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Abstract


In stencil based parallel applications, communications represent the
main overhead, especially when targeting a fine grain parallelization in or-
der to reduce the completion time. Techniques that minimize the number
and the impact of communications are clearly relevant. In literature the
best optimization reduces the number of communications per step from
3dim, featured by a naive implementation, to 2 ∗ dim, where dim is the
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number of the domain dimensions. To break down the previous bound, in
the paper we introduce and formally prove Q−transformations, for sten-
cils featuring data dependencies that can be expressed as geometric affine
translations. Q−transformations, based on data dependencies orienta-
tions though space translations, lowers the number of communications per
step to dim.


1 Introduction


Data parallelism is a well known paradigm of parallel programming, charac-
terized by replication of functions and partition of data over a set of virtual
processing nodes.


One of the most powerful data parallel paradigm is represented by the sten-
cil paradigm; some examples are found in image processing [13] and partial
difference equation solvers [11, 1, 6].


A stencil-based data parallel application is characterized by a certain number
of iteration steps; at each step the processing nodes calculate a new value for all
the elements of the partitioned domain, complying some data dependencies over
sets of elements. Data dependencies are implemented by proper data exchanges
(communications) between processing nodes.


In stencil based applications, communications represent the main overhead,
especially when targeting a fine grain parallelization in order to reduce the
completion time. Techniques that minimize the number and the impact of
communications are clearly relevant.


To have an idea about the order of magnitude we are working with, we
consider a worst case configuration in which every processing node needs data
from all its neighbours. In this kind of stencil a naive method of implementation
performs at each step 3dim−1 incoming communications and so much outgoing
ones, where dim is the number the domain dimensions.


Techniques to reduce the number of communications have been studied
[10, 3, 8]. Plimpton [10] first presented a technique, which we refer to as
shift method, to reduce data exchanges with diagonal neighbours. The method
cuts down the total number of communications in a step from 3dim−1 to 2∗dim
(see Fig. 1).


We focus our study to break down the previous bounds introducing the
homogeneous uniform affine model (HUA) and Q− transformations, a class
of stencil transformations which lowers the number of communications per step
to dim. HUA models a wide class of stencils where data dependencies can
be expressed as geometric affine translations over a toroidal space. Exploiting
HUA features we describe and proof Q− transformations which are based
as well on geometric translations. In the paper, we report some performance
tests to compare the communication overhead of different methods. Tests were
performed on top of both cluster and multi-core architectures. The results show
that for a fine grain parallelization the methods based on Q− transfomrations
feature the best results with considerable speed up.
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Figure 1: Number of communications per single step exploiting different meth-
ods


In section 2 we present the works in literature with which we compare
our work. In section 3 the HUA model is described while the section 5 the
Q−transformations are presented. Section 6 introduces some extension to the
HUA model to support not toroidal working domains. Section 7 reports per-
formance test to compare communication overhead introduced by the method
presented in the paper. Finally in section 8 we resume the obtained results and
we point out some interesting ideas for future works.


2 Related Works


Stencil based applications, because of their relevance in parallel processing, have
been the subject of many studies, which are focused on different aspects: from
the minimization of the communication impact to the maximization of the cache
performance.


The total number of dimensions over which a stencil works is dim + 1 if we
consider, besides the dim space dimension, the one of the time. In literature,
we can distinguish two main classes of studies: those that focus on time-space
transformations and those which studies only space ones.


In the time-space class we find all the works applying tuned tiling techniques
to stencil computations [12, 9, 4, 5, 2, 7]. Differently form those works, we focus
only on space transformations.


