering tool used for se-
lecting, at loading time, sequences of logs complying with general content and
temporal constraints.
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[5] Cláudia Antunes and Arlindo L. Oliveira. Generalization of pattern-growth
methods for sequential pattern mining with gap constraints. In Petra Perner
and Azriel Rosenfeld, editors, MLDM, volume 2734 of Lecture Notes in
Computer Science, pages 239–251. Springer, 2003.


[6] Claudia Antunes and Arlindo L. Oliveira. Sequential pattern mining algo-
rithms: Trade-offs between speed and memory. Proceedings of the Second
Workshop on Mining Graphs, Trees and Sequences at the 15th European
ECML and the 8th European PKDD, 2004.


[7] Claudia Martins Antunes. Pattern Mining over Nominal Event Sequences
using Constraints Relaxations. PhD thesis, Universidade Tecnica de Lisboa,
Instituto Superior Tecnico, 2005.


[8] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential
pattern mining using a bitmap representation. In KDD ’02: Proceedings of


10







the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 429–435, New York, NY, USA, 2002. ACM.


[9] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Spirit: Se-
quential pattern mining with regular expression constraints. In VLDB
’99: Proceedings of the 25th International Conference on Very Large Data
Bases, pages 223–234, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.


[10] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar
Dayal, and Mei-Chun Hsu. Freespan: frequent pattern-projected sequen-
tial pattern mining. In KDD ’00: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
355–359, New York, NY, USA, 2000. ACM.


[11] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto,
Qiming Chen, Umeshwar Dayal, and Meichun Hsu. Mining sequential pat-
terns by pattern-growth: The prefixspan approach. IEEE Trans. Knowl.
Data Eng., 16(11):1424–1440, 2004.


[12] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In Peter M. G. Apers,
Mokrane Bouzeghoub, and Georges Gardarin, editors, Proc. 5th Int. Conf.
Extending Database Technology, EDBT, volume 1057, pages 3–17. Springer-
Verlag, 25–29 1996.


[13] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent
sequences. Mach. Learn., 42(1-2):31–60, 2001.


11






