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Abstract


Shared memory multiprocessors come back to popularity thanks to
rapid spreading of commodity multi-core architectures. As ever, shared
memory programs are fairly easy to write and quite hard to optimise;
providing multi-core programmers with optimising tools and program-
ming frameworks is a nowadays challenge. Few efforts have been done to
support effective streaming applications on these architectures. In this
paper we introduce FastFlow, a low-level programming framework based
on lock-free queues explicitly designed to support high-level languages
for streaming applications. We compare FastFlow with state-of-the-art
programming frameworks such as Cilk, OpenMP, and Intel TBB. We ex-
perimentally demonstrate that FastFlow is always more efficient than all
of them in a set of micro-benchmarks and on a real world application;
the speedup edge of FastFlow over other solutions might be bold for fine
grain tasks, as an example +35% on OpenMP, +226% on Cilk, +96%
on TBB for the alignment of protein P01111 against UniProt DB using
Smith-Waterman algorithm.


1 Introduction


The recent trend to increase core count in commodity processors has led to
a renewed interest in the design of both methodologies and mechanisms for
the effective parallel programming of shared memory computer architectures.
Those methodologies are largely based on traditional approaches of parallel
programming.


Typically, low-level approaches provides the programmers only with prim-
itives for flows-of-control management (creation, destruction), their synchro-
nisation and data sharing, which are usually accomplished in critical regions
accessed in mutual exclusion (mutex). As an example, POSIX thread library
can be used to this purpose. Programming parallel complex applications is this
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way is certainly hard; tuning them for performance is often even harder due to
the non-trivial effects induced by memory fences (used to implement mutex) on
data replicated in core’s caches.


Indeed, memory fences are one of the key sources of performance degrada-
tion in communication intensive (e.g. streaming) parallel applications. Avoid-
ing memory fences means not only avoiding locks but also avoiding any kind
of atomic operation in memory (e.g. Compare-And-Swap, Fetch-and-Add).
While there exists several assessed fence-free solutions for asynchronous symmet-
ric communications1, these results cannot be easily extended to asynchronous
asymmetric communications2, which are necessary to support arbitrary stream-
ing networks.


A first way to ease programmer’s task and improve program efficiency consist
in to raise the level of abstraction of concurrency management primitives. As
an example, threads might be abstracted out in higher-level entities that can be
pooled and scheduled in user space possibly according to specific strategies to
minimise cache flushing or maximise load balancing of cores. Synchronisation
primitives can be also abstracted out and associated to semantically meaningful
points of the code, such as function calls and returns, loops, etc. Intel Threading
Building Block (TBB) [25], OpenMP [33], and Cilk [16] all provide this kind of
abstraction (even if each of them in its own way).


This kind of abstraction significantly simplify the hand-coding of applica-
tions but it is still too low-level to effectively automatise the optimisation of the
parallel code: here the major weakness lies in the lack of information concerning
the intent of the code (idiom recognition [35]); inter-procedural/component op-
timisation further exacerbates the problem. The generative approach focuses on
synthesising implementations from higher-level specifications rather than trans-
forming them. From this approach, programmers’ intent is captured by the
specification. In addition, technologies for code generation are well developed
(staging, partial evaluation, automatic programming, generative programming).
Both TBB and OpenMP follow this approach. The programmer is required to
explicitly define parallel behaviour by using proper constructs [5], which clearly
delimit the interactions among flows-of-control, the read-only data, the associa-
tivity of accumulation operations, the concurrent access to shared data struc-
tures.


However, the above-mentioned programming framework for multi-core ar-
chitectures are not specifically designed to support streaming applications. The
only pattern that fits this usage is TBB’s pipeline construct, which can be used
to describe only a linear chain of filters; none of those natively support any kind
of task farming on stream items (despite it is a quite common pattern).


The objective of this paper is threefold:


• To introduce FastFlow, i.e. low-level methodology supporting lock-free
(fence-free) Multiple-Producer-Multiple-Consumer (MPMC) queues able
to support low-overhead high-bandwidth multi-party communications in


1Single-Producer-Single-Consumer (SPSC) queues [29].
2Multiple-Producer-Multiple-Consumer queues (MPMC).
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multi-core architectures, i.e. any streaming network, including cyclic graphs
of threads.


• To study the implementation of the farm streaming network using Fast-
Flow and the most popular programming frameworks for multi-core ar-
chitectures (i.e. TBB, OpenMP, Cilk).