Works on optimizing stencil without considering time dimension are relative
less numerous. Plimpton [10] first presented a technique, which we refer to as
shift method, to reduce communications with diagonal neighbours. The shift
method cuts down the total number of sent messages per step from 3dim − 1
to 2 ∗ dim (see Fig. 1). The technique is based on indirect communications
with the diagonal neighbours. A single step can be seen as composed of a set of
micro-steps, one for each space dimension. Differently from the naive method,
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the shift technique requires, in order to support micro-steps, the interleaving
of send and receive operations within the same step. This characteristic can
produce some difficulties while managing overlapping of communications and
computations as we will discuss later on. In the paper we consider the shift,
with the naive method, as a yardstick for Q−transformations performance.


Ding and He [3] propose what they call ghost expansion method. They target
the reduction of communications per step exploiting a kind of oversending
technique. The idea is to expand the data size exchanged between processing
units, in such a way that communications are not required at each step. This
technique force a processing unit to compute its own partition and in some
steps, to update previous received data instead of communicating. With this
method, the mean data exchanged per step is equal to naive and shift ones,
but the mean number of send and receive operations per step is reduced.


As the shift, the oversending method too can be interpreted as a stencil
transformation, where one step of the modified stencil is a kind of macro-step
that corresponds to two or more steps of the original stencil.


A stencil transformed with the oversending method can be then optimized
with the shift technique in order to delete diagonal communications as pre-
sented in Ding and He paper. Moreover the authors propose an optimized ghost
expansion method for PDE problems that, playing with some algorithmic as-
pects of PDE solver, reduces also the mean data size exchanged.


The ghost expansion method and those based on Q−transfor −
mations are independent, we postpone a deep comparison between the two
techniques to other works.


Finally Palmer and Nieplocha [8] summarize the previous methods and
present the result of their implementations on different distributed architec-
tures exploiting the message passing library MPI. The main result is that no
single algorithm provides optimal performance on all the platforms. We analyze
the communication overhead for different computation grains and for two and
three dimensional cases. Our result can extend Palmer and Nieplocha one: con-
sidering one specific target architecture, there is no one optimal algorithm for
all the possible configurations of the space dimensions and number of element
of the working domain. Nevertheless for fine grain parallelization the method
achieving better performance is one of those based on Q−transformations.


3 HUA Model


In this section we first introduce a general model to describe any kinds of stencil,
than we pass to the presentation of some restrictions of the general model and
consequently to the definition of the HUA model. The HUA model is also
exploited to describe an example of a nine point stencil in a two dimension
space.


For the easy of explanation, we focus our description on regular domain
space, i.e. regular data partitions. Nevertheless all the considerations presented
can be easily extended also to irregular cases.
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3.1 A General Model


A stencil based application can be expressed as a set of consecutive steps, each
one characterized by one initial and one final state of the domain elements. An
example in a two dimensional space is the well known Jacobi iterative algo-
rithm, based on finite difference approximations for solving partial differential
equations.


Jacobi method consists of a number of iterations over a working domain
given by a matrix J , which is initialized with the estimated value of a target
function over a regular mesh. A pseudo code representation of the algorithm
is:


for i = 1 to MAX STEP NUM do
for x = 0 to Xmax do


for y = 0 to Ymax do
JTMP [x][y] = (J [x][y + 1] + J [x][y − 1]


+J [x + 1][y] + J [x− 1][y])/4
end for


end for
J = JTMP


end for
With the aim of defining a general formalism, let M be a vector represen-


tation of a regular working domain. More precisely let M be a subset of N dim


containing the origin. All the element e of M are vector defined regarding the
normal basis of N dim. In the Jacobi example M correspond to J , while a vector
element e is associated with one value of the index couple (x, y).


Mi denotes the domain status at the beginning of the step i, and Mi[e] the
value associated to the vector e. Moreover as the domain state at the end of
a step is the state at the beginning of the following step, Mi+1 represent the
state at the end of step i. In the Jacobi example Mi[e] is the value of J [x][y]
at the beginning if the iteration i.


