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Abstract. We propose a methodology for statically predicting the pos-
sible interaction patterns of services within a given choreography. We
focus on choreographies exploiting the event notification paradigm to
manage service interactions. Control Flow Analysis techniques statically
approximate which events can be delivered to match the choreography
constraints and how the multicast groups can be optimised to handle
event notification within the service choreography.


1 Introduction


The ability of supporting programmable coordination policies of heterogeneous
services is a key element in the success of the Service Oriented Computing (SOC)
paradigm. Two different approaches are usually adopted to assemble services:
orchestration and choreography. In the service orchestration, an intermediate
entity, the orchestrator, arranges service activities according to the given busi-
ness process. The service choreography, instead, involves all parties and their
associated interactions providing a global view of the system. Relevant stan-
dard technologies are the Business Process Execution Language (BPEL) [22], for
the orchestration, and Web Service Choreography Description Language (WS-
CDL) [23], for the choreography. Notably, the orchestration-choreography issues
have led to the development of a variety of foundational models (see e.g. [18, 11,
2, 6, 17, 9] to cite a few). We refer to the surveys in [8, 21] for an analysis of the
approaches.


In [14, 20] a middleware, called Java Signal Core Layer (JSCL), supporting
the design and implementation of service coordination policies has been intro-
duced. The middleware consists of a set of API for assembling services by exploit-
ing the event notification paradigm. A distinguished feature of JSCL consists of
the strict interplay among formal semantic foundations, implementation prag-
matics and experimental evaluation of the resulting programming mechanisms.
More precisely, the programming facilities available in JSCL have been seman-
tically motivated. At the abstract level, the middleware takes the form of the
Signal Calculus (SC) [16]. The SC calculus is an asynchronous process calculus
with explicit primitives to deal with (multicast) event notification and service
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distribution. The SC-JSCL framework allows one to specify and program ser-
vices coordination policies (orchestration and choreography) relying on multicast
notification only. Moreover, it features sessions as a mechanism to synchronise
behaviours of distributed and independent services. Remarkably, the middleware
does not assume any centralized mechanism for publishing, subscribing and no-
tifying events. Hence, SC and JSCL have to be properly regarded as a founda-
tional framework and its programming counterpart for specifying, verifying and
programming coordination policies of distributed services.


The JSCL framework has been also equipped with a model driven develop-
ment methodology [12, 13, 15]. The methodology exploits a suitable choreography
model that takes the form of a process calculus, called Network Coordination
Policies (NCP). The two calculi (SC and NCP) lay at two different levels of
abstraction. The former is tailored to support the (formal) design of services,
the latter is the specification language to declare the coordination policies. Poli-
cies are processes specifying service behaviour as seen by an observer standing
from a global point of view, hence capable of observing the interactions that
are expected to happen, and how these are interleaved. Indeed, certain features
can be described at both levels: the NCP specification declares what is expected
from the service network infrastructure, while the SC design specifies how to
implement it. The gap between the local and global abstraction levels has been
formally filled in [12, 16]. It has been proved that for each SC design, there exists
an NCP choreography that reflects all the properties of the design. The confor-
mance of an SC design with respect to an NCP specification is formally proved
by checking weak asynchronous bisimilarity [1] between them. This notion of
conformance has the main benefit of supporting the development of systems in
a model driven development fashion. The designer can define a suitable chain of
SC models that implement the choreography: each model is obtained by refine-
ment steps that add more details. The conformance of each model with respect
to the NCP specification provides the formal machinery to choose the required
level of abstraction, so that one can focus on coordination of services, without
considering the implementation details, or focus on service design, just trying to
match the abstract policies.


The present paper aims at contributing to this line of research. Our long-term
goal is to equip the JCSL middleware with semantic-based toolkits supporting its
design, development, and deployment. In particular, this paper develops static
reasoning techniques for the JSCL middleware. We use a specific static technique,
Control Flow Analysis, based on Flow Logic [19]. This kind of static analysis
provides a variety of automatic and decidable methods and tools for analysing
properties of computing system.


Our first contribution is the definition of a Control Flow Analysis for the
SC process calculus, that it is shown to be sound. For simplicity, the analy-
sis is introduced in two stages: first it is developed for a basic fragment of the
calculus considering flows and multicast. In the second stage, session manage-
ment is taken into account. This analysis safely approximates the behaviour of
an SC design, statically predicting the possible structure of event notifications.







This information offers a basis for studying dynamic properties, by suitably
handling the approximation the static analysis constructs. We have indeed an
over-approximation of the exact behaviour of a system. This means that all those
interactions that the analysis does not include will never happen, while all the
interactions that the analysis does include can happen, i.e. they are only possible.
The result of the analysis can therefore be used to predict at compile time all the
possible event flows emanating from a certain service. Implicitly, this amounts
to providing the maximal flow of an event notification and, consequently, an
upper bound on the structure of the multicast group implementing the notifica-
tion. Hence, the analysis provides formal basis to optimise the management of
multicast groups of the JSCL run-time.


Our second contribution consists in the development of a Control Flow Anal-
ysis for the NCP calculus. The analysis, that computes a safe over-approximation
of event interactions, can be used to verify if certain choreography constraints
are satisfied. We can assert that events of a certain type have not to be captured
by a service and then we can statically verify, by inspecting the analysis, that
this assertion is not violated. In other words, the analysis acts in a descriptive
fashion: if no property violation is statically found then no violation of the prop-
erty can occur at run-time. However, within the NCP choreography model, the
analysis can also be exploited in a prescriptive fashion. Intuitively, the analysis
can suggest how to instrument the SC design to avoid occurrences of a property
violation. For instance, the constraints on event handling mentioned above can
be satisfied, by instrumenting the multicast group with a filter discarding the
events referring to the unauthorized event.


Our static machinery has been applied to several process calculi, amongst
which π-calculus (e.g. [5]) and LySa [4] to establish security properties. In par-
ticular, the mixed descriptive/prescriptive approach offered by Control Flow
Analysis has been introduced in [3] to deal with type flaws in crypto-protocols.


Plan of the Paper. In Section 2, we present the simplest version of the SC cal-
culus focussing on multicast notification. In Section 3, we completely introduce
the Control Flow Analysis for this version of the calculus. This analysis is ex-
tended in Section 4 to manage the SC notion of session. The NCP calculus and
its Control Flow Analysis are described in Section 5. In Section 6, we show how
consistency between a network of SC components and the global coordination
policy expressed by NCP specifications is reflected by the correspondence be-
tween the analysis results. For lack of space, all the proofs are omitted, but are
reported in the Appendix.


