
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-09-18

Searching the Best
(Formulation, Solver, Configuration)

for Structured Problems

Antonio Frangioni Luis Perez Sanchez

October 15, 2009
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Searching the Best

(Formulation, Solver, Configuration)

for Structured Problems

Antonio Frangioni ∗ Luis Perez Sanchez †

October 15, 2009

Abstract

Complex, hierarchical, multi-scale industrial and natural systems generate increasingly large math-
ematical models. i-dare is a structure-aware modeling-reformulating-solving environment based on
Declarative Programming, that allows the construction of complex structured models. The main aim of
the system is to produce models that can be automatically and algorithmically reformulated to search for
the “best” formulation, intended as the one for which the most efficient solution approach is available.
This requires exploration of a high-dimensional space comprising all (structured) reformulations of a
given instance, all available solvers for (each part of) the formulation, and all possible configurations of
the relevant algorithmic parameters for each solver. A fundamental pre-requisite for this exploration is
the ability to predict the efficiency of a given (set of) algorithm(s), considering their configuration(s), for
a given instance; this is, however, a vastly nontrivial task. This article describes how the i-dare system
organizes the information on the instance at hand in order to make the search in the (formulation, solver,
configuration) space possible with several different exploration techniques. In particular, we propose a
way to combine general machine learning mechanisms and ad-hoc methods, where available, in order to
effectively compute the “objective function” of the search, i.e., the prediction of the effectiveness of a
point in the space. We also discuss how this mechanism can take upon itself part of the exploration, the
one in the sub-space of configurations, thus simplifying the task to the rest of the system by reducing
the dimensionality of the search space it has to traverse.

Keywords: Mathematical Models, Machine Learning, Automatic Algorithm Selection, Reformulation

1 Introduction

Mathematical Modeling is commonly used for countless many industrial applications: transportation (con-
strained shortest paths [40], vehicle routing [7], traveling salesman problem [1], etc.), location (plant loca-
tion [20, 9], location on networks [25], etc.), scheduling [14], complex industrial systems [33], networks [6],
bio-informatics [26], chemical engineering [3, 31, 32], medical equipment configuration [30]. Mathematical
Modeling is also used in physics [27], statistics [19], data mining [21, 17], mathematics [24, 5], artificial
intelligence [22, 10] and many other fields.

However, some of the most striking discoveries of science and mathematics in the last century revealed that
just creating a mathematical model does not mean being able to solve it; conversely, “most” mathematical
models are very difficult (if at all possible) to solve algorithmically. This has spurned an enormous body of
work on structures which make the mathematical models tractable.

∗Dipartimento di Informatica, Università di Pisa, Polo Universitario della Spezia, Via dei Colli 90, 19121 La Spezia, Italy.

E-mail: frangio@di.unipi.it
†Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy. E-mail: perez@di.unipi.it

1

1.1 Modeling and Structures

Each application field has its own concepts about structure. In this article we will consider mathematical
models of quite general systems. In particular, while many mathematical models are described by analytical
constraints, and therefore our modeling system must easily accommodate them, our underlying concept of
structure does not require that this is the case; rather, we only require that structures in the model have
associated solvers capable of tackling them, and that algorithmic rules are available to map inputs and
outputs between different structures. Our interest lies in particular to mathematical models where one (or
more) objective function(s) is(are) defined, that is, in mathematical optimization models.

When a model of a practical industrial/scientific application is built, often times a choice is made a priori
(and possibly unintentionally) about which structure of the model is the most prominent from the algorithmic
viewpoint. This is done by choosing which of the several main classes of optimization problems, and the
corresponding modeling tools, the problem is molded in. That is, the modeler often times arbitrarily decides
first that the model will be a Linear Program (LP) [13], a Mixed Integer Linear Program (MILP) [36], a
Constraint Program (CP) [34, 2], and so on. This decision is mostly driven by the previous expertise of the
modeler, by the set of tools (bag of tricks) he has available, and by his understanding (or lack thereof) of the
intricate relationships between the choices made during the modeling phase and the effectiveness/availability
of the corresponding solution procedures. Indeed, it is possible to identify two opposite extreme behaviors
in the modeling effort:

• the algorithmic unconscious user will write down the model using the mathematical terms he find most
appropriate from his knowledge of the nature of the problem, not caring much about the implications
that this has on the effectiveness of the solution procedures;

• the algorithmic conscious user will try to squeeze the reality into the most algorithmic-friendly class of
models he possibly can, not caring much about the fact that the introduced simplifications may make
the answers of the model too inaccurate to be useful.

Of course, most proficient modelers will try to carefully balance themselves between these two extremes, by
one hand making informed choices about the problem classes that may have a chance to actually result in
a solvable model, and on the other hand to carefully check ex-post that the obtained results actually have
a meaning. However, it is clear that this process heavily relies on the fact that appropriate knowledge is
available to the modeler, which may simply not be true. The continuous improvements of solution methods
have created an enormous wealth of results about different problem classes and the conditions under which
some algorithms are more or less effective in solving them.

Even when a problem class has (more or less arbitrarily) been selected, general-purpose solvers may
exhibit poor performance on many problems since they are mainly focused on representing the general
structures, often ignoring underlying forms of sub-structure. Indeed, practical problems most often exhibit
several structures simultaneously, and it is not a fortiori clear which of the structures is computationally more
relevant, i.e., offers more help for developing efficient solution techniques for that particular problem. An
enormous literature is available about which algorithms are best for solving specific sub-classes of problems;
specialized solvers are better when a specific structure is there. It is the user who has to discover the structure,
realize that a solver for that structure is available, and write the model in the appropriate “language” of the
specialized software. Often, modelers lack both knowledge and resources to perform these complex tasks, and
therefore the wealth of available knowledge about specialized algorithms for specific structures lies unused
gathering dust in the pages of the scientific journals and/or in prototypical software codes which, despite
holding great promises, are too specialized to be known outside a small circle of interested specialists, while
actual users cannot solve their problem efficiently enough.