We can model the transformation of a generic step i, which modifies the
status of the domain M from Mi to Mi+1, as follow:


∀e ∈M stepi→ (Fie,Sie)
Sie = {g1e, g2e, . . . , gne| ∀α gαe ∈M}


Mi+1[e] = Fie(Mi[g1e], . . . ,Mi[gne])


The step transformation associates each element e of the domain to a couple
formed by a function Fie and an ordered set of elements Sie. The value of a
domain element at the end of the step i, Mi+1[e], is found applying the function
to the values of elements in Sie evaluated at the beginning of the step i. In the
Jacobi case the function Fie, which is equal for all the domain elements and for
all the steps, calculates the mean over the element of the set Sie, which for the
generic element (x, y) is defined as {(x, y + 1), (x, y − 1), (x + 1, y), (x− 1, y)}.


Because both the function Fie and the set Sie can be specified differently
for each step and for each element of the domain, it is clear that this model can
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Figure 2: Graphical representation of a naive implementation of nine point sten-
cil modeled with HUA: 2(a) virtual processors dependencies, 2(b) dependencies
between partitions of virtual processors, 2(c) computing processing communi-
cation pattern performed in a naive method and 2(d) communication pattern
with shift method, numbers on the arrows indicate a time order on different
communications


express any kind of stencil.


3.2 Defining the HUA Model


The previous model is too general for most of the stencils like those present
in PDE, image processing and other applications. We therefore consider some
constraints in order to define what we call the Homogeneous Uniform Affine
model (HUA).


Definition 1 (Homogeneous Uniform Affine model). The HUA models
applications represented by a homogeneous sequence of the same step, which
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is characterized as follows:


∀e ∈M stepi→ (Fi,Si)
Si = {g1, ge, . . . , gn| ∀α gα = (e + βα) ∈M}


⇓= e + {β1, β2, . . . ,βn}
Mi+1[e] = Fi(Mi[g1],Mi[g2], . . . ,Mi[gn])


⇓= Fi(Mi[e + β1], . . . ,Mi[e + βn]) (1)


In HUA the same function Fi is uniformly associated to all the domain
elements as well as Si that is parametrically described. In Si each item is
defined as an affine translation of the element e. Considering again the Jacobi
example, Si = (x, y) + {(0, 1), (0,−1), (1, 0), (−1, 0)}


The parametric definition of Si leads to a strong consequence. If M is
a limited space, Si associated to the element of the space boundary contains
elements that are not in M. We therefore apply the HUA model only over a
toroidal space. This is an important feature which is fundamental to define
Q−transformations. As discussed in section 6, it is possible to introduce a
relaxation to the model in order to remove this restriction.


3.3 Example of a nine point stencil in HUA Model


From now on we consider, as tutorial example, a classical case of nine point
stencil in a two dimensional and toroidal space of length lx and ly. This ex-
ample can be used as a worst case stencil, in fact data dependencies require
that processing nodes communicate with all their neighbours. We define M =
(Z/lx)x(Z/ly) a toroidal subspace of N2.


Representing a single step transformation of the example exploiting the HUA
model, we obtain the following characterization:


∀e = (x, y) ∈ M stepi→ (Fi,Si)
Si = e +


{
(a, b)|a, b ∈ {−1, 0, 1}


}


Mi+1[(x, y)] = Fi


(
Mi[(x + 1, y − 1)],Mi[(x + 1, y)],


,Mi[(x + 1, y + 1)], . . . ,Mi[(x, y)]
)


A graphical representation in fig. 2(a) visualizes the data dependencies be-
tween two consecutive steps expressed by the model.


In Si , the information provided by the elements βα ∈ {(a, b)|a, b ∈ {−1, 0,+1}}
is sufficient to calculate all the dependencies of a generic partition Pnn. Ide-
ally it is enough to apply the stencil to the elements of the partition bounds as
represented in 2(b).


From the dependencies knowledge between partitions (partition dependen-
cies), the definition of a communication schema is straightforward.


