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Abstract


In this technical report we face the problem of the fair sharing of
goods, bads and possibly services (also collectively termed items)
among a set of players that cannot (or do not want to) use a common
cardinal scale for their evaluation owing to the very qualitative and non
economical nature of the items themselves.
To solve this problem we present two families of protocols (barter
protocols and auction protocols) and use a set of classical fairness criteria
(mainly for barter protocols) and performance criteria (mainly for auction
protocols) for their evaluation.
The protocols are either based on auctions mechanisms or on barter
mechanisms and are presented in detail, discussed and evaluated using
the suitable fairness and performance criteria.


Keywords: allocations, auctions, barters, fairness criteria, performance
criteria
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Introductory remarks


This technical report is a revised and enriched version of the paper of the
same title accepted for presentation in the PhD session of the EAEPE (Euro-
pean Association for Evolutionary Political Economy) Conference to be held
in Amsterdam, from Friday 6 until Sunday 8 November 2009. It also contains
portions of the following papers:


- a paper written with Giorgio Gallo, entitled “Goodwill hunting: how to
allocate bads or disagreeable chores” and accepted at 23rd European Con-
ference on Operational Research that was held in Bonn, Germany, on July
5-8, 2009


- a paper entitled “Iterative barter models” that has been accepted at the
Conference ”S.I.N.G. 5” that was held in Amsterdam, Holland, on July
1-3 2009,


- a paper entitled “[Additive] Barter models” that has been accepted at the
Conference S.I.N.G.4 that was held at Wroclaw, Poland, on June 26-28,
2008.


Last but not least, in the Appendix A we present also unpublished materials
concerning an auction mechanism that we call “candle auctions” whereas in
Appendix B we list some mathematical facts and findings.


1 Introduction


In this technical report we face the problem of the fair sharing of goods,
bads and possibly services (also collectively termed items) among a set of
players that cannot (or do not want to) use a common cardinal scale for their
evaluation owing to the very qualitative and non economical nature of much of
the items themselves.
To solve this problem we present two families of protocols (barter protocols
and auction protocols) and use a set of classical fairness criteria (mainly for
barter protocols) and performance criteria (mainly for auction protocols) for
their evaluation.
As to the fairness criteria (Brams and Taylor (1999) Brams and Taylor (1996))
we use envy-freeness, proportionality, equitability and [Pareto] efficiency with
some modifications and adjustments in order to make them suitable for the new
contexts.
The performance criteria that we use include: guaranteed success, [Pareto]
efficiency, individual rationality, stability and simplicity.
As to the families of protocols we have a family F1 of protocols that are based
on auctions mechanisms and that can involve any number of players as an
auctioneer and a set of bidders and a family F2 of protocols that are based on
barter mechanisms and that involve a pair of players at a time but can involve
an arbitrary number of such pairs.
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All these protocols are presented in detail, discussed and evaluated using the
suitable fairness and performance criteria.
The technical report closes with a section devoted some concluding remarks and
to future research plans.


2 The family F1


The family F1 contains three types of auction mechanisms (Cioni (2008a),
Cioni (2008b) and Cioni (2009b)):


(a1) a sort of Dutch auction with negative prices/bids,


(a2) a sort of English auction with negative prices/bids,


(a3) a sort of first price auction with negative prices/bids.


In mechanism (a1) the auctioneer tries to allocate a bad to one bidder by rising
his offer up to a maximum value M whereas in mechanism (a2) the auctioneer
starts with an offer L and the bidders make lower and lower offerings until one
of them wins the auction and gets the bad and the money. We call such mech-
anisms positive auctions since the bidders bid to get the auctioned item.
In mechanism (a3) the bidders bid for not getting a bad1 that is assigned to the
losing bidder (the one who bid less than the others) together with a compensa-
tion from all the other bidders. We call such mechanism a negative auction
since the bidders bid in order of not getting the auctioned chore.
Of each mechanism we provide a description and the best strategy. Once the
mechanisms have been described we also prove how the first two mechanisms
are really equivalent and discuss some relations between them and the last one.
We also apply the performance criteria to such mechanisms for their evaluation
and prove under which conditions they are satisfied.


3 The family F2


The family F2 contains two subfamilies of models that we present in their
basic two players A and B version.
The former subfamily contains a set of explicit barter models whereas the
latter subfamily contains an implicit barter model and a mixed barter
model.
In the explicit barter models the players A and B show each other the
set of items that each of them is willing to barter within a procedure that is
characterized by either simultaneous or sequential requests from one player to
the other in which the barter may involve either a single item or a subset of
items.
An explicit barter is an iterative procedure that may end either with a success


1We use as a synonym also the term chore.
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(and so with an exchange of items) or with a failure but, at each step, may also
involve a reduction of the items each player is willing to barter.
In the implicit barter model none of the players shows his items to the other
so that each player, in his turn, proposes to the other a pair of items (i, j)
that he is willing to barter so that the other may either accept or reply with a
counter proposal. The barter ends when an agreement is reached or both agree
to give up since they decide that no barter is possible. During the barter each
player reveals to the other the items he is willing to barter and this can ease
the reaching of an agreement.
Last but not least in the mixed barter model we have that one player (be
it A) shows his items to B that, on the other hand, behaves as in the implicit
case. Also in this case the barter goes on as a series of proposals and counter
proposals with an incremental definition of the bartering set of the player B.
The implicit barter model and the mixed barter model are classified, in this
technical report, as iterative barter models.


4 The classical criteria


In this section we recall the classical definitions of both the evaluation and
the performance criteria as they are found in the literature. Such criteria will
be specialized, whenever needed, for the various models we introduce in this
technical report.


4.1 The performance criteria


As performance criteria we use: guaranteed success, individual ra-
tionality, simplicity, stability and [Pareto] efficiency (that we define in
section 4.2).
With guaranteed success we denote the fact that a procedure is guaranteed
to end with a success, with individual rationality we denote the fact that it is
in the best interest of the players to adopt it so that they both use a procedure
only if they wish to use it and can withdraw from it without any harm or a
penalty greater than their potential damage.
Simplicity is a feature of the rules of a procedure that must be easy to under-
stand and implement for the players without being too demanding in terms of
rationality and computational capabilities.
Last but not least with stability we denote the availability to the players of
equilibrium strategies that they can follow to attain stable outcomes in the sense
that none of them has any interest in individually deviating from such strategies
(Myerson (1991), Patrone (2006)).


4.2 The evaluation criteria


As evaluation criteria we use a set of classical criteria (Brams and Taylor
(1999), Brams and Taylor (1996)) that allow us to verify if a barter can be
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termed fair or not.
Such criteria are:


- envy-freeness;


- proportionality;


- equitability;


- [Pareto] efficiency.


We say a barter is fair if they are all satisfied and is unfair if any of them is
violated.
In the case of two players (Brams and Taylor (1999), Brams and Taylor (1996))
envy-freeness and proportionality are equivalent, as it will be shown shortly.
Generally speaking, we say that an agreement turns into an allocation of the
items between the players that is envy-free if (Brams and Taylor (1996), Brams
and Taylor (1999) and Young (1994)) none of the actors involved in that agree-
ment would prefer somebody’s else portion, how it derives to him from the
agreement, to his own. If an agreement involves the sharing of benefits it is
considered envy-free if none of the participants believes his share to be lower
than somebody’s else share, whereas if it involves the share of burdens or chores
it is considered envy-free if none of the participants believes his share to be
greater that somebody’s else share. In other words a procedure is envy-free if
every player thinks to have received a portion that is at least tied for the biggest
(goods or benefits) or for the lowest (burdens or chores).
If an allocation is envy-free then (Brams and Taylor (1999)) it is proportional
(so that each of the n players thinks to have received at least 1/n of the total
value) but the converse is true only if n = 2 (as in our case). If n = 2 propor-
tionality means that each player thinks he has received at least an half of the
total value so he cannot envy the other. If n > 2 a player, even if he thinks
he has received at least 1/n−th of the value, may envy some other player if he
thinks that player got a bigger share at the expense of some other player.
As to equitability in the case of two players (and therefore in our case) we
say (according to Brams and Taylor (1999)) that an allocation is equitable if
each player thinks he has received a portion that is worth the same in one’s
evaluation as the other’s portion in the other’s evaluation. It is easy to see how
equitability is generally hard to ascertain (Brams and Taylor (1996) and Brams
and Taylor (1999)) since it involves inter personal comparisons of utilities. In
our context we tried to side step the problem by using a definition that considers
both utilities with respect to the same player.
Last but not least, as to [Pareto] efficiency, we say (according to Brams and
Taylor (1999)) that an allocation is efficient if there is no other allocation where
one of the players is better off and none of the others is worse off. In general
terms efficiency may be incompatible with envy-freeness but in the case of two
players where we have compatibility.


9







5 The positive auctions


5.1 Introduction


We present two types of positive auctions where a seller A 6∈ B offers a
chore to a distinct set B of buyers/bidders so to sell/allocate it to one of them
with a mechanism where the seller gives away the proper sum of money and the
chore and the selected buyer accepts that sum of money and the chore.
As a seller A wants to maximize his revenue so wishes to pay the lowest sum of
money to allocate the chore to one bi ∈ B.
On the other hand each bidder/buyer bi ∈ B wants to get the chore according
to each one’s evaluation of it, evaluation that subjectively include losses and
gains and that is a private information of each bidder.
Such mechanisms coincide with the usual mechanisms of buying and selling if we
imagine negative payments so that the seller gives away the chore for a negative
sum of money and the selected buyer accepts the chore but pays for it a negative
sum of money.
For this reason we speak of a positive auction if the bidders bid for getting a
chore in contrast with a negative auction mechanism (see section 6) where the
bidders bid for not getting the chore that, in all the cases, is allocated through
the application of simple and common knowledge rules.


5.2 The auction mechanisms


We present two algorithms that can be used in all the cases where the auc-
tioneer wants to “sell a chore” to the “worst offering” or to have a chore carried
out by somebody else by paying him the least sum of money2.
In the former mechanism the auctioneer offers a chore and a sum of money m
and raises the offer (up to an upper bound M) until when one of the bidders
accepts it and gets both the chore and the money. The auction ends if either
one of the bidders calls “stop” or if the auctioneer reaches M without any of
the bidders calling “stop”. In the latter case we have a void auction sale. The
auctioneer has a maximum value M that he is willing to pay for having some-
body else carry out the chore otherwise he can either give up with the chore or
choose a higher value of M so to repeat the auction with a possibly different
(new or wider) set of bidders.
This type of auction is a sort of Dutch auction with negative bids paid by
the bidders to get the chore.
In the latter mechanism the auctioneer offers the chore and fixes a starting sum
of money L. The bidders start making lower and lower bids. The bidder who


2Of course when an auction is over and a bidder has got the chore and the corresponding
sum of money there is the risk that the chore is not carried out. The analysis and resolution
of such problems is out of the scope of an auction mechanism. We can imagine the presence
of binding agreements for the bidder who gets the chore that turn into either reinforcing rules
or penalties. Among the reinforcing rules we can imagine a linkage between the payment and
the degree of fulfillment of the chore with the full payment occurring only if and when the
chore has been fully accomplished.
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bid less gets the chore and the money. Of course the auctioneer has no lower
bound. Under the hypothesis that the bidders are not willing to pay for getting
the chore we can suppose a lower bound l = 0. If this hypothesis is removed
we can, at least theoretically, have l = −∞. We can have a void auction sale if
no bidder accepts the initial value L. The auctioneer can avoid this by fixing a
high enough value L. In this case the bidders are influenced by the value of L
that can act as a threshold since if it is too low none of them will be willing to
bid. This case is as if the bidders start bidding from −L and raise their bids up
to −l so that the one who bids the most gets the chore and pays that negative
sum of money. In this case we have a sort of English auction with negative
bids.


5.3 Dutch auction with negative bids


In this section we examine the mechanism3 where the auctioneer offers the
chore and a sum of money and raises the offer (up to an upper bound M) until
when one of the bidders accepts it and gets both the chore and the money.
The auction we are describing is a sort of reverse Dutch auction where we have
an increasing offer instead of a decreasing price and a chore instead of a good.
The value M represents the maximum amount of money that the auctioneer is
willing to pay to get the chore performed by one of the bidders. We note that
the value M is a private information of the auctioneer and is not known by the
bidders. This fact prevents the formation of consortia and the collusion among
bidders since M may be not high enough to be gainful for more than one bidder
(see also section 5.6).
If x is the current offer of the auctioneer A we can see M − x as a measure of
his utility.
As to the bidders bi, each of them has the minimum sum he is willing to accept
mi as his own private information so that x − mi may be seen as a measure of
the utility of the bidder bi.
We note that, if we define the set:


F = {i | mi ≤ M} (1)


as the feasible set, the problem may have a solution only if F 6= ∅.
In this case the algorithm is the following:


1. A starts the game with a starting offer x0 < M ;


2. bidders bi may either accept (by calling “stop”) or refuse;


3. if one bi accepts4 the auction is over, go to 5 ;


4. if none accepts and xi < M then A rises the offer as xi+1 = xi + δi with
0 < δi < M − xi, go to 2 otherwise go to 5;


3We call it also the ascending mechanism or the ascending case.
4Possible ties may be resolved with a random device.
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5. end.


The best strategy for A is to use a very low value of x0 (or x0 ' 0) so to
be sure to stay lower that the lowest mi and, at each step, to rise it of a small
fraction δi with the rate of increment of δi decreasing the more x approaches
M . Though this strategy may indirectly reveal to the bidders the possible value
of M it is of a little harm to A since in any case no bidder is willing to accept
the chore for a value lower than his own value mi.
The bidder bi’s best strategy is to refuse any offer that is lower than mi and
to accept when x = mi since if he refuses that price he risks to lose the auction
in favor of another bidder who accepts that offer.
We have moreover to consider what incentives a bidder may have to act strate-
gically when defining his value mi. Of course there is no reason for bi to define
a value of mi lower than the real one (since he has no interest in accepting lower
prices). He could be tempted to define a higher value m′


i > mi so losing the
auction in favor of all the bidders who are willing to accept any offer within
the range [mi, m


′
i]. This means that bi may use a value higher than mi only if


he is sure that the private values of all the other bidders are still higher. Since
no bidder can be sure of this, each of them has a strong incentive to behave
truthfully.
In this case, if F 6= ∅ (see relation (1)), the sum A would expect to pay is equal
to mj where j ∈ F is such that mj < mi for all i 6= j, i ∈ F . Of course A
does not know such a sum in advance since we are in a game of incomplete
information and that value is revealed to A only at the end of the game as an
ex-post condition.


