

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-09-13

Artificial Intelligence Techniques for

Automatic Reformulation of Complex

Problems: the i-dare Project

Antonio Frangioni Luis Perez Sanchez

September 4, 2009
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Artificial Intelligence Techniques for Automatic Reformulation of

Complex Problems: the i-dare Project

Antonio Frangioni ∗ Luis Perez Sanchez †

September 4, 2009

Abstract

Complex, hierarchical, multi-scale industrial and natural systems generate increasingly large mathe-
matical models. Practitioners are usually able to formulate such models in their “natural” form; how-
ever, solving them often requires finding an appropriate reformulation to reveal structures in the model
which make it possible to apply efficient, specialized approaches. i-dare is a structure-aware modeling-
reformulation-solving environment based on Declarative Programming. It allows the construction of
complex structured models, that can be automatically and algorithmically reformulated to search for
the best formulation, intended as the one for which the most efficient solution approach is available. In
order to accommodate (potentially) all possible specialized solution methods, it defines a general soft-
ware framework for solvers, that are “registered” to specific problem structures. This article describes
in details the application of Artificial Intelligence in the modeling and reformulation modules of i-dare,
showing how Declarative Programming can be used to design a structure-aware modeling environment
that allows for a new automatic reformulation methodology.

Key Words: Mathematical Models, Optimization Problems, Artificial Intelligence, Declar-
ative Programming

1 Introduction

Mathematical Modeling is commonly used for countless many industrial applications: transportation (con-
strained shortest paths [54], vehicle routing [11], traveling salesman problem [5], etc.), location (plant loca-
tion [26, 16], location on networks [36], etc.), scheduling [20], complex industrial systems [47], networks [10],
bio-informatics [37], chemical engineering [7, 43, 46], medical equipment configuration [42]. Mathematical
Modeling is also used in physics [38], statistics [23], data mining [27, 21], mathematics [35, 9], artificial
intelligence [32, 17] and many other fields.

However, some of the most striking discoveries of science and mathematics in the last century revealed that
just creating a mathematical model does not mean being able to solve it; conversely, “most” mathematical
models are very difficult (if at all possible) to solve algorithmically. This has spurned an enormous body of
work on structures which make the mathematical models tractable.

1.1 Modeling and Structures

Each application field has its own concepts about structure. In this article we will consider mathematical
models of quite general systems. In particular, while many mathematical models are described by analytical
constraints, and therefore our modeling system must easily accommodate them, our underlying concept of
structure does not require that this is the case; rather, we only require that structures in the model have
associated solvers capable of tackling them, and that algorithmic rules are available to map inputs and

∗Dipartimento di Informatica, Università di Pisa, Polo Universitario della Spezia, Via dei Colli 90, 19121 La Spezia, Italy.

E-mail: frangio@di.unipi.it
†Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy. E-mail: perez@di.unipi.it

1

outputs between different structures. Our interest lies in particular to mathematical models where one (or
more) objective function(s) is(are) defined, that is, in mathematical optimization models.

When a model of a practical industrial/scientific application is built, often times a choice is made a priori
(and possibly unintentionally) about which structure of the model is the most prominent from the algorithmic
viewpoint. This is done by choosing which of the several main classes of optimization problems, and the
corresponding modeling tools, the problem is molded in. That is, the modeler often times arbitrarily decides
first that the model will be a Linear Program (LP) [19], a Mixed Integer Linear Program (MILP) [50], a
Constraint Program (CP) [48, 6], and so on. This decision is mostly driven by the previous expertise of the
modeler, by the set of tools (bag of tricks) he has available, and by his understanding (or lack thereof) of the
intricate relationships between the choices made during the modeling phase and the effectiveness/availability
of the corresponding solution procedures. Indeed, it is possible to identify two opposite extreme behaviors
in the modeling effort:

• the algorithmic unconscious user will write down the model using the mathematical terms he find most
appropriate from his knowledge of the nature of the problem, not caring much about the implications
that this has on the effectiveness of the solution procedures;

• the algorithmic conscious user will try to squeeze the reality into the most algorithmic-friendly class of
models he possibly can, not caring much about the fact that the introduced simplifications may make
the answers of the model too inaccurate to be useful.

Of course, most proficient modelers will try to carefully balance themselves between these two extremes, by
one hand making informed choices about the problem classes that may have a chance to actually result in
a solvable model, and on the other hand to carefully check ex-post that the obtained results actually have
a meaning. However, it is clear that this process heavily relies on the fact that appropriate knowledge is
available to the modeler, which may simply not be true. The continuous improvements of solution methods
have created an enormous wealth of results about different problem classes and the conditions under which
some algorithms are more or less effective in solving them. For instance, among the problem classes that are
(more or less widely) recognized as being useful for modeling practical programs, one has:

• LP, where everything must be linear (hence convex);

• MILP, which is like LP but also allowing nonconvexities to be expressed through integrality constraints;

• Conic and Semidefinite Programming [12], where selected nonlinearities are allowed to keep the prob-
lems convex and efficiently solvable by appropriate classes of algorithms;

• Disciplined Convex Programming [45, 15] where everything is convex and it must be constructed in
such a way that clearly is so;

• Mixed-Integer NonLinear Programming, where an enormous number of variants arise according to the
specific properties of the (nonlinear) objective function and constraints (e.g. [28]);

• DC Programming [29], where nonconvexities are represented by the fact that every function must have
the form f(x) − g(x) where f and g are both convex (note that any C2 function can in theory be
rewritten to have such a form, but this is difficult to achieve in practice, so the requirement is that f
and g must be explicitly known);

• CP where fairly sophisticated forms of structures can be embedded as “primitives of the modeling
language”, but finite domains are usually required (although some approaches like interval constraints
allow working with reals [13]).

It is clear that the list is very partial; yet, keeping track of all these is very difficult, and the difficulty can
only increase with time.

Even when a problem class has (more or less arbitrarily) been selected, general-purpose solvers may
exhibit poor performance on many problems since they are mainly focused on representing the general
structures, often ignoring underlying forms of sub-structure. Indeed, practical problems most often exhibit

2

several structures simultaneously, and it is not a fortiori clear which of the structures is computationally
more relevant, i.e., offers more help for developing efficient solution techniques for that particular problem.
For each of the above problem classes, an enormous literature is available about which algorithms are best
for solving specific sub-classes of problems; specialized solvers are better when a specific structure is there.
Yet, they are often too specific, much less developed and therefore robust and user-friendly. Besides, it is
the user who has to discover the structure, realize that a solver for that structure is available, and write the
model in the appropriate “language” of the specialized software. Often, modelers lack both knowledge and
resources to perform these complex tasks, and therefore the wealth of available knowledge about specialized
algorithms for specific structures lies unused gathering dust in the pages of the scientific journals and/or in
prototypical software codes which, despite holding great promises, are too specialized to be known outside
a small circle of interested specialists, while actual users cannot solve their problem efficiently enough.

To make matters worse, the applicability of specialized approaches crucially depends on the realization
that the structure is there, which in turn depends on having chosen “the right” formulation that reveals it.
Arguably, the “right” form of a mathematical model is the one which is appropriate for the best possible
algorithm. However, the required structures are typically not “naturally” present in the mathematical mod-
els, and must be purposely created by such weird tricks of the trade such as creating apparently unnecessary
copies of variables and/or relations, replacing an exact compact nonlinear formulation with a much larger ap-
proximate linear one, and many similar others. These ultimately allow the application of specifically tailored
sophisticated methods, such as (just to name a few) preconditioning techniques in linear algebra, effective
domain reduction techniques in CP, specialized row- and column-generation algorithms in MILP, appropriate
selection and breeding procedures in evolutionary programs, and effective learning rules in swarm-intelligence
approaches. In other words, one needs a proper reformulation of the problem, where structures inside the
model are transformed into other “equivalent” structures that are better suited to algorithmic approach.
Finding reformulations is a costly and painstaking process, up to now firmly in the hands of very specialized
experts with little to no support from modeling tools.

To summarize, modeling is a complex task. Many of the available modeling environments require from the
user a high level of expertise, while “locking” the modeler into a specific problem class space; this contrasts
with the fact that many different formulations of the same problem, belonging to different problem classes,
may arise. Problems have different structures that can be exploited in different ways; some can be nested,
some are alternative, choices must be made. We believe that the current state of the art in mathematical
modeling reveals four main needs:

1. The need of a modeling language capable of representing structures, in order to allow models to be
expressed in a structured way. It would be desirable that such a language provides the user with
a rich set of constructs that permits a representation of the problem as “natural” as possible, and
independently from the solution methods.

2. The need of a deduction machine that is capable of reformulating one formulation into another with
little or no user intervention, and of a search mechanism in the space of formulations that is capable
of finding “the best” (or at least “a good”) formulation of a given problem.

3. The need for defining an instance description language which, unlike currently available ones, includes
structural information. This is fundamental for being able to integrate specialized solvers for many
different problems.

4. The need of an integrating framework that allows to define and plug-in solution methods (solvers) for
specialized problems, exploiting the information in the structured instance description.

These needs are felt in the modeling community, and have been addressed to some extent in existing projects.
Yet, we believe that each project have focussed on specific aspects of the problem, without addressing the
whole (challenging) general issue.

For instance, need 1 have been aimed by some existing modeling system, like ASCEND [58], which
proposes a structured way of modeling; however, its main goal is to make modeling more natural, without
getting advantage of the structure information when applying the solution procedure. OOPS [25] proposes an

3

object-oriented linear algebra library designed to exploit nested block structure that is present in large-scale
optimization problems using primal-dual interior point methods [31]. However, OOPS is mainly focused on
linear structures, does not propose a natural modeling language and it is heavily tied to a specific solution
method. SML [18] proposes an extension of AMPL [22] based on adding the possibility of structuring the
model in blocks. However, like ASCEND it is focussed to representing the spatial distribution of the data,
and ignores most of the semantic value that a structure may have, that is, the fact that a structure is only
useful as long as there exists a solver that is capable of efficiently exploiting it.

Indeed, the concept of structure is, in general, richer than that of a specific arrangement of algebraic
constraints, as structures should bear information that can be used to determine which solver could be more
suitable. Achieving need 1 would contribute with a new modeling paradigm that not also makes modeling
easier, but also allows to exploit the structure of the problem. i-dare proposes a Frame-Logic [34] based
modeling environment, composed by an extensible structure library (i-dare(lib)) and an internal modeling
language (i-dare(im)).