In a naive implementation each step is based on the following phases: 1)
the processing node sends data to the eight neighbours, 2) it computes all the
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Figure 3: Graphical representation of a q method for a nine point stencil mod-
eled with HUA: 2(a) virtual processors dependencies, 2(b) dependencies between
partitions of virtual processors, 2(c) computing processing communication pat-
tern performed in the q method and 2(d) communication pattern with both q
and shift method; the numbers on the arrows indicate a time order on different
communications


partition elements with only local dependencies, and finally 3) after receiving
data form the eight neighbours, it computes what remains.


The schema of the program is simple and does not introduce any particular
difficulties about managing both computation and communication, also when
targeting architectures supporting their overlapping. Considering that in a reg-
ular domain the number of possible neighbours is 3dim − 1, the simplest naive
approach features 3dim−1 = 8 incoming and outgoing communications per step.


An optimization of the previous schema can be applied exploiting the Plimp-
ton’s shift method. The strength of the approach is to avoid direct communica-
tion with diagonal neighbours; all data shift along the main axes as represented
in fig. 2(d). Because only two communications for each space dimension re-
main, the shift method lowers the number of communications per step from
3dim − 1 = 8 to 2 ∗ dim = 4.


The reduction of the number of communications is obtained by the shift
method at the expense of program structure management. Differently from the
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naive schema, the shift method interleaves send and receive operations within
the same stencil step. A processing node first sends along both directions of a
dimensions and then receives from the same ones. This base pattern is repeated
for all the space dimensions.


In the resulting program structure, overlapping of communication and com-
putation is more difficult than with naive method; computations with only local
dependencies has to be smartly interleaved between the send and receive oper-
ations of a base pattern.


4 Q−transformations in the HUA model


One of the most used techniques exploited to describe stencil computations is
the owner-computes rule. In a stencil description with virtual processors (VP)
abstraction, each VP is the owner of a domain element. The element can be read
from other VPs but only the owner can modify it. Although owner-computes
rule makes stencil description easier, we discover that other techniques can lead
to optimizations that reduce the number of dependencies between domain par-
titions.


We studied Q−transformations to automatically transforms stencils into
a new optimized form. The HUA model is the formalism that provide the right
features to describe how the transformations work. Q−transformations are
divided into two subclasses: positive and negative. We focus first on the positive
one.


Definition 2 (Positive Q−transformation). A positive Q−transformation
transforms a generic stencil described with the HUA model (see eq. 1) as follows:


∀e ∈M Q+


→
(
Fi,Q+


i (Si)
)


Q+
i (Si) = Si + q+


⇓= {g1, . . . , gn| ∀α gα = (e + βα)}+ q+


⇓= e +
{
γ1, γ2, . . . , γn|γα = βα + q+


}
(2)


q+ = < q+
1 , . . . , q+


dim >


q+
i = min


{
(βα + q+) ∗ εi ≥ 0∀α


}


Mi+1
Q [e] = Fi(Mi


q[e + γ1], . . . ,Mi
q[e + γn])


where ε = {ε1, ...εdim} is the set of the vectors in the natural basis of Ndim.


With respect to the original stencil, just the set of elements Si has been
changed into Q(Si), adding to each vector element of Si the constant vector
q+. This vector is defined in such a way that Q(Si) can be represented in
the form e+{γ1, γ2, . . . , γn|γα = βα + q+} where the components of the generic
vector γα are all not negative, i.e. the result of the scalar product between
generic vector γα and one vector of the Ndim basis is not negative (γα ∗ εi =
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Figure 4: Evolution of elements location when exploiting positive Q −
transformation 4(a) and when interleaving positive and negative Q −
transformation 4(b)


(βα + q+) ∗ εi ≥ 0∀α∀i). In the case of Jacobi example, we find q+ = (+1,+1),
therefore Q(Si) = e + {γ1, γ2, . . . , γn|γα = βα + q+}
= (x, y) + {(+1, 0), (0,+1), (+2,+1), (+1,+2)}


The semantic correctness of the positive Q−transformations is ensured by
the following property.