To make matters worse, the applicability of specialized approaches crucially depends on the realization
that the structure is there, which in turn depends on having chosen “the right” formulation that reveals it.
Arguably, the “right” form of a mathematical model is the one which is appropriate for the best possible
algorithm. However, the required structures are typically not “naturally” present in the mathematical mod-
els, and must be purposely created by such weird tricks of the trade such as creating apparently unnecessary
copies of variables and/or relations, replacing an exact compact nonlinear formulation with a much larger
approximate linear one, and many similar others. These ultimately allow the application of specifically
tailored sophisticated methods, such as (just to name a few) preconditioning techniques in linear algebra

2

[41], effective domain reduction techniques in CP [2], specialized row- and column-generation algorithms
in MILP [15], appropriate selection and breeding procedures in evolutionary programs [37], and effective
learning rules in swarm-intelligence approaches [16]. In other words, one needs a proper reformulation of
the problem, where structures inside the model are transformed into other “equivalent” structures that are
better suited to algorithmic approach.

Finding reformulations is a costly and painstaking process, up to now firmly in the hands of very spe-
cialized experts with little to no support from modeling tools. There have been efforts in trying to define
automatic reformulation techniques [39, 4, 28, 29], most of them dealing with particular and restricted cases,
or without defining proper algorithmic approaches, or defined mainly at an algebraic level.

Once a formulation is chosen, one also needs to determine which solver will be applied and how to
configure it. It is well known that the configuration process may be difficult, and it is crucial for the
solver’s performance. Indeed, solvers that may be either extremely very fast or extremely slow, depending
on the configuration, are usually deemed unsuitable for general use. This is only made worse if, as the
recent advances dictate, details about the (parallel) hardware architecture need also be comprised into the
configuration process.

Because modeling, reformulating and solving a problem is such a complex task, a system capable of
streamlining these operations, much like Integrated Development Environments do for computer program-
ming, would clearly be very useful. While a few commercial solutions exist for this, they are typically strongly
tied to a specific solver, and a fortiori to a specific problem class. This sharply contrasts with the need of
experimenting with different formulations, and therefore problem classes. Even more damning is usually the
experience of trying to integrate different solution methods, each one adapted to one of the many different
structures that a complex problem may simultaneously exhibit. Efforts to ease these problems have been
done in the OSI [35] project, but again the decision of whether to use a solver or not and how to configure
it, has to be made by the user, which implies a high level of expertise.

The i-dare system aims of moving forward by performing on behalf of the user three decision processes:
formulation selection, solver selection and configuration selection. It is based on the concept of structure,
intended as whatever characteristics of the problem that can be exploited for algorithmic purposes. This
requires a framework where solution techniques are able to communicate between each other in order to
solve a problem by means of a general solver interface which permits to plug different existing or new
solvers. The user is expected to provide a model picking from the set of available structures; the system
will then compute possible reformulation of the models, using available reformulation rules, and figure out—
transparently to the user—which formulation allows for the best algorithmic approach, taking into account
the issue of configuration, which comprises such delicate choices such as the balancing between solution
time and accuracy and the choice of the most cost/effective architecture. Such a framework may favor the
creation of competitive solvers concentrated in particular forms of structure (or combinations of structures),
profoundly reshaping the way in which solution software is developed, tested and deployed.

A fundamental prerequisite for such a system is that all the needed information is available to properly
define the search space(s). Even when it is done, the problem of designing the proper algorithms to search
for the “best” (formulation, solver, configuration) has to be solved. In this article we will focus on the
definition of an unified way of handling search spaces, necessary to make the decisions. Furthermore, we
will propose an interface to accommodate all possible decision algorithm. Finally we will present a general
machine learning control mechanism that proposes a framework for the implementation of potential decision
algorithm based con machine learning techniques.

2 i-dare – Overview

i-dare is an extensible environment to model, reformulate and solve structured problems [18]. The fun-
damental concept behind its design is that of structure, intended in its most general sense as “set of char-
acteristics relevant for algorithmic purposes”. It is divided in two main parts: the modeling part and the
solving part (see Figure 1). The idea is to separate the modeling part as much as possible from the solving
mechanism, giving the user the possibility to just focus on the models without worrying about how to solve
them. The modeling part is in charge of constructing the models and reformulating them. This is the role
of the i-dare(lib) and the i-dare(im) packages [18]; i-dare(lib) defines an extensible library that stores

3

Figure 1: i-dare, first cut

in a hierarchy all the structures that will be available to construct the models, while i-dare(im) provides all
the basic constructs that allow to construct structured models picking from elements of i-dare(lib).

Once the model is done, we need to link it with the problem data;this is the task of the i-dare(ei)
package, that wraps the formulation with an Extended Model (EM) to provide the means to interact with
the data (such as the size of a certain dimension or the value of a constant). i-dare(ei) is built in a plug-in
fashion, enabling the extension of the set of data formats that can be manipulated.

Finally, the package i-dare(t) defines a set of atomic reformulation rules [18] that can be used to
transform the original EM into equivalent ones (see Figure 2). The reformulation system will is based on the
general concept that we can reformulate a structure A into a structure B if and only if there is a mapping
from the arguments of A into the arguments of B and another mapping from the answer of B into the answer
of A. These mappings must also transform the data linked to the formulation (see again Figure 2). It is
important to remark that these mappings need not be purely algebraic; every (sensible, i.e., not too much
computationally demanding) algorithmic mapping is allowed. After we do the selection over the possibles

Figure 2: i-dare(ei) and i-dare(t)

reformulations, we can finally generate the enhanced instance to be passed to the solving part.

Package i-dare(solve) makes up the solving part by defining an extensible solver library unified by a
common interface. Each solver will register to a structure in i-dare(lib), thus providing a configuration
template (see §3.3). i-dare will generate a solving tree for the EM, which defines which solvers will be
applied and with which configuration; this is fed to i-dare(solve) which coordinates the solution process,
and once a solution is available (if ever) passes it back to the modeling part (see Figure 3).

The functions in i-dare go well beyond those in “static” algebraic languages; this crucially requires the
use of technologies with higher expressive and deductive power, such as Declarative Programming. Indeed,
while a few parts (mainly i-dare(solve)) are implemented in in C++ for the sake of efficiency, most of
i-dare is implemented Frame Logic’s implementation FLORA-2 [23, 42].

