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Abstract

Breast cancer represents a real emergency in many European and North Amer-
ican countries. In order to detect the diseases as soon as it starts developing, many
countries have organized screening programs aimed to women monitoring. Tradi-
tional imaging modalities, like X-Ray mammography, do not provide certain and
reliable results on young women or in women who underwent surgical interven-
tions. Three-dimensional breast MRI has proven to be a valuable tool for dis-
ambiguate uncertain mammographic findings and for the pre-operative planning.
However, in order for MRI of the breast to be effective, a contrast agent, highlight-
ing areas with a high degree of vascularization, needs to be used. The full breast
volume needs to be acquired once before and several times after the contrast agent
injection. A contrast-enhance MR examination of the breast contains hundreds of
images that must be inspected carefully. Automatic approaches to breast cancer
detection can help radiologists in this hard tasks and speed up the inspection pro-
cess. In this paper we present a survey of automatic approaches to breast cancer
detection in MRI. We discuss both registration algorithms needed to align corre-
sponding images acquired at different instants in time and classification algorithms
able to label a suspicious area according to features automatically computed from
the images.

1 Introduction
The medical diagnosis and the subsequent therapeutical planning increasingly rely
upon images. Nowadays the number of imaging techniques, i.e. methods producing
pictures of volumes inside the human body, is quite large and is continuously increas-
ing. Recent image-acquisition techniques produce three-dimensional (3-D) or four-
dimensional (4-D) digital datasets. The information contained in such examinations
are richer than their corresponding 2-D examinations. In fact the geometry of the im-
aged body parts is represented with finer details. Furthermore, the imaged volumes can
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be reconstructed and visualized in three dimensions, allowing the radiologists to better
localize and estimate the signs of the diseases. Another advantage is represented by
the possibility of studying the behaviour of the tissues over time, an information that is
usually missing in older imaging modalities.

Anyway, the medical images (by themselves) do not give any hint about the diag-
nosis or the therapy: the collected images must be analyzed and interpreted by experts.
Even if recent 3-D or 4-D acquisition modalities produce digital datasets, very often
their inspection is still performed on 2-D printed films. The main limitation of such
old-fashioned inspection modality is represented by its qualitative nature: the radiolo-
gists can perform only qualitative evaluations and measurements. Furthermore, printed
films can show only partially the high details that modern modalities store in the single
images. The use of films introduces another limitation related to the data storage. If
the long-term archiving is based on films, the comparison of examinations acquired at
different times may be a process too long and complicated to be performed routinely
in the clinical practice. The 3-D or 4-D datasets contain hundreds of images and the
number of images per examination is continuously increasing with technical advances.
Since each image must be inspected, the time needed to complete the analysis of a sin-
gle dataset may be very long. The full inspection process can be an error-prone process
due to fatigue and habituation of the radiologist.

The problems discussed above can be partially solved by exploiting the digital for-
mat of the new data. Digital data can be stored in a centralized repository, allowing
the radiologists to cross-validate their diagnosis or to access examinations acquired in
the past. Furthermore, digital data can be processed by a computer. The introduc-
tion of software tools for Computer-Aided Diagnosis (CAD), able to interact with the
back-end infrastructure storing the data, can alleviate the problems described above
and speed up the data processing.

The use of CAD tools can help radiologists in the analysis of the hundreds of im-
ages produced by modern imaging modalities. A software program can suggest its own
diagnosis or ask the radiologist to better inspect regions that the automatic analysis la-
bels as suspicious. In some cases, in fact, CAD tools have reached or even surpassed
the human diagnosis and are extensively used in routine examinations. The number of
errors caused by habituation or fatigue can thus be reduced and the human performance
can increase [1]. CAD tools can also be used as a valid training method for young doc-
tors or students, by allowing them to inspect selected cases and compare their diagnosis
with those provided automatically.

The present paper contains a survey of methods for the automatic or semi-automatic
analysis of two specific imaging modalities: Magnetic Resonance Imaging (MRI) and
Computed Tomography (CT) of the woman breast. The paper does not tackle the issues
related to archiving, sharing and communicating digital pictures. All of the methods
discussed hereafter are related to the design, the implementation, and the experimenta-
tion of CAD tools able to support clinicians in the full process of analysis.

The paper is organized as follows. The section 2 discusses in more detail the bene-
fits coming from the use of CAD systems. Section 3 briefly explains the reason why the
breast cancer is considered an emergency in western countries and why a reliable soft-
ware tool would be very useful. Section 4 presents the diagnostic protocol commonly
used in breast cancer detection in MRI. Section 6 describes the automatic approaches
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introduced so far for the automatic analysis of breast CE-MRI datasets.

2 The benefits of CAD tools
There are several motivations for introducing digital image processing and analysis
methods in the clinical practice. MR or CT examinations produce volumetric, 3-D
datasets. Such datasets allow an exact reconstruction and visualization of imaged in-
ternal tissues. In particular, in breast imaging, MR examinations produce 3-D views of
the uncompressed breast. A CAD tool able to reconstruct and visualize the breast in
3-D would be very helpful in locating exactly the lesions.

As previously said, the inspections based on 2-D printed films are not quantitative
but only qualitative. Computer methods introduce a quantitative analysis with repro-
ducible results. The methods can be applied in several tasks: evaluating retrospectively
the diagnostic protocol or the acquisition modality, supporting the operators during
their visual inspections, comparing two different diagnostic set of criteria. The previ-
ous cases represent only a few examples of the available domain of application.

CAD tools help the clinicians by reducing the time needed for the analysis of a
complete 3-D or 4-D dataset. A CAD program might highlight locations discarded by
the human and suggest a second analysis

So far, the inspection of medical examinations is restricted to a single modality.
Anyway, better results can be obtained by a multi-modal analysis, i.e., an inspec-
tion merging information extracted by images acquired by using different techniques.
Multi-modal analysis are hard to perform ’manually’, but become possible if the radi-
ologist is supported by a computer.