Propriety 1 (Q−transformation correctness). Considering a generic domain
space M, let Mi


s be the state of the domain when applying i times a generic
stencil s. Let Mi


Q be the value of the domain when applying the stencil Q+(s),
which is the result of Q−transformations.


In a generic step i the values of Mi
Q are the same of Mi


s, apart from a space
translation.


Proof. Let the M0 be the status of the domain before applying any stencil, we
therefore write


M0 = M0
S = M0


Q (3)


If we define the element a = e + q+, by eq. 2 we can describe the state domain
after the first step as:


M1
Q[e] = F0(M0


Q[e + γ1], . . . ,M0
Q[e + γα])


= F0(M0
Q[a + β1], . . . ,M0


Q[a + βn])
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Therefore for eq. 3 we have:


M1
Q[e] = F0(M0


S [a + β1], . . . ,M0
S [a + βn])


At this point, according to the definition of the HUA model (see eq. 1), it comes
that:


M1
S [a] = M1


S [e + q+] = M1
Q[e]


Iterating the previous reasoning in various steps, we find that:


Mi
S [a] = Mi


S [e + i ∗ q+] = Mi
Q[e] (4)


Mi
S [e] = Mi


Q[e− i ∗ q+] (5)


The key feature of the transformed stencil is reflected into a stronger geo-
metric propriety of the γαs with respect to the βαs: all the γαs present only
not negative components. When calculating Mi+1


Q [e], all the element required
by Fi are reachable from e with only positive movement in the domain space,
i.e. movements along positive directions in the space dimensions. We can say
that the result of the Q−transformation is in same way an ”orientation” of
the communication .


The benefits of this ”orientation” are evident when moving from data depen-
dencies to partition dependencies. In a worst case, where every processing node
needs data from all its neighbours, Q−transformations produce an equivalent
stencil where the processing nodes needs data only from those neighbours that
are reachable moving along positive directions. We call this new technique q
method. Therefore q method cuts down the number of communication from
3dim − 1, featured by the naive method, to 2dim − 1. The improvement is
obtained without changing the structure of a step as it happens for the shift
method. A stencil program based on the q method does not interleave send and
receive operations within the same steps as the naive method.


4.1 q shift method: combination of Q−transformations and
shift method


The shift method is independent from Q−transformations; they can be com-
bined in what we call q shift method. The result is the elimination of the
diagonal communications from the ones featured by the q method. The com-
munications we have to take into account are those with neighbours that can be
reached with movements parallel to the space axes and only along positive di-
rections. Therefore the q shift method reduces the number of communications
per step from 3dim− 1 to dim. The combination of the q and shift provide the
best result with respect to all the other methods; this is evident analyzing the
chart in Fig. 1.
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4.2 Example of a positive Q− transformation on a nine
point stencil


We resume the tutorial nine point stencil introduced for the HUA model. From
the form of Si = e +


{
(a, b)|a, b ∈ {−1, 0, 1}


}
, it comes that q+ = (1, 1). There-


fore the positive Q−transformation transforms Si in


Q(Si) = Q ((x, y) + {(a, b) |a, b ∈ {−1, 0, 1}})
= (x, y) + {(a, b) |a, b ∈ {−1, 0, 1}}+ q+


= (x, y) + {(a, b) |a, b ∈ {−1, 0, 1}}+ (1, 1)
= (x, y) +


{
(a, b)|a, b ∈ {{−1, 0, 1}+ 1}


}


= (x, y) +
{
(a, b)|a, b ∈ {{0, 1, 2}}


}


A graphical representation about the changes on the stencil shape comes from
the comparison of the original stencil in Fig. 2(a) with the transformed one in
Fig 3(a). It is clear that the input data value of the function Fi are the same in
the two cases, what changes is the position in which the resulted value is stored.


