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Preface

This note contains the abstracts of the seven posters, selected out of eleven sub-
mitted, that have been presented at the 7th Conference on Computational Meth-
ods in Systems Biology (CMSB 2009), held in Bologna, August 31st - September
1st, 2009.

The first CMSB was held in Trento in 2003, to bring together life scientists,
computer scientists, engineers and physicist. The goal was to promote the con-
vergence of different disciplines aiming at a new understanding and description
of biological systems, firmly ground in formal models, supported by computa-
tional languages and tools, and offering new methods of analysis. The conference
then moved to Paris in 2004, Edinburgh in 2005, Trento in 2006, Edinburgh in
2007 and Rostock/Warnemünde in 2008.

Each poster submission was refereed by at least two members of the Pro-
gramme Committee. We would like to thank their authors for the bright pre-
sentations of their work-in-progress.

We would like to thank all the people who contributed to the organization
of CMSB 2009, and the generous support from the Alma Mater Studiorum –
Università degli Studi di Bologna and from Microsoft Research Cambridge. We
are also grateful to Andrei Voronkov, who allowed us to use the wonderful
free conference software system EasyChair, which we used for the electronic
submission of papers, the refereeing process and the Programme Committee
work.

The Program Chairs of CMSB 2009

Pierpaolo Degano
Università di Pisa, Italy

Roberto Gorrieri
Università di Bologna, Italy
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iii



Table of Contents

BioDiVinE: A Tool for Parallel Analysis of Multi-affine ODE Models . . . . 1
Jiri Barnat, Lubos Brim, Ivana C̆erná, Sven Draz̆an, Jana Fabriková,
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iv



BioDiVinE: A Tool for Parallel Analysis of Multi-Affine
ODE Models⋆

J. Barnat, L. Brim, I. Černá, S. Dražan, J. Fabriková, J. Láńık, and D. Šafránek

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

safranek@fi.muni.cz

1 Introduction

The most widely-used modelling frameworks for the analysis of the dynamics of biological systems
are based on the deterministic continuous approach of ordinary differential equations (ODE). The
reduction of continuous models to discrete automata by a sequence of reductions, approximations,
and abstractions allows formal methods for the automated analysis of temporal properties to be
applied [6, 7, 4]. When dealing with large models from systems biology, standard discrete state-
space exploration techniques do not provide acceptable response times for answering user queries
and high-performance parallel algorithms are required. Owing to dynamical dependencies among
state variables, the state-space explosion problem arises during reduction to discrete automata.

In the poster we present a prototype tool BioDiVinE [9] for parallel analysis of biological
models based on mass action kinetics. In particular, the tool adapts the rectangular abstraction
approach of multi-affine ODEs mathematically introduced in [8] and algorithmically tackled in [14,
6]. We contribute to the domain by means of a scalable algorithm. In particular, the contribution
of BioDiVinE is three-fold. First, the tool provides a parallel on-the-fly state space generator for
the rectangular abstraction (RATS). Second, the state space generation algorithm employs several
heuristics [2] for reducing the extent of approximation by guiding the state generator to avoid
spurious simulations. Finally, the embedded enumerative on-the-fly LTL model checker allows
direct application of efficient parallel model checking algorithms to analysis of biological models.
Our experiments [2] show that ODE models involving up-to 20 variables resulting in reachable
state spaces having around 107 states can be sufficiently analysed (with responses in the order of
tens of seconds) on a common cluster. BioDiVinE also provides a graphical module that allows
two-dimensional visualisation of reachable state spaces.

2 Related Work

In our previous work [3] we have dealt with parallel model checking analysis of piece-wise affine
ODE models [12]. The method allows fully qualitative analysis, since in the piece-wise affine ap-
proximation generating of the state space does not require to numerically enumerate the equations.
Therefore that approach, in contrast to this one, is primarily devoted for models with unknown ki-
netic parameters. The price for this feature is higher time complexity of the state space generation.
In particular, time appears there more critical than space while causing the parallel algorithms not
to scale well.

In the current version of BioDiVinE all the kinetic parameters are required to be numerically
specified. In such a situation there is an alternative possibility to do LTL model checking directly
on numerical simulations [15, 10]. However, in the case of unknown initial conditions there appears
the need to provide large-scale parameter scans resulting in huge number of simulations. On the
contrary, the analysis conducted with BioDiVinE can be naturally generalised to arbitrary intervals
of initial conditions by means of rectangular abstraction.

⋆ This work has been partially supported by the Academy of Sciences of CR grant No. 1ET408050503
and the FP6 project No. NEST-043235 (EC-MOAN).



3 Toolset Description

BioDiVinE employs aggregate power of network-interconnected workstations (nodes) to analyse
large-scale state transition systems whose exploration is beyond capabilities of sequential tools.
System properties can be specified either directly in Linear Temporal Logic (LTL) or alterna-
tively as processes describing undesired behaviour of systems under consideration (negative claim
automata). From the algorithmic point of view, the tool implements a variety of novel parallel
algorithms [11, 1] for cycle detection (LTL model checking). By these algorithms, the entire state
space is uniformly split into partitions and every partition is distributed to a particular computing
node. Each node is responsible for generating the respective state-space partition on-the-fly while
storing visited states into the local memory.

The state space generator constructs the rectangular abstraction transition system for a given
multi-affine system. The scheme of the tool architecture is provided in Figure 1. Library-level
components are responsible for constructing, managing and distributing the state space. They
form the core of the tool. The tool provides two graphical user interface components SpecAff
— allowing editing of biological models in terms of chemical reactions, and SimAff — allowing
visualisation of the simulation results.
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Fig. 1. BioDiVinE Toolset Architecture

The input (biochemical) model is specified by the following data:

– list of chemical species,
– list of partitioning thresholds given for each species,
– list of chemical reactions.

The biochemical model is then automatically translated into a multi-affine system of ODEs
forming the mathematical model that can be analysed by BioDiVinE algorithms. The mathematical
model consists of the following data:

– list of variables,
– list of (multi-affine) ODEs,
– list of partitioning thresholds given for each species,
– list of initial rectangular subspaces (the union of these subspaces forms the initial condition),
– Büchi automaton representing an LTL property (this data is not needed for simulation).

An example of a simple three-species model representing a single biochemical reaction A+B →
C performed with rate 0.5 M−1s−1 is showed in Figure 2. The respective mathematical model is
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showed in Figure 3 on the left in the textual .bio format. For each variable there is specified the
equation as well as the list of real values representing individual threshold positions. The initial
condition is defined in this particular case by a single rectangular subspace: A ∈ ⟨6, 10⟩, B ∈ ⟨4, 6⟩,
and C ∈ ⟨0.0001, 2⟩. The state space generated for this setting is depicted in Figure 3 on the right.
Figure 4 demonstrates visualisation features of BioDiVinE.