• To show that FastFlow farm is generally faster than the other solutions
on both a synthetic micro-benchmark and a real-world application, i.e.
the Smith-Waterman local sequence alignment algorithm (SW). This lat-
ter comparison will be performed using the same “sequential” code in all
implementations, i.e. the x86/SSE2 vectorised code derived from Far-
rar’s high-performance implementation [22]. We will also show that the
FastFlow implementation is faster than the state-of-the-art, hand-tuned
parallel version of the Farrar’s code (SWPS3 [23]).


In the longer term, we envision FastFlow as the part of a run-time support
of a set of high-level streaming skeletons for multi- and many-core, either in
insulation or as extension of the TBB programming framework.


2 Related Works


The stream programming paradigm offers a promising approach for program-
ming multi-core systems. Stream languages are motivated by the application
style used in image processing, networking, and other media processing domains.
Several languages and libraries are available for programming stream applica-
tions, but many of them are oriented to coarse grain computations. Example
are StreamIt [41], Brook [15], and CUDA [27]. Some other languages, as TBB,
provide explicit mechanisms for both streaming and other parallel paradigm,
while some others, as OpenMP [33] and Cilk mainly offers mechanisms for Data
Parallelism and Divide&Conquer computations. These mechanisms can be also
exploited to implement streaming applications, as we shall show in Sec. 3, but
this requires a greater programming effort with respect to the other cited lan-
guages.


StreamIt is an explicitly parallel programming language based on the Syn-
chronous Data Flow (SDF) programming model. A StreamIt program is repre-
sented as a set of autonomous actors that communicate through first-in first-out
(FIFO) data channels. StreamIt contains syntactic constructs for defining pro-
grams structured as task graphs, where each tasks contain Java-like sequential
code. The interconnection types provided by are: Pipeline for straight task com-
binations, SplitJoin for nesting data parallelism and FeedbackLoop for connec-
tions from consumers back to producers. The communications are implemented
either as shared circular buffers or message passing for small amounts of control
information.


Brook [15] provides extensions to C language with single program multiple
data (SPMD) operations that work on streams. User defined functions operating
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on stream elements are called kernels and can be executed in parallel. Brook
kernels feature a blocking behaviour: the execution of a kernel must complete
before the next kernel can execute. This is the same execution model that is
available on graphics processing units (GPUs), which are indeed the main target
of this programming framework. In the same class can be enumerated CUDA
[27], which is an infrastructure from NVIDIA. In addition, CUDA programmers
are required to use low-level mechanisms to explicitly manage the various level
of the memory hierarchy.


Streaming applications are also targeted by TBB [25] through the pipeline
construct. FastFlow – as intent – is methodologically similar to TBB, since
it aims to provide a library of explicitly parallel constructs (a.k.a. parallel
programming paradigms or skeletons) that extends the base language (e.g. C,
C++, Java). However, TBB does not support any kind of non-linear streaming
network, which therefore has to be embedded in a pipeline. This has a non-
trivial programming and performance drawbacks since pipeline stages should
bypass data that are not interested with.


OpenMP [33] and Cilk [14] are other two very popular thread-based frame-
works for multi-core architectures (a in deep language descriptions is reported
in 3.2 and 3.3 sections). OpenMP and Cilk mostly target Data Parallel and
Divide&Conquer programming paradigms, respectively. OpenMP for example
has only recently extended (3.0 version) with a task construct to manage the
execution of a set of independent tasks. The fact that the two languages do not
provide first class mechanisms for streaming applications is reflected in their
characteristic of well performing only with coarse- and medium-grained compu-
tations, as we see in Sec. 4.


At the level of communication and synchronisation mechanisms, Giacomini
et al. [24] highlight that traditional locking queues feature a high overhead
on today multi-core. Revisiting Lamport work [29], which proves the correct-
ness of wait-free mechanisms for concurrent Single-Producer-Single-Consumer
(SPSC) queues on system with memory sequential consistency commitment,
they proposed a set of wait-free and cache-optimised protocols. They also prove
the performance benefit of those mechanisms on pipeline applications on top of
today multi-core architectures. Wait-free protocols are a subclass of lock-free
protocols exhibiting even stronger properties: roughly speaking lock-free pro-
tocols are based on retries while wait-free protocols guarantee termination in a
finite number of steps.


Along with SPSC queues, also MPMC queues are required to provide a com-
plete support for streaming networks. Those kind of data structures represent
a more general problem than SPSC one, and various works has been presented
in literature [28, 31, 36, 42]. Thanks to the structure of streaming applications,
we avoid the problem of managing directly MPMC queue: we exploit multiple
SPSC queues to implement MPSC, SCMP and MPMC ones.