Exploiting the abstraction of virtual processors, in the original stencil, if a
VP holds an element e, according to the owner-computes rule, changes to the
value of e are performed only by the owner VP. In the case of the transformed
stencil, the association between domain element and VPs changes at each step.
If, at the beginning of a step, a VP holds the element e, at the end it holds
e + q+.


In other words, there are two different mappings we have to take into account.
Domain elements are regularly mapped onto virtual processors which are than
regularly grouped and mapped onto processing nodes. In an original stencil,
all the mappings are fixed and do not change at run time. In the transformed
stencil at each step, there is a constant remapping of the domain element over
the VPs.


Figure 4(a) presents, in the nine point stencil example, a matrix of VPs
in different steps; two domain elements are highlighted in black and gray. It
is evident how they move each step; the movement is static in the sense that
at each step it is possible to know where the domain element is mapped, as
expressed by eq 4.


The benefits of the ”orientation” of the communication introduced by Q−
transformations are well-rendered when analyzing partitioned dependencies as
presented in fig. 3(b). Shifting the stencil on elements of the partition bounds,
it comes that the partition dependencies are concentrated only over two edges of
the partition. Therefore only three communications are required. As illustrated
previously for the Q−transformations, the three neighbours are reachable from
the examined partition with movement along positive directions and parallel to
x or y axes.


In the naive and the q implementations of the nine point example, the
amount of exchanged data per step is the same; this is not true in stencils mod-
elled with the HUA that does not imply communications with all its neighbours.
An example is the Jacobi one, where the difference of transferred data per step
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Figure 5: Evolution of border elements in a non toroidal domain space: 5(a)
with positive Q− transformation, 5(b) with the interleaving of positive and
negative Q−transformation


is negligible and consist of just one domain element. We are currently working
on a model to study which is the ratio between the improvement for the lower
number of communications and the possible detriment triggered by a greater
amount of exchanged data per step. Finally applying the q shift method, which
is the combination of both Q−transformations and the shift technique, only
two communications are required as represented in fig. 3(d). Removing diag-
onal communication, the data are exchanged with only those neighbours that
are reachable with movements parallel to the axes and along positive directions


5 Combining Positive and Negative
Q−transformations


An important issue when exploiting q method is the configuration of the matrix
at the end of the computation. The elements of the domain space are not
placed in their initial (or original) positions, or also denoted as original positions,
because of the shifts introduced by the Q−transformations.


A possible solution is a sequential post processing computation to rearrange
elements in their original positions according to eq. 4.


Another solution consists in exploiting the features of toroidal space; a num-
ber of steps, after the end of the computation, can be performed without modify-
ing any value, until the elements are again in the initial positions. This approach
implies the execution of a number of ”empty” steps that depends both on the
lengths of the domain and on the number of steps previously performed by the
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application.
A powerful alternative is possible for the class of those stencils featur-


ing a scape with a central symmetry with respect to the application point e.
Most of the stencils presented in literature belong to this class, as Jacobi and
the nine point stencil. The alternative solution, which requires at most one
”empty” step to rearrange the domain elements, consists in the definition of
a transformation featuring antithetical characteristics with respect to positive
Q−transformation.


Definition 3 (Negative Q−transformation). A negative Q−transformation
transforms a generic stencil described with the HUA model (see eq. 1) as follows:


∀e ∈M Q−→
(
Fi,Q−i (Si)


)


Q−i (Si) = Si + q−


⇓= {g1, . . . , gn| ∀α gα = (e + βα)}+ q−


⇓= e +
{
γ−1 , γ−2 , . . . , γ−n |γ−α = βα + q−


}


q− = < q−1 , . . . , q−dim >


q−i = min
{
(βα + q−) ∗ εi ≤ 0∀α


}


Mi+1
Q [e] = Fi(Mi


q[e + γ−1 ], . . . ,Mi
q[e + γ−n ])


where ε = {ε1, ...εdim} is the set of the vectors in the natural basis of Ndim.