2 The Calculus


The Signal Calculus (SC) [16], is a process calculus specifically designed to de-
scribe coordination of services distributed over a network. The calculus is based
on the event notification paradigm. SC building blocks are called components,
which interact by issuing/reacting to events. A component contains a behaviour,







for instance, a “simple” service, interacting through an asynchronous signal pass-
ing mechanism. Each component stores information about the collection of com-
ponents that must be notified whenever events are issued (event flow). When
an event is raised by a component, several envelopes are generated to notify
all components in the flow (multicast notification). Each envelope, also called
signal, contains the event itself and the address of the target component. Each
component owns a set of signal handlers associated to type event. Usually, in the
event notification literature, the type of an event is called topic. Signal handlers,
called reactions, are responsible for the management of the reception of an event
notification. Indeed, the reception of a signal acts like a trigger that activates
the execution of a new behaviour, described by the compatible reaction within
the component.


The component interface is defined by its reactions and flows. The language
primitives allow one to dynamically modify the component interfaces topology
of the coordination, by adding new flows and reactions. Finally, components are
structured to build a network of services. A network provides the facility to
transport signals containing the events exchanged among components.


Let A 3 a, b, c... be a finite set of components names, and T 3 τ1, ..., τk be
a finite set of topics. We use ã to denote a set of names a1, ..., an. A component
is written as a[B]RF and represents the service uniquely identified by the name
a, i.e. its public address. Each component has internal behaviour B, reaction R
and flow F .


N ::= networks
| 0 empty network
| N ||N parallel composition
| a[B]RF component
| 〈τ〉@a signal envelope


B ::= behaviour
| 0 empty behaviour
| rupd(R); B reaction update
| fupd(F ); B flow update
| out〈τ〉; B event emission
| ε; B internal behaviuor
| B|B parallel composition


R ::= reactions
| 0 empty reaction
| τ m B unit reaction
| R|R parallel composition


F ::= flows
| 0 empty flow
| τ  ã unit flow
| F |F parallel composition


Fig. 1. Syntax of SC, version 1


The syntax of SC is presented in Fig. 1. A reaction R is a multiset, possibly
empty, of unit reactions. A unit reaction τ m B triggers the execution of the
behaviour B upon reception of a signal tagged by the topic τ . A flow F is a set,
possibly empty, of unit flows. A unit flow τ  ã describes the set of component
names ã where raised events having τ as topic have to be delivered. We define
F ↓τ as the set of b̃ such that τ  b̃ occurs in F .







(SKIP)
a[ε; B1 | B2]RF → a[B1 | B2]RF


(RUPD)
a[rupd(R1); B1 | B2]RF → a[B1 | B2]


R|R1
F


(FUPD)
a[fupd(F1); B1 | B2]RF → a[B1 | B2]RF |F1


(OUT)
F ↓τ= b̃


a[out〈τ〉; B1 | B2]RF → a[B1 | B2]RF ||Πbi∈b̃〈τ〉@bi


(IN)
〈τ〉@a||a[B1]


R|τmB2
F → a[B1|B2]


R|τmB2
F


(PAR)
N → N1


N ||N2 → N1||N2


(STRUCT)
N ≡ N1 → N2 ≡ N3


N → N3


Fig. 2. Reduction Semantics of SC


A behaviour B is a multiset of simple behaviours. A reaction update rupd(R);B
extends the reaction part of the component interface. Similarly, the flow up-
date fupd(F );B extends the component flows. The asynchronous event emission
out〈τ〉;B first spawns into the network a set of envelopes containing the event,
one for each component name declared in the flow having topic τ , and then acti-
vates B. The behaviour ε;B abstracts from the internal activities performed by
the component (at the end of its execution, the component activates the contin-
uation B). Finally, the inactive behaviour 0 and the parallel composition B|B
have the standard meanings. Reactions, flows and behaviours are defined up-to a
structural congruence (≡). Indeed we assume that (F, |, 0), (R, |, 0) and (B, |, 0)
are commutative monoids, i.e. parallel composition is commutative, associative
and 0 is the identity. Moreover, we have that τ  ã|τ  b̃ ≡ τ  ã∪ b̃. We omit
the trailing occurrences of 0.


Networks (N) describe the distribution of components and carry signals ex-
changed among them. The signal envelope 〈s〉@a describes a message containing
the topic τ , whose target component is named a. The empty network 0 and the
parallel composition have the standard meanings. In the following, we will use∏


bi∈b̃ 〈τ〉@bi, with b̃ a finite set of component names, to represent the parallel
composition of messages having topic τ .


The operational semantics is defined in the reduction style and states how
components, at each step, communicate and update their interfaces. Reduction
rules of SC are given in Fig. 2. Rule (SKIP) describes the execution of an internal
action, i.e. an action that has no side effect on the system. Rule (RUPD) extends
the component reactions with a further unit reaction (the parameter of the
primitive). Rule (FUPD) extends the component flows with a unit flow. Rule
(OUT) first takes the set of component names ã that are linked to the component
for the topic τ and then spawns into the network an envelope for each component
name in the set. Rule (IN) allows a signal envelope to react with the component
whose name is specified inside the envelope. Note that signal emission rule (OUT)
and signal receiving rule (IN) do not consume, respectively, the flow and the







reaction of the component, i.e. flows and reactions are persistent. Finally, rules
(STRUCT) and (PAR) are standard.


Example 1. Multicast Notification. Let us consider a component s that requires
a set of resources to provide a certain functionality. This component is exploited
by several clients ci, with i = 1, .., n, to achieve a common goal. All clients
collaborate to the activation of the service supplied by s, providing the required
resources. The process is summarized as follows:


N
def
= s[out〈τr〉]τ0mout〈τr〉|τ0mB


tr {c1,c2,c3} ||C1||C2||C3


Ci
def
= ci[0]


trmout〈τ0〉|τrm0


τ0 {s}


Initially, the service S issues an event to notify its demand of resources.


s [out〈τr〉]τomout〈τr〉 | τomB
τr {c1,c2,c3} → s [0]τomout〈τr〉 | τomB


τr {c1,c2,c3} ‖ 〈τr〉@c1 ‖ 〈τr〉@c2 ‖ 〈τr〉@c3


Upon the reception of a resource request, a client non-deterministically activates
one of its two reactions.


ci [0]τrmout〈τo〉 | τrm0
τo {s} ‖ 〈τr〉@ci → ci [out〈τo〉]τrmout〈τo〉 | τrm0


τo {s}


The client raises events τo to notify their agreement to provide a resource.


ci [out〈τo〉]τrmout〈τo〉 | τrm0
τo {s} → ci [0]τrmout〈τo〉 | τrm0


τo {s} ‖ 〈τo〉@s


Upon the reception of a resource bid, the service non-deterministically activates
one of its two reactions.


s [0]τomout〈τr〉 | τomB
τr {c1,c2,c3} ‖ 〈τo〉@s → s [B]τomout〈τr〉 | τomB


τr {c1,c2,c3}


3 The Control Flow Analysis for SC


We now introduce the Control Flow Analysis for SC. The aim of the analysis is
over-approximating all the possible behaviour of SC processes. In particular, we
focus on how components communicate and update their interface. The result of
analysing a network N is a tuple (B,R,F , E), called estimate for N , that satisfies
the judgements defined by the axioms and rules in the upper (lower, resp.) part
of Table 1. Given a certain component a, B(a) gives an approximation of the
possible behaviours of a; R(a) gives an approximation of the possible reactions
of a; F(a) gives an approximation of the possible flows of a: and E(a) gives an
approximation of the possible envelopes to be received by a.