Fig. 2. A biochemical model specified in BioDiVinE GUI

VARS:A,B,C

EQ:dA = (-0.5)*A*B
EQ:dB = (-0.5)*A*B
EQ:dC = 0.5*A*B

TRES:A: 0.0001, 6, 10
TRES:B: 0.0001, 4, 6
TRES:C: 0.0001, 2, 4, 6

INIT: 6:10, 4:6, 0.0001:2

Fig. 3. A multi-affine ODE model and its state space generated by BioDiVinE

For model checking analysis, BioDiVinE relies on the parallel LTL model checking algorithms
of the underlying DiVinE library [5]. A given LTL formula is translated into a Büchi automaton
which represents its negation. That way the automaton represents the never claim property. The
automaton is automatically generated for an LTL formula and merged with the mathematical
model by divine.combine utility. An example of a model extended with a never claim property is
showed in Figure 5. In particular, the automaton specified in terms of DiVinE language represents
a never claim for the safety LTL formula G(A ≤ 10) expressing that concentration of species A
keeps under the given level.

For any multi-affine model extended with a never claim automaton as showed in Figure 5,
the parallel model checking algorithms can be directly called. We have performed several exper-
iments [2] in order to show scaling of the algorithms when distributed on several cluster nodes.
Figure 6 shows scaling of model checking conducted on a simple model of a reaction network
representing a catalytic reaction scaled for different numbers of intermediate products.
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Fig. 4. A visualisation of the state space in BioDiVinE GUI

VARS:A,B,C

EQ:dA = (-0.5)*A*B
EQ:dB = (-0.5)*A*B
EQ:dC = 0.5*A*B

TRES:A: 0.0001, 6, 10
TRES:B: 0.0001, 4, 6
TRES:C: 0.0001, 2, 4, 6

INIT: 6:10, 4:6, 0.0001:2

process LTL_property {
state q1, q2;
init q1;
accept q2;
trans
q1 -> q2 { guard A>10; },
q1 -> q1 {},
q2 -> q2 {};
}

system sync property LTL_property;

Fig. 5. A multi-affine model extended with a never claim automaton

S + E ⇀↽ ES1 ⇀↽ ES2 ⇀↽ · · · ⇀↽ ESk → P + E

Ṡ = ES1 − 0.01 · E · S
Ė = ES1 − 0.01 · S · E + ES1

˙ES1 = 0.01 · E · S − ES1 − ES1

˙ES2 = ·ES1 − 2 · ES2 + ES3

.

.

.

ĖSk−1 = ESk−2 − 2 · ESk−1 + ESk

ĖSk = ESk−1 − 2 · ESk

Fig. 6. Scaling of model checking algorithms on a homogeneous cluster
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4 Conclusion

In this poster abstract we have presented the tool BioDiVinE for parallel model checking analysis
of multi-affine ODE models. The tool currently supports rectangular abstraction of multi-affine
systems providing discrete (over)approximation of the continuous state space. Properties of the
model are specified in terms of LTL formulae. Parallel model checking algorithms can be used to
either find an example of a particular behaviour or to decide that certain property is satisfied by
all trajectories of the system starting at states given by particular initial conditions. The practi-
cability of model checking is naturally limited by the level of overapproximation involved. Current
applications of BioDiVinE show its usage for analysis of safety properties.

For future work we aim to employ BioDiVinE for analysis of biological models developed in the
EC-MOAN project [13]. We also plan to improve the GUI in order to bring the tool closer to the
community of biologists.
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Mechanistic Insights into Metabolic Disturbance
during Type-2 Diabetes and Obesity using

Qualitative Networks

Antje Beyer1?, Peter Thomason2, James Scott2, and Jasmin Fisher3

1 Department of Genetics, University of Cambridge, Cambridge, UK
2 National Heart and Lung Institute, Imperial College, London, UK

3 Microsoft Research, Cambridge, UK

Abstract. The high-fat diets in the modern life-style of developed coun-
tries lead to metabolic disturbance and inflammation which can ulti-
mately result in obesity and type-2 diabetes. The transcription factor
MLXIPL is probably a key player in the development and maintenance
of such metabolic disturbances. In this work we are using the Qualita-
tive Networks framework to model a metabolic network related to fat
metabolism, which plays an important role in type-2 diabetes and obe-
sity. The model is based on gene expression data obtained at 8 days and
15 weeks after a fat-feeding process. We show that the model is consis-
tent with the experimental data and therefore allows in silico testing of
new hypotheses. Using the model, we demonstrate that acetyl CoA and
MLXIPL regulate the level of fatty acid production in a synergistic way,
as well as highlight the necessity of further regulators of MLXIPL in addi-
tion to the known ones. Furthermore, the analysis predicts various new
modes of interactions between components in the network. This mod-
elling work suggests new avenues to explore experimentally and further
facilitates our understanding of the complex interconnectivity between
metabolic networks operating in obesity and type-2 diabetes.

1 Introduction to the Model and Results

High-fat diets in modern life style are one of the main reasons for the development
of metabolic diseases like obesity and type-2 diabetes mellitus (T2D). Nowadays
T2D affects over 110 million people worldwide and, as well as obesity, it highly
increases the risk of cardiovascular disease, blindness, amputation and kidney
failure. With cardiovascular disease being a major cause of mortality, T2D and
obesity pose a significant threat to global health. In T2D and obesity, metabolic
and inflammatory pathways play important roles as their dysregulation can lead
to insulin resistance which is a characteristic symptom of these diseases.

The transcription factor MLXIPL is probably a key player in the devel-
opment and maintenance of such metabolic disturbances. The computational
? This work was done while this author was an intern at Microsoft Research Cam-

bridge, UK.



Fig. 1. The four main parts of the metabolic network with their interactions as used in
the computational model. (1) network of MLXIPL regulatory connections, (2) glycol-
ysis, (3) network surrounding acetyl CoA and Krebs cycle, (4) fatty acid metabolism.

model described in this work is an executable model comprising transcriptional
and post-translational regulations of MLXIPL together with four interconnected
metabolic pathways regulated by MLXIPL (Figure 1). These processes all take
place in a single cell and are key players in T2D and obesity. The computational
model was constructed from a metabolic and transcriptional interaction network
using the Qualitative Networks framework [1], which is an extension of Boolean
networks. The model is based on gene expression data obtained at 8 days and 15
weeks after a fat-feeding process as described in a study by Scott and colleagues
[2, 3]. The model is used to analyze the steady state of the metabolic network at
these time points. In order to account for the different time points, we use two
different environmental conditions matching 8 days and 15 weeks, respectively.
These are modeled by fixing inputs to the network according to their values in
the experimental data for the different time points.