The key idea is the same of positive Q−transformations, but the funda-
mental geometric feature of the negative ones is that all the components of the
γ−α are not positive instead of not negative. The proof of the semantic correct-
ness of the negative Q−transformations is identical to the one presented for
the positive ones and leads to the following equations:


Mi
S [a] = Mi


S [e + i ∗ q−] = Mi
Q[e]


Mi
S [e] = Mi


Q[e− i ∗ q−] (6)


Stencils with central symmetric shapes present the nice characteristic that
q− = −q+: a component of q− is the negative of the corresponding one of q+.
This feature can be exploited to reduce the effect of the element movements,
introduced by Q−transformations, as presented in the following property.


Propriety 2 (Interleaving Negative and Positive
Q−transformation). Considering a generic domain space M, let Mi


s be the
state of the domain when applying i times a generic stencil s, featuring a central
symmetry. Let then Mi


Q be the state of the domain when applying the stencil
Q+(s) on odd steps and the stencil Q−(s) on even ones.


At the beginning of odd steps all elements are in their original positions,
while at the beginning of even ones all elements are translated of a quantity q−,
always with respect to their original positions.
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Proof. Let the M0 be the state of the domain before applying any stencil, we
have


M0 = M0
S = M0


Q


At the firs step we apply the positive Q− transformation: M1
Q = M1


Q+ .
Considering eq 5, we obtain the following equation:


M1
S [e] = M1


Q[e− q+]


After the first step the domain elements are translated with respect to the
original positions of a quantity q−, in fact, because of the central symmetry of
the stencil s, we have −q+ = q−.


At the second step the negative Q−transformation is applied and so from
eq. 6 we get:


M2
S [e] = M2


Q[(e− q+)− q−] = M2
Q[e + q− − q−] = M2


Q[e]


The domain elements after two steps, with a positive and a negative Q−
transformations, are back in the original positions.


Iterating the reasoning, we obtain:


Mi
S [e] = Mi


Q[e + (mod2(i) ∗ q−)]


At the end of even steps the data are in the original positions, while in odd
steps they are translated of a quantity q−.


A graphical presentation of the Property 2 is given in fig. 4(b) for the case
of the nine point stencil in a two dimensional space.


From the previous property it is clear that, exploiting the interleaving of
positive and negative Q− transformations, the domain does not need any
rearranging when the application ends after an even number of steps . In the
other cases, one ”void” step is sufficient.


6 Breaking the Toroidal Constrain


The constraint of toroidal domain space has been introduced to make trans-
lations exploited by Q−transformations always possible. More precisely, the
toroidal space guarantees that, referring to eq 1 and 3, the generic element e+γα


( which is the element e translated by q+) is always in M.
As previously observed, we work with two different mappings; domain el-


ements are regularly mapped into VPs which are then regularly mapped into
processing nodes.


Exploiting the two mapping feature, we can force the toroidal characteristic
directly to the VP space in order to break the constraint on the working domain.


We consider that each element of the working domain is mapped into a VP
and the association does not change during the applications. All the translations
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introduced by Q−transformations can be described directly with respect to
VPs instead of elements. VPs are translated inside the VP space which, being
toroidal, guarantees that a translated VP is still into the VP space.


With those considerations the HUA can model also stencils in non toroidal
space domains, and all the optimizations based on Q−transformations can be
exploited.


A peculiar feature of non toroidal working domains is the presence of bounds.
Elements close to space bounds are associated to specific stencils with a re-
stricted area. Therefore it is important to track step by step the positions of
the VPs where bauds elements have been mapped, in order to apply the spe-
cific stencil. This tracking action does not introduce any problem because by
Property 1 and 2, translations introduced by Q− transformations are know
statically; it is possible to calculate where a certain VP has been moved at the
end of a certain step.