To validate the correctness of a proposed estimate (B,R,F , E) we state a set
of clauses operating upon judgements for analysing processes B,R,F , E |= N ,
defined in the flavour of Flow Logic [19].







Validation. The analysis is specified in two phases. First, we check that (B,R,F , E)
describes the initial process. This is done in the upper part of Table 1, where
the clauses amount to a structural traversal of process syntax. The clauses rely
on the auxiliary functions AB , AR, AF , that given a behaviuor B, reaction
R or flow F , keep track of the single unit behaviour occurring in B, reaction
actions in R and flows in F , respectively. Their definitions are reported at the
beginning of Table 1. In the second phase, we check that (B,R,F , E) also takes
into account the dynamics of the process under analysis. This is expressed by
the closure conditions in the lower part of Table 1 that mimic the semantics,
by modelling, without exceeding the precision boundaries of the analysis, the
semantic preconditions and the consequences of the possible actions. More pre-
cisely, preconditions check, in terms of (B,R,F , E), for the possible presence of
the redexes necessary for actions to be performed. The conclusion imposes the
additional requirements on (B,R,F , E), necessary to give a valid prediction of
the analysed action. For instance, in the penultimate clause in Table 1, if (i)
there exists an occurrence of out〈τ〉 in B(a), and (ii) there exists an occurrence
of (τ, b) in F(a), then there is a signal envelope with topic τ to be received by
b, i.e. a possible out action is predicted.


AB(0) = ∅
AB(ε; B) = AB(B)
AB(b; B) = {b} ∪AB(B) where b ::= fupd(F )|rupd(R)|out〈τ〉
AB(B0|B1) = AB(B0) ∪AB(B1)


AR(0) = ∅
AR(τ m B) = {(τ, B)}
AR(R0|R1) = AR(R0) ∪AR(R1)


AF (0) = ∅
AF (τ  ã) = {(τ, ai)|ai ∈ ã}
AF (F0|F1) = AF (F0) ∪AF (F1)


B,R,F , E |= 0 iff true
B,R,F , E |= N0|N1 iff B,R,F , E |= N0 ∧ B,R,F , E |= N1


B,R,F , E |= 〈τ〉@a iff τ ∈ E(a)
B,R,F , E |= a[B]RF iff AB(B) ⊆ B(a) ∧AR(R) ⊆ R(a) ∧AF (F ) ⊆ F(a)


fupd(F ) ∈ B(a) ⇒ AF (F ) ⊆ F(a)
rupd(R) ∈ B(a) ⇒ AR(R) ⊆ R(a)
out〈τ〉 ∈ B(a) ∧ (τ, b) ∈ F(a) ⇒ τ ∈ E(b)
τ ∈ E(a) ∧ (τ, B) ∈ R(a) ⇒ AB(B) ⊆ B(a)


Table 1. Analysis for SC Processes


Example 2 (Multicast notification). Back to our example, we report the main
entries of the analysis in Table 2. It is possible to check that (B,R,F , E) is a valid
estimate, by following the two stages explained above. The analysis correctly







E(ci) 3 τr


B(s) 3 out〈τr〉,AB(B) B(ci) 3 out〈τ0〉
R(s) 3 (τ0, out〈τr〉), (τ0, B) R(ci) 3 (τr, out〈τ0〉), (τr, 0)
F(s) ⊇ {(τr, ci)|ci ∈ {c1, c2, c3}} F(ci) 3 (τ0, {s})


Table 2. Some Entries of the Example Analysis


approximates the behaviour of N ; for instance it predicts that three envelopes
〈τr〉@ci can be spawn (E(ci) 3 τr).


We prove that our analysis is safe w.r.t. the given semantics, i.e. a valid
estimate enjoys the following subject reduction property.


Theorem 1. (Subject Reduction)
If N → N ′ and B,R,F , E |= N then also B,R,F , E |= N ′.


Proof Sketch The proof is by induction on N → N ′.
The above result can be made more precise, by looking at the single analysis


components. As an example, we just show that the analysis component F cap-
tures all the flows that involve the components of a network N . Clearly, similar
results hold for the other components.


Theorem 2. (Flows F) If B,R,F , E |= N and N →∗ N ′ → N ′′, such that the
last transition N ′ → N ′′ is derived using the rule (FUPD) on the set F in a
component a, then AF (F ) ⊆ F(a).


Proof Sketch By Theorem 1, we have that B,R,F , E |= N ′. Therefore, the
proof proceeds by induction on the transition rules used to derive N ′ → N ′′.


Our Control Flow Analysis approximates the behaviour of the network under
consideration. It provides a safe over-approximation of the exact behaviour of
services: at least all the valid behaviours are captured. More precisely, all those
interactions that the analysis does not consider as possible will never occur.
On the other hand, the interactions deemed as possible may, or may not, occur
in the actual dynamic evolution of the network. Therefore, by exploiting the
analysis’s soundness, we can prove several properties. As an example, we discuss
a property related to the flow of a certain service. Before, we introduce some
auxiliary notions. Given a network N , the set of networks reachable from N is
defined as Reach(N) = {N ′|N →∗ N ′}. Let the flows emanating from a in N
be defined as F (N)(a) = {F |a[B]RF occurs in N}. The analysis component F
can be used to predict, at compile time, all the possible flows emanating from a
certain component in a network at run time, as stated by the following result.


Theorem 3. Given a network N , including a component a, and an estimate
(B,R,F , E) such that B,R,F , E |= N , we have that {F (N ′)(a)|N ′ ∈ Reach(N)} ⊆
F(a).


Proof Sketch Immediate by Theorems 1 and 2.







N ::= networks
| 0 empty network
| N ||N parallel composition
| a[B]RF component
| 〈τ c©τ ′〉@a signal envelope


B ::= behaviour
| 0 empty behaviour
| rupd(R); B reaction update
| fupd(F ); B flow update
| out〈τ c©τ ′〉; B event emission
| ε; B internal behaviuor
| B|B parallel composition


R ::= reactions
| 0 empty reaction
| R|R parallel composition
| τ c©τ ′ m B check reaction
| τλτ ′ m B lambda reaction


F ::= flows
| 0 empty flow
| τ  ã unit flow
| F |F parallel composition


Fig. 3. Syntax of SC, version 2


From this static result, we can infer the maximal possible dimension that a
flow emanating from a certain component in a network can reach at run time,
just by computing |F(a)|, where |S| stands for the cardinality of the set S.


Note that similar static machineries can be exploited in the back-end of JCSL
compiler, to optimise the code and the structure of the network interface.