5.4 English auction with negative bids


In this section we examine the mechanism5 where the auctioneer offers a
chore and a starting amount of money L.
On their turn the bidders start making a succession of lower and lower bids
until when a bid is not followed by a still lower bid: the bidder who made this
last bid gets both the chore and his bid as a payment for the chore.
As to the auctioneer we note that the only parameter he can fix is the value
L.
The auctioneer can choose L so that it is the maximum amount of money he is
willing to pay (see also section 5.5) but it is neither too low (since in this case
the auction could be void) nor too high (since in this case it could also favor
the rising of collusions among the bidders (see section 5.6).
As to the bidders we note that if each bidder has an evaluation mi of the chore
as his private information his best strategy is to start bidding at any moment
when the current value of the bids is greater than mi, go on until the current
descending price reaches the value mi and then stop (otherwise he could have
a loss x − mi, see further on).
We note, indeed, that if x is the current value of the bids, the bidder bi has a net


5We call it also the descending mechanism or the descending case.
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gain equal to x − mi that is positive for x > mi, null for x = mi and negative
for x < mi so that the least acceptable outcome is x = mi with a null net gain.


5.5 The equivalence of the mechanisms


We wish to verify if the two proposed mechanisms are equivalent or not with
regard to the values of some parameters and the revenue for the auctioneer.
The first thing we do is a comparison between M and L. We saw that M is the
maximum amount of money the auctioneer is willing to pay to sell the chore
(see section 5) and the same role is played by L so we can reasonably expect
that L = M is true.
We can reason as follows. We suppose to have the same chore and the same set
of bidders in the two auction types we examine.
It cannot be L > M otherwise A would risk to pay in the descending case a
sum L greater than his maximum willingness to pay M in the ascending case.
On the other hand it cannot be L < M since A in the ascending case would
risk to pay a sum higher than the maximum sum he his willing to pay in the
descending case.
From all this we see how it must be L = M .
We now examine the auction’s revenue from the auctioneer/seller point of view.
If we suppose that each of the n bidders bi has the evaluation mi of the chore
we can easily see how the chore is allocated to the bidder bj where:


j = argmin{mi | i = 1, . . . , n} (2)


and possible ties are resolved with the use of a properly designed random device.
In both cases the revenue for the auctioneer is given by:


M − mj = L − mj (3)


From this we can say that the two mechanisms are equivalent with respect to
the seller/auctioneer.
Let us consider things from the bidders point of view.
From their point of view, though they may prefer a descending mechanism to
an ascending one, things are equivalent since the chore is allocated to the bidder
bj where j satisfies relation (2).
We underline how in both mechanisms the bidders attend on a voluntary basis
so that their individual evaluations mi represent how much each of them is
willing to get to accept the chore. This implies that mi hides in itself both costs
and gains for each bi from the chore but the relative importance and weight of
costs and gains is a private information of each bidder.


5.6 The possible collusions


Up to now we have supposed that the bidders act one independently from
the others. Now we examine the possible collusions:


(c1) among all the bidders and
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(c2) among the auctioneer and some of the bidders.


As to (c1) we start with an analysis of the collusions in the descending case.
In this case, indeed, the bidders could agree that one of them (be it bj) bids
L, is compensated with m̂j = max{L


n
, mj} and all the others n − 1 share the


resulting surplus L − m̂j among themselves.
This strategy is potentially fragile since bj may decide to keep the chore for
himself with a net gain of L − mj since any violation of the binding agreement
among the bidders can be hardly punished. Moreover we have that every bidder
bh whose mh is greater than the share of the surplus may have an incentive to
deviate from that strategy.
Of course any coalition not including all the bidders (a limited coalition) is
fragile since the excluded bidders are free to make their bids so to incentive the
others to leave the coalition.
If a limited coalition includes bj (see section 5.5) its members may not be sure
to get the chore but for a price equal to mj so that no share of a surplus is
possible.
In the ascending case the bidders do not know the value of M so collusions
are more risky and less profitable.
A possible strategy could be that the bidders keep from bidding until when the
price offered by A reaches a minimal ex-ante agreed-on value m̂. At this point
one of them, be it bi who evaluates the chore as mi < m̂, accepts m̂ and the
chore so that the auction is over and bi gets the chore and the sum mi whereas
the other n − 1 bidders share equally the surplus m̂ − mi among themselves.
The choice of m̂ is risky since the bidders may agree on a value that is higher
than M so it is never reached in the auction. This risk may be minimized by
reducing m̂ > mj (with j defined with the rule (2)) so correspondingly reducing
the surplus deriving from the auction.
This strategy is, however, fragile since bi has strong incentives to deviate unilat-
erally from it and keep the chore for himself (since any violation of the binding
agreement among the bidders can be hardly enforced) with a net gain of m̂−mi


and no surplus to be shared among the other bidders.
In order to maximize the surplus m̂−mi the bidder bi should be bj with j defined
by relation (2). On the other hand, this choice maximizes also the temptation
for bj to deviate unilaterally from that strategy (since he is the bidder who gains
the most from such a deviation).
As to (c2) we have that both in in the ascending case and in the descending case
we can hardly imagine the possibility of collusions between the auctioneer and
[part of] the bidders owing to the nature of the proposed mechanisms and to
the fact that the auctioneer pays for allocating the chore to one of the bidders
that, in his turn, is paid for getting the chore.


5.7 The side effects


Up to now we have supposed that the allocation of a chore to one of the
bidders has no harm on the other bidders (hypothesis of the independent
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bidders) so that the auction ends when either the chore is allocated or a prede-
fined termination condition is satisfied and no allocation occurs (void auction).
In some cases the allocation of the chore to one of the bidders may harm some
other bidders through side effects so that we may think to introduce correcting
or compensatory tools either within the proposed mechanisms or as added steps
to such mechanisms. In these notes we are going to follow the latter approach.
We can therefore act in the following way.
We can define a three stages mechanism so that we have:


(1) an auction stage;


(2) a dispute stage;


(3) a settlement stage.


Steps (1), (2) and (3) may be repeated more than once until the chore is assigned
to one of the bidders.
This three stages mechanism may properly work only if the following conditions
hold:


- the bidders are aware of the whole mechanism in advance so they have
incentives to include in each own’s mi the sums that each of them may
need at steps (2) and (3)


- the bidders act under binding agreements that force each of them to get
the chore if he claims for the highest sum in the dispute stage (see further
on) or to attend a restricted auction (again see further on) depending on
the will of one of them.


At the auction stage we have an auction with either an ascending or a descend-
ing mechanism that ends with the allocation of the chore and the payment of
a sum from the auctioneer to one of the bidders (the so called winning bidder),
be it bj that gets mj (where j is identified with the rule (2)).
At the dispute stage (2) some of the losing bidders (the bidders different from
the winning bidder), be them bi with i ∈ I ⊂ N , may complain and ask for
compensations ci,j to that winning bidder.
If I = ∅ the auction is over at the stage (1) otherwise it goes on with the stage
(3).
So let us suppose, from now on, that I 6= ∅.
We note that, in general, we have:


ci,j < mi (4)


since each ci,j measures an indirect damage for bi from the chore allocated to
bj and this damage is worth less than the direct damage plus the costs and the
gains that form mi.
Such requests are made from the bis to bj as simultaneous sealed requests.
At the settlement stage the bidder bj (who got the chore at the auction
stage) can use one of the following strategies that are known to the complaining
bidders:
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(a) may pay the sums ci,j and keep the chore for himself with a gain reduced
to:


mj −
∑


i∈I


ci,j (5)


constrained to be positive;


(b) may sell the chore to the complaining bidder bh who asks for


ch,j = max ci,j (6)


paying him a sum equal to min{mj, ch,j};


(c) may start an auction using one of the two proposed mechanisms with
the bidders bi with i ∈ I ⊂ N as the participating bidders and with
L = M = mj .


The use of the mechanism of point (a) requires that mj has been properly fixed
by bj so to be able to pay the sums ci,j and, at the same time, maintain a
positive gain.
Similar considerations hold also for the mechanism of point (c). In this case the
cascaded auction may turn out void so that bj must plan for it accurately since
in that case he must resort to the mechanisms of either point (a) or point (b).
We note that the mechanism of point (c) may be repeated a finite number of
times since N is finite and so also I that reduces at each repetition up to the
empty set when the process stops.
The strategies (a) and (b) for bj pose some constraints on the strategies of the
complaining bidders bi with i ∈ I ⊂ N .
Strategy (a) invites the complaining bidders to ask for not too high sums ci,j


whereas the strategy (b) invites the complaining bidders to ask higher sums ci,j


so that they must seek for a compromise between the two policies.
We underline how the bidders claim their ci,j to bj before he chooses his strategy
at the settlement stage.
If the chore is exchanged from bidder bj to another bidder bi (according to one
of the strategies (b) and (c)) the stages (2) and (3) are repeated since the new
ownership may give rise to damages to a new subset of complaining bidders.
This process goes on until when no exchange occurs and compensations are
transferred from the final winning bidder to a set of complaining bidders.


5.8 The possibility of coalitions or consortia


Up to this point we have seen the bidders as individual entities bi ∈ B that
attend the auction so to get the chore and a sum of money.
We can relax such an assumption and consider the following two cases:


(1) we partition B as B = ∪n
i=1Bi with Bi ∩ Bj = ∅ for every i 6= j,


(2) we cover B as B = ∪n
i=1Bi with Bi ∩ Bj 6= ∅ for some pairs i 6= j.
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Both coalitions (1) and consortia (1) attend the auction on a voluntary basis
so that their participation signifies the will to bid at the best so to get the
auctioned chore.
In both cases (1) and (2) it is possible to introduce the side effects we discussed
in section 6.11 has a way to analyze negative interactions among either coalitions
or consortia.
In the case (1) we speak of the coalitions Bi that attend the auction as individual
players.
In this case the coalition Bi assigns to the chore a value Mi as:


(1a) Mi =
∑


bi∈Bi
mi in an additive way,


(1b) Mi > M =
∑


bi∈Bi
mi in an superadditive way owing to the presence of


synergies so there is a net gain Mi − M for the coalition.


We note how subadditivity is a nonsense since in that case the single bidders
would be better off by not joining any coalition.
In both cases (1a) and (1b) the coalition Bi attend the auction and can either
get the chore (and the sum Mi) or not. If Bi gets the chore and the sum Mi its
members must share it among themselves.
If Bi gets the chore it gets the sum Mi to be shared among its members.
In the case (1a) that sum is shared as mi to each bi ∈ Bi.
In the case (1b) there is a net gain Mi −M so there may be more than one way
to share the sum Mi.
In the simplest case the sum Mi is shared as:


mi


Mi


M
(7)


so that every bidder gets a share proportional to his contribution mi.
Another way is to assign to each bidder a sum equal to mi and share the net
gain Mi − M as:


mi


Mi − M


M
(8)


In the case (2) we speak of the consortia Bi that attend the auction as individual
players with individual evaluations Mi.
To understand why a bidder may wish to join more than one set Bi we must
specify how such sets form.
Consortia (but the same holds also for coalitions) form before the auction starts
according to a blind mechanism so to avoid conflicts of interests. Bidders submit
their intention to join a consortium knowing only the identity of the other
members but without knowing their private evaluations so that none of them is
able to know the value M =


∑
bi∈Bi


mi until the consortia are formed.
When the consortia formation phase is over each bidder bi knows the value M
of each consortium to which he belongs so he can form an expectation on the
outcome of the auction.
In this case each bidder may join more than one consortium so to rise his chances
to get the chore.
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When the consortia have been formed we have the auction phase and when the
auction is over we have the allocation of the chore and of the corresponding
sum of money Mi to one of the consortia Bi so that Mi is shared among the
members of Bi as we have seen in the case of the coalitions.


5.9 Some possible applications


In this section we list some possible applications of the proposed auction
mechanisms.
In the independent bidders case we can use the proposed mechanisms to
define the allocation or localized or point wise chores to one of the bidders.
This is the case of incinerators, solid wastes disposal sites, chemical plants and
the like. The main point is that the carrying out of the chore requires the assent
of a single bidder. In this case we try to account for the presence of collateral
damages among bidders through the mechanism of the side effects (see section
6.11).
In the case of the coalitions we can use the proposed mechanisms for the
allocation of chores with contiguity constraints among disjoint alternatives.
With this we mean that each alternative solution is represented by a coalition.
This is the case of alternative layouts of the same connection line (be it a railway
or a highway) or the case of different types of a connection line (a railway versus
a highway) that do not share anything but possibly the starting and the ending
nodes.
In the case of the consortia we can use the proposed mechanisms in similar
contexts but with not disjoint alternatives (such as connection lines that share
some of the nodes beyond the starting and the ending nodes or some of the
arcs).


5.10 The properties of positive auctions


We now verify if the mechanisms we have introduced satisfy the performance
criteria we have introduced in section 4.1.
We have that:


- guaranteed success is verified if the auctioneer fixes the values L and
M in a proper way;


- individual rationality is guaranteed since the bidders bid only if they
want and none of them pays any penalty bigger than his damage for not
attending the auction;


- simplicity is verified since the rules of the two auctions are very simple
to understand and implement;


- stability is guaranteed since each bidder has a simple best strategy to
follow;
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- [Pareto] efficiency is verified since the chore is allocated to the bidder
who value it less and all the others are left out whereas the auctioneer
pays the least amount of money to get the chore allocated.


In this way we have verified that the proposed mechanisms satisfy the chosen
criteria.