3 Search Spaces

FLORA-2 queries provide i-dare modules with an effective way to obtain structured data about the current
instance. This data can be used to characterize and explore the search space, that is composed by three

4

Figure 3: i-dare(solve)

main sub-spaces:

• Formulation + Instance = Extended Model;

• Solvers;

• Configurations.

For each sub-space, an extensible set of predefined queries and methods are available to consult the data.
These queries provide any control mechanisms (cf. §4) with the information it needs for effectively guiding
the search throughout the whole space.

3.1 Extended Model

A large number of queries are available to retrieve information about variables, constants, dimensions, and
components of an Extended Model (EM); how these components are related between each other within a
formulation; and, finally, how variables are shared between components. A representative set of queries
allows to retrieve:

• ?F[variables -> ?L] – the list of variables of formulation ?F,

• ?F[constants -> ?L] – the list of constants of formulation ?F,

• ?F[indexes -> ?L] – the list of indexes of formulation ?F,

• ?F[components -> ?L] – the list of components of formulation ?F,

• ?F[parent(?C) -> ?P] – the parent of component ?C in formulation ?F,

• ?F[ancestors(?C) -> ?L] – the list of ?C’s ancestors until root in formulation ?F,

• ?F[classof(?C) -> ?CC] – the class of component ?C,

• ?F[variables(?C) -> ?L] – the list of variables in component ?C within formulation ?F,

• ?F[var_context(?V) -> ?L] – the list of components where variable ?V is used, within formulation ?F,

• ?EM[dim_size(?D) -> ?S] – the cardinality of dimension ?D in extended model ?EM,

• ?EM[const_val(?C) -> ?V – the value of constant ?C in extended model ?EM.

However, using FLORA-2 query power and the way i-dare organizes the data, one can define arbitrarily
complex queries. For instance, the query

5

Listing 1: More complex query

1 ?L = collectset {?C | ?F[components -> ?LC],

2 member (?C,? LC),

3 ?C : d_LeafProblem_C ,

4 ?F[parent (?C) -> ?P],

5 ?P[subs -> ?subs],

6 length (?subs , ?N),

7 ?N > 2}.

leaves in ?L the list of all component in a formulation ?F that are leaf problems and have as parent a block
with more than two children.

The above queries allow to obtain a complete description of any “static” EM; however, the main goal of
i-dare is to allow reformulating the models. This is obtained by applying atomic reformulation rules (ARR)
[18] to specific components inside the formulation. Each ARR is an instance of the class

Listing 2: ARR class definition

1 d_ARR [

2 A => d_Component_C ,

3 B => d_Component_C

4].

where A and B are the component classes between which the ARR is defined. Several FLORA-2 queries and
methods are available to consult the ARR database, such as

• usable_ARRs(?C, ?L) – retrieves in ?L the list of all ARRs such as ?X : ARR.A,

• apply_ARR(?EM, ?C, ?ARR) -> ?nEM – applies an ?ARR to a component ?C inside an extended model ?EM,
efficiently creating a new extended model ?nEM using Transaction Logic Backtrackable Updates present
in FLORA-2 .

Since the queries set is extensible, new queries can be implemented to support all kind of moves in the
formulations space, such as breeding in population-based heuristics, basin-hopping in local search, and many
others.

3.2 Solvers

i-dare(solve) defines a general interface for solver plug-ins. Each solver, besides implementing the abstract
methods of the class d_solver, must register itself to one structure in i-dare(lib) and define its configuration
template (see §3.3). i-dare automatically generates a FLORA-2 file containing solver and configuration data.
Each solver adds to the file the following object

Listing 3: Solver exported to the FLORA-2 file

1 solverK : d_solver [

2 structure -> ?SN ,

3 confType -> ?CTN

4].

where

• ?SN is the structure class in i-dare(lib) to which the solver is registered,

• ?CTN is the configuration template (cf. §3.3) associated to this solver.

Each structure class in i-dare(lib) may have more than one solver registered. This database defines
the solver’s sub-search space, which can be consulted using the defined instances of d_solver to retrieve
registration and/or configuration information.

6

3.3 Configuration Templates

As previously mentioned, each solver must define how it must be configured. For this purpose i-dare defines
Configuration Templates. A CT is a hierarchical structure defining the relevant algorithmic parameters and
the possible range of their values. Hence, CTs can be easily used to describe single configurations by simply
forcing each parameter to have a single-valued domain.

Two descriptions of CTs are available: the “external” and the “internal” one. The external one is in terms
of an XML file that specifies parameters and their domains. CTs currently support four base parameter
types: integer, double, choice and vector. The integer type defines bounds of the parameter and a default
value. For instance,

Listing 4: Example of Integer parameter type

1 <INT name = "param1" bounds = "0:1 ,4,8 :10" def_val = "0"/>

defines an integer parameter that can take values 0, 1, 4 and from 8 to 10, with default value set to 0. The
attribute bounds will be a list composed by integer numbers or pairs of the form l:u. Each pair l:u specifies
a lower and upper bound of a subset in the domain of the parameter. The elements of the bounds list must
be disjoint.

The double type defines also bounds and default value. It also includes a step that specifies the increment
that will be used to iterate between the bounds. For instance,

Listing 5: Example of Double parameter type

1 <DOUBLE name = "param2" bounds = "0:0 .01:1 ,4:6.5" def_val = "0"/>

defines a double parameter that can take values between 0 and 1, with increment (step) set to 0.01 and
between 4 and 6.5 also with step 0.01, and default value set to 0. Note that in this case there is a new kind
of element in the bounds list, l:s:u, that represents a lower bound, step and upper bound. When there is an
interval without step, in the bounds list, the minimum step (present in the list) will be taken; but if there is
no step defined at all, a system predefined step will be assumed.