4 Managing Session: a New Version of SC and a New
Version of the Analysis


In the first version of SC, information associated to signals is not structured and
topics cannot be created dynamically. Furthermore, the notion of session is miss-
ing: components cannot keep track of concurrent event notifications. A refined
version of SC, whose syntax is presented in Fig. 3, tackles sessions management.


Events are pairs including a topic and a session identifier. The syntax of
behaviors is modified by the signal emission primitive (out〈τ c©τ ′〉) and by the
capability of generating new topics ((ντ)B). Note that both topics and sessions
are names and are freely interchangeable. As far as the reactive part is concerned,
a lambda reaction τλτ ′ m B handles all signals with topic τ , regardless of their
session. In the behaviour B, τ ′ is bound by the lambda reaction. A check reaction
τ c©τ ′mB can instead handle only signals having the topic τ issued for the session
τ ′ and does not declare bound names. The syntax of flows has been not changed.
The envelope 〈τ c©τ ′〉@a now carries both the topic τ and the session identifier
τ ′. For the sake of simplicity, we skip the restriction construct.


In Fig. 4, we only give the rules that are different from the ones in Fig. 2 and
the new ones. Similarly, in Table 3, we just give the CFA rules that are different
from the ones in Table 1. The subject reduction result stated on the previous
version of SC can be easily extended to the present version.







(OUT)
F ↓τ= b̃


a[out〈τ c©τ ′〉; B1 | B2]RF → a[B1 | B2]RF ||Πbi∈b̃〈τ c©τ ′〉@bi


(CHECK)
〈τ c©τ ′〉@a || a[B1]


R|τ c©τ ′mB2
F → a[B1|B2]RF


(LAMBDA)
〈τ c©τ ′〉@a || a[B1]


R|τλτ ′′mB2
F → a[B1|{τ ′/τ ′′}B2]


R|τλτ ′′mB2
F


Fig. 4. Reduction Semantics of SC


AB(b; B) = {b} ∪AB(B) where b ::= fupd(F )|rupd(R)|out〈τ c©τ ′〉
AB((ντ)B) = AB(B)


AR(τ c©τ ′ m B) = {(τ c©τ ′, B)}
AR(τλτ ′ m B) = {(τλτ ′, B)}


B,R,F , E |= 〈τ c©τ ′〉@a iff τ c©τ ′ ∈ E(a)


out〈τ c©τ ′〉 ∈ B(a) ∧ (τ, b) ∈ F(a) ⇒ τ c©τ ′ ∈ E(b)
τ c©τ ′ ∈ E(a) ∧ (τ c©τ ′, B) ∈ R(a) ⇒ AB(B) ⊆ B(a)
τ c©τ ′ ∈ E(a) ∧ (τλτ ′′, B) ∈ R(a) ⇒ AB({τ ′/τ ′′}B) ⊆ B(a)


Table 3. Analysis for SC Processes, version 2


5 The Network Coordination Policies Calculus and its
Analysis


The Calculus We now conclude the presentation of JCSL framework, by in-
troducing the choreography model. This takes the form of an asynchronous cal-
culus, called Network Coordination Policies (NCP) [16]. Intuitively, SC is used
to support the design of services, while NCP is the specification language used
to declare the coordination policies. Policies are processes that represent the
behavior as observed from a global point of view, i.e. by observing all the pub-
lic interactions on the network infrastructure. Hence, an NCP process describes
the interactions that are expected to happen and how these are interleaved. The
NCP specification declares what is expected from the service network infrastruc-
ture, whereas the SC design specifies how to implement it. NCP adheres to the
multicast notification mechanism of SC, however, while SC exploits the notion
of flows, NCP manages this information by a global point of view, introducing
the notion of network topologies. In other words, a network topology represents
the flows of all components involved by the coordination.


A NCP specification consists of two entities: a policy and a network topology.
The former describes the actions that should be performed by components, while
the latter describes the component inter-connection. A network topology is a
structure G = (V,E), where V ⊆ A consists of the restricted component names
of the network and E ⊆ A×T ×A are the flow connections among components:
(a, τ, b) ∈ E represents a a with a flow towards b for signal of topic τ . Note that
G induces a directed labelled graph, called topic-graph. We will use the following







P ::= coordination policies
|


P
i∈I pi@ai.Pi non-det. guarded choice


| ττ ′@a.P policy
| 〈τ c©τ ′〉@a signal envelope
| fupd(F )@a.P flow update
| ι.P internal activity
| P ||P parallel composition


p ::=
| τ(τ ′) lambda input
| ττ ′ check input


Fig. 5. Syntax of NCP


α ::= actions
| ε silent action
| ττ ′@a free reaction activation
| (ττ ′@a) message reception
| 〈τ c©τ ′〉@a bound event notification


Fig. 6. NCP actions


auxiliary notations: (i) the flows emanating from a in G, G(a) = {(τ, b)|(a, τ, b) ∈
E}; (ii) the topic-graph of τ in G, G(τ) = {(a, τ ′, b) ∈ E|τ ′ = τ}; (iii) the flow
projection of τ for a in G, G(τ, a) = {b|(τ, b) ∈ G(a)}.


The syntax of NCP is presented in Fig. 5. For the sake of simplicity, we
consider the restriction-free fragment of NCP. As a consequence in the semantics,
we will skip the rules (OPEN), (CLOSE) and (NEW). Let G be an NCP topology
and P an NCP policy, then the pair 〈G;P 〉 is called NPC state. NPC states
represent the specifications of a system.


An NCP process is called a coordination policy. Non-deterministic (guarded)
choice is denoted as


∑
i∈I pi@ai.Pi; a policy p@a.P represents an action p ex-


ecuted by the component a with continuation P ; prefix τ(τ ′) allows to receive
on τ and is called lambda input since it corresponds to SC lambda reactions;
ττ ′ allows to receive signals having topic τ and session τ ′ and is therefore called
check input. Since a lambda input can handle events regardless their sessions,
the name τ ′ represents a binder for the received session identifier. The policy
ττ ′ raises an event on session τ ′ with topic τ . The component delivers the cor-
responding notifications to all services that are subscribed on the topic τ . The
envelope 〈τ c©τ ′〉@a represents a pending message/notification on the network
towards a. Notice that only the target of the envelope is declared. Also in NCP,
the emission of an event and its reception are performed in two phases. Initially,
the emitter spawns into the network the proper envelopes, according with the
actual network topology. Subsequently, a subscriber can react to the received
envelope. The policy fupd(F ) adds F to the flows departing from a. Prefix ι.P
represents the execution of an internal activity before the execution of P . Finally,
coordination policies can be composed in parallel.


The operational semantics of NCP is specified by the labelled transition
system (LTS), reported in Fig. 7. Labels α are defined in Fig. 6.