A CAD tool would greatly improve the clinical routine especially in cases where
the number of examinations is very high, like in the screening programs for the early
detection of breast cancer.

3 Breast Cancer and Imaging
According to the latest American statistics [2], whose data are similar those published
by other western countries, breast cancer is the most frequently diagnosed non-skin
cancer in women, accounting for more than one out of four cancer cases. Furthermore,
breast cancer is the second leading cause of death among women, second only to lung
cancer.

The early detection of a breast cancer represents the only way to ensure affected
women a high survival rate. 5-year relative survival rate is close to 100% for localized
disease, i.e. in its earliest stage, but the rate drops to 27% when the cancer has spread
in the woman’s body [2].

The earliest sign of breast cancer is an abnormality shown by an image-based exam-
ination. X-Ray mammography is a very effective method of early detection: it detects
80%–90% of breast cancers on women without any clinical symptom. X-Ray mam-
mography is the most commonly used imaging modality in screening programs since
it is able to detect a cancer several years before any evidence is detected in a clinical
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examination of the breast. However, due to its projective nature, X-Ray mammography
has some limitations: both dense breasts (in young women) or scar tissues (caused by
surgical interventions) are opaque to X-Rays. The mammography can thus be com-
pletely negative because some tissues hide a cancer region. Furthermore, in case of
pre-operative planning, the 2D natures of the mammography might prevent from local-
izing exactly multiple foci of the disease [3, 4].

Two specific modalities are receiving a great attention: Computed Tomography
and Magnetic Resonance Imaging. It is not easy to understand the role for CT in
the investigations for breast cancer [5]. Various studies have reported that CT can
be used successfully in the detection and characterization of breast tumors, for the
local staging of breast cancer, and for the evaluation of a neoadjuvant chemotherapy.
Unfortunately, the ionizing radiations delivered to the woman during a CT examination
cannot be underestimated. They are estimated to be 10 times greater than a standard
mammography, 20 times for a pre-contrast and post-contrast CT, 30 to 40 times for a
dynamic CT [6]. CT should be used when mammographic findings are inconclusive
and MR has contraindications preventing it to be executed. For the previous reasons,
Computed Tomography of the breast is not used very often and is thus excluded by this
paper.

3.1 Magnetic Resonance Imaging
MRI of the breast and, in particular, Contrast-Enhanced Magnetic Resonance Imag-
ing (CE-MRI), are useful complementary methods to traditional diagnostic techniques.
Some of the major benefits of breast MRI are:

• detailed 3-D representation of the full uncompressed breast. Unlike X-Ray Mam-
mography, where the breast is compressed, during MR the woman lays prone,
with the breasts suspended in the receiving coils. The possibility to determine
exactly the location of the lesions is very helpful in the therapy or surgical plan-
ning.

• The dense breast of young women is opaque to X-Rays and some lesions might
be hidden by opaque tissues. Breast MRI is not affected by dense tissues and
produces images of any soft tissue in the breasts.

• Even if modern equipments use low levels of radiations, X-Ray Mammography
uses ionizing radiations, which can be an obstacle to its application for screening
purposes for young women. MRI (CE-MRI) of the breast does not use dangerous
waves or agents.

Anyway, plain MRI is not very useful for the investigation of the breast. There is
a significant overlap between the signal coming from benign and malignant tumors.
In order to be effective, breast MRI requires the use of a paramagnetic contrast agent.
When used in combination with the contrast agent, the examination is called Dynamic-
MRI (D-MRI) or contrast-enhanced MRI (CE-MRI). The contrast-agent has no con-
traindications and is tolerated better than the radiations absorbed during a single mam-
mography [7].
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Even if CE-MRI is being performed by several years, there is a wide variety of
acquisition protocols and interpretations schemes. In the next section, the examination
will be described:

• using the terminology defined in the standard DICOM for what concerns the
acquisition of the images and their logical structure in digital format.

• Using the lexicon proposed in [8] for what concerns the image inspection and
the final reporting.

3.2 Contrast-Enhanced MRI
In CE-MRI studies of the breast, the full volume of the breast is imaged once before
and several times after the injection of a contrast-agent. Each acquisition produces the
same number of images, such set of images is called a series. The series are ordered in
a set or study. The images in the study have the same dimensions, i.e. the same number
of voxels1 and the same color depth, i.e. the same number of gray levels.

In CE-MRI the first series, acquired before the injection of the contrast agent, is
called the pre-contrast or morphological series. It corresponds to a plain (without con-
trast agent) MRI examination. The series acquired after the injection of the agent are
called post-contrast. The number of the post-contrast series and the time lapse occur-
ring between two consecutive series depend on the particular protocol used in the clin-
ical centre and on the specific acquisition procedure. The ordered set of the acquired
series is called study.

All the series have the same number of cross-sectional views, each one called a
slice. The resolution, i.e. the number of voxels, is the same in all the images. It de-
pends mainly on the acquisition device, but also on the particular acquisition sequence.
Older devices produce images with 256×256 voxels, current devices offer 512×512 or
1024×1024 slices. Typically, there is no gap between consecutive slices. The physical
dimension of the volume whose signal is stored in a single voxel depends on the device,
on the actual volume being acquired, and on the specific image acquisition technique
used.

4 Diagnostic Protocol in breast CE-MRI
In order to establish the presence of lesions, either malignant or benign, each slice
in the study must be analyzed. Two different sets of criteria can be used in order to
characterize a suspicious lesion: morphological and dynamical criteria [9].