The vector type defines a parameter that may contain a multi-dimensional vector. It specifies the dimen-
sion bounds, the type of each vector’s element and a default value. For instance,

Listing 6: Example of Integer parameter type

1 <VECTOR name ="param3" dims = "2|3">

2 <INT name ="internal1 " bounds=" -1:100 " def_val = "3"/>

3 <DEF_VAL dims ="2|2">

4 <V val = " -1"/>

5 <V val = "2"/>

6 <V val = "34"/>

7 <V val = "4"/>

8 </DEF_VAL >

9 </VECTOR >

defines a vector parameter with two dimensions, the first one bounded to 2 and the second one to 3. It
also specifies that each vector’s element must be of integer type (with the stated bounds and default value).
Note that a vector type’s default value is defined using a vector tag that sets the dimensions (respecting
the bounds) and each element. The elements are represented in a linear form, even if it has more than one
dimension; of course, the total amount of elements must be equal to Πd∈dimension d.

Finally, the choice type defines a nominal parameter that may be used to describe, for instance, a method
to be used inside the solver. This type specifies all the nominal values it may take. Each nominal value is a
configuration template as well. For instance,

Listing 7: Example of Choice parameter type

1 <CHOICE name ="param4" def_val = "choice1">

2 <E name = "choice1 "/>

3 <E name = "choice2 ">

7

4 <DOUBLE name ="subparam1 " bounds="0.01 :0 .005 :0.5" def_val = "0.05 "/>

5 </E>

6 </CHOICE >

defines a domain of two choices. The second choice specifies a sub-parameter of type double; within the tag
E, a whole CT may appear. This allow us to create hierarchical configurations, where the set of parameters
in the configuration is not always the same (although of course the total set of parameters which may appear
in any configuration pertaining to a CT is fixed). This is useful because solvers may support more than
one different algorithm, and some parameters may not have a meaning for some of them. For instance,
Linear Program solvers may employ either simplex approaches or interior-point ones; while some algorithmic
parameters are typically common to both approaches, there are others that only make sense for one of them.

When a solver is exported to the FLORA-2 file, it exports also its CT. Therefore, the “internal” repre-
sentation of the CT in FLORA-2 is automatically constructed as an instance of the classes: configuration_T,
confInt_T, confDouble_T, confVector_T and confChoice_T,

1 configuration_T .

2
3 confNumber_T [

4 bounds => _list ,

5 def_val => _number

6].

7
8 confInt_T :: confNumber_T .

9
10 confDouble_T :: confNumber_T .

1
2 confVector_T [

3 dims => _list ,

4 type => confNumber_T ,

5 def_val => [_list , _list]

6].

7
8 confChoice_T [

9 def_val => _string

10].

For instance, the FLORA-2 file corresponding to the parameter types exposed in Listings 4, 5, 6 and 7
would look like

1 param1 : confInt_T [

2 bounds

-> [(0,1), 4, (8,10)],

3 def_val -> 0

4].

5
6 param2: confDouble_T [

7 bounds

-> [(0 ,0.01 ,1) , (4 ,6.5)]

8 def_val -> 0

9].

10
11 internal1 : confInt_T [

12 bounds -> [(-1 ,100)] ,

13 def_val -> 3

14].

15
16 param3: confVector_T [

17 type -> internal1 ,

18 dims -> [2 ,3],

19 def_val -> [[2,2],[-1,2,34,4]]

20].

1 choice1 : configuration_T .

2
3 subparam1 : confDouble_T [

4 bounds

-> [(0.01 ,0.005 ,0.5)] ,

5 def_val -> 0.05

6].

7
8 subparam1 : choice2 .

9 choice2

: configuration_T .

10
11 choice1 : param4.

12 choice2 : param4.

13 param4 : confChoice_T [

14 def_val -> choice1

15]

16
17 param1 : confTemplate1 .

18 param2 : confTemplate1 .

19 param3 : confTemplate1 .

20 param4 : confTemplate1 .

21 confTemplate1 : configuration_T .

Note that when a parameter type is meant to have sub-types it is expressed with the : relation (has a
relation). This way one may easily consult the configuration database; for instance, ?X:confTemplate1 will
retrieve all the sub-types in confTemplate1. More in general, the powerful FLORA-2 queries make it very
easy to deal with CTs, by implementing operations like expanding all possible configurations represented by

8

a template, constructing the union or the intersection of two CTs, and so on. This is very useful for the
different uses of CTs described later on.

4 i-dare(control): Controlling the Search in the (Formulation,

Solver, Configuration) Space

All the i-dare components described so far are conceived for providing the basic blocks for the most delicate
and innovative feature of the system: given a structured instance, to automatically select the “best” combi-
nation in the space of the possible (re)formulations, solvers and configurations. That is, one must select one
particular (re)formulation among all the possible ones obtainable by the atomic reformulation rules, select
an appropriate solver—among the possibly several available ones—for each node in the formulation tree, and
select an appropriate configuration—among the possibly very many choices—for each of the solvers.

This is clearly a very complex process, for which several different techniques may be used. In principle,
of course, it requires the solution of an appropriate “meta” optimization problem in a suitably defined space.
However, the problem is made particularly difficult by the fact that even predicting the performances of
a given (set of) algorithm(s) and configuration(s) on a given formulation and instance is far from being a
trivial task.

In the design of the i-dare system, we have chosen to provide a rather general and abstract setting for
performing the search, so as to allow different search mechanisms to be compared and contrasted. The whole
search is controlled by the i-dare(control) module, which may be any control mechanism conforming to
the simple interface

1 d_control [

2 process (d_InstanceWrapper) -> [d_InstanceWrapper , _term]

3].

The interface declares a method that, given an extended model, returns the selected “best” reformulation
of the model along with the solver tree and the correspondent configuration. Of course the initial and final
model may be the same, in which case i-dare(control) “only” selects the best solver and configuration for
the given instance. This is already a rather difficult problem in itself, for which little is known in practice;
indeed, it is important to remark that even predicting the running time of a given algorithmic approach on
a given data input is problematic. While there is a huge literature about the theoretical complexity and
practical performances of the countless many different algorithms for each of the many possible structures the
i-dare aims at eventually capture, very little is available in terms of methods capable of taking this kind of
decision in a general setting. This seems to essentially require the use of Machine Learning (ML) techniques
(e.g. [8]), which may be the only approach capable of automatically devising suitable approximations of the
function which estimates the efficiency (and, possibly, the effectiveness) of an algorithmic approach when
applied to the solution of a given instance. As we shall see, the use of ML tools, besides being necessary to
evaluate the “objective function” of the search, provides a natural way for actually performing a part of the
search, in particular that in the subspace of algorithms and configurations. Remarkably, the use of ML tools
for the selection of algorithm parameters have been recently advocated in [12], although in a much more
limited context, with promising initial results.