(SKIP) 〈G; ι.P 〉 ε→ 〈G; P 〉
(FUPD) 〈G; fupd(F )@a.P 〉 ε→ 〈G ] (a� F ); P 〉 where a� F = {(a, τ, b)|(τ, b) ∈ F}
(EMIT) 〈G; ττ ′@a.P 〉 ε→ 〈G; P ||Πb∈G(τ,a)〈τ c©τ ′〉@b〉
(NOTIFY) 〈G; 〈τ c©τ ′〉@a〉 τ c©τ ′@a→ 〈G;0〉


(LAMBDA)
j ∈ I pj = τ(τ1)


〈G;
P


i∈I pi@ai.Pi〉
ττ ′1@a
→ 〈G ] τ ′1 � T ; {τ ′1/τ1}Pj ||pj@aj .Pj〉


where τ ′1 � T = {(a, τ, b)|(a, b) ∈ T}


(CHECK)
j ∈ I pj = ττ ′


〈G;
P


i∈I pi@ai.Pi〉
pj@aj→ 〈G; Pj〉


(ASYNCH)
〈G; P 〉 (ττ ′@a)→ 〈G; P ||〈τ c©τ ′〉@a〉


(COM)
〈G; P0〉


ττ ′@a→ 〈G; P ′
0〉 〈G; P1〉


〈τ c©τ ′〉@a→ 〈G; P ′
1〉


〈G; P0||P1〉
ε→ 〈G; P ′


0||P ′
1〉


(PAR)
〈G; P0〉


α→ 〈G′; P ′
0〉


〈G; P0||P1〉
α→ 〈G′; P ′


0||P1〉


Fig. 7. NPC LTS


Rule (SKIP) trivially fires the silent action. Rule (FUPD) changes the net-
work topology, by appending the sub-network a�F to the environment G, i.e. all
the flows departing from a in F . Rule (EMIT) allows for multicast communi-
cations: it spawns in the network an envelope for each subscriber in G(τ)(a).
Note that the continuation policy P is executed regardless the reception of en-
velopes as typical in asynchronous communications. Notification of envelopes is
ruled by (NOTIFY) as much like as the output in the asynchronous π-calculus.
Rules (LAMBDA) and (CHECK) model input actions. In the former, the se-
lected input pj reads any signal with topic τ and binds τ1 to τ ′1 in an early-style
semantics. When a check input is selected, only envelopes of topic τ in session τ1


can be consumed. Notice that the reception by a check reaction of a topic does
not change the network topology, because the two topics involved by the com-
munication are already known. The reception of a fresh name (τ ′1) by a lambda
reaction, instead, can extend the environment knowledge of the component: the
receiver can discover all the existing linkages involving the received name τ ′1. In
the spirit of early-style semantics, we allow the rule to extend the topology with
any possible graph (T ). Differently from SC, these two rules can express external
non-deterministic choice and can involve several components. Rule (ASYNCH)
permits to any NCP state to perform an input, simply storing the received mes-
sage for subsequent usages, allowing to arbitrarily delay the communication.
Rule (COM) allows the communication of a free session name τ ′. Finally, rule
(PAR) has the standard meaning.







The Control Flow Logic for NCP We develop a Control Flow Analysis
for NCP, with the aim of over-approximating all the possible behaviour of NCP
processes. The analysis, still specified in two phases, is reported in Table 4, where
sbj(P ) collects all the component names included in P . To emphasise the relation
between the two calculi, we overload the analysis component names B and E and
we use the judgement B, E , GS |= 〈G;P 〉 (and, in turn, B, E , GS |= P ), that we
make more precise, i.e. BNCP , ENCP , GS |= 〈G;P 〉, when needed. There, GS


stands for the static abstraction of the topic-graph. It includes the initial graph
and all the possible arcs and vertices that can be added during the computation.
The clauses rely on the auxiliary function AP , that given a process P , keeps
track of the single actions in P , and whose definition is in the upper part of
Table 4. Hereafter, we denote with el the generic element of a set. This analysis
is correct w.r.t. the given semantics. Furthermore, we prove that GS captures
all the flows arising in the topology.


Theorem 4. (Subject Reduction)


Let S a NPC state 〈G;P 〉. If S
α→ S′ and B, E , GS |= S then also B, E , GS |= S′.


Proof Sketch The proof is by induction on S
α→ S′.


AP (
P


i∈I pi@ai.Pi) =
S


i∈I AP (pi@ai.Pi)
AP (p@a.P ) = {((p, P ), a)}
AP (ττ ′@a.P ) = {(ττ ′, a)} ∪AP (P )
AP (〈τ c©τ ′〉@a) = ∅
AP (fupd(F )@a.P ) = {(fupd(F ), a)} ∪AP (P )
AP (P0|P1) = AP (P0) ∪AP (P1)
AP (ι.P ) = AP (P )
AP (P )(a) = {el|(el, a) ∈ AP (P )}


EP (P ) =



{(τ c©τ ′, a)} if P = 〈τ c©τ ′〉@a
∅ otherwise


EP (P )(a) = {el|(el, a) ∈ EP (P )}


B, E , GS |= 〈G; P 〉 iff G ⊆ GS ∧ B, E , GS |= P
B, E , GS |= P iff ∀a ∈ sbj(P ).AP (P )(a) ⊆ B(a) ∧EP (P )(a) ⊆ E(a)


fupd(F ) ∈ B(a) ⇒ AF (F ) ⊆ GS(a)
ττ ′ ∈ B(a) ∧ (τ, b) ∈ GS(a) ⇒ τ c©τ ′ ∈ E(b)
τ c©τ ′ ∈ E(a) ∧ (ττ ′, P ) ∈ B(a) ⇒ B, E , GS |= P
τ c©τ ′ ∈ E(a) ∧ (τ(τ ′′), P ) ∈ B(a) ⇒ G(τ ′) ⊆ GS ∧ B, E , GS |= {τ ′/τ ′′}P


Table 4. Analysis for NCP


Theorem 5. (Flows F) If B, E , GS |= S and S →∗ S′ α→ S′′, such that the
last transition S′ α→ S′′ is derived using the rule (FUPD) on the set F in a
component a, then AF (F ) ⊆ GS(a).







Proof Sketch By Theorem 4, we have that B,R,F , E |= S′. Therefore, the proof
proceeds by induction on the transition rules used to derive S′ α→ S′′.


Note that the above theorem formally represents the projection of the chore-
ography over a component. Namely, it provides the local view of the choreogra-
phy policy.


The NCP control flow analysis can be used to verify if certain choreography
constraints are satisfied, for instance, on the security side. We can assert when a
service does not capture a certain topic, and then statically verify, by inspecting
the analysis results, whether this assertion is not violated.


Given a policy P and a graph G, let the set of systems reachable from 〈G;P 〉
be defined as Reach(〈G;P 〉) = {〈G′;P ′〉|〈G;P 〉 →∗ 〈G′;P ′〉}. Let the flows
emanating from a in 〈G;P 〉 be defined as Ftopic(〈G;P 〉)(a) = {(τ, b)|(a, τ, b) ∈
G} and Ftopic(〈G;P 〉)(a, τ) = {b|(a, τ, b) ∈ G}.