Morphological criteria, which correspond to the criteria used also in other exami-
nations, such as, for example, mammography, study the shape and the internal texture
of the lesion. Dynamic criteria are related to the diffusion of the contrast agent in the
tissues. The rationale behind the second set criteria relies on the fact that tumors are
characterized by a different (increased) angiogenesis and vascular permeability with
respect to normal tissues. Malignant and benign tumors thus present both a different

1Voxel stands for volume element.
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morphological appearance and a different dynamic behaviour. The final diagnosis is
made by combining the results of the morphological and dynamic analysis according
to specified schemes [3, 9].

4.1 Dynamic criteria
Dynamic criteria concern the diffusion and the concentration of the contrast agent in
the tissues. Both the diffusion and the concentration are studied at different times in
the acquisition process. Basically, normal tissues do not enhance, their gray level does
not change between the pre-contrast image and a post-contrast one. Lesions, both
benign and malignant, present an enhancement. The first step in the interpretation of
a CE-MRI examinations is in fact the search for enhancing regions in every image
in post-contrast series. Such search is performed in subtracted images, i.e. images
obtained by subtracting from a post-contrast image the corresponding pre-contrast one.
The subtraction is often performed voxel-by-voxel, even if there are works proposing
alternative and more complex algorithm to obtain subtracted images [10].

One of the most common dynamic criterion is the relative enhancement, first intro-
duced in [11]. This method requires the computation of the following ratios:

En =
In − Ipre

Ipre
· 100 (1)

where I indicates an image at a specific index in the series (the index is not shown
in order to simplify the notation), In corresponds the post-contrast belonging to the
n-th series and Ipre is the corresponding pre-contrast image, and the index n ranges
over the post-contrast series. For example, if the j-th image in some series contains a
suspicious lesion, Ipre corresponds to the j-th image in the pre-contrast series, while
I1, . . . , Ik−1 correspond to the j-th images in the k − 1 post-contrast series. In practice,
such subtracted images are not computed for the whole image but only for user selected
regions, called Region of Interest (ROI).

The second criterion is the steepest slope calculation, first introduced by [12], and
later modified by [13] in the initial slope:

S lopei =
Epeak

Tpeak
(2)

where Epeak is the maximum percent enhancement in the ROI and Tpeak is the time (se-
ries index) elapsed from the injection of the contrast agent till the peak in enhancement.

The washout ratio, described in [13], is one of the established quantitative criterion.
It describes the downslope of the time-intensity curve:

Wpeak−k =
Ipeak − Ik

Ipeak
· 100 (3)

where k is the index of a post-contrast series and peak corresponds to the index of the
image with the maximum signal intensity.

Relative-enhancement values, computed according to eq. 1, are usually used to plot
time-intensity curves. Such curves offer a good qualitative criterion to discriminate
among enhancing regions.
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One of the most used criterion has been described by [14]. It classifies suspicious
areas in three different categories, depending on the shape of the associated relative-
enhancement curve (figure 1):

• Type I. Steady curves, where signal intensity increases persistently with time.

• Type II. Plateau curves. After an initial increase, the signal remains constant
over time.

• Type III. Washout curves. After an initial increase, the signal decreases over
time.

Type II and type III curves (usually) show early peak enhancement in the first two
minutes, then the signal does not increase.

The dynamic criteria based on curve analysis are very useful in discriminating be-
tween cancer and non-cancer regions. Quite often, by using dynamic criteria only, it is
possible to reach a correct diagnosis. For example, a type III time course is a strong
indicator of malignancy and is independent of other criteria [14].

Unfortunately, since there is some overlap between the dynamic behavior of ma-
lignant and benign lesion, in some occasions other types of criteria must be applied.
Figure 2 shows real curves extracted from enhancing regions: it is clear that there is a
significant overlap between the two types of curves.

4.2 Morphological criteria
The original set of criteria and the rules for interpreting them was introduced by [15]
and later updated in [16]. One of the major results that should be achieved in breast
MRI is a common acquisition protocol and a common lexicon. With a common frame-
work and terminology, the results and the diagnosis obtained in different clinical trials
or research groups can be compared in order to refine the diagnostic protocol. We do
not present the complete morphological classification scheme, in the following some
criteria, proposed in [8] with the aim of defining a common lexicon, are briefly pre-
sented.

Lesions may present basically three different appearances:

• foci, small enhancing regions;

• mass, larger enhancing regions;

• non-mass, linear, patchy, diffuse or segmentai enhancement.

Once an enhancing region has been segmented, its shape margin can be classified
according to the morphological criteria listed above. The shape is classified as smooth
(round or oval), lobulated, irregular, spiculated. For non-mass lesions, the classifica-
tion, when feasible, is simpler and has three classes: smooth, irregular, clumped.

The third morphological criterion concerns the internal pattern of enhancement. A
region presenting regular and homogeneous is usually classified as benign. Irregular,
non-homogeneous patterns of enhancement are usually found in malignant cases and
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Figure 1: Ideal contrast-enhancement curves. Type I curves are usually benign. Type
II curves are uncertain. Type III curves are usually malignant.

are thus classified accordingly. In the latter case the terms commonly used are: het-
erogeneous confluent/rim/dark septations. A detailed description of the classification
scheme and a definition of the various terms can be found in [8].

Even if in some cases the only dynamic or morphological criteria are discriminative
enough to obtain a correct diagnosis, an enhancing region can be classified only using
both criteria. Combined classification schemes, i.e. schemes trying to relate the two
types of analysis, are often used. One of the most common one is the Fischer scheme,
discussed in [17].
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Figure 2: Real relative-enhancement curves. Red curves were extracted from malignant
regions. Blue ones were extracted from benign regions.

5 Image registration
As discussed in the previous section, the dynamic criteria rely on a set of values ex-
tracted from the same region in images acquired at different instants in time. In order
to obtain significant and correct results, the ROI must be placed exactly on the same
spatial coordinates in the examinations.

Corresponding images in different series might not be aligned. In fact, during the
acquisition, the patient might move. Even if the patient is able to stay completely still,
the heartbeat and the breathing deform the volume being acquired resulting in mis-
aligned images. Such movements need to be corrected before extracting the intensity
values used to compute dynamic criteria.