Regarding need 2, in mathematical programming the general agreement on the term reformulation seems
to be that given a certain formulation of an optimization problem, a reformulation is a “different” formulation
with the same set of optima. Many works have been developed around this concept, but most of them without
strictly formalizing it [14, 24, 33, 44, 52, 55, 57]. A formal concept of formulation was proposed in [39], which
give us a formal definition of a mathematical programming formulation and states its well-formedness rules,
but without explicitly treating the structures, remaining in a mainly algebraic level. A formalization attempt
was done in [53], which demands that a reformulation of P (with objective function fP) into Q (with objective
function fQ) requires a bijection between the feasible regions of Q and the one of P , and a monotonic
univariate function τ such that fQ = τ(fP). This definition enforces extremely strict conditions, resulting
on the loss of many useful reformulations that would not satisfy such conditions. Another formalization
was proposed in [8], based on complexity theory; it basically states that the reformulation is possible when
there exists a mapping function that transforms an optimal solution of B(A) into an optimal solution of
A in a polynomial time, being A the initial formulation. While very general, the approach does not offer
indications about how we could find the formulation B and the corresponding mapping function; besides, it
does not deal explicitly with nested structures. A wider attempt at formalizing the definition of formulation
has been done in [39, 40], which covers several techniques such as reformulation based on the preservation of
the optimality information, changes of variables, narrowing, approximation and relaxation. These techniques
have been mainly developed at an algebraic level, thus with a less general view of structure than the one put
forward in this article. Moreover, there is again little discussion about how we could find the “auxiliary”
problems.

To attain 2, i-dare defines a general and automatic concept of reformulation, based on a set of defined
atomic reformulations between classes of structures. This reformulation theory allows us to deal with complex
forms of structure and also with complex transformations based not just on algebraic information. i-dare

conceives a reformulation package, named i-dare(t). i-dare(t) gets advantage of the deduction machine of
FLORA-2 [59], for defining the reformulation algorithm. Section 4 will show how this general reformulation
mechanism does not exclude ways of reformulation like the ones defined in [39, 40]. On the other hand,
i-dare(t) may get advantage of those results while defining mappings (see §4.6 and §4.7) for some structures
or also for “general” un-structured algebraic expressions.

The need for 3 has been long felt in the optimization community. Several proposals for separating
modeling from solving can be found e.g. in AMPL [22], GAMS [3], ZIMPL [2] or several projects in the
COIN-OR repository [1]. However, most of the current modeling environments are attached to a particular
form or forms of structure, and in many cases modeling and solving are interlocked.

Communication between the modeling stage and the solving stage is made through the instance of
the problem, which gives information to the solvers. There are standards, like MPS [30], for representing
instances, but mainly focused on specific types of problems (linear, nonlinear, etc). However, OS [51],
proposes an unified standard for representing instances. In order to better satisfy need 3, i-dare proposes
an extension of existing flat representations. This extension is structured in such a way that any existing
representation, comprised OS, can easily be used for blocks with appropriate structure; this allows to re-use
the enormous set of existing instance data and solvers without requiring complex and error-prone format
changes. Also, the format is open and extensible to allow for tracking the future development of new

4

specialized formats for specific problems. i-dare communicates with the solvers through this enhanced
instance format, i-dare(ei), which represents the data in a structured way using the information extracted
from the model.

Because modeling, reformulating and solving a problem is such a complex task, a system capable of
streamlining these operations, much like Integrated Development Environments do for computer program-
ming, would clearly be very useful, as stated in need 4. While a few commercial solutions exists for this,
they are typically strongly tied to a specific solver, and a fortiori to a specific problem class. This sharply
contrasts with the need of experimenting with different formulations, and therefore problem classes. Even
more damning is usually the experience of trying to integrate different solution methods, each one adapted
to one of the many different structures that a complex problem may simultaneously exhibit. Efforts to ease
these problems have been done in the OSI [49] project, but again the decision of whether to use a solver or
not, has to be made by the user, which implies a high level of expertise.

i-dare proposes a framework for developing solution techniques or wrapping existing ones, in such way
that they are able to communicate between each other in order to solve a problem. These solution techniques
will define which form of structure they are able to deal with and will delegate the things they are not suitable
for. Such a framework entails a creation of a general solver interface which permits to plug different existing
or new solvers, allowing the user to interact less with the experts. The user, if capable, will propose a
structured model and the system will come out with a sorted list of possible solution techniques along with
complexity and quality of the solution analysis. Then based on the suggestion the user will select the more
convenient strategy. In the long term, such a framework may favor the creation of competitive solvers
concentrated in particular forms of structure, and also the creation of solvers that define ways to deal with
certain combinations of structures, profoundly reshaping the way in which solution software is developed,
tested and deployed.

1.2 i-dare - Overview

i-dare is an extensible environment that allows us to model, reformulate and solve problems in a structured
way. The main idea, as presented in the previous section, is to make modeling of complex problems a not
extremely difficult task, based on the use of structures. Moreover, i-dare extends the notion of instance,
defines an innovative way of making reformulation also based on defined structures and finally it takes
advantage of all the structure information to solve the problem. The solvers should be organized such that
the best techniques are applied to each structure.

i-dare is divided in two main parts: the modeling part and the solving part (see figure 1). The idea is to
separate the modeling part as much as possible from the solving mechanism, giving the user the possibility
to just focus on the models without worrying about how to solve them.

Figure 1: i-dare, first cut

The modeling part is in charge of constructing the models and reformulating them. For building the
models there will be defined the i-dare(lib) and the i-dare(im) packages. i-dare(lib) defines an extensible
library that stores in a hierarchy all the structures that will be available to construct the models. i-dare(im)

5

on the other hand, provides all the constructs that, based on i-dare(lib), permits us to build structured
models.

Once the model is done, we need to link it with the problem data. For doing this, we use the package
i-dare(ei), that wraps the model with a set of extra functionalities that permits the interaction with the
data (creating an extended model). This extended model allows us to ask for specific information like the
size of a certain dimension or the value of a constant. i-dare(ei) is built in a plug-in fashion, enabling the
extension of the set of data formats that can be manipulated (see figure 2).

i-dare(ei) will generate an enhanced instance that will be passed to the solver. This enhanced instance
will contain information about the structures and all the data (even in heterogeneous formats). But first, it
would be interesting to see if there is another formulation equivalent to the one already constructed, that
models the problem in a more convenient way.

The package i-dare(t) defines how reformulations can be done. Based on a set of reformulation rules,
i-dare(t) transform the original formulation into equivalent ones. For doing so, i-dare(t) defines formally
from the concept of reformulation rules to the concept of reformulation system. The whole idea of this
reformulation system will be based in the fact that we can reformulate a structure A into a structure B if
and only if there is a mapping from the arguments of A to the arguments of B and another mapping from
the answer of B to the answer of A. These mapping must also transform the data linked to the formulation
(see figure 2).

Figure 2: i-dare(ei) and i-dare(t)

After we do the selection over the possibles reformulations, we can finally generate the enhanced instance
to be passed to the solving part.

The solving part will be mainly composed of the package i-dare(solve). i-dare(solve) defines an
extensible solver library unified by a common interface. Each solver will register to a structure in i-dare(lib)
and will provide with a configuration template and with a solution class. Then i-dare will generate the
possible solving trees. Each solving tree defines how the solver will be applied to the enhanced instance and
with which configuration.

i-dare(solve) takes as input the a solving tree and applies the solvers, and once there is a solution
available (if there is one) it is communicated to the modeling part (see figure 3)

Figure 3: i-dare(solve)

For defining a system like i-dare we need to go beyond “static” algebraic languages. We need to use

6

technologies that allows us to have a more expressive and deductive power. Artificial Intelligence provides
us with a set of well-defined modeling and programming environments that possess enough deductive and
expressive power. Of course there are packages that are better implemented in an imperative language, for
example, i-dare(solve), since it contains heavy processes, it is implemented mainly in C++.

However, most of i-dare packages are designed and implemented using declarative programming. In
particular we decided to use Frame Logic’s implementation FLORA-2 [34, 59].

FLORA-2 is an advanced object-oriented knowledge base language and application development en-
vironment. The language of FLORA-2 is a dialect of Frame Logic with numerous extensions, including
meta-programming in the style of Hi-Log and logical updates in the style of Transaction Logic. FLORA-2
was designed with extensibility and flexibility in mind, and it provides strong support for modular software
design through its unique feature of dynamic modules. FLORA-2 relies on the XSB inference engine [56].

In this paper we will focus our attention on the i-dare(lib), i-dare(im) and i-dare(t) packages. These
packages are the ones that rely more on declarative programming. We will define how these packages interact
between each other and why declarative programming is useful within them.

2 i-dare(lib) - the structure library

i-dare allows the construction of models based on an extensible structure library. This structure library
contains a set of basic components that enables the definition of new classes of structures and how these
classes will interact between each other.

All variables and constants in i-dare will be of type real (R). Hence, all basic structures like constants,
variables, vectors, etc, will be declared without specifying any type, assuming this type will be R.

Via special user-defined constraints the system may be able to handle subsets of R, like Z (integers) or
Q (rationals).

Components of i-dare(lib) will be included inside a hierarchy, abstracting the main characteristics of
each type of structure. Furthermore, this hierarchy enables the user, by adding new pieces, to enlarge
i-dare(lib)’s potentiality.

There are components in i-dare that can be parameterized (leaf-problems, see §2.1.1). Then when
defining a representative class in i-dare(lib) we must be able to specify the types of potential instance
arguments. These potential arguments can be,

d var representing the variables,

d constant representing the constants,

d vector(?K,?S) representing the vectors of type ?K∈ {d var, d constant} and |?S| dimensions,

d rel representing the relations, ≤, ≥, =, < and >,

d expr representing the arithmetic expressions, and

d direction representing the two possible objective function directions, min, max.

2.1 Component Classes

i-dare(lib) defines a basic hierarchy for the component classes that one may create. This hierarchy is
composed of three classes, d Component C, d LeafProblem C and d Block C (see figure 4).

The root class of this hierarchy is d Component C, defined as,

Listing 1: Component Class

1 d Component C
2 [
3 abstract ,
4
5 // Methods
6 => wel l formed ,

7

d_Component_C

d_LeafProblem_C d_Block_C

Figure 4: i-dare(lib) hierarchy

7 vars => l i s t ,
8 f r e e i n d s => l i s t ,
9 . . .

10] .

Methods

wellformed Tells whether a component is well-formed or not.

vars Retrieves the list of variables used within a component.

freeinds Retrieves the list of free indexes of a component.

In the declaration of d Component C there is a class boolean field, named abstract. When this field
appears in a class definition the system will not allow the creation of instances from that class.

Here appears for the first time the free indexes concept. The free indexes of an component in i-dare

are the set of indexes that are not fixed by any construct like vectors or cumulative operators like
∑

. For
example if we are using the variable xij (with indexes i, j) and x appear inside

∑

i xij then j is going to be
a possible free index (if not fixed elsewhere).

All methods in d Component C are inherited and/or overwritten by all its descendant classes.

2.1.1 Leaf Problem Class

As a special case of component, i-dare(lib) defines the class of leaf problems. A leaf problem is an atomic
definition composed of at least an objective function or a constraint. For example, linear problems, disjunctive
constraints and quadratic objective functions are leaf problems.