Figure 5 represents the evolution of domain bounds in the case of nine point
stencil.


7 Experimental Results


We considered a nine point stencil and its extension in a three dimensional space
(twenty-seven points stencil) as tests for comparing the four presented methods:
naive, shift, q, and q shift.


Because we want to focus only on communication overhead, our tests con-
sider only the time spent in send, receive and synchronization operations. As
Palmer and Nieplocha [8] we exploited MPI as support for asynchronous com-
munications.


The experiments are parametric with respect to the number of partition
elements and exploit only square and cubic partitioning; each partition features
the same length in all directions.


As in HUA stencil interactions between partitions are limited in number, in
our experiments we targeted a configuration with the minimum number of pro-
cessing nodes such that in a neighbour list no one node compares more than one
time. This feature is guaranteed when at least three partitions are considered
per dimension. We therefore worked on a grid of nine processing nodes for the
two dimension case and twenty-seven nodes in the three dimensional one.


Charts in fig. 6 report test results on a eight core Intel(R) Xeon(R) CPU
E5420 @ 2.50GHz exploiting the MPICH version on shared memory.


It is interesting to observe that on this chip-multiprocessor architecture,
featuring intra-chip communications, the results strongly respect the forecasts
that can be extracted from the chart in fig. 1.


The measured performances are characterized by the following behaviour:
the method which features a lower number of communications also supports
a lower communication overhead. This observation is stressed by shift and q
methods when passing from the two dimension case to the three dimension one.
In two dimensions, q method features a number of communications lower than
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the shift ones and this is also reflected by performance test where q presents a
lower overhead. When passing to three dimensions, the difference of the number
of communications is inverted and as well the performances: the shift method
performs a step faster than q.


A comment has to be done on the jumps featured by all the methods in both
performance charts. The causes are caching effects on message copying phase;
the size of the exchanged messages rises with the increasing of the number of
partition elements. The jumps are experienced in advance by methods based on
Q−transformations because, for a fixed number of partition elements, those
cases feature bigger messages.


Charts 6(b) and 6(b) represent the speed up of shift, q and q shift with
respect to the naive method. Regardless the number of space dimensions, the
q shift features the best speed up for fine grain parallelization; it is more than
four times faster than the naive in the two dimension case and nine times in
the three dimensional case.


Charts in fig. 7 report communication overhead measured on dedicated
thirty node cluster with Intel(R) Pentium(R) III CPU 800MHz and Ethernet
Pro 100.


In the two dimensional case all the methods present a comparable overhead,
but optimization based on elimination of diagonal communications, shift and
q shift methods, perform worst than the other two.


In the tree dimension case the differences between the methods are relevant.
Performance chart in 7(d) shows that q shift method reaches a speed up of
seventy with respect to naive method and more or less ten with respect to
shift one.


Analyzing all the previous performance results on both cluster and multi-core
architectures, we can assert that optimizations based on Q−transformations,
q and q shift methods, perform the lowest communication overhead, regardless
the number of dimension space and the target architecture.


8 Conclusion and Future Works


In this paper we presented and formally proved the powerful features of Q−
transformations: a set of transformations applicable to stencils whose data
dependencies can be represented in terms of affine space translations.


In stencil based parallel applications, communications represent the main
overhead, especially when targeting a fine grain parallelization in order to reduce
the completion time. Techniques that minimize the number and the impact of
communications are clearly relevant.


We proved that the reduction of the number of communications featured
by Q−transformations based optimizations is greater than those provided by
methods presented in literature.


Moreover our experiments, both on multi-core and cluster architectures,
show that implementations exploiting Q−transformations perform the lowest
communication overhead when targeting fine grain parallelizations.
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Our feature works are going to be focused on studying Q−transformation
in combinations with other methods in literature, as tilling and oversending,
for improvements on both communications and caching mechanisms.
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