More specifically, the image in a given post-contrast series must be aligned to the
corresponding image in the pre-contrast series. The task of overlying two (or more)
images taken at different times (or from different viewpoints or in different imaging
modalities) is called image registration and represent a widely studied research field in
image processing [18, 19, 20, 21].

In case of breast MRI registration, image registration refers to the spatial alignment
of a post-contrast image with the corresponding image in the pre-contrast series. The
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goal of the registration step is the elimination or the reduction of the differences in
the two images introduced by the patient’s movements or by the heartbeat. The differ-
ences introduced by the contrast-agent in the post-contrast images must be obviously
preserved.

According to the terminology and the taxonomy of the methods first introduced in
the survey [20], breast MR image registration can be classified as an intrinsic, voxel-
based, non-rigid and local registration task. It is intrinsic because it relies only on
information that can be extracted from the images. Since the breast does not contain
any landmark, i.e. salient points that can be reliably located and identified by the radi-
ologist, registration algorithms are voxel-based due to being limited to use exclusively
information extracted by the voxels.

However, breast image registration in CE-MRI is very difficult to correct. In fact,
the changes in gray levels caused by the diffusion of the contrast agent must not be
corrected by the registration algorithm. Many intrinsic algorithms, in fact, assume that
the gray levels in corresponding regions of the two images do not change over time.
The differences are considered a sign of a movement and corrected in order to reach
a correct match. The basic assumption characterizing most of the algorithm for breast
MR registration is that the differences due to enhancing regions are much smaller than
the entire breast. Since the differences caused by the movement affect a larger area (and
volume), the algorithms simply ignores small enhancing areas. Since the major goal of
automatic breast MR processing is the early detection of (small) suspicious areas, that
assumption can be considered reasonable.

In [22], the authors propose a registration algorithm that minimizes the ratio of vari-
ance between a pre-contrast and the corresponding post-contrast images. Since their
registration algorithm only accounts for global and rigid transformations, the algorithm
first separates the breast from the chest, register the entire volume by applying the reg-
istration step in a pair-wise fashion, and finally reconstruct the volume. This algorithm
cannot correct elastic deformation caused by compression or other movements, but the
author claim that rigid registration is good enough to correct for the major movements.
However, other authors report that breast movements cannot be corrected by rigid and
global models [23].

In [24, 25], the authors present a method for registering bidimensional MR breast
images based on a modified Self Organizing Map (SOM) [26]. Before the actual reg-
istration algorithm starts, the images are preprocessed and a set of features is extracted
for every voxel in the images. Each voxel is then described by the partial derivates
in its coordinates along the x and y axes and by the mean gray value in its neighbor-
hood. Voxels lying in a plateau, i.e. a region with a constant gray level, are not used
to drive the registration process. A SOM network is first overlaid on the source image,
with a node for each voxel in the image. The artificial neural network is then trained
using a modified version of the original algorithm able to correct local and elastic de-
formations. The training set corresponds to descriptions of relevant voxels in the target
images. Once the network has been trained, a new image is built by interpolating the
values of each node in the network. Also in this second algorithm, the basic assumption
is that the number of voxels affected by the contrast agent is less than the number of
voxels whose gray level has changed due to patient’s movements.

In [27], the authors present a non-rigid registration algorithm based on an optical-

10



flow method. Their method first estimates a global affine transformation in a hierarchi-
cal fashion, by using a pyramid of images. In the second stage, they use an optical-flow
method to take into account local and elastic deformations that cannot be corrected by
the initial step.

In [23, 28], the authors present a novel two-stage registration algorithm for elastic
registration of MR images. First, a global and affine transformation is estimated in three
dimensions. Second, local and elastic deformations are corrected using Free Form De-
formations based on B-splines. The degree of alignment between the post-contrast and
the pre-constrast images is computed using normalized mutual information. Mutual in-
formation measures image similarity using the entropy computed on image histogram.
In normalized mutual information, the measure accounts for overlap between the two
images. The method modifies the two images in order to maximize the normalized
mutual information. The deformation is computed on a set of control points in a multi-
resolution fashion in order to reduce the computational cost. The second paper [28]
contains a quantitative evaluation of the registration results. Such results show that the
non-rigid transformations are able to reach better results than rigid or affine models.
This method, however, might cause volume changes in regions containing enhancing
areas [29]. Such drawback can be overcome by introducing a regularization term in
the cost function used during the registration [30]. The registration is accomplished
by including in the cost function a regularization term modeling the local incompress-
ibility constraint. Such term is motivated by the assumption that breast tissues are
incompressible in small deformations and for short time periods. The experimental
results show that the improved method improves the intensity based correction of MR
examinations by reducing the shrinkage of structures in the images.

In [31], the authors propose a registration algorithm based on control points (land-
marks). Unlike previous algorithms, the algorithm does not use the entire image con-
tent. It selects a set of locations in the two images and determines the transformation
by identifying corresponding coordinates in the two images. The approach uses Elastic
Body Splines (EBS) and includes constraints for modeling the physical properties of
the tissues. The algorithm exploits the 3-D nature of the data considering deformations
along the three axes. The algorithm can obviously work with manual or automatic
landmark selection. The experimentation includes registration using random points in
the two images (in specific breast areas) or automatically-extracted control points using
a correlation measure.