Therefore exploiting a wait-free SPSC also for implementing more complex
shared queues, FastFlow widely extend the work of Giacomini et al., from simple
pipelines to any streaming networks. We show effective benefits of our approach
with respect to the other languages TBB, OpenMP and Cilk.
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3 Stream Parallel Paradigm: the Farm Case


Traditionally types of parallelisms are categorised in three main classes:


• Task Parallelism. Parallelism is explicit in the algorithm and consists of
running the same or different code on different executors (cores, processors,
etc.). Different flows-of-control (threads, processes, etc.) communicate
with one another as they work. Communication takes place usually to
pass data from one thread to the next as part of a graph.


• Data Parallelism is a method for parallelising a single task by process-
ing independent data elements of this task in parallel. The flexibility of
the technique relies upon stateless processing routines implying that the
data elements must be fully independent. Data Parallelism also support
Loop-level Parallelism where successive iterations of a loop working on
independent or read-only data are parallelised in different flows-of-control
(according to the model co-begin/co-end) and concurrently executed.


• Stream Parallelism is method for parallelising the execution (a.k.a. filter-
ing) of a stream of tasks by segmenting the task into a series of sequential3


or parallel stages. This method can be also applied when there exists a
total or partial order, respectively, in a computation preventing the use
of data or task parallelism. This might also come from the successive
availability of input data along time (e.g. data flowing from a device). By
processing data elements in order, local state may be either maintained in
each stage or distributed (replicated, scattered, etc.) along streams. Par-
allelism is achieved by running each stage simultaneously on subsequent
or independent data elements.


These basic form of parallelism are often encoded in high-level paradigms
(a.k.a. skeletons) to be encoded in programming language construct. Many
skeletons appeared in literature in the last two decades covering many different
usage schema of the three classes of parallelism, on top of both the message
passing [18, 20, 38, 2, 9, 12, 34, 7, 21, 3] and shared memory [1, 25] programming
models.


As an example, the farm skeleton models the functional replication and
consists of running multiple independent tasks in parallel or filtering many suc-
cessive tasks of a stream in parallel. It typically consists of two main entities:
a master (or scheduler) and multiple workers (farm is also known as Master-
Workers). The scheduler is responsible for distributing the input task (in case
by decomposing the input task into small tasks) toward the worker pool, as
well as for gathering the partial results in order to produce the final result of
the computation. The worker entity get the input task, process the task, and
send the result back to the scheduler entity. Usually, in order to have pipeline
parallelism between the scheduling phase and the gathering phase, the master
entity is split in two main entities: respectively the Emitter and the Collector.


3In the case of total sequential stages, the method is also known as Pipeline Parallelism.
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Farm can be declined in many variants, as for example with stateless workers,
stateful workers (local or shared state, read-only or read/write), etc.


The farm skeleton is quite useful since it can exploited in many streaming
applications. In particular, it can be used in any pipeline to boost the service
time of slow stages, then to boost the whole pipeline [4].


As mentioned in previous section, several programming framework for multi-
core offer Data Parallel and Task Parallel skeletons, only few of them offer
Stream Parallel skeletons (such as TBB’s pipeline), none of them offers the
farm. In the following we study the implementation of the farm for multi-core
architectures. In Sec. 3.1 we introduce a very efficient implementation of the
farm construct in FastFlow, and we propose our implementation using other
well-known frameworks such as OpenMP, Cilk, and TBB. The performance are
compared in Sec. 4.


3.1 FastFlow Farm


FastFlow aims to provide a set of low-level mechanisms able to support low-
latency and high-bandwidth data flows in a network of threads running on a
SCM. These flows, as typical in streaming applications, are supposed to be
mostly unidirectional and asynchronous. On these architectures, the key issues
regard memory fences, which are required to keep the various caches coherent.


FastFlow currently provides the programmer with two basic mechanisms:
MPMC queues and a memory allocator. The memory allocator, is actually
build on top of MPMC queues and can be substituted either with OS standard
allocator (paying a performance penalty) or a third-party allocator (e.g. Intel
TBB scalable allocator [25]).


The key intuition underneath FastFlow is to provide the programmer with
lock-free MP queues and MC queues (that can be used in pipeline to build
MPMC queues) to support fast streaming networks. Traditionally, MPMC
queues are build as passive entities: threads concurrently synchronise (according
to some protocol) to access data; these synchronisations are usually supported
by one or more atomic operations (e.g. Compare-And-Swap) that behave as
memory fences. FastFlow design follows a different approach: in order to avoid
any memory fence, the synchronisations among queue readers or writers are
arbitrated by an active entity (e.g. a thread), as shown in Fig. 1. We call these
entities Emitter (E) or Collector (C) according to their role; they actually read
an item from one or more lock-free SPSC queues and write onto one or more
lock-free SPSC queues. This requires a memory copy but no atomic operations
(this is a trivial corollary of lock-free SPSC correctness [24]). Notice that, Fast-
Flow networks do not suffer from the ABA problem [32] since MPMC queues are
build explicitly linearising correct SPSC queues using Emitters and Collectors.