All leaf problems must inherit from the following class,

Listing 2: Leaf-Problem class

1 d LeafProblem C : : d Component C
2 [
3 abstract ,
4 args ∗−> l i s t ,
5 [l o c a l]
6] .

where args is an inheritable property whereby we define what type of argument the leaf problem can receive.
A simple example would be the class of integer problems,

Listing 3: Leaf-Problem class example

1 d in t e ge r C : : d LeafProblem C
2 [
3 args ∗−> [d ve c to r (d var , [X])]
4] .

This class will define the problems which have a set of integer variables. As another example, one can define
the class of linear constraints with its list of argument types.

Listing 4: Another Leaf-Problem class example

1 d l i n e a r C : : d LeafProblem C
2 [
3 args ∗−> [d ve c to r (d constant , [X]) ,
4 d ve c to r (d var , [X]) ,

8

5 d r e l ,
6 d constant]
7] .

Observe that the argument types are two vectors of the same size (one of constants and the other of variables),
a constant scalar and a relation. The constraint class d linear C represents all constraints with the form
∑

i civi d rel b. See also that d linear C does not contain the abstract field, therefore objects can be
created from it. We may also define the class of linear problems,

Listing 5: Yet another Leaf-Problem class example

1 d l inearProb lem C : : d LeafProblem C
2 [
3 args ∗−> [d d i r e c t i on ,
4 d r e l ,
5 d ve c to r (d constant , [X]) ,
6 d ve c to r (d constant , [Y,X]) ,
7 d ve c to r (d constant , [Y]) ,
8 d ve c to r (d var , [X])]
9] .

Note that in this case we are defining a complete linear problem with objective function and constraints.
Once we place the argument type d direction we are giving a hint that inside that component there must
be an objective function. This leaf problem is represented arithmetically in the following way,

d direction
∑

i

civi

s.t.
∑

i

c′j,ivi d rel bj for all j

The optional argument local, when present, indicates that the potential instances will define all its data in
a particular and specified local format (e.g. MPS, OSiL, etc), see §3.5.1. For example,

Listing 6: Local Leaf-Problem class example

1 d LP MPS C : : d LeafProblem C
2 [
3 args ∗−> [d ve c to r (d vars , [X])] ,
4 l o c a l
5] .

represents a class of linear problems that takes all data from MPS format files. The argument types in the
case of local leaf problem classes represent what data the leaf problem will export to be used globally. The
system will constraint this argument type list to contain just d var, d constant and/or d vector(?K, ?S).
These argument types are enough to export all needed data to the rest of the model. At least variables
should always be present in the argument type list, otherwise there will be no communication between the
local leaf-problem and the rest of the model.

2.1.2 Block Class

Problems can be built composing sub-problems. In i-dare, each sub-problem will be called block. All blocks
belong to some class that defines the signature of its descendants. Every block class must inherit from the
following class,

Listing 7: Block class

1 d Block C : : d Component C
2 [
3 abstract
4 subsC ∗−> l i s t ,
5 l i n k ∗−> l i s t
6] .

9

A block class is composed of a list of sub-component classes and a list of links. The sub-component classes
will represent the component classes that are grouped by this block, and the link represent how the variables
inside those component classes will interact between each other (see §A for formal definitions).

Here is an example to explain how both lists could be constructed:

Listing 8: Block class example

1 d B MILP C : : d Block C
2 [
3 subsC ∗−> [d l inearProblem C , d in t e ge r C] ,
4 l i n k ∗−> [[X,Y] , [X]]
5] .

In this case we are defining the MILP class using a block construction. The first sub-component is an LP
class and the second sub-component is Integrality Constraint class. But do how we ensure that the set of
variables to be integer is a subset of the variables in the LP sub-component? For doing that we use the link
list.

A link is a template of the variables to be used in the sub-components of a block. Each member of a
link correspond to a sub-component. For example, [X,Y] correspond to d linearProblem C and [X] to
d integer C. In this case [X,Y] is telling us that the variables of its correspondent sub-component have to
be exported in two groups, the variables linked to X and the variables linked to Y. But since there is a second
element in link, [X], we need to ensure that the variables exported by d integer C and the first group of
d linearProblem C are the same.

There is a formal definition for link’s behavior, that can be seen in §A. The most important part of this
definition is the Different Name Unification rule DNU, that ensures that the link unifies with the exported
variables satisfying that equal templates must correspond to identical variable groups and different templates
must correspond to variables groups with no element in common. The following example will illustrate this
fact.

Listing 9: Another block class example

1 d B vardept C : : d Block C
2 [
3 subsC ∗−> [d Component C , d Component C] ,
4 l i n k ∗−> [[X,V] , [X,W]]
5] .

In this case the first and second sub-component class must export an identical group of variables for X but
must export groups of variables for V and W with no element in common. In the following section we will see
more detailed examples of how the variables can be exported ensuring the DNU rule.

2.2 Discussion

i-dare(lib) is an extensible library and the base of the modeling part. Extending the i-dare(lib) hierarchy
we can define new problem classes and/or new combination of problems. Each non-abstract class defined
in i-dare(lib) represents an specific structure for which there must exist solution techniques or at least
reformulation rules (see §4).

The definition of all components inside i-dare(lib) using declarative programming (FLORA-2) permits
us to take advantage of the powerful deduction engine of FLORA-2 and the expressiveness of its language. At
the same time we use the object-oriented characteristics of FLORA-2 while defining i-dare(lib) hierarchy.

Another cause that moved us to use declarative programming is that defining and implementing the
system becomes almost one task. Also the fact that we can change the code being executed without stopping
the system and apply changes dynamically, is another useful feature of FLORA-2 (generally present in Logic
Programming).

i-dare(lib) is not a package that contains computationally heavy processes, in fact its main purpose is
to store all the structures and to define simple verification mechanisms to ensure well-formedness.

To use FLORA-2 in i-dare(lib)’s definition gives us future query potentiality. Since i-dare(lib)
is essentially a “database” of structures, querying it will be crucial for future processes, like reformulat-
ing or solving. Hence using FLORA-2 to define i-dare(lib) enables us to use Frame-Logic + HiLog +
Transactional-Logic power to consult the structure database.

10

3 i-dare(im) - base modeling environment

Using the components defined in i-dare(lib) the user has the structure base to create models. For that
purpose we define i-dare(im), an internal modeling environment based on i-dare(lib) and also designed
in FLORA-2 .

First we will see the main constructs that can be used, which will permit us to represent dimensions,
constants, variables, vectors and others. Furthermore, we will present their well-formedness rules, until we
arrive to a complete definition of a formulation, representing the internal model (IM) of the problem. It is
called internal model because above this modeling environment we could create modeling languages (maybe
graphical) that represent the models in a more user friendly manner. i-dare(im) was chosen as base modeling
environment because it give us a formal and sound way to create a formulation, and thus its design is based
on FLORA-2 its implementation becomes more natural.

To define i-dare(im) a bottom-up fashion will be used, starting from the dimension and properties and
ending with the leaf-problems and blocks.

3.1 Dimensions

Variables and constants may have one or more dimensions. A dimension is a finite set that defines a way of
indexing variables, constants, leaf problems and also blocks.

A dimension in i-dare(im) is represented by the fact d dimension(?id) where ?id is a unique atom.
We could define two dimensions as an example, the first referring to production plants and the second one
to products,

Listing 10: Example of dimensions

1 d dimension (p lant) .
2 d dimension (product) .

3.1.1 Local dimensions

Dimensions can be also automatically defined by the system from local problems (see §3.5.1). In this case
we will add an extension to the d dimension/1 predicate (previously defined), a d dimension/2 predicate.

Listing 11: Local dimension definition

1 d dimension (?X, ?component) .

This predicate, like the first one, specifies an atom representing the name of the dimension (?X). As
second argument it requires a component name(?component), representing the local component that defines
the dimension.

For example, assume C is a local leaf problem that specifies the usage of a certain dimension D. Then the
system will generate the following dimension,

Listing 12: Example of local dimensions

1 d dimension (D, C) .

But now assume the user defined a dimension,

Listing 13: Another dimension

1 d dimension (D) .

This dimension defined by the user will be called global. When a global and a local dimensions have the
same name, both of them must represent the same set of elements and therefore have the same cardinality.

11

3.2 Variables and Constants

Variables and constants can be seen as properties present in the problem being modeled. However, we
need to make a distinction between variables and constants because they will be treated differently while
solving a problem. Therefore we will construct a common root class but then using d var, d constant and
multi-inheritance the mentioned distinction will be enabled.

The common root will be called d property and it is defined as follows,

Listing 14: Class of properties

1 d property [
2 dims => l i s t ,
3 lower => double ,
4 upper => double ,
5 => lopened ,
6 => uopened ,
7 => bounded
8] .

where

• dims is the list of all dimension of the property,

• lower is a lower bound to the property,

• upper is an upper bound to the property,

• lopened indicates whether the lower bound (if exists) is opened or not,

• uopened indicates whether the upper bound (if exists) is opened or not and

• bounded whether it is a bounded property.

A variable must be defined as an object which name is an atom and it is an instance of d property and an
instance of d var. For instance,

Listing 15: Example of variable

1 x : d var .
2 x : d property [
3 dims −> [d1 , d2]
4] .

defines an unbounded variable named x, which has two dimensions d1 and d2.

For constants is applied the same principle applied to variables but d constant is used instead.

3.3 Indexing

When accessing a property, indexing is required. Indexing will allow the future definition of vectors (of
variables or constants).

An index is an atom that it is associated to a dimension. It is declared using the fact d index(?id,

?dim)., where ?id is an atom and ?dim is a defined dimension (i.e. d dimension(?dim)). There could be
more than one index defined over one dimension. An index is well-formed iff ?id is unique and ?dim is a
well-formed dimension.

Let prop:d property be a property with dimensions [d1,..., dn] (n > 0), then we call the term
prop(i1,...,in) an indexed property, where d index(i1, d1), ..., d index(in, dn). If n = 0 then the
indexed property must be just the term prop.

For instance, assume we have the following piece of i-dare(im),

Listing 16: Dimensions and Constants in i-dare(im)

1 d dimension (product) .
2 d dimension (p lant) .
3
4 d index (i , product) .

12

5 d index (j , p lant) .
6
7 stock : d constant .
8 stock : d property [
9 dims −> [product , p lant]

10] .

One possible indexed property of stock could be stock(i,j).
An indexed property is well-formed iff the property is well-formed and the indexes used are also well-

formed. We will also use the concept of well-formed indexed variable and well-formed indexed constant,
which definitions are straightforward from the previous ones.

While talking about indexes, besides free indexes, there is another important concept, to be exempt in a
list of indexes. A component is exempt in a list ?I if none of the indexes in ?I is fixed by a vector declaration
or a cumulative operator while being a index of a variable (constants does not count).