In [32], the authors present a new method based on mutual information, Bayesian
estimation of similarity among image patches, and optic flow to correct the differences
caused by movements. In order to better distinguish changes in gray levels caused by
patient’s movements or by the paramagnetic agent, the model includes a model of the
agent diffusion in the breast tissues. The computation of the similarity between two
image patches takes into account the model of the agent. Once the mutual information
has been computed, the likelihood of a movement is studied in a Bayesian framework,
where local deformations are accounted for. Since local deformations are computed
for a subset of image points, the result of the correction is an interpolated image. The
authors propose a multiscale method based on optic flow where the global deformation,
i.e. affecting the entire volume, is estimated on a fewer number of points. The method
has been tested on a limited sample (examinations from three patients only) and relies
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on the assumption that the enhancement model is reliable, which is not always the case.
In [33], the authors propose a method where the two images being corrected are

first represented by a set of features and then registered. The approach is similar to [24]
and does not involve an image-based similarity measure like mutual information. The
edges are extracted by applying classical image filters (e.g. median filter) and morpho-
logical operators like opening and closing. Egde images are binarized and used for the
actual computation of the transformation. Registration is performed on 2-D images by
looking for corresponding structures in the binarized maps.

MR breast image registration is a very complex task due to the nature of the breast
tissues and the specific imaging modality. The deformations affecting the tissues are
not rigid or global. In general, they are a combination of a global rigid motion and local
elastic deformations. Furthermore, there is not anatomical structure that could guide
the registration process, at least for the global and rigid motion component. Registra-
tion algorithms can thus only rely on gray values, but those values cannot give a good
estimate of the motion since they change due to the contrast agent even if the patient
does not move. Any registration algorithm can thus mistake a tumor for a region sub-
ject to motion and delete the enhancing voxels. Some algorithms try and accommodate
for enhancing regions by introducing a pharmacokinetic model of the contrast agent
in the similarity computations. Obviously, a pharmacokinetic model cannot correctly
evaluate the enhancement in any situation. However, there is not a general agreement as
to whether or not use a registration algorithm. Several studies have in fact reported that
a voxel-based registration algorithm (i.e. algorithms developed so far for MR breast
images) can modify enhancing regions or delete them[34, 35, 36].

6 Automatic approaches for cancer detection
As discussed in the Introduction, CE-MR examinations of the breast are composed
by several series, each one containing several images. As technology advances, the
number of images in the series increases and the time needed to perform a complete
analysis of the full dataset may become very long.

A CE-MR examination is usually performed in order to disambiguate the lesions
detected on X-Ray mammograms and to detect small lesions that could be hidden by
dense tissues in the 2-D images. In order to obtain a reliable diagnosis each image must
be inspected and automatic methods can be very useful if they are able to reduce the
time needed for the full analysis and speed up the entire diagnostic procedure.

Automatic methods can be subdivided in two categories: fully-automatic and semi-
automatic algorithms. Fully-automatic algorithms require little or no human interven-
tion. A key requirement for these algorithm is the ability to automatically locate the
image regions that need to be analyzed. For example, a fully-automatic algorithm must
be able to locate the breast regions and ignore the chest. Semi-automatic algorithms
require a certain degree of interaction with the user. Usually they need the user to select
the regions to be analyzed or can be guided in the breast segmentation process.

Hereafter we do not distinguish between automatic and semi-automatic approaches,
but classify the relevant works in model-based and data-driven algorithms. Model-
based approaches use compartmental models with one or more compartments to de-
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scribe the flux of the contrast agent. The basic assumptions in this class of algorithm
is that the parameters of the model describe physiological processes. However, there is
not a single model able to fit data extracted from any type of tumor.

Data-driven models do not use compartmental models or other models whose com-
ponents are claimed to be in a one-to-one relation with biological and physiological
parameters. They use mathematical models, at various degrees of complexity, to fit
the data extracted from the examinations. A relevant characteristic of the algorithms
in this latter class concerns the nature of the features used in the analysis. Some algo-
rithms use human-readable features and provide a human-readable classification of a
region. Others do not allow an easy interpretation of their computations and their re-
sults. Even if the comparison among the algorithms is usually accomplished by looking
at the degree or reliability of the final results, algorithms that are easily interpreted by
the radiologists are better suited for being used in the real-world practice.

6.1 Model-based analysis
Model-based approaches to cancer detection describe the dynamic of the contrast agent
diffusion, i.e. the intensity change in the signal, by a non-linear parameters compart-
mental model. The parameters of the model are estimated from a sample dataset by
fitting a non-linear function to the observed data.

The compartmental models have one or more compartments corresponding to the
blood flux and the extracellular extravascular space. The models also include constants
corresponding to known physiological processes [37, 38].

In [39], the authors present a model-based CAD tool able to perform breast seg-
mentation, image registration and automatic analysis of signal-time curves describing
dynamic criteria. The segmentation algorithm has been developed specifically for the
images included in their dataset: breast MR images acquired along the sagittal plane.
The breast is identified by locating the breast-air boundary and the chest wall. The al-
gorithm starts by finding the external border of the breast, where the signal increase is
strong and very easy to detect. Once the external border has been detected, it is eroded
by applying a series of erosion operators according to the Mathematical Morphology
theory. The finding of the chest wall is then reduced to the problem of detecting the
most likely boundary with the same shape as the eroded breast boundary. The authors
propose a combination of a graph search algorithm and dynamic programming tech-
nique to locate the optimum profile. The quantitative evaluation of enhancing regions
is a based on a pharmacokinetic compartmental model. There are two compartments,
the first one modeling the blood plasma and the second one modeling the extracellu-
lar space of the breast tissue. Each compartment is described by coupled differential
equations whose solution gives different rise functions that can be associated to the
different types of enhancement. The model includes equations to simulate the slow
administration of the contrast agent and to take into account noise. The same phar-
macokinetic model is used by the registration algorithm to ignore differences in the
images not caused by movements, as described in the previous section.