6 The negative auction


6.1 Introduction


We present here a mechanism for the allocation of a chore (a disagreeable
task with a negative value) from an actor A (the auctioneer) to another one
from a distinct set of actors B (the bidders). The members of B are arbitrarily
selected by A.
We call such a mechanism a negative auction.
According to this mechanism the auctioneer A aims at allocating a chore to
one of the bidders bi ∈ B by using a mechanism where the bidders bid for not
getting the chore whence the denomination of negative auctions.
The final aim of such auctions is the transfer of the chore from the auctioneer to
one of the bidders (the losing bidder) together with a monetary compensation
from the other bidders (the so called winning bidders).
In the paper we present and discuss a base model and two extended models.


6.2 The features of various models


The proposed models differ either for the relations among the bidders or for
the relations among the bidders and some special actors that we call supporters
or for both (see section 6.9 for further details). In all the models there is a


filtering phase through which we get the effective set of bidders B̂ as the set of
the bidders that effectively attend the auction.
In the base model the bidders are one independent from the others and all
behave accordingly. We speak of independent bidders since the allocation
of the chore to one of the bidders causes a damage only to that bidders and to
nobody else.
In the first extension we drop the hypothesis of the independence of the
bidders and suppose the presence of cross damages among the bidders so that
each bidder suffer a damage not only from the allocation of the chore to himself
but also form the allocation of it to some of his neighboring bidders.
In this case we imagine that the bidders support each other in avoiding the
chore and analyze if such a mechanism is profitable for the bidders so that they
are better off by adopting it.
In the second extension we introduce the supporters that form a set S . The
supporters are special actors that once the members of the set B̂ are known
decide to support some of them so that they have higher probabilities of not
getting the chore. Such a support depends heavily on the cross damage that
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each supporter suffers from the allocation of the chore to one of the bidders.
All the models are analyzed through a presentation of their features and the
possible strategies available to the bidders.


6.3 The fee and its meanings


All the proposed models include a pre-auction phase, the so called fee pay-
ment phase, through which the set B of n bidders reduces to the set B̂ of k
bidders that effectively attend the auction phase whereas the others m = n− k
pay a properly fixed (by A) fee f .
When A choses the members of B they do not know each other and are informed
of the amount of the fee and may submit a sealed payment of two amounts: 0
or f . In the former case they attend the auction and enter the set B̂ whereas
the others exit the auction.
When this phase is over the k members of the set B̂ are made publicly known
and the auction phase may start.
Before going on with section 6.5 and those that follow we comment a little bit
more on the concept of the fee.
The main reason for introducing the fee is to implement, within the mecha-
nisms, the principle of individual rationality since the bidders are chosen by
the auctioneer at his will and do not attend the auction on voluntary basis. We
can see the fee as the analogous of the reserve price in classical auctions.
The auctioneer A therefore fixes a fee f and must properly choose its amount
given his interest of not having a void auction.
From this we can argue that:


- he must fix f > 0;


- if A can guess the values m̃i of the mi he can choose f > min m̃i so to
force at least some of the less damaged bidders to attend the auction;


- if f is fixed too high then all the members of B have a strong incentive to
attend he auction hoping in a certain number of payments and therefore
in a substantial additional compensation.


We note that fixing a fee f = 0 is different from not having a fee so as having
a free ticket is different from no ticket: a fee f = 0 allows the bidders to escape
the auction at no cost whereas if no fee is fixed all the bidders are forced to
attend the auction and submit to its rules.
We recall that during the fee payment phase the bidders do not known either
each others identities or their number so that the decision of either paying or
not the fee is up to each bidder.
Let us consider what could happen if such hypothesis should prove false so that
the bidders of B may guess how many bidders are willing to pay the fee and
even may agree on some common strategies (see further on).
At the offset A contacts the n members of B and it may happen that:


(1) m decide to pay the fee,
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(2) k = n − m decide to attend the auction.


In this way the auctioneer collects a sum mf to be given to the losing bidder
as an extra compensation.
A critical case may occur if m = n so that all the all the bidders of B pay the
fee, B̂ = ∅ and the auction is void. In this eventuality we may may think to
adopt one of the following solutions:


(s1) the fees are given back to the bidders, since no auction occurs, so that
each of them has a null utility (since he pays f but gets back f);


(s2) the total fee nf are used by the auctioneer to pay an external player P
for having him carrying out the chore.


In this paper we disregard the solution (s2) essentially because:


· it should appear in the description of the game and be known by the other
bidders from the offset;


· P should be considered as a member of B so to be submitted to the same
mechanism as the others;


· the case m = n does not represent a Nash Equilibrium so it never occurs;


· the case (s2) does not represent a Nash Equilibrium so it never occurs;


We indeed may state that:


· in the all pay case with repayment the all pay strategy where the bidders
have 0 utility is fragile if there is at least on bidder bi such that:


(n − 1)f ≥ mi (9)


· in the all pay case without repayment the strategy where all the bidders
have an utility −f is fragile if there is at least one bidder bi such that:


(n − 1)f − mi > −f (10)


In both cases the deviating bidder gets a payoff equal to (n − 1)f whereas all
the other get a payoff equal to −f .
We note that the existence of such a bidder is guaranteed by the conditions we
have made on the value of f .
In the descriptions of the single models we disregard the fee payment phase
(that is common to all the models) and suppose to start with a reduced set of k


bidders B̂ and with a total fee, equal to mf (with m = n− k), that is revealed
to the k bidders only when the auction phase is over.
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6.4 The phases


The proposed models are characterized by a succession of phases, some com-
mon to all the models and some that enter only in some model but not in others.
The common phases are:


- fee payment phase,


- auction phase,


- allocation and compensation phase.


The particular phases (that are present only in one or more extensions) are:


- cross-bidders support phase,


- supporters-bidders support phase.


The general succession of the phases is the following (particular phases are
enclosed within square brackets):


(1) fee payment phase,


(a) [supporters-bidders support phase],


(b) [cross-bidders support phase],


(2) auction phase,


(3) allocation and compensation phase.


Each particular phase will be analyzed in the proper section of this paper. For
the moment we simply note that phase (b) is present in the first extension
whereas phases (a) and (b) are present in the second extension.


The auction phase has a simple structure: the bidders of the set B̂ submit
their bids in a sealed bid one shot auction and the lowest bidding bidder6 loses
the auction and gets the auctioned chore with a compensation c that is given
by:


- the total fees mf ,


- the sum x1 that the losing bidder bid in the auction phase,


- the sums Σ1 that derive him from the two phases (a) and (b) (see the
sections 6.10 and 6.11)


as c = mf + x1 + Σ1.
At the end of this phase possible ties are resolved with the aid of a properly
designed random device.
During the allocation and compensation phase the losing bidder gets the


6We denote conventionally such bidder as b1, see further on, and in a similar way all the
quantities that concern him.
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chore and is compensated with the sum c and the compensation is partly gath-
ered from the non attending bidders (the sum mf) and partly (the sum x1 +Σ1,
see further on) from the winning bidders.
The enforcement of the agreement is guaranteed by the winning bidders that
are interested in the fact that the agreement is honored by the losing bidder.


6.5 The base model: the lose and the win cases


In the base model we have, therefore, a set B̂ of k independent bidders bi


where each bidder has:


- a private evaluation mi of the auctioned chore;


- a bid xi that is publicly revealed by A at the end of the auction phase,


- a compensation xi that is granted him for sure, whenever he is the losing
bidder, from the winning bidders;


- a sum he has to pay to the losing bidder whenever he is one of the winning
bidders.


For the moment we disregard the compensation represented by the fees since it
is known only ex-post and cannot influence the strategies of the bidders so that
we put the bidder bi in a sort of worst case situation where m = 0.
By bidding xi the bidder bi may either lose or win the auction.
In the losing case bi gets xi for a loss of mi so to get xi − mi.
In the winning case bi has a gain mi (the missed damage) and pays a sum
equal to:


x1
xi


X
(11)


where x1 is the bid7 of the losing bidder b1 and:


X =
∑


j 6=1


xj (12)


In this case bi gets:


mi − x1
xi


X
(13)


as the difference between the missed damage and the sum he has to pay to the
losing bidder.
If we denote with p the probability that bi has to lose the auction (and (1 − p)
is the probability that he has of winning it) we can define his expected gain as:


Ei(xi) = p(xi − mi) + (1 − p)(mi − x1
xi


X
) (14)


or as:
Ei(xi) = pli + (1 − p)wi (15)


with:
7When the auction phase is over we may renumber the bidders so that b1 is the losing


bidder and the other k − 1 bidders are winning bidders.
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li = (xi − mi), if he loses;


wi = (mi − x1
xi


X
) = (mi − x1


xi


α−xi
) (with α =


∑
j 6=1,i xj), if he wins.


It is easy to see how:


- the term li increases with xi from a negative value (−mi) to a positive
value (M − mi);


- the term wi decreases form a maximum vale for xi = 0 to a minimum and
potentially negative value for xi = M , see section 6.6 and the Appendix
B.


6.6 The base model: the strategies


Evey bidder bi can use one of the following bidding strategies:


(1) xi < mi


(2) xi = mi


(3) xi > mi


In correspondence of such strategies the elements li and wi (see section 6.5)
assume the signs that we specify in Table 1 where we have:


− denotes a negative value or a loss;


0 denotes a neutral condition, neither a loss nor a gain;


+ (with subscripts) denotes a positive value or a gain;


+ � 0 � − defines a strict preference ordering where � denotes a strict
preference relation between two elements;


+/− denotes a gain that can turn into a loss8;


+1 � +2 � +/− defines a strict preference ordering.


. We see, therefore, how the “pieces” of relation (15) have opposing effects9.


Strategies li wi


xi < mi - +1


xi = mi 0 +2


xi > mi + +/−


Table 1: Signs of the terms li and wi


From this analysis we can label:


8See the Appendix B for further details.
9See the Appendix B for further details.
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- the strategy xi < mi as a risky strategy,


- the strategy xi = mi as a conservative strategy,


- the strategy xi > mi as an aggressive strategy.


We recall that the exact balance between the terms li and wi depends on the
value of p = p(xi) so that the exact value of the expected gain for bidder bi (as
given by expression (14)) depends on that value (see section 6.7).
Without any knowledge of p we can say that:


- a risk adverse bidder bi prefers a conservative strategy and so a truthful
bidding xi = mi;


- a risk seeking bidder bi prefers either a risky strategy xi < mi or an
aggressive strategy xi > mi depending on whether he is more convinced
to win or to lose.


Under the hypothesis that the bidders are risk adverse we may say that the
conservative strategy is the best strategy for the bidders.


6.7 The base model: assessing the value of p


In order for any bi to asses the value of p he must have some knowledge of
the random variables xj for j 6= i. Possible properties of the xj are that they
are independent and identically distributed over the interval [0, M ] for a
suitable value M > 0.
Under these hypotheses, bi can evaluate the probability of losing the auction
p = p(xi) as (see the Appendix B for further details):


p(xi) = P (xi = minjxj) = P (∩jxi ≤ xj) (16)


If we use the independence among the random variables we get:


p(xi) = ΠjP (xi ≤ xj) = Πj(1 − P (xj < xi)) (17)


The next step is to assume a particular distribution among the possible ones. In
the simplest case bi may assume that the xj are uniformly distributed over
the interval [0, M ]. Under this assumption we have that:


Fxj
(x) = P (xj < k) =


x


M
(18)


so that relation (17) (or the expression of the probability for bi of losing the
auction) becomes:


p(xi) = (1 −
xi


M
)k (19)


whereas the complementary probability of winning it becomes:


1 − p(xi) = 1 − (1 −
xi


M
)k (20)


From relations (19) and (20) we see that:
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- if xi = 0 we have, as expected, p = 1 and 1 − p = 0;


- if xi = M we have, as expected, p = 0 and 1 − p = 1.


Relations (19) and (20) have been derived under rather strong assumptions so
that, in real cases, they can hardly be used by real bidders that, therefore, can
rely only on the strategies we have seen in section 6.6


6.8 The base model: the properties and the applications


In order for the description of the basic mechanism to be completed we have:


(1) to verify whether the proposed basic mechanism satisfies or not a minimal
set of basic performance criteria;


(2) to describe the possible applications of the proposed basic mechanism.


The performance criteria that we use include: guaranteed success, [Pareto] effi-
ciency, individual rationality, stability and simplicity.
The property of guaranteed success, from the auctioneer point of view, is
satisfied whenever the auction is not void. This happens for sure if A does not
fix any fee (and therefore the auction cannot be void and a losing bidder exists
for sure) so conflicting with the requirement of individual rationality but can
occur also if he fixes a fee on condition that the value f is fixed at the right
level (see section 6.3).
From the bidders point of view the property of guaranteed success is satisfied
since the auctioned item is assigned to the bidder who makes the lowest bid and
the others compensate him for this according to a simple rule of cost sharing.
As to [Pareto] efficiency we may state that:


- the bidder with the lowest bid gets the chore and a proper compensation;


- all the other bidders may pay a sum that is lower than the missed damage
from not having the chore allocated to each of them so may have a positive
gain.


If the chore is allocated to another bidder with a higher bid all the winning bid-
ders would pay a higher fraction of the compensation so they would be worse
off. This is enough to say that the allocation to the lowest bidding bidder is
[Pareto] efficient.
The satisfaction of the property of individual rationality is guaranteed by the
presence of the fee f that allows some bidders to escape the auction by paying
it.
As to stability we have argued in section 6.6 that for each risk adverse bidder
the truthful bidding is the best strategy. Though this arguing must be justi-
fied on more solid grounds we think that the intuition we have given should be
enough to assure the satisfaction of this property.
Last but not least simplicity is assured by the fact that the rules of the auc-
tion are simple enough so to be implemented even by bidders with a bounded
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rationality.
As to the applications of the basic model we note that it is well suited in
all the cases where an auctioneer has to allocate a chore with the following
distinguishing features:


- the chore involves a single bidder or it can be carried out by a single bidder
though it may benefit not only the auctioneer but also other bidders;


- the influences on other bidders, once the chore is allocated, is negligible;


- the influence on actors distinct from the bidders, once the chore is allo-
cated, is negligible;


- all the costs can be summarized within the self damage parameter mi for
each bidder bi;


- there is no time dependent parameter nor time dependent costs.