In order to be able to analyze the steady state of the model, we break it
into four modules (Figure 1). The MLXIPL module consists of 31 components
and the steady state analysis computes the attractors of the model from 331

different initial states. Similarly, the fatty acid metabolism module contains 33
components and 333 states; the glycolysis module has 18 components and 318
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states; and the CoA module has 36 components and 336 states. Analysis of the
full model would require analysis of approximately 5×1047 states and is currently
computationally infeasible.

Although there is a good amount of knowledge on MLXIPL function, its
regulation is not fully understood. The present computational model aims to
provide more insights into this regulation process as well as the importance of
specific regulatory connections. The computational analysis revealed that the
model is consistent with the experimental data and hence allows testing new
hypotheses in silico. Using the model, we demonstrate that acetyl CoA and
MLXIPL regulate the level of fatty acid production in a synergistic way, as well
as highlight the necessity of further regulators of MLXIPL in addition to the
known ones. Furthermore, the analysis predicts various new modes of interactions
between components in the network.

2 Concluding Remarks

This modelling work suggests new avenues to explore experimentally and further
facilitates our understanding of the complex interconnectivity between metabolic
networks operating in obesity and type-2 diabetes.

We have chosen to use the Qualitative network framework for various rea-
sons. As the available data is qualitative it is impossible to construct models
describing exact quantities of the different components over time (e.g., differ-
ential equations or process calculus). The advantages of Qualitative networks
over Boolean networks is in allowing a larger range of possible values. In partic-
ular, some of the enzymatic reactions would be impossible to model with just
two possible values. Furthermore, the analysis framework using symbolic state
exploration (using BDDs, cf., [1]) enables handling networks of this magnitude.
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Towards a minimal calculus for complexation

Cinzia Di Giusto, Cristian Versari, and Antonio Vitale

Dipartimento di Scienze dell’Informazione, University of Bologna

Abstract. We present here a termination preserving encoding of Minsky Ma-
chines in a particularly restricted fragment of the κ-calculus where only one
species with no fields is admitted and only binary rules are allowed.

1 Motivation

The κ language was introduced in [1] to formally model proteins interactions and it has
been studied since for its powerful way to characterize molecular biology dynamics:
essentially κ can be regarded as a restricted kind of graph rewriting system. The nodes of
the graph represent molecules, the edges the bonds between molecules and the rewriting
rules the change of configuration due to an interaction between molecules.

Although the core of the calculus is very simple, still it is very powerful. The full
calculus can be easily proved to be Turing-complete. Nevertheless, there are few works
assessing the computational power of κ and its fragments: in [2] it has been proved
that the binary version of the language (i.e. only rules with at most two reactants in
the left hand side are allowed) is Turing equivalent by providing an encoding of Tur-
ing machines in the language. Unfortunately, in order to encode the idea of unlimited
space on the tape, the encoding does not preserve termination: i.e. a rule generating new
tape cells is always active even if the computation in the original machine has stopped.
More recently in [3] several fragments of the calculi have been studied w.r.t. their ex-
pressiveness: i.e. there have been studied properties like decidability and undecidability
of reachability and termination.

We aim here to find a minimal fragment of the κ calculus where it is possible to
define a termination preserving encoding of Minsky Machines (MM) [4] (a two counter
machine where only increments or decrements can take place) which are known to be a
Turing equivalent formalism.

2 The language

First we briefly introduce the original κ language (as defined in [1]) and then define the
sub calculus we consider.

The basic elements defining a κ system are molecules. Each molecule is given a
species that defines its finite interaction points (sites) and its finite internal state values.
A molecule may be connected to another via one of these sites. A configuration of a
system is described by a solution which is a set of molecules possibly interconnected.
More formally a solution is given by a sequence of molecules where information on
their internal state and their bindings with other molecules are explicitely stated. This



way we obtain a distributed description of a graph: i.e. molecules are the nodes and the
bindings the arcs between nodes.

A model in the κ language is completely described by defining the initial solution
together with a set of rewriting rules. The semantics allows rewritings of finite graphs
whose nodes are in specific states into finite graphs in such a way that changes to a
solution are always localized to the rewriting part. A model evolves by applying one
rule at a time starting from the initial solution.

More precisely we use a finite set of names (species) A, a finite set of sites S =

{1, · · · , l}, a finite set of fields F = {1, · · · , p}, a finite set of values V and a countable
set of bonds B. The syntax of molecules and solutions is given below.

aF N[u](σ) (molecule)
N F A ∈ A (species)
S F ∅ | a, S (solution)

Each molecule has a name defining its species and it is given an interface σ and an
internal state u that correspond to maps S 7→ B ∪ {ε} and F 7→ V respectively.

Rewriting rules also called reactions are either creations or destructions. Creations
may change state, produce new bonds between two unbound sites, or synthesise new
molecules. Their format is:

A1[u1](σ1), . . . , An[un](σn)
� A1[u′1](σ′1), . . . , An[u′n](σ′n), B1[v1](φ1), . . . , Bk[vk](φk)

Destructions behave the other way around, they may change state but construction of
neither bonds nor new molecules is allowed. Their format is:

A1[u1](σ1), . . . , An[un](σn)� Ai1 [u′i1 ](σ′i1 ), . . . , Aim [u′im ](σ′im )

Using the terminology introduced in [3] we will consider the fragment of the κ
calculus denoted with κ−n where no destruction of molecules is allowed. Moreover we
restrict this calculus by allowing only one species with no fields (i.e. no internal state)
and only binary rules1. We denote this calculus with κ−n

2 . Roughly speaking we are
dealing with a calculus where all the molecules are of the same kind, they have no
fields and the rewriting rules may have at most two molecules on the left hand side.
The expressive power of κ−n

2 seems, thus, weakened by the significant restrictions on
species and rules: the presence of a unique species and the lack of internal fields in this
language makes difficult the representation of information. Notice that the encodings
provided in [3] require several species, fields and moreover rules are not binary. In this
restricted scenario it should be clear that the state of a molecule is completely defined by
its bonds with other molecules, thus any modification in the molecule’s bonds actually
change its state. Since the state of a molecule lies in its bonds any rule aiming to modify
its state have to consider some of its adjacent neighbours. We overcome the restrictions
of a unique species and no fields by using a subset of the molecule’s sites to encode
both the molecule specific role (i.e. the species) and its internal status (i.e. the fields’
values).