In [40], the authors propose a model-based method using a Bayesian estimation of
the parameters. Their single-compartment model describes the diffusion of the contrast
agent from the arterial flux into the extracellular extravascular space and its venous
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efflux. They introduce a spatial-based estimation of the parameters estimation. In fact,
in other models the estimation procedure evaluate a single voxel or all of the voxels in
a ROI: in both cases they produce a single set of parameters describing the analyzed
region. In [40], each voxel is associated to a set of parameters, but the estimation is
based on information coming from voxels in their (2-D or 3-D) neighborhood. The
Bayesian estimation produces an a posteriori distribution of probability which is later
used for an accurate computation of standard errors and confidence intervals. The
authors show that the Bayesian approach with a spatial-based estimation procedure
allow better morphological and functional statistics of the analyzed regions.

Another one-compartment approaches can be found in [41], where parameters are
estimated using a simplex minimization procedure. A different two compartments
model is described in [42]. A more complex model is described in [43], where the
authors clearly show that a more realistic simulation of the physiological processes
needs more info in order to produce reliable results. Such information is not usually
available in the normal clinical practice, thus limiting the applicability of more sophis-
ticated approaches.

6.2 Data-driven approaches
Data-driven approaches use more or less complex mathematical models to classify re-
gions of enhancement without using any physiological or biological constraint. The
features can be related to the dynamic behaviour of the contrast agent or to the mor-
phology of an enhancing region.

Approaches using soft computing techniques do not rely upon any hypothesis about
the behavior of the contrast agent. Usually, approaches in this class try to infer the sig-
nal characteristics from the available data. In some cases, for example when using
Artificial Neural Networks (ANN), the knowledge acquired about the signal enhance-
ment or the morphology of the lesion is not expressed in an clear symbolic form, but
remains hidden in the network weights. The major pro of such approach is the inde-
pendence from any prior knowledge about both the morphological appearance of the
tumor and its dynamic behavior. Obviously a minimum understanding of the domain,
even if only partial, is needed in the feature extraction step. The works discussed below
represent part of the works that have been recently published. Most of them use neural
network due to their capability to learn from noisy data.

In [25], the authors present Mammalyzer, one of the earliest CAD systems pro-
posed by a research group. The system uses the SOM Matcher algorithm (described
in section 5) for performing the image registration and a simple threshold-based clas-
sification scheme for voxel labeling. The classification simply compares the value of
a voxel in a post-contrast image with a single voxel in the corresponding pre-contrast
image. The voxel is labeled as suspicious if the percent increment in value (bright-
ness) exceeds a given threshold (90% in the paper). Besides the very basic classifier
used, the main limitation of the Mammalyzer system is represented by the fixed-value
parameters. The authors set the parameters and developed the analysis procedure tar-
geting only the particular images they had available. Mammalyzer II. Mammalyzer
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II [44] is an extension of Mammalyzer within the Cyclops 2 expert system framework.
The authors claim that Cyclops is able to choose optimal image operator sequences
and parameter sets. Within this framework, the original Mammalyzer algorithms can
be applied to a wider class of MR examinations.

In [45], the authors present an automatic approach for the extraction and classifi-
cation of 3-D morphological features. They computed margin descriptors and radial
gradient analysis on 3-D volumes corresponding to enhancing regions and on single
2-D slices extracted from the 3-D volumes. The features were represented as functions
of time and space and approximated using multiple regression from data. Classification
is performed using linear discriminant analysis. A Receiver Operating Characteristic
(ROC) analysis of the classification results show that the combination of the radial en-
hancement and margin sharpness represent a good feature for distinguishing between
benign and malignant enhancing regions both in 2-D and in 3-D, with better results on
3-D data.

In [46], the authors discuss the application of ANNs for the classification enhancing
regions. The authors used 14 features extracted from time-intensity values describing
the dynamic of the contrast agent diffusion in the wash-in and in the wash-out stages.
For each examination, a single time-intensity curve is extracted by placing a free-size
ROI on the most enhancing region. In case of inhomogeneous enhancing regions, the
curve with the maximal enhancement is kept. The 120 elements dataset is then used
for training a Multi-Layer Perceptron (MLP) with 14 input nodes, five hidden units
and one output element for the binary classification into the two categories benign
or malignant. The neural network has been trained with the backpropagation with
momentum learning algorithm for 100000 epochs. The experimental results have been
obtained with a leave-one-out experimentation and report a 89% accuracy, which is
comparable to the one obtained by experienced radiologists (91%) and significantly
grater than that reached by low-experience radiologists.

In [47], the authors report a detailed experimentation of multilayer perceptrons for
the classification of time-intensity curves. They experimented 3-layers MLPs with a
different number of units per layer on a dataset constructed from 162 malignant and
102 benign CE-MRI examinations. The dataset is constructed in three steps. First, a
the parameters of a pharmacokinetic two-compartment model [48] are estimated for
each voxel in the images. Second, the parameters of the model are used to color-code
suspicious enhancing region. Third, the time-intensity curves are extracted by manu-
ally placing on one of the color-coded enhancing regions a ROI covering the larger part
of the lesion. The time-intensity curves are computed by averaging the voxels value
over the entire ROI in the 32 images in the series. The dataset is expanded with with
105 time-intensity curves extracted from normal breast tissues by placing a ROI in the
ductal areas far from suspicious lesions. The final dataset contains 340 time-intensity
curves: 162 malignant, 73 benign, and 105 corresponding to normal parenchyma tis-
sue. The dataset was split in a training set and a test set and all the networks were
trained for 20 epochs. The authors made various tests in order to establish the num-
ber of units performing best, the input space dimension allowing the network to reach
a better performance, and the network discriminative power with two categories (be-

2http://www.cyclops.ufsc.br/
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nign/malignant) or more (lesion type). The most interesting results concern the ANN
behaviour versus the number of categories. The authors report that the ANN is able to
distinguish between a lesion and normal breast tissue with 87% correct classifications.
The largest 28-4-3 (28 input nodes, 4 hidden nodes, 3 output nodes) reaches a good per-
formance on discriminating between malignant and benign curves. The performance
decreases when the network is trained to distinguish among different lesion types.