Such features allow th allocation of a chore from the auctioneer to one of the
bidders from an equivalent (with respect to the chore) set of bidders.
As a first approximation we may consider the basic model as suitable for the
allocation of:


- solid waste disposal plants;


- hazardous waste disposal plants;


- incinerators;


- energy production plants;


- chemical plants.


The mechanism guarantees the allocation of a chore of such types under the
hypothesis of no external intervention or support and of the absence of cross-
support among the bidders themselves (see section 6.9). We note that the
absence of time dependent values and parameters as well as the use of a single
parameter to summarize all the costs remains also in the extensions.


6.9 The need of the extensions


In the base model we have assumed that the bidders are independent one
from the others so that the allocation of the chore to one bidder is a damage
for that bidder only.
This hypothesis, in real cases, is both impractical and unrealistic since the
bidders of the set B̂:


(1) influence each other,


(2) influence other actors that are not chosen by the auctioneer by that are,
anyway, damaged by the allocation of the chore to one of the bidders.
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(1) To account for the reciprocal influences among the bidders we introduce
the concept of cross-damage that is at the root of the first extension
that we analyze in section 6.10.
With the term cross damage we denote a damage di,j that derives to bi


if the chore is allocated to bj for any pair of bidders of bi, bj ∈ B̂.
The set of the cross damages form the k×k matrix D (see Table 2) of the
cross damages where ∀ di,i = mi, the self damage for bidder bi.


d1,1 . . . d1,i . . . d1,k


. . . . . . . . . . . . . . .
di,1 . . . di,i . . . di,k


. . . . . . . . . . . . . . .
dk,1 . . . dk,i . . . dk,k


Table 2: Matrix D


The values di,j determine, through a function fi for each bidder bi, the
highest monetary contribution f∗


i,j = fi(di,j) that bi is willing to give to
the bidder bj (if and only if he will result the losing bidder) so to induce
him to accept the allocation of the chore.
We note that, in general, the functions fi are concave in their independent
variable.
In this way from the matrix D and the functions fi we derive the matrix
F of the financings from every bidder to all the other bidders. We note
how, obviously, we have fi,i = 0 for every i.


(2) The presence of further actors (the supporters, see section 6.2), on the
other hand, is at the root of the the second extension that we briefly
analyze in section 6.11.
The basic idea is the following: once the composition of the set B̂ is known
each of the supporters (that form the set S ) may evaluate the damage
that derives him from the allocation of the chore to each bidder bj . In this
case we denote such a damage for the supporter si from the bidder bj as
di,j . Such damages form h (where |S | = h) additional rows for the matrix


D of the cross-damages for the bidders of B̂. In this case, therefore, the
matrix D (see Table 3) is of type (k + h) × k.
Also in this case each value di,j determine, through a function fi for each
supporter si, the highest monetary contribution f∗


i,j = fi(di,j) that si


is willing to give to bj so to induce him to accept the allocation of the
chore. In this case, similarly to what happens to the matrix D, we have h
additional rows to the matrix F that account for the financings from the
supporters to the various bidders.


As a common rule to both extensions we may state that through the relations
fi,j = fi(di,j) the bidders and the supporters define monetary contributions for
the other bidders so to push the chore towards a bidder that causes to [at least
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d1,1 . . . d1,i . . . d1,k


. . . . . . . . . . . . . . .
di,1 . . . di,i . . . di,k


. . . . . . . . . . . . . . .
dk,1 . . . dk,i . . . dk,k


. . . . . . . . . . . . . . .
dk+h,1 . . . dk+h,i . . . dk+h,k


Table 3: Extended matrix D


a majority of] the other actors the least damage. Such a bidder is identified by
each other bidder or supporter by using the values of the cross-damages (see
next sections for details) with regard to the other bidders.


6.10 The first extension


In this case, during the cross-bidders support phase, the k bidders of B̂


exchange among themselves proposals of additional compensations so to induce
one of them (the losing bidder) to accept the chore.
We have, indeed, that the k × k matrix F has the the j−th column Fj that
defines the sums that a bidder bj will receive, in the compensation phase, from
all the other bidders if and only if he will result the losing bidder. Such sums
amount to Σj =


∑
i6=j fi,j .


We note how the elements of such j−th column generally satisfy the constraints:


fi,j ≤ fi(di,j) (21)


for all the bi distinct from bj and can induce bj to lower his bid xj so to lose
the auction and get an extra compensation for accepting the chore. Relation 21
expresses the fact that no bidder wants to pay to another bidder a contribution
that is higher than the equivalent damage that he suffers from that bidder.
In this way, during the cross-bidders support phase, we have an exchange
of the proposed values fi,j from every bidder bi to all the others (and with the
constraint fi,i = 0) so that every bidder receives the overall proposal Σj and
may decide to lose the auction and so to lower his bid xi to a level that still
guarantees him a gain and so to a level such that Σj +xi > mi is satisfied. Such
values are to be effectively transferred only to the losing bidder as an extra
compensation.
In this case the bidders may therefore convince one of them to a piloted loss
that is compensated with an additional sum Σj .
The best bidder bj to hold that role should the one with the lowest di,j for all
i, if it exists, or, at least, one which satisfies minidi,j for the highest number of
bidders bi. In case of ties the best bidder is the one with the lowest value of the
self damage mj . If we again have ties we select one of the equivalent bidders
with a properly designed random device.
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For the losing bidder b1 we have that he gets:


x1 + Σ1 = x1 +
∑


j


fj,1 (22)


and suffers a damage equal to m1 so to have a balance of x1 + Σ1 −m1 that we
impose to be strictly positive.
On the other hand, each winning bidder bj pays:


x1
xj


α + xj


+ fj,1 (23)


(where α =
∑


i6=1,j xi) and suffers a damage dj,1 from the allocation of the chore
to b1 but also has a gain from the missed damage mj .
With the proposed mechanism we have that bj may try to pilot the allocation
of the chore to the bidder bi that causes to him the least damage but he has
no guarantee of success. Moreover we can state that if bj knows that the chore
will be allocated anyway to such bi he would be better off by not paying to that
bidder the contribution fj,i but this eventuality may be discovered for sure only
after the auction has been carried out since it depends also on the actions of all
the other bidders.


6.11 The second extension


In this case we build over the first extension so that, before the cross-
bidders support phase (see section 6.10), we have a supporters-bidders


support phase during which, once the structure of the set B̂ is publicly known,
each of the members si of the set S may support each bidder bj with sums fi,j


(to be paid if and only if the bidder bj will result the losing bider) so to induce
a bidder bj to accept the chore.
In this case the only thing that change for each bidder bi is the fact that the
matrix D has k + h instead of k rows so that all the summations that involve
the columns must be extended on k + h elements and the same holds also for
the column vectors.
Another difference concerns the balance of the supporters sj . Each of them
pays to the losing bidder10 b1 the sum fj,1 that has been defined during the
supporters-bidders support phase and suffers a damage dj,1 that is hope-
fully the least damage for that bidder. For such a damage we can consider as
valid the considerations we have made at the end of section 6.10.


6.12 The application of the extensions


The proposed extensions11 try to make more realistic the application of the
base model to the cases we have seen in section 6.8.


10Also in this case when the auction is over and before the allocation and compensation we
can renumber the bidders so to denote the single losing bidder as b1.


11In the case of the extensions we do not consider the satisfaction of the performance criteria
and do not repeat the analysis we made in section 6.8 since the basic structure of the model is
unchanged and so that analysis could be repeated here without any meaningful modification.
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The first extension tries to link the bidders among themselves through the in-
troduction of the concepts of cross-damage and financing: in this way each
bidder may induce the more favorable (for him) bidders to accept the chore by
promising each of them an additional sum of money to be paid effectively only
to the losing bidder.
In this way each bidder bi, by offering the sums fi,j and bidding xi indepen-
dently from the others, tries to push the chore towards a subset of bidders so
that the set of bidders as a whole ends with identifying one bidder as the losing
bidder that can be the best for the other k − 1.
The second extension, on the other hand, tries to account for the damages from
the allocation of a chore also to actors that are excluded by the auctioneer from
the auction and that, in the base model but also in the first extension, cannot
have their voice heard.
In this way, by defining the role of supporter, we allow such actors to attend, at
least indirectly, to the auction and obtain that some bidders may push harder
the chore towards some other bidders by promising those bidders more addi-
tional financings to be paid, also in this case, only to the single losing bidder.
Form these considerations we see how the range of applications is unchanged
but is mode more realistic.


6.13 Some comments about the relations between positive
and negative auctions


As a closing point we try to make a comparison between the proposed posi-
tive auctions and negative auctions.
From a superficial analysis we could conclude that the two types have nothing
in common owing to their different structures and methods of payment.
As to the first point we note how the positive auctions are based on repetitive
bids that enforce truthful bidding whereas the negative auction is a one shot
sealed bid auction where players can bid untruthfully and strategically.
As to the second point we note, indeed, how in a positive auction the auctioneer
pays the bidder who gets the chore whereas in the negative auction the winning
bidders pay the losing bidder since he got the chore.
If, however, we disregard the problem of the fee (that may be paralleled with a
reservation price) and the feature of individual rationality we may see how the
things are from the point of view of who gets the chore and for what a price.
In a positive auction the chore goes to the bidder who evaluate it less than the
others and the price he gets is that evaluation.
In the corresponding negative auction (with the same bidders and the same auc-
tioned chore) the chore is allocated to the bidder who bids less that the others at
a price equal to that bid. We therefore have that the price for the losing bidder
is the same only in the case of truthful bidding (or if he adopts a conservative
strategy and makes a bid equal to his evaluation of the chore) otherwise it can
be either higher or lower depending on the chosen strategy.
From the losing bidder point of view we may state therefore that the proposed
methods are equivalent in case of truthful bidding.
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On the other hand, for what concerns the auctioneer it is obvious how a neg-
ative auction is better for him than a positive one since in the former case he
can allocate a chore at no cost for him whereas in the latter he has to pay for
allocating it.


7 Some remarks about the explicit barter mod-


els


7.1 The basic motivation


The basic motivation of the models we propose in the next section 8 is the
need to describe how an exchange of goods can happen without the intervention
of any transferable utility such that represented by money or by any other
numerary good. In this way the involved actors do not need to share anything,
such as preferences or utilities as common information, but the will to propose
a pool of goods that they present each other so to perform a barter.
All the barters are in kind and are essentially based on the following very simple
basic scheme (see section 8.2): we have two actors that show each other the
goods, each of them chooses one of the goods of the other and, if they both
assent, they have a barter otherwise some rearrangement is needed and the
process is repeated until either a barter occurs or both agree to give up.


7.2 Goods and chores as services


The key point of the proposed models is that each of the two players owns
a set of items that enters it the barter process, I for A and J for B.
In the technical report we suppose that both I and J contain goods or elements
that have a positive value for both players.
From this point of view a good may also be a service that one player is willing
to perform on behalf of the other.
In this case, for instance, player A asks to player B for one of the available B’s
services in exchange for one of the available A’s services that player B asks to
player A. Of course this occurs in the one-to-one barter case.
Another perspective sees the two sets I and J as containing chores or items that
have a negative value for both players.
In this latter case the two players try to allocate each other their chores so that
a chore allocated from A to B can be seen as a service performed by B on behalf
of A to solve a problem of A. In this way we can unify the two perspectives and
consider the goods case as a general case.


7.3 Some definitions


With the term barter, as we use it in section 8, we mean an exchange of
goods for other goods without any involvement of money or any other numerary
good.
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We can have either a one shot barter or a repeated or multi shot barter.
In the one shot case the two actors execute the barter only once by using a
potentially multi stage process that aims at a single exchange of goods and can
involve a reduction of the sets of goods to be bartered.
In the multi shot case they repeatedly execute the barter process, every time
either with a new set of goods or with a possibly partially renewed set of goods
but usually excluding previously bartered goods.
In section 8 we are going to examine only the one shot barter case between the
two actors so that there is no possibility of retaliation owing to repetitions of
the barter. We discuss the multi-hot case in section 8.9.
In order to avoid interpersonal comparisons and the use of a common scale we
let the two players show each other their goods and ask separately to each of
them if he thinks the goods of the other are worth bartering. If both answer
affirmatively we are sure that such interval exists otherwise we cannot be sure
of its existence. Anyway the bartering process can go on, though with a lower
possibility of a successful termination.
In this way we describe the absence of a common market (as a place where goods
have common and exogenously fixed evaluations in monetary terms) between
the two players as well as the absence of any outer evaluator that can impose or
even only suggest to both players common evaluations according to a common
numerary quantity.


8 The explicit barter models


8.1 Introduction


We suppose the actor A with his pool I = {i1, . . . , in} of n heterogeneous12


goods and the actor B with her pool J = {j1, . . . , jm} of m heterogeneous goods.
The sets I and J represent all the goods that both players are willing to barter
on that occasion so that there is no “hidden good” that can be added at later
stages. This is a design choice that qualifies the proposed models as models of
explicit barter. If we imagine that the players have “hidden goods” that can
be revealed and added to the sets at later stages we deal with what we may
define an implicit barter (see section 9). In the present section we deal only
with barters of the former type.
In this case A assigns a private (i.e. known only by him) vector vA of n values
to his goods of the set I, one value v(i) for each good i ∈ I.
Also B assigns a private vector vB of m values to her goods of the set J . These
vectors are fixed before the barter begins and cannot be modified during the
barter. From these hypotheses, for any subset K ⊆ I, player A once for all can


12To define the concept of heterogeneity we let the players show each other their goods
and separately ask each of them if he thinks whether the goods of the other can be considered
enough heterogeneous or not: in the affirmative case they can go on with the barter whereas
in the negative case they must decide what to do, if to go on or give up. See further on for
the possibilities to go on.
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evaluate, by using a property of additivity, the quantity:


vA(K) =
∑


ik∈K


vX(ik) (24)


A similar quantity may be independently evaluated by player B for any subset
H ⊆ J .
In a similar way we can define a private vector sA of m values of the appraisals
of the goods of B from A and a vector sB of n values of the appraisals of the
goods of A from B. In this case, A can evaluate:


sA(H) =
∑


jh∈H


sX(jh) (25)


for any subset H ⊆ J . A similar quantity may be independently evaluated by
player B for any subset of I.
These assignments reflect the basic hypotheses that A can see the goods of B
but does not know vB (the values that B assigns to her goods) and the same
holds for B with respect to A.
In this way we can define four types of barter:


1. one-to-one or one good for one good;


2. one-to-many or one good for a basket of goods;


3. many-to-one or a basket of goods for one good;


4. many-to-many or a basket of goods for a basket of goods.