For example, if inside a component C we have an indexed variable x(i, j) that is used inside an expression
like

∑

i x(i, j) then if we ask C whether it is exempt in [i,j] or not, the answer would be no, because the
index i is fixed and it is used in a indexed variable (x(i, j)).

3.4 Scalars and Vectors

Scalars are divided in to classes, defined by the types d var and d constant.

• When the type is d constant then the scalar has to be a constant expression (no variables).

• When the type is d var then the scalar has to an indexed variable.

Scalars’ definition does not affect the free indexes of its inner components. Therefore the free indexes of a
scalar will simply be the free indexes of the property or the constant expression used to define it.

Instead of working with scalars, sometimes vectors are needed. Vectors are always linked to the type
d vector(?K,?S).

A vector in i-dare(im) is declared using two types of constructs:

1. $(?x, ?inds, ?cond) where ?x is a scalar, ?inds is the list of indexes or tuples of indexes that will
be used to build the vector and ?cond is a condition.

2. $([e1,...,en]) where n > 0 and ei is a $(?x, ?inds, ?cond) construct or a scalar.

For example, $(a(i,j), [j], true), with j ∈ [0..2] generates the vector, 〈a(i, 0), a(i, 1), a(i, 2)〉. Since
the condition is true no element is excluded.

We can also use the second construct to build joint vectors, for example $([$(a(i,j), [j], true), 0,

1]) generates the vector 〈a(i, 0), a(i, 1), a(i, 2), 0, 1〉.
The amount of elements of ?inds must be equal to the amount of elements of ?S. If we want to put

more indexes than the size of ?S, we must group the indexes using parenthesis making a tuple. For instance,
assume that |?S| = 2 and that we have the indexes i, j, k, then we could make an ?inds list in the following
way: [(i, j), k].

3.5 Leaf Problem

A leaf problem (Pl) is represented in i-dare(im) using the following object definition,

Listing 17: Pl specification

1 ? id : ? c l a s s
2 [
3 args −> ? args ,
4 [c ond i t i on −> ?cond]
5] .

where

• ?id is a unique atom

13

• ?class:d LeafProblem C[not abstract, not local] is a non abstract non local leaf problem class,

• ?args is the list of arguments of the leaf problem,

• ?cond is a condition. optional.

The methods enclosed between square brackets are optional (i.e. one can decide not to include them in
a definition of a Pl or other type of component).

Pl well-formedness will be mainly focused on ensuring the argument’s well-formedness. For instance, if
the type specified in the Pl class is a scalar (d var or d constant) then the Pl must specify a valid scalar in
the argument list, and the same if it is a vector, a relation, a direction or an expression.

The following is an object instance of the LP class defined in the previous section,

Listing 18: Pl class example

1 lp : d l inearProb lem C
2 [
3 args −> [min ,
4 >=,
5 $ (b(k) , [k] , true) ,
6 $ (A(i , k) , [i , k] , true) ,
7 $ (c (i) , [i] , true) ,
8 $ (x (i) , [i] , true)]
9] .

It can be represented by the following algebraic model,

min
∑

i

cixi

s.t.
∑

i

Aikxi > bk, ∀(k)

3.5.1 Local Leaf Problems

The previous definitions demand the Pl not to be local. When local is present in the Pl class declaration
all objects instanced from that class will be called local leaf problems (Pll). There will be a change in Pll
argument treatment. Local properties will be defined at a Pll level, and not at a global level as has been
done until now.

Since we will not have a global declaration for the properties used in a Pll, there must be a way of
expressing all the necessary information within the Pll. For this purpose we will use a different argument
declaration,

Listing 19: Pll specification

1 ? id : ? c l a s s
2 [
3 args −> [? props , ? f r e e i n d s]
4]

where,

• ?id is a unique atom

• ?class:d LeafProblem C[not abstract, local] is a non abstract local leaf problem class,

• ?props and ?free inds are lists.

In the case of Plls the well-formedness rules changes drastically (see B for formal definition). Since all
the data will be defined a priori (in the data file) then the Pll only needs to declare what it wants to export
to the rest of the formulation. At least there should be a variable declaration to communicate the results.

The list of arguments in a Pll is divided in two sub-lists, ?props and ?free inds.

14

?props contains all the scalar and/or vector declaration. Instead of using the previously proposed
mechanism (used in Pls) we will define a way of specifying local variables and constants. ?props will be
then composed of elements of the form ?p(?ind dims), where ?p is an identifier (unique in ?props) and
?ind dims is a tuple composed of ?ind$?dim or tuples of them, where ?ind and ?dim are atoms (representing
an index and a dimension, respectively). These indexes and dimensions can be fresh identifiers (i-dare will
automatically create them).

On the other hand ?free inds is a list of indexes such that ∀(i ∈ ?free inds)[d index(i, ?dim) and
d dimension(?dim) (global dimension)]. In other words, ?free inds is a set of indexes disjoint to the set
specified in ?props.

The way of ensuring the correct correspondence between the argument types defined in the class and
the argument specified in the Pll, is based on how many pairs ?ind$?dim we define for each local property
in ?props. For instance, if we specify x(iD, jB) then the type must have been d vector(?K, [X, V]).
Note that we left the ?K undefined, that is because x will be whatever ?K indicates (a variable or a constant).

For example if we have the following Pll class,

Listing 20: Pll class example

1 d LP MPS C
2 [
3 args ∗−> [d ve c to r (d vars , [X])] ,
4 l o c a l
5] .

We could make the following object from it,

Listing 21: Pll example

1 prob1 : d LP MPS C
2 [
3 args −> [[x (i1$d1)] , [k]]
4] .

The list ?ind dims can be also specified using tuples, for example, x((i$d1, j$d2), k$d3). In this
case the cardinality of ?ind dims is 2. Once the property is extracted from the local file, the size of the
dimension linked to the first pair, must be equal to d1*d2.

Properties defined in a Pll can be accessed from other components of the model making reference to its
full name, for instance, x(prob1)(i1). Note that the name of the property changes to be accessed globally,
including the name of the component that declares it.

3.6 Blocks

Blocks will be used to represent the problem structure. A block in i-dare(im) is defined as follows,

Listing 22: Block definition

1 ? id : ? c l a s s
2 [
3 subs −> ? subs ,
4 subVP −> ?subVP ,
5 [f r e e I −> ? f r e e I]
6] .

where,

• ?id is a unique atom,

• ?class::d Block C[not abstract] is a non abstract block class,

• ?subs is a list composed of atoms or tuples of atoms,

• ?subVP is a list of variable patterns,

• ?freeI is a list of indexes. optional.

15

Assume we have a method vars that can be applied to any component and returns the set of all variable
identifiers used within the component. Lets also assume that when freeI is not present in the block’s
declaration then ?freeI = ∅.

When constructing a block certain well-formedness rules must be guarantied (and will eventually be veri-
fied). The first rules are related with the block’s sub-components. Each sub-component ?subs[i] :?class.subsC[i]
must be well-formed, different pair to pair and exempt in the list ?freeI.

The second group of rules are the ones relates to the link (i.e. how sub-components’ variables will
interact). Each ?subVP[i] ⊆ ?subs[i].vars and ?subVP must unify with ?class.link ensuring the DNU
rule. Note that with this rule we enforce that we can not include new variables (i.e. variables not used in
the sub-components) and we also define the way these variables will communicate between each other (see
§B for a formal well-formedness definition).

A block uses its freeI list to control the inner replication of its sub-components, for example if we have
a block A and B with no freeI, such that B ∈ A.subs. Then assume that we have a Pll prob1 that declares
a variable x(d1) and that it has d2 as free indexes. If prob1 were a sub-component of B then since it has
free indexes d2 it would be replicated |d2| times inside of B. In practice we add d2 as a dimension to x(d1)

and replicate prob1 (see figure 5).

A

B

prob1
x(d1,d2)

prob1
x(d1,d2)

A

B

prob1(d2)
x(d1)

...d2...

Figure 5: Replication inside blocks

The following examples will illustrate how blocks can be defined. Assume we have the following LP and
integrality constraint instances.

Listing 23: LP and Integrality constraint

1 lp : d l inearProb lem C
2 [
3 args −> [min ,
4 >=,
5 $ (b(k) , [k] , true) ,
6 $ (A(i , k) , [i , k] , true) ,
7 $ (c (i) , [i] , true) ,
8 $ ([$ (x (j) , [j] , true) ,
9 $ (y (l) , [l] , true)])

10] .
11
12 i c : d i n t e ge r C
13 [
14 args −> [$ (x (j) , [j] , true)]
15] .

In lp definition we use a composed vector (line 8-9) for the variables, because the variables will be divided
in integer and real. Note that when creating the instance i-dare will verify that |j| + |l| = |i|.

Using lp and ip we can create an instance of d B MILP C.

Listing 24: MILP instance

1 milp : d B MILP C
2 [
3 subs −> [lp , i c] ,
4 subVP −> [[x , y] , [x]]

16

We can build another example using d B vardept C block class

Listing 25: MILP instance

1 block1 : d B vardept C
2 [
3 subs −> [lp , i c] ,
4 subVP −> [[x , y] , [x , ()]]

Note the usage of () for represented the second group of variables of ic. Since d B vardept C defines
that for its second argument the template must be [X, W] then the exported variables must have the same
cardinality. In this case the usage of the empty variable tuple () is allowed because W must be disjoint to
V (from the first template [X, V]). To substitute one of the X with () is not permited due to impossible
unification.

3.7 Formulation

Using the previously defined constructs we can build a formulation of a problem. From now on we will
assume that when talking about components we will be talking about well-formed components.

A formulation will be an instance of the following class,

Listing 26: Formulation class

1 d Formulation
2 [
3 dimensions => l i s t ,
4 p r op e r t i e s => l i s t ,
5 indexes=> l i s t ,
6 root => d Component C
7] .

where

dimensions is a list of well-formed dimensions,

properties is a list of well-formed properties,

indexes is a list of well-formed indexes,

root :d Component C such that root is well-formed.

A formulation does not explicitly storage all the components, instead it only needs to know the root
component and due to the well-formedness rules all the other components must be contained in a tree
structure starting from root.

When creating a formulation we must ensure that there are no repeated components. Even if we ensure
that all sub-components of a block are different, it is not enough to ensure that all components starting from
root are different. For example, assume the component composition exposed in figure 6.

Figure 6: An example of wrong component tree

17

Observe that C, B and A satisfy the rule of not repeated sub-components. However, we can see that E

is repeated in C and B. This is because, a block check just for its immediate sub-components. Then, at a
formulation level there can appear component repetitions. Therefore we need enforce a global component
non-repetition in the formulation well-formedness rule (see §B for formal defintion).