1 For a precise definition see [1,3]

10



An encoding of MM into κ−n
2 is indeed possible since bonds allow to mimic the

presence of fields and species. In detail, by connecting on special sites we can devote
one molecule to a certain group of operations thus obtaining a sort of pseudo-species.
Similarly fields can be mimicked by a group of sites and the presence or absence of
bonds denotes the current value of the corresponding pseudo field. For instance, a field
F with values in 1..10 may be represented by 10 sites F1, . . . , F10. and the presence of a
bond in the site Fi would be interpreted as i being the current value of the pseudo field
F.

It is worth noticing that with this representation the state of a molecule can be
checked only testing the presence of bonds between two molecules, hence recalling
that we only admit binary rules, even if the storage is possible, the propagation of in-
formation between molecules is heavily hindered. Nevertheless the capability of testing
the absence of bonds allows the partial overcoming of such limitation.

3 The encoding

We first recall the definition of a Minsky machine (MM) and then show the encoding.
A MM [4] is a machine with two registers R1 and R2 holding arbitrary large natural
numbers and a program P consisting of a finite sequence of numbered instructions of
the following type:

– j : Succ(Ri): increments Ri and goes to the instruction j + 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1 and goes

to the instruction j + 1, otherwise jumps to the instruction l;
– j : Halt: stops the computation and returns the value in the register R1.

A state of the machine is given by a tuple ( j, v1, v2) where i indicates the next instruction
to execute (the program counter) and v1 and v2 are the contents of the two registers. The
user has to provide the initial state of the machine.

We now give some intuitions on a possible encoding from MM to κ−n
2 .

The registers of the encoded MM are represented as chains of linked molecules: the
number of molecules represents the content of the register. Moreover two molecules
are devoted to the role of program counter. This configuration is depicted in Figure 1.
More precisely the molecules in the center (of pseudo species PC) store the state of the
program counter, while the chains of molecules (of pseudo species U) on the left and
right of PC represent the integer values of the two registers of the MM.

The increment and decrement of one register is then propagated from PC to the
proper end of the chain by means of a sequence of value changes of specific pseudo
fields. The increment is encoded straightforwardly by adding a new molecule at the
proper end of the chain, while the decrement is encoded by setting the value of a par-
ticular pseudo field of the molecule which should be removed, since physical deletion
of molecules is not allowed in the calculus. More precisely the propagation of a signal
from PC to the proper molecule is performed in the following way: We choose a finite
set of properties that identifies uniquely the state/configuration of the molecule, then we
define an injective function that depending on the property we want to be valid returns a
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number between 1 and n (where n is the combinatorial factor of all the properties com-
bined together). This number represents the site for the bonds. If a molecule satisfies a
property X then all sites apart from the site corresponding to X are bonded. This way,
by checking the absence of bonds in a site and by setting properly the interface of two
facing molecules in the chain we can propagate information.

The presence of a unique chain of molecules constantly connected after each step
ensures the correctness of the encoding, which turns out to be deterministic and termi-
nation preserving. Hence, we have the following result:

Fig. 1. Schema of the encoding: species and sites with roles

Theorem 1. There exists a correct encoding of MM in κ−n
2 deterministic and termina-

tion preserving.

This encoding is a first step towards the definition of the requirements needed in
order to determine the minimal fragment – Turing equivalent – of the κ calculus.
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Abstract. The Glutathione Ascorbate Redox cycle is modelled by Petri
nets. For that purpose, we have defined the specific Petri net model that
corresponds to the network of chemical and enzymatic steps involved in
the cycle, and we have applied structural techniques of analysis of Petri
nets in order to obtain some properties of the biological system. On the
other hand, some computer simulations have been performed by using
some existing tools on Petri nets to analyze the system behaviour.

1 Introduction

The glutathione-ascorbate redox pathway in chloroplasts is a complex network of
spontaneous, photochemical, and enzymatic reactions for detoxifying hydrogen
peroxide. Our model has been constructed to analyze the dynamic behaviour of
the pathway under, for instance, oxidative stress conditions. For that, the model
includes an electron source whose flux is distributed among three competitive
routes. A detailed description of this metabolic pathway can be found in [6],
where the study was based on ordinary differential equations (ODEs). We now
apply the Petri net formalism [3] to model and analyze this cycle to have a
better understanding of the pathway physiology. The results here obtained may
contribute to the prediction of results in the design of experiments.

2 Methods

We have built a discrete Petri net model shown in Fig.1 from the description
of the cycle following the steps described in [2]. Then, we can do a qualitative
⋆ Supported by the Spanish government (cofinanced by FEDER founds) with the

project TIN2006-15578-C02-02, and the JCCM regional projects PEII09-0232-7745,
PAI-05-036 and PAI-08-0175-8618



analysis of the metabolic pathway using both the INA [4] and the Snoopy [5]
Petri net tools that help us to understand its biological behaviour. We can also
perform simulations of this metabolic pathway considering a continuous time
model of Petri Nets [1].

O2−
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PSI−k3

NADPH NADP+

GSSG GSH
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DHA

CoI
CoII
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p19

p5−k2−APX

p4−k8

Fig. 1. The Petri net model for the Glutathione Ascorbate Redox cycle (orange arcs
are of weight 2)
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3 Results

We have applied structural techniques of analysis of Petri nets obtaining Petri
nets invariants. The P-invariants are:

P-Inv1 = {NADPH, NADP+}
P-Inv2 = { 2 GSSG, GSH}
P-Inv3 = {ASC, DHA, MDA}

that correspond to the following biological interpretation. This means that the
pathway under study is constituted by three moiety-conserved cycles coupled
in series to attain a very high amplification capacity [7] against an increase in
hydrogen peroxide concentration. In its evolution since the appearance of oxygen
in the atmosphere, the cell has developed a very efficient defense tool against
oxygen toxicity, although it needs a continuous supply of NADPH.

The system has also three T-invariants:

T-Inv1 = {p18-F1, p16-F12, p14-Fn }
T-Inv2 = {p1-SOD, 2 p15-F11, 4 p18-F1, 2 p17-F13, p2-k1-APX,

p6-k3-APX, p5-k2-APX }
T-Inv3 = { p1-SOD, 2 p15-F11, 4 p18-F1, 2 p17-F13, p4-k8}

that correspond to the following biological interpretations:

• T-Inv1 (see Figure 2) represents the balance between the photochemical pro-
duction of NADPH and its consumption by the Calvin cycle.