The performance advantage of this solution descend from the higher speed of
the copy with respect to the memory fence, that advantage is further increased
by avoiding cache invalidation triggered by fences. This also depends on the
size and the memory layout of copied data. The former point is addressed using
data pointers instead of data, and enforcing that the data is not concurrently
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Figure 1: FastFlow concepts: Lock-free SPSC queue, SPMC queue, MCSP
queue, task farm, and order preserving task farm.


written: in many cases this can be derived by the semantics of the skeleton that
has been implemented using MPMC queues (as an example this is guaranteed
in a stateless farm and many other cases).


When using dynamically allocated memory, the memory allocator plays an
important role in term of performance. Dynamic memory allocators (malloc/free)
rely on mutual exclusion locks for protecting the consistency of their shared data
structures under multi-threading. Therefore, the use of memory allocator may
subtly reintroduce the locks in the lock-free application. For this reason, we de-
cided to use our own custom memory allocator, which has specifically optimised
for SPMC pattern. The basic assumption is that, in streaming application,
typically, one thread allocate memory and one or many other threads free mem-
ory. This assumption permits to develop a multi-threaded memory allocator
that use SPSC channels between the allocator thread and the generic thread
that performs the free, avoiding the use of costly lock based protocols for main-
taining the memory consistency of the internal structures. Notice however, the
FastFlow allocator is not a general purpose allocator and it currently exhibits
several limitations, such as a sub-optimal space usage. The further development
of FastFlow allocator is among future works.


3.1.1 Pseudo-code


The structure of the farm paradigm in FastFlow is sketched in Fig. 2. The
ff TaskFarm is a C++ class interface that implements the parallel farm construct
composed by an Emitter and an optional Collector (also see Fig. 1). The number
of workers should be fixed at the farm object creation time.
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class Emitter: public ff::ff_node {


public:


void * svc(void *) {


while(∃ newtask){
newtask = create_task();


return newtask;
}


return NULL; //EOS


}


};


class Collector: public ff::ff_node {


public:


void * svc(void * task) {


collect_task(task);
return task;


}


};


class Worker: public ff::ff_node {


public:


void * svc(void * task) {


compute_task(task);


return task;


}


};


int main (int argc, char *argv[]) {


Emitter E;


Worker W;


Collector C;


ff::ff_TaskFarm farm(nworkers);


farm.add_emitter(E);


farm.add_worker(W);


farm.add_collector(C);


farm.run();


}


Figure 2: Farm structure in FastFlow.


The usage of the interface is straightforward: Firstly, Emitter, Worker and
Collector classes are defined deriving the ff node class. Secondly, for each of the
three classes the abstract method svc (i.e. service method) should be imple-
mented. The method contains the sequential code of the worker entity. Finally,
the three objects are registered with the object of the class ff TaskFarm.


In Fig. 2, the Emitter produces a new task each time the svc method is called.
The run-time support is in charge to schedule the tasks to one of the available
workers. The scheduling can be performed according to several policies, from
simple round-robin to an user-defined stateful policy [2]. Observe that ordering
of tasks flowing through the farm, in general, is not preserved. However, task
ordering can be ensured either using the same deterministic policy for task
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scheduling and collection, or by dynamically tracking scheduling choices and
performing the collection accordingly. This latter solution, schematised in Fig. 1
(order preserving task farm), is actually derived from tagged-token macro data-
flow architecture [10, 9, 38].


3.2 OpenMP Farm


The OpenMP (Open Multi-Processing) [33, 11] is a set of standardised API de-
veloped to extend C, C++ and Fortran sequential languages in order to support
shared memory multiprocessing programming. OpenMP is based on compiler
directives, library routines, and environment variables that can be used to trans-
form a sequential program into a thread-based parallel program.


A key concept is that a well written OpenMP program should result in a com-
pletely correct sequential program when it is compiled without any OpenMP
supports. Therefore, all the OpenMP directives are implemented as pragmas
into the target languages: they are exploited by those compilers featuring
OpenMP support in order to produce a thread-based parallel programs and
discarded by the others. OpenMP (standard) features three different classes of
mechanisms to express and manage various aspects of parallelism, respectively
to:


• identify and distribute parallel computations among different resources;


• manage scope and ownership of the program data;


• introduce synchronisation to avoid race conditions.


Program flows-of-control (e.g. threads, processes and any similar entity) are
not directly managed by language directives. Programmers highlight program
sections that should be parallelised. The OpenMP support automatically defines
threads and synchronisations in order to produce an equivalent parallel program
implementation. In the scale introduced in Sec. 1, it exhibits a medium/high
abstraction level.