3.8 Discussion

The internal model (IM) is based on a set of defined structure classes (i-dare(lib)), it offers an expressive
way of constructing structured well-formed models. i-dare(im) defines all the constructs that allow us to
verify for well-formedness of an incoming formulation. Moreover, i-dare(im) offers an initial set of tools
for querying the IM, we could ask for free indexes of variables, leaf-problems, blocks; or we could retrieve
whether a component is going to be replicated or not. Queries may become more complex depending on the
developers needs.

FLORA-2 plays an important part in i-dare(im), because it allows us to define all the syntactic constructs
together with the semantic using a formal language that at the same time enables us to implement all those
definitions.

A declarative definition of the problem’s formulation, enables us to construct a set of wrappers around
the formulation to allow data manipulation, increasing the amount of information that can be queried (this is
done in package i-dare(ei)). This means that the model will become a huge source of organized information.

Building and solving a model is not i-dare’s only goal, as it is for many modeling environments. With
i-dare we are interested in creating an environment that allows us to build a model, to exploit all the
information that model can bear, and use that information for reformulating it and finally solving it. The
usage of declarative programing in the design of i-dare(lib) and i-dare(im) permits us to take advantage of
that information and also leaves the door opened for other developers that may come up with more powerful
queries.

With the formal definition of well-formed Formulation, we lay the foundations for creating the reformu-
lation package. While defining this package we will see how querying the model+data becomes crucial.

4 i-dare(t) - reformulation package

Once we a formulation is defined, and the enhanced instance has been generated using the data of the actual
instance at hand, we could directly pass this instance to the solvers and obtain the solution. But we know
that there may be an equivalent formulation for which solvers could be capable of solving the problem more
efficiently. In this section we will define the basis to be able to reformulate, i-dare(t).

4.1 Initial definitions

One common point of every component class (?C::d Component C) is that they ultimately need arguments
and provide with an answer. Arguments, as defined in §2, are lists composed of variables, constants, ex-
pressions, relations and/or direction. On the other hand, answers are the values taken by the variables that
are present in the argument list (these values are assigned by the solvers). The concept of argument list for
Leaf-Problems was already defined in §3.5. Then we need to define it for Blocks and Formulation.

Definition 4.1 (Block Argument List) Let B: d Block C, then B.args =
⋃

PL∈B.subs PL.args is a Block
Argument List. 3

Definition 4.2 (Formulation Argument List) Let F : d Formulation then F.args = F .root.args is a
Formulation Argument List. 3

Let us now define the concept of answer list for leaf-problems, blocks and formulations:

Definition 4.3 (Leaf-Problem Answer List) Let PL: d LeafProblem C then [〈x1, v1〉, ..., 〈xn, vn〉] is a
Leaf-Problem Answer List, denoted by PL.ans, iff xi: d var ∈ PL.args and vi satisfies all the following,

• vi is a solution for PL (e.g. satisfies all constraints),

18

• if xi[lower ∗ − >?l] ∧ xi[∗lopened] then vi > ?l,

• if xi[lower ∗ − >?l] ∧ ¬xi[∗lopened] then vi ≥ ?l,

• if xi[upper ∗ − >?u] ∧ xi[∗uopened] then vi < ?u,

• if xi[upper ∗ − >?u] ∧ ¬xi[∗uopened] then vi ≤ ?u.
3

Definition 4.4 (Block Answer List) Let B: d Block C then B.ans =
⋃

PL∈B.subs PL.ans is a Block An-
swer List, iff ∀(x: d var ∈ B.args)[〈x, v〉 ∈ B.ans ∧ 〈x, v′〉 ∈ B.ans ⇒ v = v′]. 3

Definition 4.5 (Formulation Answer List) Let F : d Formulation then F.ans = F .root.ans is a For-
mulation Answer List. 3

The reformulation mechanism proposed by i-dare is based on the fact that we can reformulate a com-
ponent A into a component B when we know how to transform A.args into B.args and B.ans into A.ans.
This way of making reformulation allows us to involve a huge number of structures, due to its generality.
We need to formally define this argument and answer mappings.

Definition 4.6 (Argument Mapping) Let C1:: d Component C and C2:: d Component C, then argMap(C1, C2)
exists and is called argument mapping iff there is an algorithm that transform X1.args into X2.args, where
Xi : Ci. The argument mapping implicitly transforms the data. 3

Definition 4.7 (Answer Mapping) Let C1:: d Component C and C2:: d Component C, then ansMap(C2, C1)
exists and is called answer mapping iff there is an algorithm that transforms X2.ans into X1.ans, where
Xi : Ci. 3

The argument and answer mappings, as will be seen next, are a necessary condition for defining an
atomic reformulation, but they have also a crucial role while we are writing the problem instance to pass it
to the solvers. Therefore in practice both mappings will use the instance wrapper as an argument, but for
simplicity purposes we decided not to include it in these definitions.

4.2 Reformulation Rule

Reformulation rules are relations between components classes. When a reformulation rule is defined from
one component class A to another component class B, it means that the input of A can be mapped into the
input of B and the output of B can be mapped back to A.

Definition 4.8 (Atomic Reformulation Rule) Let C1:: d Component C and C2:: d Component C then

Υ = {〈C1, C2〉|∃argMap(C1, C2) ∧ ∃ansMap(C2, C1)}

defines the set of Atomic Reformulation Rules from any well-formed instance of C1 to a well-formed instance
of C2, for all 〈C1, C2〉 ∈ Υ. 3

Proposition 4.9 (Properties of Υ) Let 〈C1, C2〉 ∈ Υ then Υ will have the following properties:

1. Υ is a reflexive relation,

2. Υ is a transitive relation.
3

19

Proof. Let us prove the reflexivity of Υ. Since the argument and answer mappings from a component
class C to the same component class C are the trivial ones (i.e. always exists), then we have that for any
component class C, 〈C, C〉 ∈ Υ. Therefore Υ is reflexive.

For the transitivity, Let us assume we have component classes A, B and C. Let us also assume that
〈A, B〉 ∈ Υ and 〈B, C〉 ∈ Υ. Then argMap(A, B), argMap(B, C), ansMap(C, B) and ansMap(B, A) exist by
definition 4.8. We can then obtain an argument mapping between A and C by doing argMap(A, B) and then
argMap(B, C):

argMap(A, C) : −argMap(A, B), argMap(B, C).

Using the same mechanism we can obtain the answer mapping,

ansMap(C, A) : −ansMap(C, B), ansMap(B, A).

Hence, 〈A, C〉 ∈ Υ by definition 4.8 and we can therefore say that Υ is transitive.

Since Υ is a transitive relation we can make use of the transitive closure of Υ, denoted by closΥ.

Definition 4.10 (Reach of a component) Given a component X1:(C1:: d Component C), then the reach
of X1 in Υ is µΥ(X1) = {Xk|Xk:(Ck:: d Component C) and 〈C1, Ck〉 ∈ closΥ}. 3

Υ rules are only defined over well-formed components. Therefore when transforming a well-formed component
X1 : C1 into a component X2 ∈ µΥ (X1), X2 will always be well-formed.

4.3 Reformulation Semantics

The reformulation semantics define how formulations are modified once a Υ rule is applied, let us call this
the reformulation process. Rules applied to isolated components bring no well-formedness problems since
Υ is, by definition, a relation between well-formed components. The problem comes when the component
is embedded inside another component. In this section we will show which conditions must satisfy the
application of a Υ rule in order to always generate a well-formed formulation.

The following definition creates a function that describes how the reformulation process will behave
when transforming a component embedded inside other components (i.e., when reformulating the whole
formulation). Let us assume that we can ask for the parent of a component X , such that X.parent is the
component XP where X ∈ XP.subs; if X is the root component of a formulation then X.parent = 4.

Definition 4.11 Let Φ∗ be the set of all well-formed formulations, Φ ∈ Φ∗, a component X :(C:: d Component C) ∈
Φ and a component X ′:(C′:: d Component C) /∈ Φ such that X ′ ∈ µΥ (X); then we define ̺(Φ, X, X ′) → Φ′

to be a spread-function iff Φ′ is obtained in the following way,

1 ̺(Φ, X : C, X ′ : C′) → Φ′

2 i f X.parent = 4 then

3 Φ′.root = X ′ // we assume here t ha t the Υ ru le , app l i e d to a r r i v e to
4 // X ′ , wrote a l l changes in Φ′ (p rope r t i e s , dimension , e t c) .
5 else // the parent i s a Block
6 i f ∃(B′: (C′:: d Block C))[|C′.subsC| = |X.parent.subs| ∧
7 X.parent.subs − {X} ∪ {X ′} ⊆ B′.subs ∧
8 B′[wellformed]] then

9 Φ′ = ̺(Φ, X.parent, B′)
10 else

11 Φ′ = ∅
3

The spread-function ̺ starts from an initial reformulation and then it spreads the change to all parents
until it arrives to the root. The problem is that we need that Φ′ ∈ Φ∗, i.e., Φ′ to be a well-formed formulation.
The next proposition will assert this fact, followed by a proof. Notice that if Φ′ = ∅ then it is well-formed.
This assumption does not carries any contradiction, because ∅ is a formulation with every field empty,
therefore well-formed.

20

Proposition 4.12 (̺ well-formedness) Let Φ ∈ Φ∗ , X ∈ Φ and X ′ ∈ µΥ (X) then Φ′ = ̺(Φ, X, X ′) is
a well-formed formulation. 3

Proof. To prove the well-formedness of Φ′, we must resort to the definition of ̺, proving that the component
finally added as root in line 3, will always be well-formed. We will make this proof doing induction on the
amount of recursive steps of ̺, n.

n = 0
)

If the amount of recursive steps is 0, it means that the first X ′ passed to ̺ comes from a direct
application of a Υ rule that takes place outside ̺ and X.parent = 4. Then by definition of Υ and the
hypotheses of the proposition, X ′ is well-formed and so Φ′.

n = k
)

If the number of steps is k we will assume by induction hypothesis that the X ′ passed to k is well-formed
and so Φ′.

n = k + 1
)

If the number of steps is k + 1 then it means that Xk+1 = Xk.parent and two things can happen,

• ∃(X ′
k+1) that is a well-formed block containing the same sub-components except for Xk (line 6-8)

and Xk+1.parent = 4; or

• condition of lines (6-8) is false and Φ′ = ∅

otherwise it would have ended in step k and not k + 1. Since X ′
k+1 is a well-formed block (line 8) then

Φ′.root = X ′
k+1 is also well-formed, or Φ′ = ∅ and also well-formed.

By induction on n we have that X ′
n (the component that arrives to step n) is well-formed and so Φ′.