Thus, while the i-dare system does not specify the exact strategy used by the i-dare(control) module
to search the (Formulation, Solver, Configuration) space, it must provide any actual implementation with
enough information to effectively drive the process. While i-dare(control) has full access to all the char-
acteristics of the instance (cf. §3.1), the previous discussion highlights the need for further mechanisms that
allow an efficient comparison between different points of the space. These are described in the next sections.

4.1 Objective function computation

The fundamental mechanism needed for driving the search is an effective and efficient way for evaluating the
quality of a (Formulation, Solvers, Configuration) choice; we will consider this the “objective function” of
the search, and denote it by ψ. At first reading, one may imagine that ψ measures the running time required
by the solver, with the specified configuration, to solve the corresponding instance; however, different cases

9

are also possible. For instance, since many problems are “hard”, it may well be impossible to solve them
to proven optimality in a reasonable amount of time. In this case, the user would typically set a desired
target accuracy, and a maximum time limit. Hence, ψ should now account for the running time it takes to
the solver obtain a solution with the prescribed optimality, if that can be done within the time limit, and a
weighted sum of time limit and final objective function gap otherwise. In this way, the fastest solver capable
of attaining the desired accuracy within the limit is selected, if there is any, and the solver providing the
most accurate solution at the end of the allotted time is selected otherwise. Alternatively, accuracy of the
solution may be treated as a parameter (cf. “Fixed Features” below).

In general, one should not expect that an arithmetic or algorithmic description of ψ be available for all
possible formulations, solvers and configurations, although this may indeed happen in some cases. Therefore,
we propose the application of ML techniques to approximate such function based on known observations.

4.1.1 Features

As usual in ML, one critical point is the definition of the set of features that represent each data point in
the learning set of the method. It is well-known that the complexity (and practical performances) of several
optimization algorithms can be shown to depend in somewhat predictable ways from some well-understood
characteristics of the instances: for Linear Programs, for instance, some of the main features are the number
of variables and constraints together with the density of the constraint matrix. However, the relevant set of
features should be expected to be very different for different problem classes, and even for different algorithms
for the same problem class; again in the LP case, degeneracy of the vertices of the polyhedron (that can
usually be estimated by some properties of the RHS of the constraints) strongly affects simplex approaches
but is next to irrelevant for interior-point ones. Therefore, defining a unique set of features for a problem
does not seem reasonable: each solver should be able to specify a different set of features. On the other
hand, the responsibility of defining the right set of features cannot be demanded to a general mechanism, so
each solver will be required to define them.

Thus, we define a layer over the existing i-dare solver interface, which is called Solver Wrapper (SW),
that will provide the list of relevant features to parametrize ψ, i.e., a dictionary [name=val,], where
name is the nominal representing the feature and val is the value this feature takes. Of course, a SW must
ensure that its feature list always contains the same set of names. All SWs must inherit from the following
interface

Listing 8: ”Solver Wrapper Interface”

1 d_solverWrapper [

2 solver => d_solver ,

3 retrieve (?EM , ?CT) => [_list , CT],

4 [internal]

5].

Given the current EM, the retrieve() method returns the feature list and a list of possible configurations,
represented by a CT. The meaning of the method is somewhat different according to the value of the optional
property internal:

• When internal is not present, the evaluation of ψ is demanded to the general mechanism described
later on. In this case, the SW “only” has the responsibility to extract from EM, that is of course of
known type, the features set. The second return value in retrieve() is a CT that is intended to
describe all possible configurations (compatible with the fixed choices, see below) of the solver for this
particular instance type.

• When internal is present instead, the evaluation of ψ for the given solver is done inside the wrapper.
In this case, there will be only one (or few) features, consisting in the (estimated) value(s) of ψ (or,
maybe, in the description of the function relating running time with accuracy) for the instance EM.
Actually, the very concept of ψ requires that of a configuration attached to the solver, since this choice
impacts on the performances. In fact, in this case second return value in retrieve() is meant to contain
the single configuration that produces the estimated value of ψ. It is intended in this case that the SW
will choose the (estimated) best configuration, if more than one is available.

10

Actually, since the SW can implement retrieve() in any (sensible) way, there may be intermediate sce-
narios between these two extreme ones. For instance, the SW may internally compute some sophisticated
performance figures, out of which predicting the actual running time may be much easier, and/or return
a configuration template containing only a subset of the possible configurations, discarding those that are
estimated to be unlikely to prove efficient. This general mechanism allows on one side to use a general ML
mechanism (described below) for the case where nothing relevant is known about predicting the performances
of a solver, and on the other side to exploit specialized techniques when they are available. Note that the SW
may well use, internally, a specialized ML approach to select the best configuration, should one be available
(cf. e.g. [12]).

4.1.2 The Generic Machine Learning Sub-system

When a SW does not compute its ψ value internally, the Generic Machine Learning Sub-system (GMLS)
can be invoked to try to estimate it.

In general, a SW will produce a features list and a CT. The feature list is dependent only on the specific
instance EM, and not on the configuration, whereas the CT is independent from EM. Therefore, this information
actually corresponds to several values of ψ, one for each configuration in the template (although there may
be only one, e.g. when internal is present). In ML parlance, the SW (implicitly) produces several data
points, each one formed by the unique feature set of EM and one among the different configurations from the
template; in other words, the actual features set of the ML is a pair (features of the instance, configuration
of the algorithm).

This information can be used with any of the several possible ML approaches to try to estimate ψ; clearly,
different approaches may turn out to be more effective for different algorithms. In order not to tie-in the
i-dare system to any specific ML technology, i-dare(control) defines a general interface to ML algorithms,
described by the following class

Listing 9: ”Machine Learning Interface”

1 d_machineLearning [

2 evaluate (_list) => _list ,

3 => train(_list , _list)

4].

where

• train() trains the ML using a set of data points—that is, (features, configuration) pairs—and a list of
known ψ-values (one for each point);

• evaluate() computes ψ for the specified data point.