The main OpenMP mechanism is the parallel pragma, which is used to
bound pieces of sequential code which are going to be computed in parallel by
a team of threads. Inside a parallel section, in order to specify a particular
parallel paradigm that the team thread have to implement, specific directives
can be inserted. The parallel for directive expresses data parallelism while
the section functional parallelism. Because of the limitation of the section


mechanism, which provides only static functional partition, from the version
3.0 OpenMP provides a new construct called task to model independent units
of work which are automatically scheduled without programmers intervention.
As suggested in [11] task construct can be used to build a web server, and
since web servers exhibits a typical streaming behaviour, we will use the task


construct to build our farm schema.
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int main (int argc, char *argv[])


{


#pragma omp parallel private(newtask)
{


/* EMITTER */


#pragma omp single nowait


{


while(∃ newtask){
newtask = create_task();


/* WORKER */


#pragma omp task untied


{


compute_task(newtask);
/* COLLECTOR */


#pragma omp critic


{


collect_task(newtask);
}


}


}


}


}


Figure 3: Farm structure in OpenMP.


3.2.1 Pseudo-code


OpenMP do not natively include a farm skeleton, which should be realised using
lower-level features, such as the task construct. Our OpenMP farm schema is
shown in Fig. 3.2.1. The schema is quite simple; a single section is exploited
to highlight the Emitter behaviour. The new independent tasks, defined by the
Emitter, are marked with the task directive in order to leave their computation
scheduling to the OpenMP run time support.


The Collector is implemented in a different way. Instead of implementing it
with a single section (as for the Emitter), and therefore introducing an explicit
locking mechanism for synchronisation between workers and Collector, we realise
Collector functionality by means of workers cooperative behaviour: they simply
output tasks using an OpenMP critic section. This mechanism enable us to
output tasks from the stream without introducing any global synchronisation
(barrier).


3.3 Cilk Farm


Cilk is a language for multi-threaded parallel programming that extends the C
language. Cilk provides programmers with mechanisms to spawn independent
flows of controls (cilk-threads) according to the fork/join model. The scheduling
of the computation of flows is managed by a efficient work-stealing scheduler
[14].


Cilk controls flows are supported by a share memory featured by a DAG
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consistency [13], which is a quite relaxed consistency model. Cilk-threads syn-
chronise according to the DAG consistency at the join (sync construct), and
optionally, atomically execute a sort of call-back function (inlet procedure).


Cilk lock variables are provided to define atomic chunks of code, enabling
programmers to address synchronisation patterns that cannot be expressed us-
ing DAG consistency. As matter of fact, Cilk lock variables represent an escape
in a programming model which has been designed for avoiding critical regions.


3.3.1 Pseudo-code


Our reference code structure for a farm implemented in Cilk is introduced in
Fig. 3.3.1. A thread is spawn at the beginning of the program to implement
the emitter behaviour and remain active until the end of the computation. The
emitter thread defines new tasks and spawn new threads for their computation.


To avoid explicit lock mechanism we target inlet constructs. Ordinarily, a
spawned Cilk thread can return its results only to the parent thread, putting
those results in a variable in the parent’s frame. The alternative is to exploit
an inlet, which is a function internal to a Cilk procedure to handle the results
of a spawned thread call as it returns. One major reason to use inlets is that all
the inlets of a procedure are guaranteed to operate atomically with regards to
each other and to the parent procedure, thus avoiding race conditions that can
come out when the multiple returning threads try to update the same variables
in the parent frame.


The inlet, which can be compared with OpenMP critic sections, can be
easily exploited to implement the Collector behaviour as presented in the defi-
nition of the emitter function in Fig. 3.3.1.


Because inlet feature the limitation that the function have to be called
from the cilk procedure that hosts the function, our emitter procedure, and our
worker procedure have to be the same to use inlet. We differentiate the two
behaviour exploiting a tag parameter and switching on its value.