The second and the third case are really two symmetric cases so they will be
examined together in a single section.


8.2 One-to-one barter


Even in this simple type of barter there must be a pre-play agreement be-
tween the two actors that freely and independently agree that each other’s goods
are suitable for a one-to-one barter. The barter can occur either with simulta-
neous (or “blind”) requests or with sequential requests.
In the case of simultaneous requests, at the moment of having a barter we
can imagine that the two actors privately write the identifier of the desired good
on a piece of paper and reveal such information at a fixed time after both choices
have been made. In this case we have that A requires j ∈ J and B requires
i ∈ I so that A has a gain sA(j) but suffers a loss vA(i) and B has a gain sB(i)
but suffers a loss vB(j).
The two actors can, therefore, evaluate privately the two changes of value of
their goods (that we may slightly improperly call utilities):


uA(i, j) = sA(j) − vA(i) (26)
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uB(i, j) = sB(i) − vB(j) (27)


since all the necessary information is available to both actors after the two
requests have been devised and revealed.
Equations such (26) and (27) are privately evaluated by each player that only
explicitly declares acceptance or refusal of the barter, declaration that can
be verified to be true by an independent third party upon request. We note
that a possible strategy for both players is to maximize the value they get from
the barter (and so sA(j) and sB(i)). Owing to the simultaneity of the requests
this is not a guarantee for each player of maximizing his own utility since in
equations (26) and (27) we have a loss due to what the other player asks for
himself (and so vA(i) and vB(j)) (see section 8.4).
The basic rule for A is the following13:


if(uA ≥ 0) then acceptA else refuseA (28)


and a similar rule holds also for B.
We have therefore the following four cases:


1. both players accept, acceptA and acceptB,


2. player A refuses and B accepts, refuseA and acceptB,


3. player A accepts and B refuses, acceptA and refuseB,


4. both players refuse, refuseA and refuseB.


that we are going to describe in detail in section 8.3.
In the case of sequential requests we can imagine that there is a chance move
(such as the toss of a fair coin) to choose who moves first and makes a public
request. In this way both A and B have a probability of 0.5 to move first.
If A moves first (the other case is symmetric) and requires j ∈ J , B (since she
knows her possible request i ∈ I) may evaluate her utility in advance using
equation (27) whereas the same does not hold for A that, when he makes the
request, does not know the choice i ∈ I of B and so cannot evaluate vA(i).
At this level B can either explicitly refuse (if uB < 0) or implicitly accept (if
uB ≥ 0).
In the refuse case B can only take the good j off her set so that the process
restarts with a new deliberation of the possibility of the barter and a new chance
move.
In the accept case the implicit acceptance is revealed by the fact that also B
makes a request. In this case B may be tempted to chose i ∈ I so to evaluate:


max uB(i, j) = max (sB(i) − vB(j)) = max sB(i) (29)


where the quantity vB(j) is fixed (since it depends on the already expressed
choice of A) and cannot be modified by B.


13In the general case we have uA ≥ ε with ε > 0 if there is a guaranteed minimum gain or
with ε < 0 if there is an acceptable minimum loss.
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Acting in this way, B may harm A by causing uA < 0 and this would prevent
the barter from occurring at this pass. Roughly speaking we can say that since
B choses after A she can act accommodatingly or in an exploitative way: in
the first case the probability that the barter occurs is higher than in the second
case. Anyway B makes a request of i ∈ I so that also A can evaluate his utility
through equation (26).
Now, using rules such as (28), we may have the cases we have already seen
except for the case of double refusal since the case where who choses as the
second refuses is handled at a different stage of the algorithm (see section 8.3).
All this goes on until both accepts (so the barter occurs) or one of them empties
his set of goods or both decide to give up since no barter is possible, how it
will be clear from the description of the algorithm that we are going to make in
section 8.3.


8.3 Formalization of the models


In this section we present a concise but fairly detailed listing of the two
models of the one-to-one barter, starting from the case of simultaneous or
“blind” requests.
In this case the algorithm is based on the following steps:


(1) both A and B show each other their goods;


(2) both players decide if the barter is [still] possible or not;


(a) if it is not possible then go to step (6);


(b) if it is possible then continue;


(3) both simultaneously perform their choice (so A chooses j ∈ J and B
chooses i ∈ I);


(4) when the choices have been made and revealed both A and B can make
an evaluation (using equations (26) and (27)) and say if each accepts or
refuses (using rules such as (28));


(5) we can have one of the following cases:


(a) if (acceptA and acceptB) then go to step (6);


(b) if (refuseA and acceptB) then \\at A’s full discretion


i. either A executes I = I \ {i} and if (I 6= ∅) then go to step (2)
else go to step (6);


ii. or A only executes a new choice and then go to step (4);


(c) if (acceptA and refuseB) then \\at B’s full discretion


i. either B executes J = J \ {j} and if (J 6= ∅) then go to step (2)
else go to step (6);


ii. or B only executes a new choice and then go to step (4);
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(d) if (refuseA and refuseB) then


i. A executes either I = I \ {i} or a new choice; \\at A’s full
discretion


ii. B executes either J = J \ {j} or a new choice; \\at B’s full
discretion


iii. if (both A and B make a new choice) then go to (4);


iv. if (only one of A and B makes a new choice and the reduced set
of the other is not empty) then


- if (the barter is still possible) then go to (4);


- if (the barter is not possible) then go to (6);


v. if (only one of A and B makes a new choice and the reduced set
of the other is empty) then go to step (6);


vi. if (both reduce each one’s set and I 6= ∅ and J 6= ∅) then go to
step (2) else go to step (6);


(6) end of the barter.


The solution we have adopted at point (5.d) is the most flexible since it mixes
the two cases (5.b) and (5.c) and gives the two players the full spectrum of
possibilities at the same time remaining simple enough to be understood and
implemented by even not full rational players .
We remark how at the very beginning of the process we suppose that the barter
is possible though this is not necessarily true at every successive interaction.
We now give the description of the model with sequential requests. We denote
the player who moves first as 1 (it can be either A or B) and the player who
moves second as 2 (it can be either B or A) and for both we use male forms.
With a similar convention we denote as I1 the set of goods and i1 a single good
of player 1 whereas for player 2 we have respectively I2 and i2:


(1) both players show each other their goods;


(2) both players decide if the barter is [still] possible or not;


(a) if it is not possible then go to step (10);


(b) if it is possible then continue;


(3) there is a chance move to decide who moves first (be it 1) and makes a
choice;


(4) 1 reveals his choice i2 ∈ I2;


(5) 2 can now perform an evaluation of all his possibilities;


(6) if 2 refuses he takes i2 off his barter set then go to (2);


(7) if 2 accepts he can reveal his choice i1 ∈ I1;


(8) both 1 and 2 can make an evaluation (using equations such as (26) and
(27)) and say if each accepts or refuses (using rules such as (28));
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(9) we can have one of the following cases:


(a) if (accept1 and accept2) then go to step (10);


(b) if (refuse1 and accept2) then \\at 1’s full discretion


i. either 1 performs I1 = I1 \ {i1} and if (I1 6= ∅) then go to step
(2) else go to step (10);


ii. or 1 only performs and reveals a new choice and then go to step
(8);


(c) if (accept1 and refuse2) then \\at 2’s full discretion


i. either 2 performs J1 = J1 \ {j1} and if (J1 6= ∅) then go to step
(2) else go to step (10);


ii. or 2 only performs and reveals a new choice and then go to step
(8);


(10) end of the barter.


We note that the case (9.c) (accept1 and refuse2) can occur as a consequence
of the case (9.b) and the jump to (8).


8.4 Possible strategies in the one-to-one barters


We now make some comments on the possible strategies that the players can
adopt in the case of the algorithms we have shown in section 8.3.
In the case of simultaneous requests both players perform their choice with-
out knowing the choice of the other. If they evaluate their utilities according to
equations such as (26) and (27) their best strategy would seem to choose the
good of the other that each value at the most.
In this case we have that:


A requires ĵ = argmaxj∈JsA(j) and causes B a loss that A may only roughly
estimate;


B requires î = argmaxi∈IsB(i) and causes A a loss that B may only roughly
estimate.


Acting in this way each of them may have the other player to refuse the barter.
As we have seen a refusal may turn into the withdrawal of a good from one of
the sets I or J . This fact is surely unfavorable for each player.
Both players therefore have strong incentives to devise better strategies.
In what follows we introduce one possible strategy under the hypothesis the
both players use a more slack rule than rule (28) so that acceptance or refusal
are rather discretionary than linked to a condition satisfaction criterion.
We devise a strategy for player A whereas for player B we have two possibilities:


(1) B follows a generic non systematic strategy,


(2) B follows a similar strategy.
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The strategy for A is the following.
A orders the set J of B in increasing order (from the lowest to the highest)
according to the values he gives to its elements.
In the case (1) B uses a generic strategy of selection whereas in the case (2)
she uses an analogous strategy over the set I of A: we can state that (2) is the
best response for B if A uses that strattegy.
The process of choice and request involves a certain number of pass until an
agreement is reached either in a positive or in a negative sense. At the generic
l-th pass (with l = 1, . . . ) A requires the current item of higher value jl ∈ J
whereas B chooses i ∈ I.
After the (l − 1)−th choice from both A and B at pass l we may have:


(a1) A accepts so that everything depends on the decision taken by B,


(a2) A refuses so that both goes at pass l +1-th independently from the choice
made by B.


In this way A (but a similar argument holds also for B) scans the vector J
from higher to lower values goods looking for the right opportunity to perform
a barter and having as the last choice the remaining good of lowest value. We
recall indeed that at any pass, in case of a refusal, each player may decide to
prune his/her own sets of goods.
In the case of sequential requests we have that the two players make the
choice one after the other according to an order that, at each step, depends on a
random device. In this case, therefore, the players can adopt strategies similar
to those we have seen for the simultaneous requests case but can try to exploit
the advantage of being second mover.
Let us suppose we are at a generic step where A moves as first and B as second.
We consider B’s point of view but similar considerations hold also for A’s point
of view. B has ordered the goods of I in increasing order of value. In this case
we have:


- A chooses j ∈ J so that B is able to evaluate vB(j)


- B can choose i ∈ I so to get a high value of his utility uB(i, j) = sB(i) −
vB(j) but


- without hurting A since in that case A could refuse the barter.


We recall that a refusal may turn into the pruning of a set and so in a unfa-
vorable outcome for the requesting player that had requested the good that is
going to be pruned. From these considerations we derive that the step-by-step
strategy that we have seen in the simultaneous requests case can be profitably
used also in this case.
Similar strategies can be conceived, with the proper modifications and adapta-
tions, for the other three models of barter that we are going to describe in the
next two sections.
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8.5 One-to-many and many-to-one barters


In these two symmetric cases one of the two actors has the possibility to
require one good whereas the other has the possibility to require a basket of
goods (that can even contain a single good) and so any subset of the goods
offered by the former. This kind of barter must be agreed on by both actors
and can occur only if one of the two actor agrees to be offering a pool of “light”
goods whereas the other agrees to be offering a pool of “heavy” goods.
The meaning of the terms “light” and “heavy” may depend on the application
and must be agreed on during a pre-barter phase by the actors themselves. We
remark how the adopted perspective (lack of any quantitative common scale)
turns into qualitative evaluations of the goods so that they are termed light if
they are assigned qualitatively low values whereas they are termed heavy if
they are assigned qualitatively high values.
The aim of this preliminary phase is to give one of the two actors the possibility
of asking for any set of goods whereas this same possibility is denied to the
other. If there is no agreement during this phase, three possibilities are left:
they may decide either to give up (so the bather process neither starts) or to
switch to a one-to-one barter (see section 8.2) or to a many-to-many barter (see
section 8.6).
If there is a pre-barter agreement we may have two symmetrical cases. In this
section we are going to examine only the “one-to-many” case. In this case we
have that A owns “light” goods and may require only a single good j ∈ J but
B owns “heavy” goods and may require (at her free choice) a subset Î0 ⊆ I
of goods with |Î0| ≤ n and the two requests may be either simultaneous or
sequential.
In the case of simultaneous requests both actors can evaluate their respective
utilities, soon after the requests have been revealed, by using equivalent relations
to (26) and (27):


1. uA(Î0, j) = sA(j) − vA(Î0)


2. uB(Î0, j) = sB(Î0) − vB(j)


where both players use equations like (24) and (25) and the additivity hypoth-
esis.
Also in this case we can have the four cases we have seen in section 8.2. We
note, however, how in this case if, for instance, A refuses, using a rule such as
(28), he can either repeat his request (with B keeping fixed her request ) or
can act as we are going to show in section 8.6. In the latter case indeed A can
partitions his goods in subsets that he is willing to barter, possibly updating
these subsets at every refusal. Except for this fact the barter goes on as in the
one − to − one case with simultaneous requests.
In the case of sequential requests the procedure does not use a chance move
to assign one of the two actors the right to move first but gives this right to
the actor that owns the pool of “light” goods. After this first move the barter
goes on as in the one − to − many case with sequential requests but without
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any chance move and with the modification we have introduced for the case of
the refusal (see section 8.6).


8.6 Many-to-many barter


In this case A may choose and require any subset Ĵ0 ⊆ J with 1 ≤ |Ĵ0| ≤ m
of the goods of B whereas B may chose and require any subset Î0 ⊆ I with
1 ≤ |Î0| ≤ n of the goods of A and the two requests may be either simultaneous
or sequential.
Also this kind of barter must be agreed on by both actors in a pre-barter phase
during which they both agree that in the course of the barter each of them can
ask for any subset of the goods of the other player.
Since also in this case we can have either simultaneous or sequential requests
the algorithms are basically the same that in cases of one-to-one barter. The
main differences are about


(1) the use of the subsets and


(2) the way in which every case of refusal is managed.