Each concrete class inheriting from d_machineLearning will define an actual ML technique (Neural Networks,
Support Vector Machine, Decision Tree, . . .); the GMLS sub-system will associate each SW with one (possibly
the “most appropriate”, cf. §4.2.2) concrete ML in charge of computing ψ for the corresponding solver. Note
that for nested structures (formulations that contain other structured problems as sub-blocks, cf. [18]), the
SW has the possibility to access the SWs of the sub-blocks and therefore it can (but it does not necessarily
need to) exploit their computation of the ψ values for the sub-blocks as inputs for its own computation
(either with ML techniques, or with any other mean) of the ψ values for the entire block. This allows to
nicely decompose the (difficult) task of prediction ψ for a complex algorithm into the (hopefully, easier) tasks
of predicting ψ for each component and then predicting how the individual performances affect the global
one.

4.1.3 Machine Learning as a Search Mechanism

Clearly, the above ML approach provides one way to automatize the search in the configuration space.
Provided that the configurations are “few”, one may simply list them all and compute ψ for each; then, the
configuration with the best value is retained as the selected one. Provided that the possible solvers for a
given structure are not too many either (which looks a reasonable assumption), an effective ML approach to

11

computing ψ would provide all the tools for performing the search in the (Solver, Configuration) sub-space,
leaving “only” the (re-)formulations space to be explored.

In general, however, the set of configurations may be rather large. One might thus devise ML approaches
capable of working with “meta” data points, i.e., pairs (features of the instance, configurations template).
These approaches might for instance still rely on standard ML techniques at their core, but coupled with
smart sampling techniques that avoid to compute all possible data points, somewhat in the spirit of active
learning techniques [38]. More in general, one may devise ML approaches aimed not just at predicting ψ for
a given configuration, but rather at predicting the configuration which produces the best value of ψ within a
given CT. Some very preliminary steps along this line have already been done e.g. in [12].

4.1.4 Fixed Features

The retrieve() method of the SW has a second parameter ?CT (that may conceivably be empty), whose use
has not been discussed so far. That is intended to be a partial CT, whose use is to constraining the possible
configurations to be generated by SW. This allows the caller of a SW to instruct it (in particular, in the
case where ψ is computed internally) to avoid considering some configurations that are not feasible, or not
“interesting”.

There are at least three important cases that may require such a mechanism:

• handling of accuracy in the solution, in terms of either constraint satisfaction or of quality of the
obtained solution;

• handling of maximum resource usage (typically, CPU time) in the solver;

• handling of the architecture, i.e., the fact that the same solver may be executed on different parallel
hardware (say with a different number of cores, and/or with the presence of specialized hardware such
as GPU accelerators).

These aspects may reasonably be considered included in the configuration of a solver. However, depending
on the actual form of ψ, they may not be freely chosen by the SW in quest for the smallest ψ value. In fact,
accuracy of the overall solution and/or the maximum total allotted running time will typically be set by the
final user depending on her needs. In turn, a block of the formulation that has some sub-blocks may want to
explore their accuracy/time frontier to seek for the most appropriate setting, e.g. settling to (slightly) less
accurate solutions in change for a (consistently) reduced running time; this is, for instance, the setting that
is most often chosen for separation algorithms in Mixed-Integer Programs when—as it often happens—they
require the solution of a hard subproblem. However, in other cases a “master” problem may require solutions
of its subproblems with a higher degree of accuracy from the one of the solutions it is expected to provide.
For maximum resource usage, it is clear that, in most cases, subproblems of a more complex formulation will
have to be solved in much less time than the maximum one allotted for the whole problem. Finally, a SW
may want to explore the possibility to allocate its subproblems to different computational nodes to exploit
their complementary strengths (see e.g. [11] for one example); on the other hand, some solvers may not be
available (or be known to scale very badly) on some architectures, or the target architecture may be severely
limited by the user due to price or availability concerns.

All this cases can be handled with the general mechanism of externally constraining the set of available
configurations. Note that if the SW is not able to generate at least one configuration that satisfies the
constraints imposed by ?CT, it will fail by returning an empty CT, thus signaling that it cannot be used
under that set of conditions; basically, this amounts at producing an infinite value of ψ. This way, inner
solvers may “constrain” their outer solvers to avoid some specific configuration parameters.

Note that i-dare does not, in general, enforces that the parameters set by the partial CT in retrieve()

be meaningful for the SW. For instance, some solvers may only be capable of providing exact solutions to
their problem, and therefore the accuracy setting may not be meaningful for them. Also, parameters are
always dealt with at the syntactic level, and therefore some discipline will be needed in the construction of the
i-dare library to ensure that at least some main parameters (e.g. accuracy, running time and architecture)
be uniformly recognized by all solver. Note that, however, checks can be easily put in place so as to ensure
syntactic compatibility between CTs, so that at least warnings can be ensued.

12

4.2 Training and Meta-Learning

4.2.1 Training

The fundamental assumption under any ML approach is that the machine be fed with an appropriate set
of samples, i.e., data points with the associated value(s) of the function(s) to be learn. This is known as
training. The GMLS sub-system will therefore have to execute a learning process before that the ML be
ready for actual use in the search. The learning process consists in solving the instances in the training
database with all available algorithms and all available configurations, thereby producing the data to be fed
to the train method of d_machineLearning. This process can clearly be very time-consuming, and it will
have to be (partially) repeated each time either new instances are added to the training database, or solvers
are updated/added. Luckily, the learning process can be easily deployed in a parallel environment to take
advantage of its high level of inherent parallelism.