3.4 TBB Farm


Intel Threading Building Blocks (TBB) is a C++ template library consisting
of containers and algorithms that abstract the usage of native threading pack-
ages (e.g. POSIX threads) in which individual threads of execution are created,
synchronised, and terminated manually. Instead the library abstracts access
to the multiple processors by allowing the operations to be treated as tasks,
which are allocated to individual cores dynamically by the library’s run-time
engine, and by automating efficient use of the cache. The tasks and synchronisa-
tions among them are extracted from language constructs such as parallel for,
parallel reduce, parallel scan, and pipeline. Tasks might also cooperate via
shared memory through concurrent containers (e.g. concurrent queue), sev-
eral flavours of mutex (lock, and atomic operations (e.g. Compare And Swap)
[26, 37].
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cilk int * emitter(int * newtask, int tag) {


inlet void collector(int * newtask) {


collect_task(newtask);
}


switch(tag) {


case WORKER: {


compute_task(newtask);
}break;


case EMITTER: {


while(∃ newtask){
newtask = create_task();


collector(spawn emitter(newtask, WORKER));


}


}break;


default: ;


}


return newtask;
}


cilk int main(int argc, char *argv[]) {


null = spawn emitter(NULL, EMITTER);


sync;


}


Figure 4: Farm structure in Cilk.


This approach groups TBB in a family of solutions for parallel program-
ming aiming to enable programmers to explicitly define parallel behaviour via
parametric exploitation patterns (skeletons, actually) that have been widely ex-
plored the last two decades both for distributed memory [17, 19, 9, 38, 21, 3]
and shared memory [1] programming models.


3.4.1 Pseudo-code


The structure of the farm paradigm using the TBB library is sketched in Fig. 5.
The implementation is based on the pipeline construct. The pipeline is com-
posed of three stages: Emitter, Worker, Collector. The corresponding three
objects are registered with the pipeline object in order to instantiate the cor-
rect communication network. The Emitter stage produces a pointer to arrays of
basic tasks, referred as Task in the pseudo-code, each one of length PIPE GRAIN


(for our experiments we set the PIPE GRAIN to 1024). The Worker stage is actu-
ally a filter that allows the execution of the parallel for on input tasks. The
parallel for is executed using the auto partitioner algorithm provided by the
TBB library, this way the correct splitting of the Task array in chunks of basic
tasks which are assigned to the executor threads, is left to the run-time support.
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class Emitter:public tbb::filter {


public:


Emitter(const int grain):tbb::filter(tbb::serial_in_order),grain(grain) {}


void * operator()(void*) {


newtaskt * Task[grain];


while(∃ newtask){
Task = create_task();


return Task;


}


return NULL; //EOS


}


};


class Compute {


task_t ** Task;


public:


Compute(task_t ** Task):Task(Task){}


void operator() (const tbb::blocked_range<int>& r) const {


for (int i=r.begin();i<r.end();++i)


compute_task(Task[i]);


}


};


class Worker:public tbb::filter {


task_t ** Task;


public:


Worker(const int grain):tbb::filter(tbb::serial_in_order),grain(grain) {}


void * operator()(void * T) {


Task = static_cast<task_t**>(T);


tbb::parallel_for(tbb::blocked_range<int>(0,grain),


Compute(Task),


tbb::auto_partitioner());


return Task;


}


};


int main (int argc, char *argv[]) {


Emitter E(PIPE_GRAIN);


Worker W(PIPE_GRAIN);


tbb::task_scheduler_init init(NUMTHREADS);


tbb::pipeline pipeline;


pipeline.add_filter(E);


pipeline.add_filter(W);


pipeline.run(1);


}


Figure 5: Farm structure in TBB.


4 Experiments and Results


We compare the performance of FastFlow farm implementation against OpenMP,
Cilk and TBB using two families of applications: a synthetic micro-benchmark
and the Smith-Waterman local sequence alignment algorithm. All experiments
reported in the following sections are executed on a shared memory Intel plat-
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form with 2 quad-core Xeon E5420 Harpertown @2.5GHz with 6MB L2 cache
and 8 GBytes of main memory.


4.1 Farm Communication Overhead


In order to test the overhead of the communication infrastructure for the dif-
ferent implementations of the farm construct, we developed a simple micro-
benchmark application that emulate a typical parallel filtering application via
a farm skeleton. The stream is composed by a ordered sequence of tasks which
have a synthetic computational load associated. Varying this load is possible
to evaluate the speedup of the paradigm for different computation grains. Each
task is dynamically allocated by the emitter entity and freed by the Collector
one. It consists of an array of 10 memory words that the worker reads and up-
dates before passing the task to the Collector entity. Furthermore, each worker
spend a fixed amount of time that correspond to the synthetic workload.


When possible, we have used the best parallel allocator (i.e. allocator
which implementation is optimised to be used in parallel) available for the dy-
namic memory allocation. For example in the case of TBB, we used the TBB
scalable allocator.


In the OpenMP and Cilk cases, where no optimised parallel allocator are
provided, we exploited the standard libc allocator. Anyway, with respect to the
previously presented micro-benchmark, the performance degradation associated
to an allocator, which is not optimised for parallel utilisation, is not determining.
In fact the maximum parallelism required by the allocator is two: only one
thread performs malloc operations (i.e. the emitter) and only one thread that
performs free ones (i.e. the Collector).