As to the point (1) we note that in the algorithms we must replace single
elements with subsets of the pool of goods so that the evaluations must be per-
formed on such subsets by using equations (24) and (25) and so the additivity
hypothesis.
As to the point (2) in the algorithms for the one-to-one barter the solution we
adopted was the possible pruning of the set of the goods from the refusing actor
(see the points 5 or 9 (b), (c) and (d) of the algorithms of section 8.3).
This solution cannot be applied in the present case since this policy could empty
one of the two initial pools or both in a few steps. To get a solution in this
case we can devise an independent partitioning strategy of the two sets of goods
from both actors A and B.
In this case at the very start of the barter the two players show each other their
sets of goods so to hide their preferences that are partially revealed only after
each refusal. After every (possibly double) refusal the player who refuses (be it
A) uses the procedure partitioningA(I) to split I in labeled disjoint subsets so
to make clear to B which are the subsets of goods that he is inclined to barter at
that stage. The case of B is fully symmetric. We note that under the additivity
hypothesis the sets I and J can be partitioned at will by their respective owner.
This solution is implemented by replacing all the occurrences of the assign-
ment instructions I = I \ {i} and J = J \ {j} respectively with the following
assignments:


I = partitioningA(I) = {Ii | ∪i Ii = I Ii ∩ Ij = ∅ ∀ i 6= j} (30)


J = partitioningB(J) = {Ji | ∪i Ji = J Ji ∩ Jj = ∅ ∀ i 6= j} (31)


so to replace a flat set with a set of disjoint labeled subsets.
In this case, referring to A, we have that if A refuses the barter proposed by
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B he can either repeat his request with B keeping fixed her request or he can
partition his set in subsets as collective goods that he is willing to barter with
subsets of the goods of B. The case of B is fully symmetrical.
We recall how the barter in this case may evolve as follows. At the very start
the two players propose each other their sets of goods. Then we can have the
following cases. (1) Both players make a request and both accept. In this easy
case the barter is successful and ends. (2) Both players make a request but one
accepts whereas the other refuses. The refusing player has the possibility to
rearrange his set of goods. This rearrangement is a partitioning of the player’s
set of goods according to the rules (30) or (31) so that the other player, at the
next step, knows which are the subsets that can enter successfully into a barter.
(3) Both players make a request and both refuses. The rearrangement is per-
formed by both players at the same time.
For further details we refer to section 8.3.


8.7 The basic criteria


In this section we refer to the criteria we introduced in section 4.
Such criteria, in order to be used in our context of two players without either
any common scale or any numerary good, must be adapted or must be rede-
fined someway so to be in agreement either with the essence of their classical
definitions or with intuition or with both. In what follows we are going to make
use of a general notation that must be specialized in the single models we have
already presented in the proper past sections.
We start with envy-freeness. If we denote with14 aA(·) and lA(·) the values
in A’s opinion and evaluation, respectively, of what A obtains and loses from
the barter (and with aB(·) and lB(·) the same quantities for player B15) we say
that the allocation deriving from a barter (or a barter tout court) is envy-free
if we have for A:


aA(·)


lA(·)
≥ 1 (32)


and for B:
aB(·)


lB(·)
≥ 1 (33)


As we have already seen from section 8.1 on, if a barter actually occurs it is
guaranteed to be envy-free. Relation (32) means that the value that A assigns


14With · we denote a generic set of bartered goods. This set may contain, depending on
the case, also a single element.


15Such quantities need to be specialized case by case. In the one-to-one barter model, for
instance, we have that:


1. aA(·) = sA(j)


2. lA(·) = vA(i)


3. aA(·) = sB(i)


4. lB(·) = vB(j)


whereas in the other cases the single elements must be replaced by the properly defined subsets.
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to what he gets from the barter is at least equal to the value that A assigns
to what he loses from the barter. We assign a similar meaning to relation (33)
with regard to B.
Since, in the case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must give a definition that mirrors the
classical definition of proportionality and reflects this equivalence.
For player A we may define a barter as proportional if it satisfies the following
condition:


aA(·)


aA(·) + lA(·)
≥


lA(·)


aA(·) + lA(·)
(34)


so that the fractional value of what A gets from the barter is at least equal to
that of what he loses from it. We remark that aA(·)+ lA(·) represents the value
that A assigns to the bartered goods.
A similar condition holds also for B:


aB(·)


aB(·) + lB(·)
≥


lB(·)


aB(·) + lB(·)
(35)


We say that a barter is proportional if both (34) and (35) hold.
It is easy to see how from equation (34) it is possible to derive equation (32)
and vice versa. The same holds also for equations (35) and (33).
As to equitability we must adapt its definition to our framework in the fol-
lowing way. We need firstly some definitions. We define (with respect to the
occurrence of the barter itself) I and I ′, respectively, as the ex-ante and ex-post
sets of goods of A and J and J ′, respectively, as the ex-ante and ex-post sets of
goods of B. If (i, j) denotes the bartered goods (i from A to B and j from B
to A) in a one-to-one barter, we have:


I ′ = I \ {i} ∪ {j} (36)


J ′ = J \ {j} ∪ {i} (37)


In the case of other kind of barters involving also subsets of goods we must
appropriately replace single goods with subsets.
On the sets I ′ and J ′ we define, for the player A, the quantities that represent
the values for A himself, after the bater, of his goods and B’s goods, respectively,
as aA(I ′) and lA(J ′). We therefore define a barter as equitable for A if the
fractional value of what he gets is at least equal to the fractional value he gives
to what he loses from the barter or:


aA(j)


aA(I ′)
≥


lA(i)


aA(I)
(38)


On the other hand the barter is equitable for B if, using the corresponding
quantities we used in equation (38) but referred to player B, we have:


aB(i)


aB(J ′)
≥


lB(j)


aB(J)
(39)
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If both relations hold we say that the barter is equitable. We remark that we
are under an additivity hypothesis where the value of a set is given by the sum
of the values of its elements so that the value that a player assigns to a set, such
as I ′ or J ′, is the sum of the values that the player assigns to the elements of
that set.
As to efficiency we say that a barter of the two goods (i, j) (or of the one-to-
one type) is efficient if there is not another pair of goods (i′, j′) that gives at
least to one player a better result without hurting the other.
For players A and B this means that there is no barter (i′, j′) that satisfies the
following inequalities:


aA(j)


lA(i)
≤


aA(j′)


lA(i′)
(40)


aB(i)


lB(j)
≤


aB(i′)


lB(j′)
(41)


with at least one of them satisfied with the < relation.
In such relations the pairs lA(i), aA(j) and and lA(i′), aA(j′) are related to A
and are associated respectively to (i, j) and to (i′, j′). Similar quantities are
defined also for player B.
We remark how we are under the hypothesis that at least one of the following
inequalities hold:


1. i′ 6= i


2. j′ 6= j


Also in this case if the barter involves subsets of goods such relations must be
modified by replacing single goods with properly defined subsets of goods. We
note that if the barter is such that both players attain:


aAmax


lAmin


(42)


and
aBmax


lBmin


(43)


we are sure to have an efficient barter whereas if both attain:


aAmin


lAmax


(44)


and
aBmin


lBmax


(45)


we are sure that the barter is surely inefficient. In (42) and (44) with respec-
tively aAmax


and aAmin
≤ aAmax


we denote the maximum and minimum values
that A assigns to the goods he can get from the barter and with lAmax


≥ lAmin


and lAmin
we denote the maximum and minimum values that A assigns to the


goods he may lose from the barter. In (43) and (45) we have the same quantities
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assigned to the corresponding goods by player B.
We remark how conditions (42), (43), (44) and (45) are sufficient conditions of
efficiency and do not represent effective strategies for each player since condi-
tion (42), for instance, has a quantity that depends on the choice of A at the
numerator but a quantity that depends on the choice of B as denominator.
Last but not least, we note, from the equations (42) and (43), how efficiency
of a barter cannot be always guaranteed and must be verified case by case.


8.8 Fairness of the proposed solutions


In this section we aim at verifying if the solutions we have proposed in the
previous sections satisfy the criteria we stated in section 8.7 so that we can say
whether they produce fair barters or not.
We start with envy-freeness in the one-to-one barter. In this case a barter
occurs if and only if both A and B get a non negative utility from it or if both
players think each of them gets no less than one looses. This turns, in the
simplest case, in the following conditions (involving strictly positive quantities):


(b1) sA(j) − vA(i) ≥ 0 or sA(j)
vA(i) ≥ 1


(b2) sB(i) − vB(j) ≥ 0 or sB(i)
vB(j) ≥ 1


so that (b1) coincides with relation (32) and (b2) coincides with relation (33).
In this way we can derive that if a barter occurs then it is guaranteed to be envy-
free (and therefore proportional, since we have maintained the equivalence
between the two concepts in the current case of two players).
In more complex settings things may be more tricky to prove but, following
similar guidelines, it is possible to show that whenever a barter occurs it is
guaranteed to be envy-free.
We recall that in every case where a set of goods is involved we can evaluate its
worth by using the additivity hypothesis.
As to equitability (see relations (38) and (39)) we refer only to player A since
the case of B is completely analogous. In this case we remark that:


(eq1) aA(j) < aA(I ′)


(eq2) lA(i) < aA(I)


From (eq1) and (eq2) we can easily derive aA(j)lA(i) < aA(I ′)aA(I) or:


aA(I ′)


aA(j)
>


lA(i)


aA(I)
(46)


On the other hand from (eq1) it is possible to derive:


aA(I ′)


aA(j)
>


aA(j)


aA(I ′)
(47)
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If we compare relations (46) and (47) with relation (38) we can easily see that
there may be possibilities to have an equitable barter for A and, in a similar
way, an equitable barter for B so to get an equitable barter.
For A this occurs if we get:


aA(I ′)


aA(j)
>


aA(j)


aA(I ′)
>


lA(i)


aA(I)
(48)


since the rightmost inequality is equivalent to relation (38).
In order for this to happen we must have:


aA(j)aA(I) > aA(I ′)lA(i) (49)


or:
aA(j)aA(i) = aA(j)lA(i)α > aA(I ′)lA(i) (50)


so that we need to find the minimum value α > 1 such that:


αaA(j) > aA(I ′) (51)


holds. Instead than using (eq1) we could have used (eq2) so to derive the corre-
sponding necessary value for another proportionality coefficient β.
In this way, since we do not use at all the condition of envy-freeness, we estab-
lish an independence between the two concepts but for the fact that if a barter
is not envy-free it does not occur so that it is not possible to evaluate its degree
of equitability.
Last but not least we deal with the verification of the efficiency of a barter
(i, j) in the case of a one-to-one barter. In this case we must verify that there
is not another barter (i′, j′) such that the relations (42) and (41) hold.
Even if A choses ĵ (see section 8.4) B could have chosen i′ such that lA(i′) < lA(i)
so that relation (42) (with j = ĵ) would be verified implying that the current
barter (i, ĵ) is not efficient.
Similar considerations hold also for B. From these considerations we derive that
efficiency for both players can be verified only a posteriori. If it is violated we
derive inefficiency from which both actors may derive a regret that could be
(at least partially) compensated through repeated barters (see section 8.9).
Summing up, we can say that, in the case of one-to-one barter:


- envy-freeness is guaranteed every time a barter occurs,


- equitability may be guaranteed at every barter,


- efficiency must be verified a posteriori at every barter,


so that the fairness of a barter is a by-product of the barter process itself and
is not a-priori guaranteed by its structure.
Similar considerations hold also for the other three models by replacing single
elements with properly defined subsets of elements.
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8.9 Extensions


The planned extensions include the possibility of (1) repeated barter in-
volving (2) even more than two players and (3) the relaxing of additivity.
If we allow the execution of repeated barters we must introduce and manage
the possibility of the retaliations between the players from one barter session
to the following sessions and how the pool of goods are defined and/or modi-
fied between consecutive barter sessions. In the proposed algorithms (currently
stateless) we can deal with the presence of the retaliation through state vari-
ables that account for past attitudes of the players (Axelrod (1985) and Axelrod
(1997)).
If we allow the presence of more than two players we must introduce the
mechanisms for the execution of parallel and concurrent negotiations.
If, for instance, we have three actors A, B and C we can have (in the case of
one-to-one barter with simultaneous requests) the following possibilities:


(1) circular one-to-one requests where, for instance, A makes a request to B,
B to C and C to A;


(2) one-to-many requests so that A makes a request to B and C, B makes a
request to A and C and C makes a request to B and A.


In the former case there can be no conflict/concurrence whereas in the latter it
can occur that two actors ask the same item to the third causing a conflict that
must be resolved in some way.
In both cases we have that:


- the barter occurs if and only if every actor accepts what is proposed by
the others;


- if all actors refuse the others’ proposals a rearrangement (that depends
on the nature of the barter) of the respective pools occurs followed by a
repetition of the barter;


- in all the other cases the procedure must allow the refusing actors (two at
the most) to repeat their request.