In [49], the authors propose a method based on decision trees constructed by using
features extracted from ROIs selected by a human expert. The goal of their study was
to establish whether or not qualitative criteria, like those based on relative enhancement
curves, allow a better diagnosis. They built a first decision tree using morphological
features only and a second one using both morphological and dynamic criteria. By
experimenting on a 100 cases dataset with balanced benign and malignant classes, the
authors reported that enhancement curves were the most predictive kinetic features.

In [50], the authors describe an experimentation of several methods for the classi-
fication of time-intensity curves and other dynamic criteria. They used CE-MRI ex-
aminations acquired using T2? weighted sequences, that provide a higher specificity
than T1-weighted according to some reports [51, 52]. They experimented the follow-
ing classifiers: minimum enhancement threshold, Fisher’s linear discriminant function,
probabilistic ANN, MLP trained with the backpropagation algorithm, and a criterion
based on a Correlation Coefficient (CC) between the input curves and a target func-
tion. All of the classifiers were trained and tested on time-intensity curves or dynamic
features extracted from those curves computed as an average over the voxels in the
ROIs. The minimum enhancement threshold and the CC were tested also on a dataset
including curves and features computed on single voxels. The ROIs were extracted in
semi-automatic fashion: voxels were labeled according to their CC with a target curve
extracted from malignant data, while regions were formed using a region growing ap-
proach. When the automatic segmentation failed, the ROIs were extracted manually.
All of the classifiers were trained with a leave-one-out cross-validation method. The
authors used 127 examinations, 70 of which containing a malignant region. They found
that the minimum enhancement threshold provides the best results among the tested
classifiers. In order to reach performance similar to the threshold-based classifier, the
other approaches, in particular the two ANNs, required a detailed fine-tuning step to
learn and avoid overfitting. The threshold-based classifier was found to be robust with
respect to the choice of the threshold value.

In [53], the authors study the performance of three-layer MLPs using a ROC anal-
ysis. They used 76 cases with the goal of establishing quantitatively the importance
of features commonly used by radiologists. The network used in the test had an input
layer with a variable number of nodes, a hidden layer with five units and an output layer
with a single output unit for the binary classification in benign/malignant categories.
They established the importance of the features by training the network using differ-
ent subsets of the available input features and training the networks with a jackknife
method with early stopping. They found that the ANN trained on the dynamic features
perform almost as well as the the radiologists participating to the research work. The
inclusion of morphological features made the network performance decreases. The
authors did not experiment their algorithm in combination with an image registration
step.
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In [54], the authors compare the multilayer perceptron (described in [47]) against
the pharmacokinetic model described in [48] on a dataset including examinations from
15 women. Both the models were trained to classify time-intensity curves composed
by 28 measurements points (corresponding to CE-MRI series of images of the entire
imaged volume). The results were evaluated visually by color-coding the images ac-
cording to the output label of the ANN or the parameter values in the pharmacokinetic
model (which are not directly related to a category). The two models correctly classify
malignant and benign lesions, with the ANN classification resulting in a higher rate of
false positive cases on benign lesions presenting a strong enhancement. The benefits of
the ANN, that does not use any a priori knowledge, over the pharmacokinetic model are
related to the higher computational speed and the final labeling into direct categories.
Obviously, the architecture of the ANN, in particular its input field, is related to the
imaging protocol: an ANN must be used on data with the same characteristics of the
training dataset.

In [55], the authors discuss the discriminating power of textural features, i.e. prop-
erties of the distribution of gray levels inside selected ROIs, and show how they can be
used in discriminating between benign and malignant lesions. The ROIs were selected
by expert from images in 79 CE-MRI examinations. For each ROI, the number of gray
levels is decimated to 32 and are represented using Gray Level Co-occurrence Matrices
(GLCM). The statistical analysis, using Logistic Regression Analysis, proved that there
are significant statistical differences in the GLCM of benign and malignant lesions. In
particular, features like entropy, sum entropy, and variance are the best indicators to
test for a correct classification.

In [56], the authors used a MLP trained with the backpropagation learning algo-
rithm to classify static features in CE-MRI of breast. The set of features include pre-
and post-contrast signal intensities, mass margin descriptors, mass shape, mass size,
and mass granularity by texture analysis. They did not include dynamic features re-
lated to the signal behaviour over the acquisition time. The used dataset includes 14
patients. The static region descriptors were extracted via thresholding and binary im-
age processing by morphological operators. The features were used to build a dataset
used in a 10-fold cross-validation testing of the MLP. The final sensitivity, specificity,
and accuracy were higher than 90%. Their results are somewhat contrasting with other
research papers, such as [53], reporting a greater discriminating power of dynamic
features.

In [57], the authors experimented an improved neural network, called ”Tempo-
ral Associative Subjective Memory with Bimodal Activation” to study both dynamic
and morphological features extracted from 604 histologically proven cases of contrast-
enhanced lesions. Furthermore, they used an automatic input variable selection method.
Such method trains a population of ANNs using different input features and selects the
best networks using genetic algorithms. Their improved ANN shows a sensitivity of
94% and a specificity of 92% in predicting the correct diagnosis. By using that com-
plex training strategy, they report that the best neural network is able to outperform a
trained and experienced radiologist.