As it is evident from the comparison of the trend of the curves in Fig. 6, the
FastFlow implementation exhibits the best speedup in all cases. Is it interesting
to notice that, for very fine grain computations (e.g. 0.5 µS), the OpenMP and
Cilk implementations feature, with the increasing of the parallelism degree, a
speedup factor lower than one: the addition of more workers just introduces only
overhead, therefore leading to performances that are worst than the sequential
ones.


In streaming computation with this type of computation grain, the commu-
nication overhead between successive stages in the farm construct is the most
important limiting factor. Therefore we can assert that FastFlow is effective for
streaming networks because it has been developed and implemented in order to
provide communications with extremely low overhead as proved by the collected
results.


4.2 Smith-Waterman Algorithm


In bioinformatics, sequence database searches are used to find the similarity
between a query sequence and subject sequences in the database in order to
determining similar regions between two nucleotide or protein sequences, en-
coded as a string of characters. The sequence similarities can be determined by
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Figure 6: The speedup of different implementations of the farm paradigm for
different computational grains, where Tc is the Computation Time per task:
FastFlow vs OpenMP vs TBB vs Cilk.
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Stream Task Time


Query Query len Min (µS) Max (µS) Avg (µS)


P02232 144 0.333 2264.9 25.0
P10635 497 0.573 15257.6 108.0
P27895 1000 0.645 16011.9 197.0
P04775 2005 0.690 21837.1 375.0
P04775 5478 3.891 117725.0 938.5


Table 1: Minimum, maximum and average computing time for a selection of
query sequences tested using a penalty gap 5-2 k.


computing their optimal local alignments using the Smith-Waterman (SW) algo-
rithm [44]. SW is a dynamic programming algorithm that guaranteed to find the
optimal local alignment with respect to the scoring system being used. Instead
of looking at the total sequence, it compares segments of all possible lengths
and optimises the similarity measure. The costs of this approach is expensive
in terms of computing time and memory space used due to the rapid growth
of biological sequence databases (the UniProtKB/Swiss-Prot database Release
57.5 of 07-Jul-09 contains 471472 sequence entries, comprising 167326533 amino
acids) [43].


The recent emergence of multi- and many-core architectures provides the
opportunity to significantly reduce the computation time for many costly al-
gorithms like the Smith-Waterman one. Recent works in this area focus on
the implementation of the SW algorithm on many-core architectures like GPUs
[30] and Cell/BE [22] and on multi-core architectures exploiting the SSE2 in-
struction set [23, 39]. Among these implementations, we selected the SWPS3
[40] an optimised extension of the Farrar’s work presented in [23] of the Strip
Waterman-Algorithm for the Cell/BE and on x86/64 CPUs with SSE2 instruc-
tions. The original SWPS3 version is designed as a master-worker computation
where the master process distribute the workload toward a set of worker pro-
cesses. The master process read the query sequence, initialise the data structures
needed for the SSE2 computation, and then fork all the worker processes so that
each worker has its own copy of the data. All the sequences in the reference
database are read and sent to the worker processes over POSIX pipes. The
worker computes the alignment score of the query with the database sequence
provided by the master process, and sent back over a pipe the resulting score.


The computational time is sensitive with respect to the query length used
for the matching, the scoring matrix (in our case BLOWSUM50) and the gap
penalty. As can be seen from Table 1 very small sequences require a smaller
service time with respect to the longest one. Notice the high variance in the
task service time reported in the table, this is due to the very different length
of the subject sequence in the reference database (the average sequence length
in UniProtKB/Swiss-Prot is 352 amino acids, the shortest sequence comprise
2 amino acids whereas the longest one 35213 amino acids). Furthermore, the
higher the gap open and gap extension penalties, the fewer iterations are needed
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Figure 7: Smith-Waterman sequence alignment algorithm: comparison between
FastFlow, OpenMP, TBB, and Cilk implementations. The SWPS3, which is
based on POSIX primitives, is the original version from which the other has been
derived. All the implementations share exactly the same sequential (x86/SSE2
vectorised) code.
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for the calculation of the single cell of the similarity score matrix. In our tests
we used the scoring matrix BLOSUM50 with two gap penalty range: 10-2k and
5-2k.