PSI−k3

NADPH NADP+

p18−F1

p16−F12

p14−Fn

Fig. 2. T-Inv1

• T-Inv2 (see Figure 3) illustrates how the enzyme ascorbate peroxidase works
to eliminate H2O2 at the expense of the reducing power of ascorbate.

• T-Inv3 (see Figure 4) illustrates the functioning of the spontaneous steps in-
volved in the cycle when the enzymatic system is inoperative.

A better understanding of the system is obtained by means of simulations, by
considering a continuous time model of Petri Nets [1]. Simulations have shown
the same results as in [6].
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4 Conclusions and future Work

We have applied the Petri net formalism to model the Glutathione Ascorbate
Redox cycle in chloroplasts. Then, we have obtained Petri net invariants and we
have obtained their corresponding biological interpretations as the flux models
and conservation relations that help us to understand this behaviour and to ex-
tend this model by considering some new features such as dark-light conditions.
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1 Introduction

Spatial constraints influence the dynamics of various biological processes, e.g.
cytoplasmic molecular crowding [1] or membrane lipid rafts [10], just to mention
a few of them. With advanced experimental laboratory techniques like high-
resolution microscopy, spatial methods gain increasing importance in computa-
tional Systems Biology as well.

Simulation methods taking space into account have been developed for differ-
ent levels of detail, i.e. spatial and temporal resolutions. They vary from micro-
scopic to mesoscopic and finally macroscopic scales each representing different
abstraction levels [11]. However, simulations at levels of high detail are rather
costly and at higher abstraction levels some processes may be represented insuf-
ficiently detailed for the simulation study objective. Here, multi-level approaches
come into play combining different abstraction levels and thus supporting details
on demand while reducing computational costs. One example is the combination
of an abstract population-based level, i.e. particles of the same species type are
indistinguishable from each other, and a more detailed individual level where
each particle has its own identity showing individual behaviour.

2 The Starting Points

Our work has two starting points, a multi-algorithm approach for spatial simu-
lations combining the Next Subvolume Method with Brownian dynamics [8] and
a multi-level formalism rooted in Discrete Event Systems Specification [12].

2.1 Spatial Multi-Resolution Simulation Approach

In [7] and [8] we presented a multi-resolution approach that combines two dif-
ferent spatial simulation algorithms. Populations of particles are simulated by
applying the Next Subvolume Method (NSM) [4]. Spatial aspects are represented
by a lattice-based discretization of space leading to multiple sub-volumes. In each
subvolume the stochastic Gillespie algorithm [5] simulates volume-internal reac-
tion events. In addition, diffusion of particles into adjacent subvolumes are taken
into account. At individual level, Brownian dynamics is currently responsible for
moving the entities, which occupy a certain space, and inducing reactions. Typ-
ically, macro-molecules of particular interest are simulated individually.



Both levels of abstraction influence each other in various ways. Individual par-
ticles constrain the space that is available in a subvolume and thus, have an im-
pact on the reactions and diffusion taking place in it. Individual macro-molecules
also form a border for population-based particles. By attempting to diffuse into
another subvolume particles might collide with the macroscopic molecule. De-
pending on different parameters, e.g. the orientation of the individual and the
diffusion speed of the particle, this collision might be reactive, i.e. both the par-
ticle and the individual undergo a reaction. First experimental results showed
the applicability of the approach to biological phenomena like molecular crowd-
ing [8].

2.2 Multi-Level-DEVS

To facilitate multi-level modelling in the Discrete Event Systems Specification
(DEVS) [13], we developed an extended formalism named ml-DEVS [12]. The
formalism lies – like all DEVS variants – in the tradition of general systems
theory and thus supports the modular and hierarchical nesting of model com-
ponents that are only able to communicate with each other through specific
interfaces, i.e. sending and receiving events via their input and output ports.
Like State Charts it supports a reactive systems metaphor. For their environ-
ment, all models are black-boxes hiding their internal structure and dynamics.
Internally, a component can be of type atomic or coupled model. Atomic models
can be regarded as timed automata changing their states depending on time-
triggered internal or situation-triggered external events. Coupled models wrap
further model components, again either of type atomic or coupled model.

In contrast to traditional DEVS variants, coupled models in the ml-DEVS
formalism are not just containers but also have a state and dynamics of their own.
This extension allows to describe high-level information and dynamics at the
level of coupled models. Typical examples for high-level information are global
variables describing environmental conditions like temperature or emergent phe-
nomena resulting from components’ behaviour. Also concentrations might be
stored and updated globally in the coupled model, emphasising a population-
based approach. The need for a comfortable access to global information in cell
biological modelling, has also been acknowledged by others, e.g. in developing
the Imperative Pi-Calculus [9].

In ml-DEVS, interactions between the two different levels are supported
by downward and upward causation. For example, a component might signalise
crucial internal changes to the outside by dynamically adding and removing
ports. Those might influence the global dynamics of the coupled model. Global
variables can directly be accessed by the components. Therefore, ports can be
connected to global variables via value couplings. Furthermore, events can be
produced at the level of the coupled model and be sent to its components induc-
ing transitions in its components. Due to invariants defined at the level of the
coupled model, structure changes invoked by the components might trigger the
global dynamics.
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Population Level

– Species
– Reaction rules
– Diffusion coefficient of each species
– Lattice of volumes
– Initial particle location/distribution

Individual Level

– Particle shape (e.g. radius)
– Movement function (diffusion coeffi-

cient for Brownian dynamics)
– Internal dynamics (state transitions)

Fig. 1. Information needed to describe particles at population and individual level.

3 Towards a Formal Description of Spatial Multi-Level
Models

Multi-level-DEVS supports the description of processes at different abstraction
levels and explicit interactions between them (see previous section 2.2). However,
the formalism was not intended to define spatial aspects as described in section
2.1. Therefore, we developed a concept for an extended ml-DEVS formalism
that is enriched by means of defining spatial properties and can be simulated
based on the spatial multi-resolution approach described above.

In order to provide all information needed for the reaction-diffusion master
equation simulated by the underlying NSM simulator, the diffusion coefficients
of each species as well as the lattice of subvolumes and the initial particle distri-
butions have to be defined at population level. Furthermore, besides the ability
to describe dynamics as timed state automata, the formalism shall include also
means for more intuitive and simple definitions of (bio-)chemical reactions at
the level of the coupled model. Therefore, it is planned to adopt ideas from rule-
based approaches like κ [2]. For describing molecules at individual level, model
components must provide information about their shape. In the most simple
case this is just a radius depicting the size of balls. For applying a simple Brow-
nian dynamics simulator, a diffusion coefficient must be associated to individuals
as well. Figure 1 lists relevant properties to describe particles at both levels of
detail.