Obviously in all the other cases the interactions tend to be more and more com-
plex. Analysis of such extensions can be carried out using the tools suggested
in Myerson (1991), section 9.5 where graphical cooperation structures are intro-
duced and used.
As a last extension we mention the relaxing of additivity. Additivity is
undoubtedly a simplifying assumption and is based on the hypothesis of the
relative independence of the goods that the actors want to barter among them-
selves. This hypothesis in many cases is not justified since functional links, for
instance, make the goods acquire a value when and only when they are prop-
erly combined. In such cases the goods must be bartered as dynamically chosen
subsets and cannot enter properly in a one-to-one barter. The issue is very com-
plex (so complex that Brams and Taylor (1996) and Brams and Taylor (1999)
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deal with it only marginally) and here we only make some basic comments and
considerations and present a toy example.
We recall that player A choses among the goods of B and vice versa. What A
loses, owing to the choice performed by B, belongs to the set I and is evaluated
according to the values of vA and what he gets belongs to J and is evaluated
according to the values of sA. Similar considerations hold also for player B.
Up to now we have supposed that A evaluates subsets of the goods involved in
the barter with additive rules and that the same holds also for B. From this
point on we are going to consider both subadditivity and superadditivity for
player A but similar considerations hold also for player B.
We note that as to sA subadditivity (or the case where the value of the set is
lower than the sum of the values of its composing elements) is meaningless since
in this case A would be better off by simply asking for a single good from B
(possibly in a repeated barter). On the other hand subadditivity on vA is highly
implausible since there is no reason to believe that A would bring to the barter
goods that taken as sets are worth less than the single goods.
From these considerations we derive that A sees :


(1) J in a superadditive way by hypothesis and


(2) I in a superadditive way as his worst case


and similar considerations hold also for the player B.
As to (1) this means that ∀K ⊆ J :


sA(K) ≥
∑


jk∈K


sA(jk) (52)


A is of course more interested in subsets K ⊆ J such that:


sA(K) >
∑


jk∈K


sA(jk) (53)


We call the subsets for which relation (52) holds the superadditive subsets of
J and those for which relation (53) holds the strictly superadditive subsets
of J .
As to (2) we recall that I contains the goods that A loses in the barter so that
the condition:


vA(H) ≥
∑


ih∈H


vA(ih) (54)


(for H ⊆ I) represents a worst condition for A with regard to the additive case
in the evaluation of his utility in the one-to-many and many-to-many barter
cases.
At this point we have the cases of Table 4 where we show the possible typologies
of the players with regard to the values sA for A and sB for B.
From this perspective, the fact that A is superadditive means that at least re-
lation (52) holds and the same is true for B if she is superadditive.
From that Table we se that if both players are superadditive they are more
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A vs. B additive superadditive
additive one-to-one one-to-many


superadditive many-to-one many-to-many


Table 4: Possible types for the ways in which each player evaluates their re-
quested goods


willing to agree on a many-to-many barter, if they are both additive they may
prefer a one-to-one barter whereas if one is superadditive and the other is addi-
tive they may agree on either a many-to-one or a one-to-many barter depending
on which is the superadditive player.
In the closing part of this section we are going to deal only with the many-to-
many barter case with simultaneous requests where A asks for the goods
of the set J0 ⊆ J and loses the goods of the set I0 ⊆ I whereas B asks for the
goods of the set I0 ⊆ I and loses the goods of the set J0 ⊆ J .
Also in this case the core of the algorithms (see sections 8.3 and 8.6) is composed
by the four cases that may occur at each pass:


(a) both A and B accepts the proposed barter so that the process ends with
a success;


(b) A accepts but B refuses;


(c) A refuses whereas B accepts;


(d) both A and B refuse.


In the symmetric cases (b) and (c) the accepting player keeps his request fixed
while the refusing player has two possible mutually exclusive strategies:


- can repeat his choice;


- can partition (on the first refusal) or rearrange a partitioning (on succes-
sive refusals) his set of goods so that another round may occur.


In the case (d) each player has both the repeater and the modifier strategies at
his disposal.
The fact that a player rearranges in some way his goods through the definition
of variable partitions interfere with the superadditive evaluations of the other
player and this may cause both players agree that there is no possibility for the
process to go on (see the step (2.a) of the simultaneous requests algorithm of
section 8.3).
To make things more concrete we now make a toy example. We suppose to have
a player A with his set of goods I = {i1, i2, i3, i4, i5} and another player B with
her set of goods J = {j1, j2, j3, j4, j5, j6}.
We suppose that both A and B have [strictly] superadditive evaluations of the
involved goods (so that relation (52) and possibly relation (53) hold) and both
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are interested in a many-to-many barter and agree to carry it on.
Such a barter may therefore involve not all the possible subsets of I and J but
only some of them so that:


- B can see I as made of the following set of [possibly strictly] superadditive
subsets without A knowing this:


I = {I1, I2, I3, I4} = {{i1, i2}, {i1, i3, i4}, {i4, i5}, {i2, i3, i5}} (55)


- A can see J as made of the following set of [possibly strictly] superadditive
subsets without B knowing this:


J = {J1, J2, J3, J4, J5} = (56)


{{j1, j2, j3}, {j1, j3, j4}, {j4, j5}, {j3, j5, j6}}, {j2, j3, j5, j6}}


At the very start A and B agree on a many-to-many barter with, for instance,
simultaneous requests. Both A and B make their requests and evaluate their
utilities so to decide if each accepts or refuses.
If both players accept the barter ends with a success.
If only one player refuses, only the refusing player can either reiterate the request
or partition his set of goods so to make clear to the other which subsets he is
willing to barter. The players have the same possibilities also in the case of
double refusal.
In this way the partitioning may conflict with the way in which each player sees
the goods of the other so that either they are able to fix this mismatch, during
the next phases, in order to attain the barter or both declare that no barter is
possible and so the barter ends with a failure. For the fine grain structure of
the algorithm we refer to the sections 8.3 and 8.6.
In our example we could have:


(1) A asks for J1 and B asks for I2 so the currently tentative barter is (I2, J1);


(2) A refuses and B accepts;


(3) A may change his request as J3 so the currently tentative barter becomes
(I2, J3);


(4) B refuses and partitions J as J = {J ′, J ′′} = {{j1, j2, j4}{j3, j5, j6}};


(5a) A asks for J ′ and both accepts so the barter occurs;


(5b) A refuses so that both refuse and decide that no barter is possible;


(5c) A may change his request as J5 so the currently tentative barter becomes
(I2, J5);


(5d) B refuses and partitions J as J = {J ′, J ′′} = {{j1, j3, j4}{j2, j5, j6}} and
so on until either (5a) or (5b) occur.


We remark how at step (3) we have sA(J1) = sA(J3) but at step (4) we have
vB(J1) < vB(J3) so that A accepts but B refuses.
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8.10 The applications of the explicit barter models


In an explicit barter we have two players A and B that truthfully reveal the
sets of items they are willing to barter.
We remark how the items of each set can simply be listed without being shown
and this is particularly true in the case where the sets contain also services.
If one of the players acts strategically, so to misrepresent his set of items, whereas
the other acts truthfully we have that the strategic player may force the other
to refuse the barter so tat both suffer a missed gain.
If both act strategically they may agree to barter low values items whereas they
could have at their disposals much more valuable (within the barter) items.
We have therefore determined that both actors have strong incentives to truth-
fully reveal the sets of items they are willing to barter. We now see some possible
applications of the proposed models.
In the one-to-one case we may use it for the exchange of:


- one good for one good,


- one good for one service,


- one service for one chore


- one chore for one chore,


- one service for one service,


that the two players see as [at least qualitatively] equivalent in the pre-barter
phase In the one-to-many and many-to-one cases we have similar situations
but for the fact that one player must allow the other to choose a subsets of his
items depending on a common agreement during a pre-barter phase. This mean
that, in the one-to-many case we have, for instance, the following cases:


- a set of goods for one good,


- a set of goods for one service,


- a set of services for one chore


- a set of chores for one chore,


- a set of services for one service.


Last but not least, in the many-to-many case we have that the foregoing possi-
bility must be conceded by each player to the other so that, from an applicative
point of view, this last case is coincident with the first one but for the fact that
where have one we must read one set.


51







9 Some remarks about the iterative barter mod-
els


9.1 Introduction


In section 10 we present16 two types of models of barter that may be seen as
an extension of the models we presented in Cioni (2008c) and Cioni (2008d) and
that we term as iterative since they are based on iterative algorithms through
which either one or both reveal the composition of the sets of items they are
willing to barter.
Both models involve indeed a pair of actors/players A and B that aim at bar-
tering a pair of items.
In the former model (the so called pure model) neither actor reveals to the
other the set of items he is willing to barter but such a revelation occurs incre-
mentally during the process since by exchanging proposals and counter proposals
the two players reveal each other the composition of such sets. The bargaining
process goes on until an agreement is reached and a bargaining occurs or both
players agree that no bargaining is possible so that the process ends with a
failure.
In the latter or mixed model, on the other hand, we have an asymmetric sit-
uation where one of the players, be it A, shows to B his set of items, be it I ′,
on which the bargaining process may start with a proposal from B. Also in
this case the process goes on with a series of proposals and counter proposals
from both players until one of the foregoing cases occurs. In this case player B
reveals the composition of his set of items during the course of the process.
We note that, in both cases, each player can be said to know which are the
items he is willing to bargain in the barter process.
This knowledge may be verified in advance by asking to each player if a given
proposal would be or not in his bargaining set (or the set of the acceptable
proposals).
From this perspective we can say that each player is characterized by a bargain-
ing set, IA for A and JB for B, whose structures and whose preference orderings
are private knowledge of each player and can be only partly revealed during the
barter process. The main difference between the two models that we propose is
that in the latter model the set IA is, at least partly, a common knowledge of
the two players under the form of the set I ′.


9.2 Some notes about the barter


In this section with the term barter we denote a process through which
two players A and B can exchange a pair of items17 (i, j) where both items are
evaluated according to each player’s private evaluation system that determines
either his rejection or his acceptance of the proposed items.


16The section 10 is based on Cioni (2009a).
17In what follows we sometimes refer to the former element of each pair (i, j) as the i−item


and to the latter as the j−item.
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The exchange, if it occurs, is in kind so that the items (i, j) are the only involved
items and there is no parallel or compensatory exchange of money or any other
numerary good between the players (see section 9.3).
In any generic pair (i, j) the identifier i identifies what passes from A to B either
under the form of a good or a bad or a service in exchange of the item identified
by j, of the same types, from B to A.
In Table 5 we show the possible ownership of the items of each pair depending
on their types.
The admissible types are:


(a) good (or g) or an item that has a positive value for both players;


(b) bad (or b) or an item that has a negative value for both players;


(c) service (or s) or an item that has a instrumental value for one or both
players and may represent a task that a player carries out for the other.


Each ownership is provided under the form of a pair (p1, p2) (p1 for i and p2 for
j) where both identifier may be A or B. In this way we identify the provider or
owner of an item so that, for instance, in correspondence of g, g we have (A, B)
to mean that the former good is owned by A and provided to B whereas the
latter is owned by B and provided to A so that, as receivers, we have (B, A)
We now examine the entries of Table 5:


- in the case g, g we have A, B since A gives to B a good in exchange for
another good of B;


- in the case g, b we have B, B since B gives to A both a good and a bad;


- in the case g, s we have A, B since A gives to B a good in exchange for a
service from B;


- in the case b, g we have A, A since A gives to B both a bad and a good as
a compensation;


- in the case b, b we have A, B since A gives to B a service and B gives to
A another service in exchange;


- in the case b, s we have A, A since A gives to B both a bad and a service;


- in the case s, g we have A, B since A gives a service to B and receives from
B a good as a compensation;


- in the case s, b we have B, B since B gives to A both a bad and a service;


- in the case s, s we have A, B since A gives to B a service and B gives to
A another service in exchange.


By using the content of Table 5 we can define another Table that, for each
element of each pair (i, j), defines which player is the giver and which is the
receiver. In Table 6 for each pair of items (i, j) we define:
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i and j g b s
g A,B B,B A,B
b A,A A,B A,A
s A,B B,B A,B


Table 5: Ownership of the elements of the pair (i,j )


id case i giver i receiver j giver j receiver
1 g,g A B B A
2 g,b B A B A
3 g,s A B B A
4 b,g A B A B
5 b,b A B B A
6 b,s A B A B
7 s,g A B B A
8 s,b B A B A
9 s,s A B B A


Table 6: Pairs (giver, receiver) for each item of each pair (i,j)


- who is the giver of the item i and who is the corresponding receiver;


- who is the giver of the item j and who is the corresponding receiver.


For instance in correspondence of the pair (i, j) = (g, g) we have A the giver of
i that is received by B and vice versa for the item j.
In this way we can identify the items each player gets or loses in a barter so
to assign a value to such acquisitions and losses. In section 9.3 we are going to
use such values in the definition of the evaluation criteria that we are going to
apply in section 10.5 to the models we are going to describe in section 10.
For player A this means that we imagine he uses two private values vA(j) and
vA(i) to evaluate, on a private scale, what A gets from the barter and what A
loses from it int that order.
In this way A can evaluate the ratio:


ρA =
vA(j)


vA(i)
(57)


as a dimensionless quantity.
For player B, in a similar way, this means that we imagine she uses two private
values vB(i) and vB(j) to evaluate, on a private scale, what B gets from the
barter and what B loses from it int that order.
In this way B can evaluate the ratio:


ρB =
vB(i)


vB(j)
(58)
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as a dimensionless quantity.
As to the quantities that are involved in relations (57) and (58) we note that
they:


- represent private information of each player;


- are measured according to private scales that may not be common knowl-
edge between the players;


- include possibly independent discount factors for each player so to account
for damages occurring to each of them from the passing of time.


Relations (57) and (58) are used respectively by player A and player B to accept
or refuse a proposed barter (see section 10).
Before going on we must fix in some way four problematic cases that are con-
tained in Table 6 and that we list again in Table 7.


id case i giver i receiver j giver j receiver
2 g,b B A B A
4 b,g A B A B
6 b,s A B A B
8 s,b B A B A


Table 7: Problematic cases


We say that the case (i, j) = (b, g) (id = 2) is problematic18 since it does not
present a A, B, B, A structure (a bidirectional transfer) but a structure that
defines a transfer of both items from one player to the other (an unidirectional
transfer). We can solve this case by imagining that the transfer of a bad from B
to A is equivalent to the transfer of a good (of the proper compensating value)
from A to B. In this way this case is brought back to the case with id = 1. In
a similar way we can solve the case with id = 4.
For what concerns the case (i, j) = (b, s) (id = 6) we can solve it by imagining
that the transfer of a bad from B to A is equivalent to the transfer of a service
(of the proper compensating value) from B to A. In this way this case is brought
back to the case with id = 9.
In a similar way we can solve the case with id = 8.