Definition 1. Given a process P , a graph G, a topic τ , and component a oc-
curring in P , we say that a does not capture τ if Ftopic(〈G′;P ′〉)(a, τ) = ∅ for
all 〈G′;P ′〉 ∈ Reach(〈G;P 〉).


Again, an analysis component, GS , can be used to predict at compile time
whether the constraint is respected. Actually, because of safety, we can assess
that if the property is statically guaranteed, then it will also be at run time, as
stated by the following result, whose proof is based on Theorem 5.


Theorem 6. Given a process P , a graph G, a topic τ , and component a occur-
ring in P , if GS(a) = ∅ then a does not capture τ .


Proof Sketch The proof proceeds by contradiction, by assuming that a does
capture τ .


Our analysis here acts in a descriptive way, i.e. it describes if a property
violation is possible and because of soundness, we can prove that if no violation
is found, no violation can arise at run-time. In the same setting, our approach can
have a prescriptive value. In this case, we aim at preventing violation to arise,
by suggesting how to instrument the code with the necessary checks, e.g. by
enriching the multicast group with a filter discarding the events referring to the
unauthorized topic.


6 Checking Choreography


Consistency between network of SC components and the global coordination
policies expressed by NCP specifications is formally verified in [16]. Verification
is based on the encoding from SC networks to NCP policies, presented in Table 5,
and on bisimilarity. This result can also suggest a model driven development
approach. The designer can define successive SC models for implementing a
choreography model, obtained by incremental refinement.


The basic idea of the encoding is to transform SC reductions into NCP tran-
sitions labeled with ε. The encoding uses the following functions: (i) [[B]]a which







takes an SC behaviour B, localised within a, and maps it into an NCP policy;
(ii) [[R]]a which takes a reaction R, installed in the interface of a, and maps it
into a policy; and (iii) [[N ]] which takes a network N and maps it into a state.


[[0]]a = 0 [[B|B′]]a = [[B]]a||[[B
′]]a


[[ε; B]]a = ι.[[B]]a [[out〈τ c©τ ′〉B]]a = ττ ′@a[[B]]a
[[rupd(R); B]]a = ι.[[R]]a||[[B]]a [[fupd(F ); B]]a = fupd(F )@a.[[B]]a


[[0]]a = 0 [[R|R′]]a = [[R]]a || [[R
′]]a


[[τ c©τ ′ m B]]a = ττ ′@a.[[B]]a [[τλτ ′ m B]]a = τ(τ ′)@a[[B]]a


[[∅]] = 〈0;0〉 [[〈τ c©τ ′〉@a]] = 〈0; 〈τ c©τ ′〉@a〉
[[N ]] = 〈G; P 〉 [[N ′]] = 〈G′; P ′〉


[[N ||N ′]] = 〈G ]G′; P ||P ′〉ˆ̂
a[B]RF


˜̃
= 〈G; [[B]]a||[[R]]a〉 where G = a� F


Table 5. Encoding of behaviours, reactions and networks


Control Flow Analysis provides us with an approximation of behaviours,
both for the choreography model (NCP) and the actual design (SC). The con-
sistency result is reflected by the correspondence between the analysis estimate
(B,R,F , E) of a network N and that (BNCP , ENCP , GS) of its encoding [[N ]]. We
need the following auxiliary function that maps each element possibly occurring
in (B,R,F , E), in the corresponding element occurring in (BNCP , ENCP , GS).


Enc(out〈τ c©τ ′〉) = ττ ′ Enc(fupd(F )) = fupd(F )
Enc((τ c©τ ′, B)) = (ττ ′, Enc(B)) Enc((τλτ ′, B)) = (τ(τ ′), Enc(B))
Enc(τ c©τ ′) = τ c©τ ′ Enc((τ, b)) = (τ, b)


Example 3. We illustrate this correspondence on the following example, given
by a network N having two components: a and b.


N = a[0]τλτ ′mout〈τ c©τ ′〉
τ {b} || b[0]τλτ ′mout〈τ1 c©τ ′〉


τ1 c̃ ||〈τ c©τ ′′〉@a||〈τ c©τ ′′′〉@b


The corresponding encoding is given by the following state S:


S = 〈(∅, {(a, τ, {b}), (b, τ, c̃)}); τ(τ ′)@a.ττ ′@a||τ(τ ′)@b.τ1τ
′@b〉||〈τ c©τ ′′〉@a||〈τ c©τ ′′′〉@b


The analyses of N and of S, reported in Table 6, show the correspondence
between the estimates components.


Now, we formally state the correspondence between the two analyses.


Theorem 7. Given a network N and (B,R,F , E), such that B,R,F , E |= N ,
let 〈G;P 〉 = [[N ]] and (B, E , GS) such that B, E , GS |= 〈G;P 〉. We have that for
all a in the domain of (B,R,F , E), we have that:


• ∀el ∈ B(a) : Enc(el) ∈ BNCP (a) • ∀el ∈ R(a) : Enc(el) ∈ BNCP (a)
• ∀el ∈ E(a) : Enc(el) ∈ ENCP (a) • ∀(τ, b) ∈ F(a) : Enc(τ, b) ∈ GS(a)







E(a) 3 τ c©τ ′′ E(b) 3 τ c©τ ′′′, τ c©τ ′′


B(a) 3 out〈τ1 c©τ ′′〉 B(b) 3 out〈τ1 c©τ ′′′〉
R(a) 3 (τλτ ′, out〈τ c©τ ′〉) R(b) 3 (τλτ ′, out〈τ1 c©τ ′〉)
F(a) ⊇ {(τ, b)} F(b) ⊇ {(τ1, ci)|ci ∈ c̃}
{(a, τ, {b}), (b, τ, c̃)} ∈ GS G(τ ′′) ∪G(τ ′′′) ∈ GS


ENCP (a) 3 τ c©τ ′′ ENCP (b) 3 τ c©τ ′′′, τ c©τ ′′


BNCP (a) 3 (τ(τ ′), ττ ′@a), ττ ′′ BNCP (b) 3 (τ(τ ′), τ1τ
′@b), τ1τ


′′′


Table 6. Some Entries of the Analysis of N (upper part) and of S (lower part)


Proof Sketch The proof proceeds by structural induction.
The correspondence of the two analyses is made easier by our assumption on


the absence of restriction and scope extrusion in NCP. As a consequence, the
treatment of internal actions is strongly simplified. The more involved reasonings,
needed to cope with the full calculus, require further investigation.