Again, both levels of abstraction are tied by causal relationships. Possible
interactions between different abstraction levels are illustrated in Figure 2. Com-
ponents constrain the space that is available in the subvolumes they occupy and
thus affect the rates of reactions and diffusion taking place in it. They still form a
border for population-based particles. By attempting to diffuse into another sub-
volume, particles might collide with the macroscopic molecule and thus, might
trigger a reaction. This reaction could then lead to a state change inside the
macro-molecule, which, in turn, can result in the introduction of new particles.
The interaction of the components with their environment takes typically place
by receiving and sending events via ports; to notify individuals about events
taking place within close proximity their ports can now be connected to subvol-
umes. As in regular DEVS, a port to port connection can be used for covalent
structures and a direct exchange between molecules [3].
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Fig. 2. (Left) Representation of an individual at the population level grid by approxi-
mating the space it occupies. (Middle) Collisions of particles with the macro-molecule
can trigger state changes of the individual. (Right) Introduction of new particles at
population level caused by state changes at individual level.

4 Conclusion and Outlook

The concepts of the formalism are schematically shown in Figure 3. Based on
DEVS it inherits its modular, hierarchical construction of models. Thus, each
of the components could be described again as a spatial multi-level model. At
the lowest level and for the interaction of subsystems we still find the reactive
systems metaphor, however at the global level of a coupled model the reaction-
based perspective prevails.

Our next research steps will be dedicated to implementing the introduced for-
malism in JAMES II [6]. Conceptually, suitable strategies have still to be found
that allow moving components to update their spheres of interest in terms of
ports connected to subvolumes. Also currently, we assume Brownian Dynamics,
but other, maybe more sophisticated methods for describing the movement of
particles, could be used as well. All of this will have an effect on the performance
of the simulation, here thorough evaluations are needed.
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1 Introduction

We develop a model of the Wnt/β-catenin signaling pathway based on wet-lab
experiments and existing models [12]. Our goal is to investigate the interplay
between this pathway and another biological process, the cell cycle, by quantita-
tively analyzing the pathway’s outcome, i.e. the protein β-catenin concentration.
For our purpose some extensions of the model proposed by [12] were made, such
as compartmentalization. We also abstracted certain reactions that appear of
less interest to the objective of our study in order to keep the model as lean as
possible. We chose the Imperative Pi-Calculus to implement our model since we
aim to explore its modeling power regarding the inclusion of different sorts of re-
actions and also reaction kinetics. In this context, we provide, to the best of our
knowledge, the first stochastic model that includes Michaelis-Menten kinetics in
a Pi-Calculus based approach.

2 The Wnt/β-catenin Signaling Pathway

The Wnt/β-catenin signaling pathway is an intracellular network with decisive
impact on neural progenitor cells (NPCs) i.e. on their development into neu-
rons. On the biochemical level, in the absence of Wnt molecules, a degradation
complex formed by diverse proteins e.g. Axin, GSK3-β, is binding to β-catenin
which is consequently degraded. When Wnt molecules give signal to the recep-
tors, the degradation complex gets deactivated, β-catenin stabilizes and, due to
its constant production, increases in the cytosol. Hence β-catenin shuttles into
the nucleus were it binds to the T cell factor (TCF) and activates gene tran-
scription.
The cell cycle is a biological process that directs Cell growth. In vitro NPCs
asynchronously traverse the different phases of the cell cycle, such that they are
not sensitive to the Wnt signal simultaneously. We suspect that this delay influ-
ences the results of our studies on the pathway’s activity. So far, in this context,
it has neither been possible to prevent the cells from traversing the cell cycle,
nor to experimentally determine the quantitative impact of the cell cycle on the
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Fig. 1. Schematic overview of the model. Double-headed arrows indicate that reactants
are not consumed. Dashed circles indicate the cytosol and nucleus.

measurement of the pathway’s activity. The current model shall be a first step
toward addressing this question.

3 Wnt Model

Our model describes the Wnt/β-catenin signaling pathway in a single cell
with two compartments, the cytosol and the nucleus, represented by concen-
tric spheres, see Figure 1. Following the work in [12], the main components
of our model are β-catenin, Axin and TCF. In the cytosol de-/phosphorylated
Axin (Axin/AxinP) and β-catenin (BcatCyt) are located. The nucleus contains
species TCF and β-catenin (BcatNuc).
Two reactions are defined for Axin (Axin): it decays, i.e. the number of Axin is
simply reduced by one, and phosphorylates, i.e. it transforms to AxinP. Sym-
metrically, AxinP dephoshporylates and decays. Notice that Axin’s dephospho-
rylation only occurs in presence of the Wnt signal, i.e. when the pathway is
active. The activation of the pathway is implemented by a sequence of reactions
that mimics the delays of the cell cycle. β-catenin (BcatCyt) is produced, i.e. a
reaction is defined that increases its amount by one, and decays. The key reac-
tion in the cytosol is the β-catenin degradation, which is mediated by AxinP, i.e.
the more AxinP exists the faster the reaction. Similarly, in the nucleus located
β-catenin (BcatNuc) mediates Axin production under consumption of TCF. β-
catenin can move from the cytosol to the nucleus, i.e. transform from BcatCyt
to BcatNuc, and back.
Primarily, Mass action kinetics are assigned to the reactions in our model. Excep-
tions are given by the Axin mediated degradation of β-catenin and the β-catenin
mediated production of Axin. These reactions follow Michaelis-Menten kinetics.
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4 Stochastic Parametrization

Parameters needed were mainly taken from different sources in literature [9], [12],
[16]. However, most of these were given for deterministic models and needed to
be recalculated for our stochastic approach. As compartment volumes are a pre-
requisite for stochastic parameters we performed additional experiments.
Molecule numbers and stochastic rate constants were calculated according to the
method described in [11]. We extracted the initial parameters, such as concentra-
tions and kinetic rate constants from [12]. To calculate diffusion rate constants
for the shuttling of β-catenin, we followed the work in [5] and applied Fick’s first
law to the motion of a single molecule. Therefore, we assumed, that the compart-
ments have the shape of two concentric spheres and that in average a molecule
travels between the compartment centers. For the cell cycle delays we took the
duration of each phase of the cycle from [1] and combined it with experimental
data to obtain the duration of a cycle and the amount of cells in each phase. In
our model, the initial phase of a cell and the duration of that phase is randomly
chosen with equal distribution. In order to apply Michaelis-Menten kinetics to
Axin mediated β-catenin degradation, we had to make two assumptions:

1. the process of β-catenin binding to Axin before degradation is a typical enzy-
matic reaction. Phosphorylated Axin is the enzyme, β-catenin the substrate.
No product exists as β-catenin is degradated.