Definition 4.13 (Change-of-state function ω) Let Φ ∈ Φ∗ and 〈C, C′〉 ∈ Υ, such that ∃(X ∈ Φ)[X :C].
Then we define the change-of-state function ω : Φ∗×Υ → Φ∗, such that ∃X ′ : C′ ∈ µΥ (X), Φ′ = ̺(Φ, X, X ′)
and Φ′ 6= ∅. 3

The reformulation process takes place in a system, composed by the set of all formulations, Υ and the ω
function, defined as follows:

Definition 4.14 (Reformulation system) Let Φ∗ be the set of all well-formed formulations and ω :
Φ∗ × Υ → Φ∗ a change-of-state function, then the trio 〈Φ∗, Υ, ω〉 will be called reformulation system. 3

With the application of ω in the reformulation system, we could obtain all the possible reformulations of
a certain formulation Φ ∈ Φ∗, and all this reformulations will be well-formed as stated by proposition 4.12.

4.4 Discussion

The reformulation system is an inference machine that, based on a set of applicable rules, transforms one
well-formed formulation into another (also well-formed). Since it requires querying the model and data,
it is also implemented using declarative programming (FLORA-2). In fact the implementation, if done in
FLORA-2 , will be almost equal to the definition of the system, except for the mappings that sometimes
may be non-declarative by nature. In those cases we use the interoperability between FLORA-2 and other
languages like C++, to implement certain procedural processes.

In contrast with our definition of reformulation, the concept used in [53] (mentioned in §1.1) does not
offer algorithmic notions; therefore, its implementation may be rather difficult. Furthermore, it leaves a huge
amount of possible reformulations out because of the restricting conditions it imposes. On the other hand, [8]
manages the idea of mapping functions; from that point of view, it has the same power that out reformulation
system has. However, we propose a reformulation system defined over a precise modeling language, that
allows us (using Υ) to algorithmically deduce reformulations. i-dare(t) offers a way of determining which
structures can be reformulated and how they will be reformulated, obtaining at the end of the process valid
formulations and data ready to be given to the solvers.

The study in [39, 40] define a more complete framework for making automatic reformulations, via symbolic
transformations applied to the sets of variables, objectives and constraints. They formally define a set of

21

reformulation techniques that covers a good number of real-life problems. However, they are based on
algebraic transformations of formulations that do not make explicit use of the structures, and therefore
may not be able to exploit the semantic value of certain structures. This fact provokes the exclusion of
reformulations that treated in a structured way may be possible to achieve algorithmically.

Our reformulation mechanism, allows us to treat more than algebraic transformations, since the mappings
can use non algebraic procedures to transform the arguments and answers of a certain structure. The ω
change-of-state function considers the composition of atomic rules in Υ until a well-formed formulation is
obtained. This composition of “simple” rules enables us to generate reformulations of a complex initial
formulation, transforming internal structures. The rules in Υ tackle structures that may form part of
more complex models. The multi-step reformulation fashion defined by i-dare(t) allows us to obtain new
reformulations just with the transformations applied to the pieces (structures). These transformations are
propagated using ̺ throughout the formulation until a new well-formed formulation is attained.

i-dare(t) offers a methodology based on deduction that allows us to deal with complex and non-direct
reformulations. This methodology is fully based on the fact that our model is structured and that we know
how to deal with these structures (in a solution process or at least when defining the rules in Υ). We
may construct a structured formulation for which we do not have a solution process, but we may obtain a
reformulation, applying i-dare(t), for which all its structures have a solver “attached”.

One of the main gains by using i-dare(t) is the extensibility. For instance, we can widen the amount
of reformulation rules, using the techniques in [39], doing so we can cover several algebraic reformulations.
Furthermore, i-dare(t) offers the possibility of selecting intelligently between possible reformulations. The
amount of reformulations that can result from the reformulation process may be huge. An automatic selection
process would be useful at this point. In this paper we do not study possible selection processes, but we can
suggest at least a simple one. Let Φ′ ∈ Φ∗ be a resulting formulation of the system 〈Φ∗, Υ, ω〉, then Φ′ is
selectable iff ∀((X :C) ∈ Φ′)∃(s: d solver)[s.component = C]. Then a selectable Φ′ will be a formulation for
which exists at least one solution method.

4.5 An example

By way of a simple example, let us take these two leaf problem classes:

Listing 27: some leaf problems

1 d l inearProb lem C : : d LeafProblem C
2 [
3 args ∗−> [d d i r e c t i on ,
4 d r e l ,
5 d ve c to r (d constant , [X]) ,
6 d ve c to r (d constant , [Y,X]) ,
7 d ve c to r (d constant , [Y]) ,
8 d ve c to r (d var , [X])]
9] .

10
11 d shortPathTree C : : d LeafProblem C
12 [
13 args ∗−> [d constant , // root node
14 d ve c to r (d constant , [V,V]) , // arc matrix
15 d ve c to r (d var , [V])]
16] .

The first one represents a generic LP class. The second, on the other hand, represents the shortest path tree
problem on complete graphs of V nodes. In this case the vector of variables will contain the shortest path
tree, in the commonly used format: p[root] = root, assuming node root is the origin, and p[i] = k, where k
is the predecessor node to i in the shortest path tree.

We could solve a shortest path problem using a linear representation. For doing this, we need to create an
argMap(d shortPath C, d B linearProblem C) and an ansMap(d B linearProblem C, d shortPath C).

There is a natural LP formulation for the shortest path tree problem, given below. Given a directed
graph with V vertexes, we can define the cost (the constant) to be cij , where i, j ∈ [0..V − 1]; and the
arc-usage variable with xij , then an LP formulation for the shortest path tree problem is

min
∑

ij cijxij

22

∑

j xij −
∑

j xji =

{

V − 1 if i = root
−1 otherwise

i ∈ V

xij ≥ 0 i ∈ V , j ∈ V

This LP has the special property that it is integral [4] (i.e., it has an optimal integer solution), returning in
each variable xij the number of paths of the shortest path tree that pass through arc (i, j). Then in this
case argMap could return an instance of d linearProblem C constructed in the following way:

Listing 28: Generated LP

1 lp : d l inearProb lem C
2 [
3 args ∗−> [min ,
4 =,
5 $(c (i , j) , [(i , j)] , true) ,
6 $(M(i , k) , [i , k] , true) ,
7 $ ([$(−1 , [i] , (i<root)) , card (V)−1 , $(−1 , [i] , (i>root)]) ,
8 $(x (i , j) , [(i , j)] , true)]
9] .

10
11 d dimension (VxV) . // dimension generated by the mapping
12 // when trans forming the data i t has to
13 // ensure that VxV = V∗V
14 d index (k , VxV) .
15
16 M: d constant . // property generated by the mapping
17 M: d property // to s t o r e the constant matrix o f the LP
18 [
19 dims −> [V, VxV]
20] .

Now, the ansMap has to make certain transformations also. The variables returned by the LP reformulation
are not arithmetically transformable in the variables that specify the shortest path tree class. Indeed, while
the LP has an optimal integer solution, the solvers may not return it. In fact, a solver may return a fractional
solution, or even one with oriented cycles, if the graph contains zero-cost cycles.

Here we can see one of the potentialities of i-dare(t), as the mappings are not just arithmetic “refor-
mulators”, but algorithmic “reformulators”. In fact, the ansMap needed in this example has to be designed
as an algorithm that converts the x in the vector representing the path tree. This algorithm will visit, just
once, each arc with flow greater than 0, to reconstruct the vector p that will be the solution of shortest path
tree problem. For instance, if all p[i]=-1 initially, then an elementary implementation would be

Listing 29: Generate the path tree

1 generatePathTree (node , p) { // p w i l l be the path t r e e
2 i f (node == root) then // ju s t when node i s root
3 p [node] = root
4 for each arc (node , k)
5 i f (x (node , k) > 0 and p [k] == −1) then // f low gr e a t e r than 0 (the arc i s in use)
6 // and k i s not v i s i t e d yet
7 p [k] = node
8 generatePathTree (k , p) // s t a r t i n g from k repeat the p roc e s s
9 }

This simple example shows how a map can be designed as an iterative process instead of just arithmetic
transformations. Since there is a definition for both mappings, then 〈d shortPath C, d linearProblem C〉 ∈
Υ, and thus can be used in the reformulation system.

5 Conclusions and Future Work

Mathematical modeling is one of the most complex and creative human activities. However, the exponential
growth of knowledge is making it more and more difficult to take good informed decisions about which of the
many possible alternative formulations of a given problem is “best” early on in the modeling and solution
process. As a consequence, users may either be stuck with non-optimal formulations, or pay a large cost
for testing and deploying appropriate reformulations of existing models when the necessity arises. There is
the need for a system which eases some of the pain involved in searching for appropriate reformulations of

23

a given mathematical model. Fortunately, Artificial Intelligence tools and techniques offer a sound basis for
the development of such a system, which is what the i-dare project aims at.

In this paper we presented the definition of the basic components i-dare(lib), i-dare(im) and i-dare(t),
that compose the modeling and reformulation parts of i-dare. The usage of declarative programming in
the design and definition of these packages is, besides an innovative act, a powerful tool to query the models
and the instances. In fact, it makes the definition of the reformulation mechanism quite natural: the
definition basically coincides with the declarative program implementing it, and its theoretical properties
can be tested and verified directly with the help of the sophisticated tools in FLORA-2 . Clearly, a source
of non-determinism arises from the definition of ̺: we claimed existence of the parent component, but in
fact this should be thought as a selection function that chooses between all the possibilities. This selection
function, with the aim of finding “the best” formulation, may become very complex; in particular, other AI
techniques like learning algorithms are likely to be necessary. The definition of potential selection functions
and their study will be material for future research. Also, while fundamental the elements described in
this paper are only a part of the whole i-dare project; the i-dare(ei) and the solving framework will be
described in subsequent papers.

We believe that, if brought to an usability level where users can find it convenient, the i-dare system may
have a substantial impact on the way in which mathematical models are constructed, tested and deployed in
practice, as well as on how research on solution algorithms is advanced. The success of i-dare in the long
term depends on the collection of a sufficiently large amount of knowledge, allowing the development of a set
of tools that permits to model, reformulate and solve a wide variety of large scale problems. This would lead
to the creation of a large user base for the developers of specialized algorithms, who currently find it difficult
to reach all the users which may benefit from their work. Therefore, there would be a significant incentive
for developers to collaborate with the system, providing new structures, reformulation rules and solvers,
improving the problem solving capacity of i-dare. In turn, this would attract more users who would provide
an even larger data set from which i-dare may learn, yielding even better results. All this may create a
positive feedback loop, that could lead as a final result to a standardization process for the development,
deployment and testing of mathematical models for solving problems. This has the potential to substantially
increase the productivity of scientific research and industrial applications in several different fields.

References

[1] COIN-OR, Computational infrastructure for operations research. http://www.coin-or.org.

[2] Zimpl. http://zimpl.zib.de/.

[3] D. Kendrick A. Brook and A. Meeraus. Gams, a user’s guide, 1988.