We rewrote the original SWPS3 code in OpenMP, Cilk, TBB and FastFlow
following the schemata presented before. In this, we did not modify the se-
quential code at all to achieve a fair comparison. For performance reasons,
it is important to provide each worker threads with a copy of the data struc-
tures needed for the SSE2 computation. This is a critical aspects especially
for implementations in Cilk and TBB, which do not natively support any kind
of Thread-Specific-Storage (TSS). Notwithstanding this data is read-only, the
third-party SSE somehow seems triggering the cache invalidation accessing the
data, which seriously affect the performance. To overcome this problem we ex-
ploit a tricky solution: we use TSS exploiting a lower-level with respect to the
programming model. In OpenMP this is not a problem because we have the pos-
sibility to identify the worker thread with the library call omp get thread num().
The same possibility to identify a thread is offered by FastFlow framework as
each parallel entity is mapped on one thread.


The Emitter entity reads the sequence database and produce a stream of
pairs: 〈query sequence, subject sequence〉. The query sequence remains the
same for all the subject sequences contained in the database. The Worker entity
computes the striped Smith-Waterman algorithm on the input pairs using the
SSE2 instructions set. The Collector entity gets the resulting score and produce
the output string containing the score and the sequence name.


To remove the dependency on the query sequences and the databases used
for the tests, Cell-Updates-Per-Second (CUPS) is a commonly used performance
measure in bioinformatics. A CUPS represents the time for a complete com-
putation of one cell in the matrix of the similarity score, including all memory
operations. Given a query sequence of length Q and a database of size D, the
GCUPS (billion Cell Updates Per Second) value is calculated by:


GCUPS =
|Q| |D|
T 109


where T is the total execution time in seconds. The performance of the
different SW algorithm implementations has been benchmarked and analysed
by searching for 19 sequences of length from 144 (the P02232 sequence) to 22,142
(the Q8WXI7 sequence) against Swiss-Prot release 57.5 database. The tests has
been carried out on a dual quad-core Intel Xeon @2.50GHz running the Linux
OS (kernel 2.6.x).


Figure 7 reports the performance comparison between FastFlow, OpenMP,
Cilk, TBB and SWPS3 version of SW algorithm for x86/SSE2 executed on the
test platform described above.


As can be seen from the figures, the FastFlow implementation outperforms
the other implementations for short query sequences. The smallest the query
sequences are the bigger the performance gain is. This is mainly due to lower
overhead of FastFlow communication channels with respect to the other imple-
mentations; short sequences require a smaller service time.
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Cilk obtains lower performance value with respect to the original SWPS3 ver-
sion with small sequences while performs very well with longer ones. OpenMP
offers the best performance after FastFlow. Quite surprisingly TBB does not ob-
tain the same good speedup that has been obtained with the micro-benchmark.
It is still not clear which are the reasons, further investigation is required to find
out the overhead source in the TBB version.


5 Conclusions


In this work we have introduced FastFlow, a low-level template library based
on lock-free communication channel explicitly designed to support low-overhead
high-throughput streaming applications on commodity cache-coherent multi-
core architectures. We have shown that FastFlow can be directly used to imple-
ment complex streaming applications exhibiting cutting-edge performance on a
commodity multi-core.


Also, we have demonstrated that FastFlow makes it possible the efficient
parallelisation of third-party legacy code, as the x86/SSE vectorised Smith-
Waterman code. In the short term, we envision FastFlow as middleware tier
of a “skeletal” high-level programming framework that will discipline the us-
age of efficient network patterns, possibly extending an existing programming
framework (e.g. TBB) with stream-specific constructs. As this end, we studied
how a streaming farm can be realised using several state-of-the-art programming
frameworks for multi-core, and we have experimentally demonstrated that Fast-
Flow farm is faster than other farm implementations on both synthetic bench-
mark and Smith-Waterman application.


As expected, the performance edge of FastFlow over the other frameworks is
bold for fine-grained computations. This makes FastFlow suitable to implement
a fast macro data-flow executor (actually wrapping around the order preserving
farm), thus to achieve the automatic parallelisation of many classes of algo-
rithms, including dynamic programming [6]. FastFlow will be released as open
source library.


A preliminary version of this work has been presented at the ParCo confer-
ence [8].
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Christophe Dessimoz. SWPS3 – fast multi-threaded vectorized Smith-
Waterman for IBM Cell/B.E. and x86/SSE2, 2008.


[41] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt:
A language for streaming applications. In Proc. of the 11th Intl. Confer-
ence on Compiler Construction (CC), pages 179–196, London, UK, 2002.
Springer-Verlag.


[42] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking
concurrent fifo queue for shared memory multiprocessor systems. In SPAA
’01: Proc. of the 13th ACM symposium on Parallel algorithms and archi-
tectures, pages 134–143, New York, NY, USA, 2001. ACM.


[43] UniProt Consortium. UniProt web site, July 2009 (last accessed).


[44] M. S. Waterman and T. F. Smith. Identification of common molecular
subsequences. J. Mol. Biol., 147:195–197, 1981.


23