2. the enzyme concentration is very low compared to the substrate.

Similar assumption apply to the β-catenin mediated production of Axin. These
assumptions are not well justified and have to be seen as the basic weakness of
our model. However, they allow us to take essential parameters from [12], where
similar assumptions were made.

5 Implementing Michaelis-Menten Kinetics in the
Imperative Pi-Calculus

In the basic calculus of stochastic biochemistry, [6], reactions have reactants of
at most two different species and reaction kinetics follow the law of Mass ac-
tion, i.e. their reaction rates yield the product of the numbers of reactants and
the rate constant. However, modeling complex reaction networks based on these
rules requires detailed knowledge about the system under study like binding
orders or rate constants, which is usually not given. Thus, abstractions like re-
actions with Michaelis-Menten kinetics or Hill kinetics are widely used. E.g. in
our model Michaelis-Menten kinetics were assigned to β-catenin mediated Axin
production and Axin mediated β-catenin degradation. Therefore, these abstrac-
tions are supported by basic tools for stochastic modeling, e.g. [3, 7, 4, 2].
In [14, 13, 10] tools are presented that make use of the Pi-Calculus as a formalism
for the stochastic modeling of biochemistry. In the Pi-Calculus reaction networks
are modeled by mapping molecules to concurrent processes and reactions to pro-
cess communication, see [15]. Each reaction has exactly two reacting species,
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represented by sending and receiving processes. Reaction rates follow the law
of Mass action per definition, thereby entirely excluding other kinetics. In this
sense, modeling and simulation tools based on the Pi-Calculus lack basic func-
tionality. Here, we show that in an extended Pi-Calculus, called the Imperative
Pi-Calculus [8], reactions with Michaelis-Menten kinetics can be implemented.
Potentially, this modeling technique defines an approach for implementing gen-
eral kinetics in the Imperative Pi-Calculus. However, to what extend this is true
is subject to current research.
The Imperative Pi-Calculus extends on the Pi-Calculus in two ways: On one
hand it introduces a global store, that maps names to values. The store can be
accessed by processes that read and assign values. On the other hand, it allows
to define functional rate constants, possibly depending on globally stored values.
Most importantly, assignments to global names imply an immediate recalcula-
tion of all rate constants that depend on the changed value. By this means not
only dynamic changes of compartment structures can be modeled, like compart-
ments entering or leaving other compartments, but it is also possible to adapt
reaction rates to variable compartment volumes or temperature.
In order to implement Michaelis-Menten kinetics in the Imperative Pi-Calculus,
the hard-wired law of Mass action needs to be bypassed. This can be done by
modeling all those reactions whose kinetics depend on the substrate, enzyme, or
product as communications with only one sender and one receiver. The rates of
these communications entirely depend on their rate constants, since they rep-
resent reactions, where the amount of each reactant is one. Consequently, func-
tional rate constants can be used to freely define the underlying kinetics, e.g.
Mass action or Michaelis-Menten. To trace the amounts of the enzyme, prod-
uct, and substrate, global names are defined. These are updated, whenever a
reaction is performed that involves these species. Provided by the semantics of
the Imperative Pi-Calculus, the corresponding rate constants are immediately
recalculated. This ensures that all reaction rates are correctly adapted to the
current amounts.

6 Conclusion and outlook

Currently, we are in the process of fitting the behavior of our model to the results
in [12]. Our later goal is to extend our single cell model to an entire cell popula-
tion communicating through Wnt molecules propagation. On the technical side,
we wish to further explore the generality of our approach for the modeling of
Michaelis-Menten kinetics in the Pi-Calculus.
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Abstract. Structural kinetic modeling is a technique for the study of the 
stability and robustness of metabolic networks based on constructing a local 
linear model around a given steady state parametrized by means of the so-called 
saturation parameters. Such technique is applied to the study of an accurate 
model of mammalian polyamine metabolism. Our preliminary analysis shows 
the large robustness of this model requiring at least unrealistic values for three 
saturation parameters in order to yield instability. 

1 Problem Formulation 

Structural kinetic modeling [1] is an approach for analysis metabolic networks 
without recurring to an explicit kinetic model where only stoichiometric information 
is available. It is based on the analysis of the eigenvalues of the Jacobian matrix of the 
system of ordinary differential equations given by the model, evaluated at a given 
steady state. The analysis of bifurcations, including bifurcations of higher 
codimension, can be exactly determined from the spectrum of eigenvalues of the 
Jacobian, giving rise to specific dynamical behaviors with biological interest [2,3]. 

In structural kinetics the model is nondimensionalized using a change of variables 
which represents the Jacobian matrix in a convenient set of parameters, referred to as 
saturations, measuring the normalized degree of saturation of each reaction with 
respect to every substrate at the steady state (this concept is similar to the concept of 
“effective kinetic order” used in the power-law formalism). Changes in the values of 
the saturation parameters correspond to changes in the biochemical rate law of each 
reaction, allowing the analysis, for example, of the effects introduced in the dynamics 
by changes between competitive and noncompetitive inhibition in the Michaelis-
Menten kinetics.  

Structural kinetic analysis of metabolic networks can also be applied to metabolic 
networks with known detailed kinetics in order to quantify their stability and 
robustness, allowing the determination of their stabilizing sites [4,5]. For example, the 



 

 29 

stabilizing effects of allosterically regulated enzymes can be studied by comparing the 
metabolic network with and without such allosteric regulation by properly changing 
the values of the corresponding saturation parameters. Moreover, the strength of each 
regulatory interaction can also be chosen arbitrarily allowing the analysis of its main 
effects on the whole dynamics. 

In this work, the structural kinetic modeling is applied to the analysis of an 
explicit and detailed kinetic model, that of polyamine metabolism in mammals [6], in 
order to recover further information on the robustness and stability properties of such 
a model. We expect to recover some insight into the role of regulation and control in 
polyamine metabolism. 

The contents of this paper are of follows. Section 2 briefly reviews the technique 
of structural kinetic modeling and presents its application to the polyamine metabolic 
model. Section 3 is devoted to the main results of this paper and its corresponding 
discussion. Finally, the last section summarizes the main conclusions and highlights 
further work. 