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice Hall, 1993.

[5] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling Salesman: a Computational Study.
Princeton University Press, Princeton, 2007.

[6] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[7] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem: Alternate
formulations and solution methods. Princeton University Press, Princeton, 50(6):761–776, 2004.

[8] C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and mixed 0-1 program-
ming problems. Journal of Optimization Theory and Applications, 93(2):273–300, 1997.

[9] C. Audet, P. Hansen, F. Messine, and S. Perron. The minimum diameter octagon with unit-length
sides: Vincze’s wife’s octagon is suboptimal. Journal of Combinatorial Theory A, 108(1):63–75, 2004.

[10] M. Ball, T. Magnanti, C. Monma, and G. Nemhauser. Network Routing, volume 8 of Handbooks in
Operations Research and Management Science. North-Holland, Amsterdam, 1995.

24

[11] C. Barnhart and G. Laporte. Transportation, volume 14 of Handbooks in Operations Research and
Management Science. North-Holland, Amsterdam, 2007.

[12] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, Engi-
neering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2001.

[13] Frèdèric Benhamou. Interval constraint logic programming. In Andreas Podelski, editor, Constraint
Programming: Basic Trends. Springer, 1994.

[14] J. Bjorkqvist and T. Westerlund. Automated reformulation of disjunctive constraints in minlp opti-
mization. Computers and Chemical Engineering, 23:S11–S14, 1999.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[16] J. Brimberg, P. Hansen, N. Mladenović, and E. Taillard. Improvement and comparison of heuristics for
solving the uncapacitated multisource weber problem. Operations Research, 48(3):444–460, 2000.

[17] Gilles Caporossi and Pierre Hansen. Variable neighborhood search for extremal graphs: 1. the auto-
graphix system. Discrete Mathematics, 212(1-2):29–44, 2000.

[18] Marco Colombo, Andreas Grothey, Jonathan Hogg, Kristian Woodsend, and Jacek Gondzio. A
Structure-Conveying Modelling Language for Mathematical and Stochastic Programming. Technical
report, School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, Scotland,
March.

[19] G. B Dantzig. Linear programming and extensions. Princeton, NJ: Princeton University Press, 1963.

[20] T. Davidović, L. Liberti, N. Maculan, and N. Mladenović. Towards the optimal solution of the multi-
processor scheduling problem with communication delays. In MISTA Proceedings, 2007.

[21] O. du Merle, P. Hansen, B. Jaumard, and N. Mladenović. An interior point algorithm for minimum
sum-of-squares clustering. SIAM Journal Scientific Computing, 21(4):1485–1505, 2000.

[22] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[23] E. Gourdin, P. Hansen, and B. Jaumard. Finding maximum likelihood estimators for the three-
parameter weibull distribution. Journal of Global Optimization, 5(4):373–397, 1994.

[24] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming, pages 155–210. Liberti and Maculan
[41].

[25] J. Gondzio A. Grothey. Exploiting structure in parallel implementation of interior point methods for
optimization. Technical report, School of Mathematics, University of Edinburgh, Scotland, December
2004.

[26] P. Hansen, J. Brimberg, N. Mladenović, and D. Urosević. Primal-dual variable neighbourhood search
for the simple plant location problem. INFORMS Journal on Computing, 19(4):552–564, 2007.

[27] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. INFORMS Journal on
Computing, 79:191–215, 1997.

[28] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel. Nonlinear integer programming. In M. Jünger,
T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors,
50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys, Studies in
Computational Intelligence. Springer-Verlag, Berlin, 2009.

[29] R. Horst and N. V. Thoai. Dc programming: Overview. Journal of Optimization Theory and Applica-
tions, 103(1):1–43, October 1999.

[30] IBM. Passing your model using mathematical programming system (MPS) format. http://www-
306.ibm.com/software/data/bi/osl/pubs/Library/featur11.htm, 2003.

25

[31] J. Jahn. An interior point method for nonlinear programming. Mathematical Methods of Operations
Research, 23(1):1–15, February 1979.

[32] B. Jaumard, P. Hansen, and M. Poggi de Aragão. Column generation methods for probabilistic logic,
pages 313–331. IPCO, University of Waterloo Press, 1990.

[33] J. Judice and G. Mitra. Reformulation of mathematical programming problems as linear comple-
mentarity problems and investigation of their solution methods. Journal of Optimization Theory and
Applications, 57(1):123–149, 1988.

[34] Michael Kifer, Georg Lausen, and James Wu. Logical fundations of object-oriented and frame-based
languages. Technical report, Department of Computer Science, SUNY at Stony Brook, NY, 1994.

[35] S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for the kissing number problem.
Discrete Applied Mathematics, 155(14):1837–1841, 2007.

[36] M. Labbé, D. Peeters, and J.-F. Thisse. Location on networks. Network Routing, volume 8 of Handbooks
in Operations Research and Management Science. North-Holland, Amsterdam, 1995.

[37] C. Lavor, L. Liberti, and N. Maculan. Molecular distance geometry problem. Encyclopedia of Optimiza-
tion, Springer, New York, 2 edition, 2009.

[38] C. Lavor, L. Liberti, N. Maculan, and M.A. Chaer Nascimento. Solving Hartree-Fock systems with
global optimization metohds. Europhysics Letters, 5(77):50006p1–50006p5, 2007.

[39] L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO,
43(1):55–86, 2009.

[40] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: a computational
approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Foundations of
Computational Intelligence Vol. 3, number 203 in Studies in Computational Intelligence, pages 153–
234. Springer, Berlin, 2009.

[41] L. Liberti and N. Maculan. Global Optimization: from Theory to Implementation. Springer, Berlin,
2006.

[42] L. Liberti, N. Maculan, and Y. Zhang. Optimal configuration of gamma ray machine radiosurgery units:
the sphere covering subproblem. Optimization Letters, 3:109–121, 2009.

[43] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex NLPs involving
bilinear terms. Journal of Global Optimization, 36:161–189, 2006.

[44] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex nlps involving
bilinear terms. Journal of Global Optimization, 36:161–189, 2006.

[45] S. Boyd M. Grant and Y. Ye. Disciplined convex programming. In L. Liberti and N. Maculan, editors,
Global Optimization: From Theory to Implementation, Nonconvex Optimization and its Applications,
pages 155–210. Springer, 2006.

[46] C. Maranas and C. Floudas. Global optimization in generalized geometric programming. Computers
and Chemical Engineering, 21(4):351–369, 1997.

[47] F. Marinelli, O. de Weck, D. Krob, and L. Liberti. A general framework for combined module- and
scale- based product platform design. Technical report, LIX, Ecole Polytechnique, 2007.

[48] K. Marriott and P. J. Stuckey. Programming with constraints: an introduction. MIT Press, 1998.

[49] Ted Ralphs Matthew Saltzman, Lszlo Ladnyi. The COIN-OR Open Solver Interface: Technology
Overview, May 2004.

26

[50] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, New York, 1988.

[51] Kipp Martin Robert Fourer, Jun Ma and Wayne Sheng. Optimization Services 1.0 User’s Manual,
November 2007.

[52] .D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solving Discrete and Con-
tinuous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht, 1999.

[53] H. Sherali. Personal communication. 2007.

[54] H. Sherali, K. Ozbay, and S. Subramanian. The time-dependent shortest pair of disjoint paths problem:
Complexity, models and algorithms. Networks, (4):259–272, 1998.

[55] E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch-and-bound algorithm for
the global optimisation of nonconvex minlps. Computers and Chemical Engineering, 23:457–478, 1999.

[56] Terrance Swift and David S. Warren. The XSB System Version 3.2.

[57] T.J. van Roy and L.A. Wolsey. Solving mixed integer programming problems using automatic reformu-
lation. Operations Research, 35(1):45–57, 1987.

[58] Arthur Westerberg. Ascend iv, advanced system for computations in engineering design. Technical
report, Department of Chemical Engineering, Carnegie Mellon University, june 1998.

[59] Guizhen Yang, Michael Kifer, Hui Wan, and Chang Zhao. Flora-2: User’s Manual.

A Link Definition

Definition A.1 (Class item) Given ?C::d Component C, then a class item can be defined as one of the
following two terms:

1. ?C, representing one component of class ?C, with 0 or more free indexes and

2. [?C], representing one or more components of class ?C, with 0 or more free indexes.
3

Definition A.2 (Variable Tuple) Let V be a set of variables, then a variable tuple of V is (v1,, vm),
where 0 < m ≤ |V |, vi ∈ V, i ∈ [1..m], vi 6= vj , i 6= j ∈ [1..m]. If m = 1 the parenthesis could be removed.
The empty tuple will be represented by ()

3

Definition A.3 (Disjoint Variable Tuples) Let vt and wt be two variable tuples of sets V and W , re-
spectively, then vt and wt are disjoint if they do not contain common variables. 3

Definition A.4 (Variable Pattern) Let V be a set of variables, then a pattern over V , is a list L of

variable tuples of V , such that
⋃|L|

i Li ⊆ V and Li ∩ Lj = ∅ for all i 6= j ∈ [1..|L|]. 3

Definition A.5 (Disjoint Variable Patterns) Let vp and wp be two variable patterns of sets V and W ,
respectively, then vp and wp are disjoint iff ∀(vt ∈ vp)∀(wt ∈ wp)[vt and wt are disjoint].

3

Definition A.6 (Template Item) A template item will simply be a model variable (MV). 3

Definition A.7 (Template pattern) Given TI a list of template items wherein there is no MV repetition
and the atom d all (called modifier) then a template pattern is defined as,

27

1. TI or

2. (TI, d all).
3

Definition A.8 (Variable Tuple - Template Item unification) Let vt be a variable tuple, ti be a tem-
plate item, then we say that vt and ti always unify. 3

Definition A.9 (Template pattern - Variable Pattern unification) Let pt be a template pattern and
vp be a variable pattern constructed over the set of variables V , then pt unifies with vp iff

1. |pt| = |vp| and

2. if pti has the modifier d all then vpi has to contain all the variables in V .
3

Definition A.10 (Link) A link is a list of template patterns. 3

Definition A.11 (Different Name Unification rule) Let L be a link composed of tpi template patterns,
and V PL be a variable pattern list composed of vpi, then we say that L and V PL ensure the Different Name
Unification (DNU) rule iff

1. |L| = |V PL| and

2. tpi unifies with vpi and

3. Let t be a template item of tpi (without the modifiers) and Vt be the correspondent (unified) variable
tuple in vpi, then ∀(t)∀(t′)[t = t′ ⇒ Vt = Vt′] and ∀(t)∀(t′)[t 6= t′ ⇒ Vt ∩ Vt′ = ∅] (i.e. the equal
template items in the link must be unified with the same variable tuple and all the different template
items with disjoint variable tuples).