7 Concluding Remarks


We have introduced Control Flow Analysis for the SC-NCP framework for service
coordination. Our approach is based on a two layer calculus (in the spirit of [10,
11, 7]). The abstract level (NCP) provides a declarative framework to specify
the service coordination, while the concrete level (SC) allows us to design the
behaviors of the services. The distinguished feature of our approach is given
by the mixed descriptive-prescriptive mechanism offered by the Control Flow
Analysis. This provides us flexible facilities to manage a wide range of properties.


The SC-NCP programming model has provided the foundational basis to
design and implement the JSCL middleware for services. The correspondence
result, stated in Section 6, provides a further formal hook to freely move inside
the two-level structure of JSCL. Depending on the level of the structure, one
can focus on either the design or the choreography, with the guarantee that the
key features are preserved. Differently from the bisimulation mechanism in [16],
here we have proceeded in a static way, allowing for choreography rehearsal.


We plan to equip the JSCL framework to include the reasoning machineries
available by implementing the analyses developed in the present paper. We in-
tend to exploit the analysis to statically verify that a design is compliant with
the specification of the choreography demands, and to instrument the code to
avoid occurrence of certain events at run-time.
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8 Appendix


This appendix restates the lemmata and theorems presented earlier in the paper
and gives the proofs of their correctness.


To establish the semantic correctness, the following auxiliary results are
needed. The first assesses that the functions AB , AR and AF gives the same
results, when applied on equivalent behaviours, reactions, or flows, respectively.


Lemma 1. (Invariance of AB, AR and AF )
If (i) B ≡ B′ then AB(B) = AB(B′), (ii) R ≡ R′ then AR(R) = AR(R′), and
(iii) F ≡ F ′ then AF (F ) = AF (F ′).


Lemma 2. (Invariance of the structural congruence of networks)
If N ≡ N ′ and B,R,F , E |= N then also B,R,F , E |= N ′.


Proof. The proof amounts to a straightforward inspection of the structural con-
gruence clauses.
Case N0||0 ≡ N0. Now B,R,F , E |= N0||0 is equivalent to B,R,F , E |= N0 and
B,R,F , E |= 0, that is equivalent to B,R,F , E |= N0 ∧ true, and therefore to
B,R,F , E |= N0.
Case N0||N1 ≡ N1||N0. We have that B,R,F , E |= N0||N1 is equivalent to
B,R,F , E |= N0 and B,R,F , E |= N1, that is equivalent to B,R,F , E |= N1 ∧
B,R,F , E |= N0 and therefore to B,R,F , E |= N1||N0.
Case N0||(N1||N2) ≡ (N0||N1)||N2. We have that B,R,F , E |= N0||(N1 ◦N2)
is equivalent to B,R,F , E |= N0 ∧ B,R,F , E |= N1||P2, that is equivalent to
B,R,F , E |= N0 ∧ B,R,F , E |= N1 ∧ B,R,F , E |= N2 and, in turn, it is equiv-
alent to B,R,F , E |= N0||N1 ∧ B,R,F , E |= N2, and therefore is equivalent to
B,R,F , E |= (N0||N1)||N2.


Theorem 8. (Subject Reduction)
If N → N ′ and B,R,F , E |= N then also B,R,F , E |= N ′.


Proof. The proof is by induction on N → N ′.
Case (PAR). Let N be N0||N1 and N ′ be N ′


0||N1. We have to prove that
B,R,F , E |= N ′. We have that B,R,F , E |= N is equivalent to B,R,F , E |= N0 ∧
B,R,F , E |= N1. By induction hypothesis, we have that B,R,F , E |= N ′


0, and
from B,R,F , E |= N ′


0 ∧ B,R,F , E |= N1 we obtain the required B,R,F , E |= N .
Case (STRUCT). Let N ≡ N0, with N0 → N1 such that N1 ≡ N ′. By Lemma 2,
we have that B,R,F , E |= N0, by induction hypothesis B,R,F , E |= N1 and,
again by Lemma 2, B,R,F , E |= N ′.
Case (SKIP). Let N be a[ε;B1 | B2]RF and N ′ be a[B1 | B2]RF . Now, we have that
B,R,F , E |= N amounts to B(a) ⊇ AB(ε;B1 | B2) ∧ R(a) ⊇ AR(R) ∧ F(a) ⊇
AF (F ). Since, by definition of AB , AB(ε;B1 | B2) = AB(ε;B1) ∪ AB(B2) =
AB(B1) ∪AB(B2) = AB(B1 | B2), we have that B,R,F , E |= N ′.
Case (RUPD). Let N be a[rupd(R1);B1 | B2]RF and N ′ be a[B1 | B2]


R|R1
F . Now,


we have that B,R,F , E |= N amounts to B(a) ⊇ AB(rupd(R1);B1 | B2)∧R(a) ⊇
AR(R) ∧ F(a) ⊇ AF (F ). In particular, we have that {rupd(R1)} ∪ AB(B1) ∪







AB(B2) ⊆ B(a) and, as a consequence, we have that AR(R1) ⊆ R(a). We have
that both AR(R) and AR(R1) belong toR(a) and therefore that B,R,F , E |= N ′


that amounts to B(a) ⊇ AB(B1 | B2) ∧ R(a) ⊇ AR(R) ∪ AR(R1) ∧ F(a) ⊇
AF (F ).
Case (FUPD). Let N be a[fupd(F1);B1 | B2]RF and N ′ be a[B1 | B2]RF |F1


. Now,
we have that B,R,F , E |= N amounts to B(a) ⊇ AB(fupd(F1);B1 | B2)∧R(a) ⊇
AR(R) ∧ F(a) ⊇ AF (F ). In particular, we have that {fupd(R1)} ∪ AB(B1) ∪
AB(B2) ⊆ B(a) and, as a consequence, we have that AF (F1) ⊆ F(a). We have
that both AF (F ) and AF (F1) belong to F(a) and therefore that B,R,F , E |= N ′


that amounts to B(a) ⊇ AB(B1 | B2) ∧ R(a) ⊇ AR(R)) ∧ F(a) ⊇ AF (F ) ∪
AF (F1).
Case (OUT). Let N be a[out〈τ〉;B1 | B2]RF and N ′ be a[B1 | B2]RF ||Πbi∈b̃〈τ〉@bi,
under the hypotheses that τ  b̃ is a flow in F . If τ  b̃ is a flow in F , then
(τ, bi) ∈ F(a) for all bi ∈ b̃. Now, we have that B,R,F , E |= N amounts to
B(a) ⊇ AB(out〈τ〉;B1 | B2) ∧ R(a) ⊇ AR(R) ∧ F(a) ⊇ AF (F ). In particular,
we have that {out〈τ〉} ∪ AB(B1) ∪ AB(B2) ⊆ B(a). From (τ, bi) ∈ F(a) and
out〈τ〉 ∈ B(a), we have that τ ∈ E(bi) and therefore B,R,F , E |= N ′.
Case (IN). Let N be 〈τ〉@a||a[B1]


R|τmB2
F and N ′ be a[B1|B2]


R|τmB2
F . Now, we


have that B,R,F , E |= N amounts to B,R,F , E |= 〈τ〉@a, that in turn, amounts
to τ ∈ E(a), and B,R,F , E |= a[B1]


R|τmB2
F , that in turn, amounts to B(a) ⊇


AB(B1) ∧ R(a) ⊇ AR(R|τ m B2) ∧ F(a) ⊇ AF (F ). In particular, we have that
(τ,B) ∈ R(a) that together to τ ∈ E(a), gives that AB(B) ∈ B(a) and therefore
B,R,F , E |= N ′.