2 Structural Kinetic Modeling 

The dynamical behavior of a metabolic network can be described by a set of 
differential equations given by 
 

      (1) 

where S is the m-dimensional vector of biochemical reactants, N the m×r 
stoichiometric matrix, and ν(S, k) is the r-dimensional vector of reaction rates, 
nonlinear functions depending on the substrate concentrations S and on a set of 
kinetical parameters k. Let us assume that this system has at least a positive steady-
state , such that . In structural kinetics [1], Eq. (1) is rewritten as 

       (2) 

in terms of new variables given by the following change of variables 

      ,  (3) 

with i=1,…,m, and  j=1,…, r. The corresponding Jacobian of the normalized system 
at the steady state  is given by 

      (4) 

where the elements Λij have the units of an inverse time and consist of the elements of 
the stoichiometric matrix properly normalized, and each element  of the matrix 

 measures the normalized degree of saturation of the reaction vj with respect to a 
substrate Si at the steady state  [1]. The stability of the dynamics of Eq. (1) can be 
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studied by calculating the eigenvalues of the Jacobian as function of the values of the 

saturations , which define the physiologically admissible ‘‘parameter space’’ of 
the system. 

In this paper, Eqs. (2)-(4) are applied to the mathematical model of mammal 
polyamine metabolism model presented in Ref. [6]. This model consists of m = 13 
time-dependent reactans and r = 21 kinetical reactions. The resulting parameter space 
for the Jacobian matrix is given by 51 saturations . The exact expresions of each of 

the components of the matrix  are omitted here for the sake of brevity. 

3 Results and Discussion 

Polyamine homeostasis is widely known to be very robust to perturbations, as 
quantified by the sensibility analysis presented in Ref. [6]. Structural kinetics analysis 
can also be used to quantify such robustness by means of Monte Carlo simulations. 
The values of the parameters  can be varied in intervals around the values 

given by the parameters of model chosen for simulations in silico shown in 
Table S1 in Ref. [6]. The intervals have been determined by changing the values of 
the parameters inside the experimental ranges from the available literature also shown 
in Table S1 in Ref. [6]. The whole ensemble of 105 simulations results in a stable 
steady state, i.e., the whole set of eigenvalues of the Jacobian have negative real part, 
except one eigenvalue which is practically null (smaller in absolute value than the 
machine epsilon).  

Structural kinetics allows further analysis of the robustness of the kinetical laws 
used in the model to changes in the strength of its regulation, since the evaluation of 
the parameters in the intervals given by the largest integer not greater than and the 

smallest integer not less than , i.e., in corresponds to 

spamming the full interval for each kinetical parameter. Although such values 
may be biologically unrealistic, the quantification of the stability of the steady state 
under such changes is a good indication of the robustness of the metabolic network 
[4,5]. Our Monte Carlo simulations in which a random value in if assigned to 

every shows that the 52.79% of all cases are locally unstable, show at least one 
eigenvalue with positive real part as shown in Table 1. In fact, only the 0.020%, 
2.28%, and 5.24% of all cases show 4, 3, and 2, respectively, unstable eigenvalues, 
hence only the 7.72% can present Hopf bifurcations and large co-dimension 
bifurcations. The identification of the concrete combination of responsible for 
such instatibilities is difficult due to combinatorial explosion of the possible cases to 
be considered.  
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The possibility that instability due to extreme values of only one, two, or three 
has been studied by Monte Carlo simulations, where all the has its steady state 

value except one, two, or three receiving random values in the corresponding 

intervals . This study has not evidenced any kind of instability when only one or 
two saturations are changed, assessing the robustness of the model. 

 
Our study has detected a possible source of instability requiring a triple 

combination of (unrealistic) values of the saturations associated with the rate 
equations and of the  polyamine oxidase (PAO) for N-acetyl-spermidine (aD) 
and N-acetyl-spermine (aS), respectively (equations referred to as PAO for aD and 
PAO for aS in Table 1 of Ref. [6]). Such reactions are modelled by Michaelis 
equations with competitive inhibition, hence and belongs to the interval  
and and belongs to  Figure 1 shows the separatrices between the 
regions of instability and instability for (left plot) and (right one) as function 
of (horizontal axis) and (vertical ones). Note that each curve is labelled by the 
value of either (left plot) or (right one).  

The interpretation of the instability illustrated in Fig. 1 requires a careful analysis 
of the mathematical expression for the saturations. The saturation of PAO for aS with 
respect to aS is given by 

 

 

 
where the 0 superindex indicate concentrations at steady state. The instability onset 
requires that the reaction of PAO for aS has saturation and order of magnitude smaller 
than its physiological value, which requires low concentrations of spermidine and 
spermine in the steady state, which can only be attained in polyamine defficient 
genetically modified cells. Experimentally, this instability is difficult to observe since 
the regulation of polyamine metabolism results in the conversion of putrescine into 
spermidine and spermidine into a spermine. Otherwise, unphysical values for the 
Michaelis constants and , about two orders of magnitude larger than the 
experimentally observed ones, are required. Both conditions indicate that the 
instability observed in our simulations has a limited biological value.  
 

 
[0,10-5] [10-5,10-4] [10-4,10-3] [10-3,10-2] [10-2,10-1] [10-1,1] [1,10] Total 

0.07% 0.48% 2.26% 1.72% 8.83% 38.11% 1.32% 52.79% 
 

Table 1: Percentage of eigenvalues with positive real part (larger than 10-12).  
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Figure 1: Boundary of the region of instability in the parametric space as function of and 

as function of and , where the unstable region is behind the each curve in 
direction to the left-bottom corner of the plot. 

4 Conclusions and Future Work 

The technique of structural kinetic modeling has been applied to a detailed model 
of polyamine metabolism in mammals. The robustness of the model on the changes in 
the values of its parameters has been quantified by the application of a Monte Carlo 
method to a large ensemble of realizations. The technique has also identified some 
instabilities in the model but which cannot be reached by biologically relevant values 
of the parameters.  

Further research is required. First, further Monte Carlo simulations are required in 
order to identify the possibility of Hopf bifurcations of codimension one and two. 
Second, the analysis of the importance of allosteric regulation must be elucidated. 
And third, current approach is semiautomatic but apparently easily automatizable 
resulting in the development of new bioinformatic tools for the analysis of large 
metabolic networks lacking a detailed kinetic model.  
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C̆erná, Ivana . . . . . . . . . . . . . . . . . . . . . . . 1

Di Giusto, Cinzia . . . . . . . . . . . . . . . . . . 9
Draz̆an, Sven . . . . . . . . . . . . . . . . . . . . . . . 1
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