4.2.2 Meta Learning

It is obvious that the effectiveness of the prediction of ψ, upon which all the search process ultimately rely,
can be very significantly affected by the choice of the concrete ML in charge of computing ψ for any specific
SW, together with its possible several learning parameters (topology of the Neural Network, parameters of
the Support Vector Machine, . . .) [8]. Choosing the “most appropriate” ML is therefore, itself, a difficult
(yet fundamental) task. Thus, GMLS will also have to implement a meta learning process, whereby the
results of the same learning phase for a given solver are fed into different ML, and the “best” machine is
selected as the one which minimizes some appropriate discrepancy measure between the actual values and
the predictions. This can be done with the usual procedures, akin to k-fold validation, whereby the set of
available data is (randomly, in several different ways) subdivided into a training set, that is actually fed to
the ML, and a testing set upon which predictions of the ML are computed and contrasted with the (known)
true results. Since all ML share the same interface, this process can be automatized and regularly repeated
e.g. whenever the testing database significantly changes; again, while very time-consuming the process is
also inherently very parallel. Furthermore, the computationally heavy part—actually executing the solvers
on the given instances for the selected configurations—need to be done only once; provided that the results
are properly stored, they can re-used by all MLs, and over and over again during subsequent meta-learning
phases.

4.3 The overall search process

The GMLS sub-system thus defined provides a sound basis for implementing any general search procedure
in the (formulation, solver, configuration) space; actually, it may also directly take care of the selection
of the latter two components (solver and configuration), leaving to i-dare(control) “only” the task of
appropriately traversing the (re)formulations space using the available ARRs to reformulate parts of the
whole structured model. Ultimately, i-dare(control) has the responsibility of providing the end user with
the ((re)formulation, solver, configuration) that is going to be used to actually solve her problem within the
allotted time, accuracy and/or monetary budget constraints. This of course requires implementing a search
over the formulation space, for which several different approaches are possible, from complete enumeration
to (more likely) heuristic searches such as any variant of local search (with taboo or simulated annealing)
or population-based searches such as genetic algorithms. It is also possible to apply ML as a search tool,
analogously to what it is done for configurations. Figure 4 shows a diagram that outlines the overall search
process in i-dare(control), highlighting the fundamental role of GMLS.

It worth mentioning, that each time a final EM is selected and actually solved, all solution data is sent
back to i-dare so as to be added to the testing database. This way, the testing database is automatically
enriched from real problems, strengthening the observation set and therefore allowing the GMLS to perform
a better approximation of ψ in the future. This may be the source of a positive feedback loop, whereby
good performances of the system attract more users, who provide more data which in turn ultimately leads
to even increased performances.

13

Figure 4: GMLS diagram

5 Conclusions

The development of mathematical models of reality, which often take the form of decision or optimization
problems, is arguably the single most important way in which humanity improves its understanding and
control over the physical world. As such, it is fundamental for the continuous improvement of science and
technology that better and better mathematical models be available to researchers of all fields. However,
it is one of the most striking discoveries of science and mathematics in the last century that just creating
a mathematical model does not mean being able to solve it; conversely, “most” mathematical models are
very difficult (if at all possible) to solve algorithmically. This has spurned an enormous body of work on
structures (a word with different meanings in different fields) which make the mathematical models (less)
algorithmically (un)solvable. The combination of these advances in algorithmic technology and computer
hardware has propelled giant strides in the solution of many classes of mathematical models; however,
being able to apply the right set of tools to the increasingly sophisticated models of complex, multi-scale
hierarchical industrial and physical systems that are constantly being developed is becoming more and more
of an issue. It is not unreasonable to be concerned about the growing burden of the task to developing,
testing and deploying solution methods for models of ever-increasing complexity in a cost-effective way.

The objective of the i-dare project is to harness the vast body of knowledge that has been developed
over the years about which combinations of (re)formulations and algorithms are best for many classes of
optimization problems, and make it available to non experts. This involves the conception of a software
system for automatically performing this task on behalf of, and transparently to, the user. This is clearly a
very complex task; it requires defining an appropriate general concept of structured formulation [18] that be
algorithmically treatable with appropriate tools, developing a large library of pre-defined structures which
makes it easy for users to model their problem, link each of them with the appropriate solvers, and then
be able to effectively search the huge space of possible formulations and solvers (with their many possible
algorithmic parameters, comprising such delicate choices such as accuracy, resource limits and architecture)
to identify the best option.

This paper is focussed on the last task. We describe the set of architectural choices in the i-dare

system that have been designed to make an effective search possible, while avoiding to tie-in the system to
specific search strategies that may not ultimately prove effective enough (such as complete enumeration).
In particular, we discuss the fundamental role of the General Machine Learning Sub-system (GMLS), which

14

allows to integrate general-purpose ML approaches with specialized methods for the (vastly) nontrivial task of
computing the “objective function(s)” of the search. This task is “naturally” extended to that of selecting the
best algorithmic configuration of the available solvers, thereby providing (whatever actual implementation of)
the i-dare(control) sub-system with a powerful tool to streamline the search. This requires a sophisticated
ML (meta) process that is continuously running and keeps modifying the assessment of each reformulation
with respect to given algorithms, so that it is kept synchronized with latest performance data given by
practical problem solution runs. Although use of ML techniques to select algorithmic parameters have very
recently been advocated elsewhere, the scale of our proposal is, to the best of our knowledge, unheard of.

The outcome of this sophisticated process may well be a very significant improvement of the efficiency
experienced by the “average” (non expert) user in the solution of her models, thereby significantly contribut-
ing to the overall scientific and technological progress. Furthermore, it has the possibility to substantially
broadening the audience of the very many specialized solvers (and of their underlying theory) that have been
developed over the last forty years for problems with specific structure. Indeed, insofar as such a system
would greatly facilitate the fair comparison of solution algorithms and effective dissemination of the corre-
sponding results, it might conceivably contribute to organizing, rationalizing and ultimately stimulating the
research in solution algorithms for many classes of mathematical models. Actually, the possibility to taking
into account monetary concerns during the search could lead to a substantial change in how mathematical
software packages are evaluated, possibly forming the basis of a fair and extremely competitive “market-
place” for people supplying problems to be solved and people supplying solution algorithms to be used. Such
a marketplace could dramatically improve adoption of best-of-class approaches, possibly rewarding their
authors in different ways, and it would allow the developers of very specialized approaches for very specific
forms of structure to reach an audience that they would never be able to serve in the current system. This
may radically change, for the better, the marketplace for mathematical software, while providing customers
with much greater value. Therefore, while very significant theoretical and practical challenges still need to
be overcome before this vision can become reality, we believe that the research on automatic reformulation
and algorithm-selection techniques is worth to be undertaken.