Theorem 9. (Flows F) If B,R,F , E |= N and N →∗ N ′ → N ′′, such that the
last transition N ′ → N ′′ is derived using the rule (FUPD) on the set F in a
component a, then AF (F ) ⊆ F(a).


Proof. By induction on the length of the computation. By Theorem 8, we have
that B,R,F , E |= N ′. Therefore, the proof proceeds by induction on the tran-
sition rules used to derive N ′ → N ′′. If the rule (FUPD) is applied, then N ′


is in the form a[B]RF1
, where a flow update fupd(F ) occurs in B. As a con-


sequence, since B,R,F , E |= N ′, we have that fupd(F ) ∈ B(a) and therefore
AF (F ) ⊆ F(a). If the rules (PAR) or (STRUCT) are applied, the proof is
straightforward, by using the induction hypotheses. The other rules do not ap-
ply.


Theorem 10. Given a network N , including a component a, and an estimate
(B,R,F , E) such that B,R,F , E |= N , we have that {F (N ′)(a)|N ′ ∈ Reach(N)} ⊆
F(a), where Reach(N) = {N ′|N →∗ N ′} and F (N)(a) = {F |a[B]RF occurs in N}.


Proof. Immediate by Theorems 8 and 9.


Theorem 11. (Subject Reduction)


Let S a NPC state 〈G;P 〉. If S
α→ S′ and B, E , GS |= S then also B, E , GS |= S′.







Proof. The proof is by induction on S
α→ S′. We only consider some cases.


Case (α = ε). Sub-case (SKIP). Let S be 〈G; ι.P 〉 and S′ be 〈G;P 〉. Since
AP (ι.P ) = AP (P ) is immediate to prove that B, E , GS |= S is equivalent to
B, E , GS |= S′.
Sub-case (PAR). Let S be 〈G;P 〉, S′ be 〈G;P ′〉, with P = P0|P1 and P ′ =
P ′


0|P1. We have to prove that B, E , GS |= S′. Now B, E , GS |= P is equivalent
to B, E , GS |= P0 ∧ B, E , GS |= P1. By induction hypothesis, we have that
B, E , GS |= P ′


0, and from B, E , GS |= P ′
0 ∧ B, E , GS |= P1 we obtain the required


B, E , GS |= P .
Sub-case (FUPD). Let S be 〈G; fupd(F )@a.P 〉 and S′ be 〈G ] (a� F );P 〉.
Now, since B, E , GS |= S, we have that fupd(F ) ∈ B(a) and therefore AF (F ) ∈
GS(a). As a consequence, for each (a, τ, b) such that (τ, b) ∈ F , (a, τ, b) ∈ GS ,
and therefore GS includes (a� F ), thus proving that B,R,F , E |= S′.
Sub-caseCase (EMIT). Let S be 〈G; ττ ′@a.P 〉 and S′ be 〈G;P ||Πb∈G(τ,a)〈τ c©τ ′〉@b〉.
Now, since B, E , GS |= S, we have that ττ ′ ∈ B(a). From the analysis, we know
that if (τ, b) ∈ GS(a), then τ c©τ ′ ∈ E(a). Therefore, we have that B, E , GS |= S′.


Theorem 12. (Flows F) If B, E , GS |= S and N →∗ S′ α→ S′′, such that the
last transition S′ α→ S′′ is derived using the rule (FUPD) on the set F in a
component a, then AF (F ) ⊆ GS(a).


Proof. By induction on the length of the computation. By Theorem 11, we have
that B, E , GS |= S′. Therefore, the proof proceeds by induction on the transition
rules used to derive S′ α→ S′′.


Theorem 13. Given a process P , a graph G, a topic τ , and component a oc-
curring in P , if GS(a) = ∅ then a does not capture τ .


Proof. Suppose per absurdum that a does capture τ and therefore that ∃〈G′;P ′〉 ∈
Reach(〈G;P 〉).Ftopic(〈G′;P ′〉)(a, τ) 6= ∅. Suppose, for instance, that there exists
(a, τ, c) ∈ G′. Now, by Theorem 11, we have that G′ ∈ GS and therefore we
derive a contradiction.


To prove Theorem 14, we need the following auxiliary result:


Lemma 3. – Given a behaviuor B of a component a and a process P such
that P = [[B]]a, we have that ∀el ∈ AB(B).Enc(el) ∈ AP (P )(a).


– Given a reaction R of a component a and a process P such that P = [[R]]a,
we have that ∀el ∈ AR(R).Enc(el) ∈ AP (P )(a).


Theorem 14. Given a network N and (B,R,F , E), such that B,R,F , E |= N ,
let 〈G;P 〉 = [[N ]] and (B, E , GS) such that B, E , GS |= 〈G;P 〉. We have that for
all a in the domain of (B,R,F , E), we have that:


– ∀el ∈ B(a) : Enc(el) ∈ BNCP (a)
– ∀el ∈ R(a) : Enc(el) ∈ BNCP (a)
– ∀el ∈ E(a) : Enc(el) ∈ ENCP (a)







– ∀(τ, b) ∈ F(a) : Enc(τ, b) ∈ GS(a)


Proof. The proof proceeds by structural induction on [[N ]].
Cases (N = 0) and (N = N ′||N ′′): trivial.
Case (N = 〈τ c©τ ′〉@a). We have that B,R,F , E |= N if and only if τ c©τ ′ ∈ E(a),
and that B, E , GS |= 〈G;P 〉 if and only if τ c©τ ′ ∈ ENCP (a). Therefore τ c©τ ′ ∈ E(a)
and Enc(τ c©τ ′) ∈ ENCP (a).
Case (N = a[B]RF ). In this case, 〈G;P 〉 = 〈G; [[B]]a||[[R]]a〉, with G = a �
F = {(a, τ, b)|(τ, b) ∈ F}. Since B,R,F , E |= N , we have that AB(B) ⊆ B(a) ∧
AR(R) ⊆ R(a) ∧ AF (F ) ⊆ F(a), while since B, E , GS |= 〈G;P 〉, we have that
AP (P )(a) ⊆ B(a). Now, by definition of the encoding, we have that ∀(τ, b) ∈
F(a) : Enc(τ, b) = (τ, b) ∈ GS(a). Furthermore, by Lemma 3, we have that
Enc(AB(B)) ∪ Enc(AR(R)) ⊆ AP (P )(a), from which the thesis follows.