3

B Well-formedness, free-index list and exempt definitions

Definition B.1 (Bounding spanned sequence) Let a1 be a constant and a1.b(a2) be the fact that a2 is
a bound of a1, assuming we have the following sequence a1.b(a2.b(a3.b(......an)), where an is an unbounded
constant or bounded by a number, then the sequence a1, ..., an will be a bounding spanned sequence of a1.

3

Definition B.2 (Bounding Rule) Let p be a property and c a constant, if using c for bounding p (second
case) we have to ensure the following

• If Dp are the dimensions of the property and Dc are the dimensions of the constant, then Dc ⊆ Dp.

• All bounding spanned sequences of p must not contain repeated elements. (no-cycle condition)
3

Definition B.3 (Property well-formedness) We say p is a well-formed property iff

1. p:d property, being p a unique atom,

2. p[dims -> ?L], where ?L is an empty list, or a list composed of well-formed dimensions,

3. p[lopened] only if p[lower -> ?].,

4. p[uopened] only if p[upper -> ?].,

5. bounding in p satisfy Rule B.2 (Bounding Rule).
3

28

Definition B.4 (Variable well-formedness) We say v is a well-formed variable iff

1. v is a well-formed property and

2. v:d var.
3

Definition B.5 (Constant well-formedness) We say c is a well-formed constant iff

1. c is a well-formed property and

2. c:d constant.
3

Definition B.6 (Index) An index is an atom that is associated to a dimension, declared using the fact
d index(?id, ?dim)., where ?id is an atom and ?dim is a defined dimension (i.e.
d dimension(?dim)). 3

Definition B.7 (Indexed Property) Let prop:d property be a property with dimensions [d1,..., dn]

(n > 0), then we call the term prop(i1,...,in) an indexed property, where d index(i1, d1), ..., d index(in,
dn). If n = 0 then the indexed property must be just the term prop. 3

Definition B.8 (Operator) Given an atom ?op and a number ?c then an operator will be defined by the
predicate d operator(?op, ?c, where ?op is the operator’s name and ?c its cardinality. 3

Definition B.9 (Operands) Given R ⊂ R a finite subset, I the set of indexes, PI the set of indexed
properties and A the set of aggregators, then the set of operands is Op = R∪ I ∪ PI ∪A. 3

Definition B.10 (Well-formed expression) Consider the extra operator card(D) where D is a well-
formed dimension, the set of operands Op and the operators defined by d operator(?op, ?c) then a
well-formed expression E is defined recursively. E is well-formed iff

1. E ∈ (I ∪ PI ∪R) or

2. E = card(D) or

3. (E ∈ A and E[wellformed]) or

4. if E = ?op(o1, ..., ok) then oi is a well-formed expression.
3

Definition B.11 (Constant Expression) Given a well-formed expression E, E is a constant expression
iff E contains con indexed variables in it. 3

Definition B.12 (Aggregator) Aggregators are operators that deal with the free indexes of an expression,
iterating on some of these indexes. All aggregators must inherit from the class d aggregator. The class
d aggregator defines the signature of a boolean method, called wellformed. The semantics of wellformed
changes from one aggregator to another.

1 d aggregator [
2 => wel l formed ,
3 => cons we l l f ormed ,
4 => exempt (? I) ,
5 f r e e i n d s => l i s t ,
6 a l l i n d s => l i s t ,
7 pure inds => l i s t ,
8 vars => l i s t
9] .

1. cond wellformed - Must verify whether the aggregator is well-formed and has no variables in it,

29

2. exempt(?I) - Given an index list, it must verify whether the aggregator and all inside of it does not
fix any of the ?I (for all variables within the aggregator),

3. freeinds - Must retrieve the free indexes of the aggregator,

4. allinds - Must retrieve all the indexes (free or not) used inside the aggregator,

5. pureinds - Must retrieve all the indexes used as operands inside the aggregator (called pure indexes),

6. vars - Must retrieve all the variable names used inside the aggregator.

3

Definition B.13 (Free Indexes for expressions) Let E be a well-formed expression then the free index
list (FI) of E is

• if E is a number or E = card(D) then FI = ∅,

• if E ∈ I then FI = {E},

• if E ∈ PI and I is the set of indexes used to index the property then FI = I,

• if E: d aggregator then F = E.freeinds; and

• if O is the most external operator in E, LO is the list of operands of O then FI =
⋃

ε∈LO FIε, where
FIε if the free index list of expression ε.

3

Definition B.14 (Exempt for expressions) Let E be a well-formed expression and ?I a list of indexes,
we say E is exempt(?I) iff

• E is a number, an index or a constant expression;

• if E is an indexed variable and FI the indexes in E then ?I ⊆ FI;

• if E: d aggregator then E[exempt(?I)]; and

• if O is the most external operator in E and LOE is the list of operands of O then ∀(ε ∈ LOE) ε must
be exempt(?I).

3

Definition B.15 (Scalar) A scalar is an indexed variable or a constant expression. 3

Definition B.16 (Scalar well-formedness) A scalar s is well-formed

1. with respect to d var iff s is a well-formed indexed variable.

2. with respect to d constant if s is a well-formed constant expression.
3

Definition B.17 (Vector) A vector in i-dare(im) is declared using two types of constructs:

1. $(?x, ?inds, ?cond) where ?x is a scalar, ?inds is the list of indexes or tuples of indexes that will
be used to build the vector and ?cond is a condition.

2. $([e1,...,en]) where n > 0 and ei is a $(?x, ?inds, ?cond) construct or a scalar.
3

Definition B.18 (Vector well-formedness) A vector v is well-formed with respect to d vector(?K, ?S)

iff

• if v has the form $(?x, ?inds, ?cond) then

30

1. ?x must be a well-formed scalar with respect to ?K,

2. ?inds must be a list of well-formed indexes or tuples of well-formed indexes,

3. |?inds| = |?S|,

4. ?cond must be a well-formed condition, and

5. ?cond free indexes ⊆ ?x free indexes ∪ ?inds.

• if v has the form $([e1,...,en]) then

1. ei must be a well-formed scalar with respect to ?K or a well-formed vector with respect to
d vector(?K, ?S) of the form $(?x, ?inds, ?cond), and

2. |?S| > 1 iff ∀(ei)[ei is not a scalar].
3

Definition B.19 (Free Indexes for vector) Let v be a vector, if it is defined using

• $(?x, ?inds, ?cond), then the free indexes of v will be F − ?inds, where F are the free indexes of
?x,

• $[e1,...,en], then the free indexes of v will be
⋃

i∈[1..n] Fi, where Fi are the free indexes of ei.
3

Definition B.20 (Exempt for vector) Let v be a vector, then v is exempt(?I) iff

• if v has the form $(?x, ?inds, ?cond), then ?x has to be exempt(?I) and ?inds ∩ ?I = ∅.

• if v has the form $[e1,...,en], then ei has to be exempt(?I) (for all i ∈ [1..n]).
3

Definition B.21 (Pl well-formedness) A Pl Pk is well-formed iff

1. ?id is a unique atom,

2. ?class::d LeafProblem C[not abstract, not local] (?class is non abstract and non local (§2.1.1)),

3. |?args| = |?class.args|,

4. if ai is the element i of ?args and aci is the element i ?class.args then for each i

(a) if aci ∈ {d var, d constant} then ai must be a well-formed scalar with respect to aci,

(b) if aci = d vector(?K, ?S) then ai must be a well-formed vector with respect to aci,

(c) if aci = d expr then ai must be a well-formed expression,

(d) if aci = d rel then ai must be a valid relation operator (≤, ≥, =, < or >),

(e) if aci = d direction then ai ∈ {min, max}.

5. ?cond is a well-formed condition.
3

Definition B.22 (Pl’s free indexes) Let P be a well-formed Pl, then P .free inds = ∪a∈P.argsa.free inds

will define the Pl’s free indexes. 3

Definition B.23 (Exempt for Pl) Let P be a well-formed Pl, then P .exempt(?I) is true iff ∀(a ∈ P .args)[a.exempt(?I)3

Definition B.24 (Pll well-formedness) A Pll Pk is well-formed iff

1. ?id is a unique atom,

2. ?class::d LeafProblem C[not abstract, local] (?class is non abstract and local (§2.1.1)),

31

3. |?props| = |?class.args|,

4. ?props is composed of elements of the form ?p(?ind dims), where ?p is an identifier (unique in ?props)
and ?ind dims is a tuple composed of ?ind$?dim or tuples of them, where ?ind and ?dim are atoms
(representing an index and a dimension, respectively),

5. ?free inds is a list of indexes such that ∀(i ∈ ?free inds)[d index(i, ?dim) and d dimension(?dim)
(global dimension)].

6. let ai(?ind dims) be the element i of ?props and aci be the element i ?class.args then for each i

(a) if aci ∈ {d var, d constant} then |?ind dims| = 0,

(b) if aci = d vector(?K, ?S) then |?ind dims| = |?S|.
3

Definition B.25 (Pll’s free indexes) Let P be a well-formed Pll, such that P .args[,fi] then P .free inds =
fi, defines the Pll’s free indexes. 3

Definition B.26 (Exempt for Pll) Let P be a well-formed Pll, such that P .args[,fi] then P .exempt(?I)
iff ?I ⊆ fi. 3

Definition B.27 (Block well-formedness) A block is well-formed iff

1. ?id is a unique atom,

2. ?class::d Block C[non abstract],

3. |?subs| = |?class.subsC| = |?subsVP|,

4. if ?class.subsC[i] is a class item of the form ?C then

• ?subs[i]:?C[wellformed] and ?subs[i][exempt(?freeI)].

5. if mt?class.subsC[i] is a class item of the form [?C] then

• ?subs[i]:?C[wellformed] and ?subs[i][exempt(?freeI)]; or

• ?subs[i] must be a tuple of components such that s:?C[wellformed] and s[exempt(?freeI)];
where s ∈ ?subs[i].

6. all ?subs[i] must be different,

7. ?subVP[i] ⊆ ?subs[i].vars,

8. ?subVP must unify with ?class.link ensuring the DNU rule (see definitions A.9 and A.11),
3

Definition B.28 (Block’s free indexes) Let B be a well-formed block, then B.freeI defines the block’s
free indexes. 3

Definition B.29 (Exempt for Block) Let B be a well-formed block, then ?B[exempt(?I)] is true iff
B.freeI = ?I. 3

Definition B.30 (Formulation well-formedness) A formulation Φ is well-formed iff

1. ∀d ∈ Φ.dimensions, d is well-formed,

2. ∀p ∈ Φ.properties, p is well-formed,

3. ∀i ∈ Φ.indexes, i is well-formed,

4. Φ.root[wellformed] is true

5. if ∆ is the set of all δ: d Component C ∈ Φ (deductible from root) then ∀(δ, δ′ ∈ ∆)[δ 6= δ′] (no cycle
in the tree of components).

3

32