In [58], the authors present the results of an extensive experimentation aiming at
evaluating the discrimination power of kinetic and morphological features by training a
MLP with backpropagation. They used a dataset containing 105 lesions (75 malignant
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and 30 benign), divided in a training set with 59 lesions and a test set with 46. For each
lesion, the morphological features (margins, homogeneity, rim enhancement, and sep-
tation) were assessed by a trained radiologist via visual inspection. Dynamic (kinetic)
features were computed from ROI positioned on the region (in each lesion) presenting
maximal early enhancement. They performed a cross-validation procedure 10 times,
by splitting the training set in two halves for training and validation (in order to avoid
overfitting). Several MLPs have been tested by varying the number of input features
(from 3 to 26) and the number of hidden units (from 2 to 13). The importance of the
input features was estimated by automatic relevance determination, that is a method
for evaluating the importance of the features by studying the variance of the weights
on the ANN connections. Several combinations of features were used in the experi-
mentation and the results were evaluated with ROC analysis. The authors report that
the highest diagnostic accuracy is reached by the minimized model using only the most
important features evaluated on the maximized model, that is the MLP using the entire
set of input features (both morphological and dynamic). The most important features
were the margin descriptor, time to maximum enhancement, two features related to the
washout-ratio and the type of the curve. The maximized MLP and MLPs based on dy-
namic features ranked among the best performers. MLPs using morphological features
only was the worst. Their results confirm that dynamic criteria give a correct diagnosis
on a large number of cases. However, there is an overlap in the dynamic behaviour of
benign and malignant patterns. In this case, the most valuable morphological criterion
appear to be the margin descriptor. Unfortunately, the evaluation of the margins is not
always possible: on small lesions, the spatial resolution of CE-MRI is not enough to
distinguish between a smooth and an irregular border.

In [59], a five-parameter logistic equation is fitted to signal value in order to charac-
terize the dynamic behaviour of the contrast medium. They experimented their method
on six cases presenting different pattern of enhancement, with type I, type II, and type
III curves. The logistic equation was able to fit those curves and suggested that the
most valuable dynamic features are related to the presence of a plateau, to the maxi-
mum slope, and to the washout stage.

In [60], a fully automated method for detecting suspicious lesions in CE-MRI axial
images is presented. First, non-relevant regions, like the thoracic cavity or the lungs,
are removed by applying a Cellular Neural Network (CNN) without using any a priori
information about the breast anatomy. CNNs are composed by a N-dimensional array
of units which are able to receive multiple inputs from neighboring units and have a
single output. Each cell has an internal state which is usually hidden from neighbouring
cells. CNNs are often applied for performing morphological operations on 2-D images.
In the current method, two CNNs are applying for performing gray level thresholding
and removal of small object. Once the breast has been segmented, Maximum Intensity-
Time Ratios (MITR) are computed and a new image is constructed with the resulting
values. A 3-D template is then applied to the images in order to highlight spherical
3-D regions which are likely to correspond to enhancing regions. It must be noted that
this method does not classify the detected regions: it just shows the enhancing regions
reaching an impressive 100% sensitivity with a low rate of false positives. Anyway, the
method was experimented on a very limited dataset (39 lesions) and uses some non-
adaptive thresholds that can strongly influence the performance on extended datasets.
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In [61], the authors propose an Empirical Mathematical Model (EMM) of the con-
trast agent diffusion. The model is based on a single equation with five parameters
whose initial values strongly influence the computational time for the fit to be com-
puted or failure to converge. Other diagnostic features were not computed on the data
but manipulating the model equation. The method was experimented on 22 cases with
malignant, benign, and no lesions. The authors report that they obtained a very good
fit on data from all of the lesions. It should be noted that the acquisition protocol used
in the current experimentation was different from the clinical one. In particular, they
acquired complete series of images at very long time delays (up to 30 minutes) after
the contrast agent injection. By using the modified protocol, they were able to study
accurately the washout ratio, which represents a very reliable dynamic criterion.

7 Conclusions
In this survey we have discussed how contrast-enhanced MRI studies of the breast can
be automatically processed by computer programs. Breast MRI is becoming an impor-
tant tool able to disambiguate uncertain mammographic findings. A typical CE-MRI
examination of the breast produces hundreds of images and each image must be in-
spected. A CAD tool would provide a great benefit in the clinical practice. It could
simply speed up the inspection or it could be used as a second expert reading the ex-
amination. Furthermore, recent acquisition devices produce images with more details
than the older devices. The diagnosis relies upon two different sets of criteria: morpho-
logical and dynamic. Dynamic criteria require the comparison of values extracted from
different images. A registration step is thus required by which images must be spatially
aligned in order to get a reliable comparison. There are several methods that can be
used to bring the images in spatial alignment, but the best suited methods are those
able to correct elastic, local deformations. In CE-MRI the use of the contrast agent
further complicates the correction since gray levels change in the various images. The
methods try to compensate these differences by using models of contrast-enhancement
or algorithms based on mutual information.

Once the movements have been corrected, the analysis can proceed. Morphological
criteria require the application of digital image processing operators to build a represen-
tation of enhancing areas. Texture-based methods are used to study the internal pattern
of enhancement. Dynamic criteria require the application of classification techniques
for the categorization of the curves and the values extracted from the images. Methods
can be roughly subdivided into model-based algorithms and data-driven approaches.
In the former case a model of the contrast agent diffusion is used to classify a region,
in the latter case a training set of images is used and the extraction of a model for the
enhancement is delegated to an inductive classifier. Since it is quite hard to build a
reliable model of the enhancement, inductive classifier and statistical techniques are
suited for the classification task. Even if many authors report quite good results, this
subject lacks a standard corpus of images that could be used as a benchmark to com-
pare and validate the various approaches. Every author uses their own dataset, some
authors present results obtained on only few cases. Another problem is breast segmen-
tation. Even if the segmentation would improve the results of the registration and of
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the classification modules, especially when fully automatic approaches are used, only
few methods have been experimented.

From this survey the following priorities can be listed as emerging:

• the importance to set up a collection of a large number of examinations to be
used as benchmark;

• the necessity to experiment and validate the registration methods. The methods
should be experimented on images with great movements and should be vali-
dated in order to be sure that they do not remove small lesions;

• the challenge to develop new digital image processing algorithms and inductive
classifier for the two distinct set of criteria, may be by cross-fertilization of both
the areas;

• the importance of statistical techniques that should find, if any, relationships
among the various features that could be used in the description of the lesions.
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