References

[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling Salesman: a Computational Study.
Princeton University Press, Princeton, 2007.

[2] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[3] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem: Alternate
formulations and solution methods. Princeton University Press, Princeton, 50(6):761–776, 2004.

[4] C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and mixed 0-1 program-
ming problems. Journal of Optimization Theory and Applications, 93(2):273–300, 1997.

[5] C. Audet, P. Hansen, F. Messine, and S. Perron. The minimum diameter octagon with unit-length
sides: Vincze’s wife’s octagon is suboptimal. Journal of Combinatorial Theory A, 108(1):63–75, 2004.

[6] M. Ball, T. Magnanti, C. Monma, and G. Nemhauser. Network Routing, volume 8 of Handbooks in
Operations Research and Management Science. North-Holland, Amsterdam, 1995.

[7] C. Barnhart and G. Laporte. Transportation, volume 14 of Handbooks in Operations Research and
Management Science. North-Holland, Amsterdam, 2007.

[8] C.M. Bishop. Pattern recognition and machine learning. Springer, New York, 2006.

[9] J. Brimberg, P. Hansen, N. Mladenović, and E. Taillard. Improvement and comparison of heuristics for
solving the uncapacitated multisource weber problem. Operations Research, 48(3):444–460, 2000.

[10] Gilles Caporossi and Pierre Hansen. Variable neighborhood search for extremal graphs: 1. the auto-
graphix system. Discrete Mathematics, 212(1-2):29–44, 2000.

15

[11] P. Cappanera and A. Frangioni. Symmetric and Asymmetric Parallelization of a Cost-Decomposition
Algorithm for Multi-Commodity Flow Problems. INFORMS Journal on Computing, 15(4):369–384,
2003.

[12] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone. Machine Learning for Global
Optimization. Technical Report 2360, Optimization Online, 2009.

[13] G. B Dantzig. Linear programming and extensions. Princeton, NJ: Princeton University Press, 1963.

[14] T. Davidović, L. Liberti, N. Maculan, and N. Mladenović. Towards the optimal solution of the multi-
processor scheduling problem with communication delays. In MISTA Proceedings, 2007.

[15] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column generation. Springer,
2005.

[16] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy,
1992.

[17] O. du Merle, P. Hansen, B. Jaumard, and N. Mladenović. An interior point algorithm for minimum
sum-of-squares clustering. SIAM Journal Scientific Computing, 21(4):1485–1505, 2000.

[18] A. Frangioni and L. Perez Sanchez. Artificial intelligence techniques for automatic reformulation of com-
plex problems: the i-dare project. Technical report, TR-0913, Dipartimento di Informatica, Università
di Pisa, 2009.

[19] E. Gourdin, P. Hansen, and B. Jaumard. Finding maximum likelihood estimators for the three-
parameter weibull distribution. Journal of Global Optimization, 5(4):373–397, 1994.

[20] P. Hansen, J. Brimberg, N. Mladenović, and D. Urosević. Primal-dual variable neighbourhood search
for the simple plant location problem. INFORMS Journal on Computing, 19(4):552–564, 2007.

[21] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. INFORMS Journal on
Computing, 79:191–215, 1997.

[22] B. Jaumard, P. Hansen, and M. Poggi de Aragão. Column generation methods for probabilistic logic,
pages 313–331. IPCO, University of Waterloo Press, 1990.

[23] Michael Kifer, Georg Lausen, and James Wu. Logical fundations of object-oriented and frame-based
languages. Technical report, Department of Computer Science, SUNY at Stony Brook, NY, 1994.

[24] S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for the kissing number problem.
Discrete Applied Mathematics, 155(14):1837–1841, 2007.

[25] M. Labbé, D. Peeters, and J.-F. Thisse. Location on networks. Network Routing, volume 8 of Handbooks
in Operations Research and Management Science. North-Holland, Amsterdam, 1995.

[26] C. Lavor, L. Liberti, and N. Maculan. Molecular distance geometry problem. Encyclopedia of Optimiza-
tion, Springer, New York, 2 edition, 2009.

[27] C. Lavor, L. Liberti, N. Maculan, and M.A. Chaer Nascimento. Solving Hartree-Fock systems with
global optimization metohds. Europhysics Letters, 5(77):50006p1–50006p5, 2007.

[28] L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO,
43(1):55–86, 2009.

[29] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: a computational
approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Foundations of
Computational Intelligence Vol. 3, number 203 in Studies in Computational Intelligence, pages 153–
234. Springer, Berlin, 2009.

16

[30] L. Liberti, N. Maculan, and Y. Zhang. Optimal configuration of gamma ray machine radiosurgery units:
the sphere covering subproblem. Optimization Letters, 3:109–121, 2009.

[31] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex NLPs involving
bilinear terms. Journal of Global Optimization, 36:161–189, 2006.

[32] C. Maranas and C. Floudas. Global optimization in generalized geometric programming. Computers
and Chemical Engineering, 21(4):351–369, 1997.

[33] F. Marinelli, O. de Weck, D. Krob, and L. Liberti. A general framework for combined module- and
scale- based product platform design. Technical report, LIX, Ecole Polytechnique, 2007.

[34] K. Marriott and P. J. Stuckey. Programming with constraints: an introduction. MIT Press, 1998.

[35] Ted Ralphs Matthew Saltzman, Lszlo Ladnyi. The COIN-OR Open Solver Interface: Technology
Overview, May 2004.

[36] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, New York, 1988.

[37] Kimmo Nieminen and István Maros. Genetic algorithm for finding a good first integer solution for milp.
Technical report, Department of Computing, Imperial College, 2003.

[38] B. Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009.

[39] H. Sherali. Personal communication. 2007.

[40] H. Sherali, K. Ozbay, and S. Subramanian. The time-dependent shortest pair of disjoint paths problem:
Complexity, models and algorithms. Networks, (4):259–272, 1998.

[41] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain, 1994.

[42] Guizhen Yang, Michael Kifer, Hui Wan, and Chang Zhao. Flora-2: User’s Manual.

17