9.3 The performance and evaluation criteria


For the evaluation of the proposed barter procedures we use both a set of
performance criteria and a set of evaluation criteria.
As to the performance criteria we use: guaranteed success, individual
rationality, simplicity and stability.
With guaranteed success we denote the fact that a procedure is guaranteed


18Similar arguments hold also for the other three cases.
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to end with a success, with individual rationality we denote the fact that it is
in the best interest of the players to adopt it so that they both use a procedure
only if they wish to use it and can withdraw from it without any harm nor
penalty higher than the damage they can receive from carrying it on.
Simplicity is a feature of the rules of a procedure that must be easy to under-
stand and implement for the players without being too demanding in terms of
rationality and computational capabilities.
Last but not least with stability we denote the availability to the players of
equilibrium strategies that they can follow to attain stable outcomes in the sense
that none of them has any interest in individually deviating from such strategies
(Myerson (1991), Patrone (2006)).
As to the evaluation criteria we use a set of classical criteria (Brams and
Taylor (1999), Brams and Taylor (1996)) that allow us to verify if a barter can
be termed fair or not.
Such criteria are:


- envy-freeness;


- proportionality;


- equitability;


- [Pareto] efficiency.


We say a barter is fair if they are all satisfied and is unfair if any of them is
violated.
In the case of two players (Brams and Taylor (1999), Brams and Taylor (1996))
envy-freeness and proportionality are equivalent, as it will be shown shortly.
Generally speaking, we say that an agreement turns into an allocation of the
items between the players that is envy-free if (Brams and Taylor (1996), Brams
and Taylor (1999) and Young (1994)) none of the actors involved in that agree-
ment would prefer somebody’s else portion, how it derives to him from the
agreement, to his own. If an agreement involves the sharing of benefits it is
considered envy-free if none of the participants believes his share to be lower
than somebody’s else share, whereas if it involves the share of burdens or chores
it is considered envy-free if none of the participants believes his share to be
greater that somebody’s else share. In other words a procedure is envy-free if
every player thinks to have received a portion that is at least tied for the biggest
(goods or benefits) or for the lowest (burdens or chores).
If an allocation is envy-free then (Brams and Taylor (1999)) it is proportional
(so that each of the n players thinks to have received at least 1/n of the total
value) but the converse is true only if n = 2 (as in our case). If n = 2 propor-
tionality means that each player thinks he has received at least an half of the
total value so he cannot envy the other. If n > 2 a player, even if he thinks
he has received at least 1/n−th of the value, may envy some other player if he
thinks that player got a bigger share at the expense of some other player.
As to equitability in the case of two players (and therefore in our case) we
say (according to Brams and Taylor (1999)) that an allocation is equitable if
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each player thinks he has received a portion that is worth the same in one’s
evaluation as the other’s portion in the other’s evaluation. It is easy to see how
equitability is generally hard to ascertain (Brams and Taylor (1996) and Brams
and Taylor (1999)) since it involves inter personal comparisons of utilities. In
our context we tried to side step the problem by using a definition that considers
both utilities with respect to the same player.
Last but not least, as to [Pareto] efficiency, we say (according to Brams and
Taylor (1999)) that an allocation is efficient if there is no other allocation where
one of the players is better off and none of them is worse off. In general terms
efficiency may be incompatible with envy-freeness but in the case of two players
where we have compatibility.
Such criteria, in order to be used in our context of two players without either
any common scale or any numerary good, must be adapted or must be rede-
fined someway so to be in agreement either with the essence of their classical
definitions or with intuition or with both.
We start with envy-freeness.
If we denote with vA(j) and vA(i) the values in A’s opinion and evaluation,
respectively, of what A obtains and loses from the barter (and with vB(i) and
vB(j) the same quantities for player B) we say that the allocation deriving from
a barter (or a barter tout court) is envy-free if we have for A:


ρA =
vA(j)


vA(i)
≥ 1 (59)


and for B:


ρB =
vB(i)


vB(j)
≥ 1 (60)


Relation (59) means that the value that A assigns to what he gets from the
barter is at least equal to the value that A assigns to what he loses from the
barter. We assign a similar meaning to relation (60) with regard to B.
Since, in the case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must give a definition that mirrors the
classical definition of proportionality and reflects this equivalence.
For player A we may define a barter as proportional if it satisfies the following
condition:


vA(j)


vA(j) + vA(i)
≥


vA(i)


vA(j) + vA(i)
(61)


so that the fractional value of what A gets from the barter is at least equal to
that of what he loses from it. We remark that vA(j)+vA(i) represents the value
that A assigns to the bartered items.
A similar condition holds also for B:


vB(i)


vB(i) + vB(j)
≥


vB(j)


vB(i) + vB(j)
(62)


We say that a barter is proportional if both (61) and (62) hold.
It is easy to see how from equation (61) it is possible to derive equation (59)
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and vice versa. The same holds also for equations (62) and (60) so that the
equivalence of the two definitions has been maintained in the case of two players.
We now pass to the criterion of equitability.
We must adapt its definition to our framework in the following way. We need
firstly some definitions. With respect to the occurrence of the barter of the
items (i, j) we define for player A:


- VA a measure for A himself of his current welfare before the barter occurs;


- V ′
A a measure for A himself of his current welfare after the barter has


occurred;


and for player B:


- VB a measure for B himself of his current welfare before the barter occurs;


- V ′
B a measure for A himself of his current welfare after the barter has


occurred.


With the term welfare we denote a personal and private evaluation from each
player of his global situation (under the hypothesis of either additivity or su-
peradditivity19) through a single value that is used to rank the items that are
entering the barter process.
We therefore define a barter of the items (i, j) as equitable for A if the frac-
tional value of what he gets is at least equal to the fractional value he gives to
what he loses from the barter or:


vA(j)


V ′
A


≥
vA(i)


VA


(63)


On the other hand the barter is equitable for B if, using the corresponding
quantities we used in equation (63) but referred to player B, we have:


vB(i)


V ′
B


≥
vB(j)


VB


(64)


If both relations hold we say that the barter is equitable.
We note that if V ′


A ≥ VA then relation (63) implies envy-freeness for A whereas
if V ′


B ≥ VB then relation (64) implies envy-freeness for B.
To make inequalities (63) and (64) of more practical use we may rewrite them,
for instance for player A, as follows (for every turn after the first one):


vA(j)


↓A


≥
vA(i)


↑A


(65)


where:


19With reference to sets with the term additivity we denote the fact that the value of a
set is given by the sum of the values of its components whereas if this value is at least equal
to that sum we speak of superadditivity and of strict superadditivity if it is strictly
greater.
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↓A is the minimum value of all the j−items that A has bargained before
the current turn of bargaining;


↑A is the maximum value of all the i−items that A has bargained before
the current turn of bargaining.


We say that (65) is easier to use than relation (63) because keeping track of
both a maximum and a minimum value in a multi step process is easier than
evaluating at each step the new value of the welfare under the hypothesis that
the proposed barter occurs.
A similar relation holds also for player B:


vB(i)


↓B


≥
vA(j)


↑B


(66)


Last but not least we examine the criterion of [Pareto] efficiency.
A barter of the items (i, j) is [Pareto] efficient if there is not another pair of
items (i′, j′) that gives at least to one player a better result without hurting the
other, under the hypothesis that at least one of the following inequalities hold:


1. i′ 6= i


2. j′ 6= j


For players A and B this means that there is no barter (i′, j′) that satisfies the
following inequalities:


vA(j)


vA(i)
≤


vA(j′)


vA(i′)
(67)


vB(i)


vB(j)
≤


vB(i′)


vB(j′)
(68)


with at least one of them satisfied with the < relation.
In such relations the pairs vA(i), vA(j) and and vA(i′), vA(j′) are related to
A and are associated respectively to (i, j) and to (i′, j′). Similar quantities are
defined also for player B.
We note that if the barter is such that both players attain:


vAmaxj


vAmini


(69)


and
vBmaxi


vBminj


(70)


we are sure to have an efficient barter whereas if both attain:


vAminj


vAmaxi


(71)


and
vBmini


vBmaxj


(72)
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we are sure that the barter is surely inefficient. In (42), (43), (44) and (45) we
have:


vAmaxj
is the best j−item that A can get from the barter;


vAminj
< vAmaxj


is the worst j−item that A can get from the barter;


vBmaxi
is the best i−item that B can get from the barter;


vBmini
< vBmaxi


is the worst i−item that B can get from the barter.


We remark how conditions (42), (43), (44) and (45) are sufficient conditions
of efficiency but may also be hints for either good or bad strategies for both
players.
Last but not least, we note, from the equations (67) and (68), how efficiency
of a barter cannot be always guaranteed and must be verified case by case.


9.4 Incremental construction/revelation


One of the key point of the proposed models is the fact that either one or
both players reveal incrementally the set of pairs of items (i, j) each of them is
willing to barter with the other. Each pair is seen as a single element of the set
and from two pairs (i, j) and (h, k) we can obtain one of the following pairs:


- (i, h)


- (i, k)


- (h, j)


- (k, j)


and all their possible convex combinations, depending on the nature of the in-
volved items.
It is therefore necessary to understand the ways through which a set is incre-
mentally enlarged from the initial empty set to a maximal set, the so called
bargaining set, that include all the possible elements that a player is willing to
barter.
The first way we can use is the following (in what follows we consider the case
of A, the case of B is analogous and will not be explicitly considered).
A may start with I0 = ∅ and add one element at a time according to some inser-
tion criteria until a criterion of stop is met so that the process is interrupted and
the final set I∞ is constructed. In this way A builds up the following succession
of sets:


I0 ⊂ I1 ⊂ · · · ⊂ I∞ (73)


where the set I∞ may, at least in theory, contain infinitely many elements.
In this way A proceeds bottom up since he starts from the empty set and
eventually ends with the whole set of the items I∞ that may coincide or not
with IA (since it contains also elements from the [counter] proposals of B).
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This process gives to A the greatest flexibility since it allows him to build up new
elements by mixing and or merging the existing ones so that the construction
process can adapt better to the course of the barter process.
The main problem with this approach is that the barter may prove a very
time consuming process since the number of the possible combinations increase
exponentially with the increase of the number of the available elements.
Another way that A can use is the following that we may call top down. A
starts with his fixed and predefined set IA of n elements. Each item is initially
set as invisible (so that again A starts with a publicly known set I0 = ∅) and
during the process one element at a time is set visible. In this way A builds up
the following succession of sets:


I0 ⊂ I1 ⊂ · · · ⊂ In (74)


with:
In = IA (75)


This incremental disclosure may be obtained by using a set of n flags initially
set at invisible and by setting at each step one flag at a time at visible so to
reveal the associated element.
The process ends when a barter occurs or when all the elements of the set In


are revealed without any barter occurring.
In this case we get the lowest flexibility since the elements are fixed from the
start but we are sure the process has a fixed bound that must occur when all
the elements have been revealed without any barter occurring.
A this point we have to define:


- in the bottom up approach, which criterion can be used by player A (and
similarly by player B) to add a new element to the current set Ii;


- in the top down approach, which criterion can be used by player A (and
similarly by player B) to set as visible a new element to the current set
Ii.


In both cases the simplest criterion is the following: a player either adds or sets
visible an element that is expected to give him an advantage greater than the
one deriving him from the current proposal.
We recall that such an element represents the new [counter] proposal and so an
advantageous elements for the proposing player (otherwise he would not propose
it).
The other point is to clarify how player A (but the same is true also for player
B) can derive at step i the element (h, k) such that:


Ii = Ii−1 ∪ (h, k) (76)


In the bottom up approach such an element can be either an element of IA or
an element composed by using elements from Ji−1 or a mixture of both cases.
In the top down approach such an element is simply one of the elements of IA.
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10 The iterative barter models


In this section we propose two iterative barter models. In the former model,
that we call pure model, neither A nor B shows each other the sets of the
items they wish to barter.
In the latter model, that we call mixed model, we suppose that one player, be
it A, shows the items he is willing to barter from the offset of the process whereas
the other, in this case B, keeps her items hidden but reveal them during the
process by making either proposals or counter proposals aiming at the reaching
of an agreement and therefore a barter.


10.1 General remarks


Both models are described by using simple algorithms of which we present
the general structure and the various options that the each of two players has
at each step. In order to keep the structure of each algorithm simple and
readable we may use strings to describe sub procedures that we verbally describe
separately.
Since both models are based on a succession of proposals and counter proposals
we firstly need to define what do we mean with the terms proposal and counter
proposal. We also list which are the moves that each player can use during the
process.
A proposal is a pair of item identifiers (i, j) that a player proposes to the other
as the object of the barter and whose ownership is defined as we have seen in
Table 5.
On the other hand, given a proposal (i, j) a counter proposal is a pair (i′, j′)
such that either i′ 6= i or j′ 6= j is true since:


- if i′ = i and j′ = j we have an implicit acceptance so that the process
ends with a success;


- if i′ 6= i and j′ 6= j we define it as a new proposal.


It is obvious that a proposal in reply to a counter proposal is termed a counter
proposal and not a counter counter proposal so to avoid the chaining of counter
prefixes.
Within our perspective we have that:


- a counter proposal may follow only a proposal;


- a new proposal may follow either a pass move or a reject move (see further
on).


Both a proposal and a counter proposal can be followed by one of the following
moves from the listening player:


- pass,


- give up,
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- accept,


- reject.


A pass move is a way through which a player may signal to to the other that
it is necessary that he shows some more goodwill in order for the process to go
on.
A give up move is a way for one player to signal to the other that he thinks
the process is not worth being carried on any more.
We note that two successive give up moves (one from each player) cause the
process termination with a failure.
An accept move closes the barter with a success since it signals that a player
accepts the last [counter] proposal made by the other player.
A reject move means that the received [counter] proposal made by the other
player cannot be accepted.
Both an accept move and a reject move can follow any [counter] proposal
but if the answer is a reject move the turn remains to the rejecting player that
can make his counter proposal.
A pass move gives the turn to the other player and may be answered by either
a new proposal, by a pass move or by a give up move. We note that there
cannot be more than two consecutive pass move so that a natural succession for
a closure with a failure may be: passA, passB, give upA, give upB.
Last but not least a give up move may be followed either by a new proposal or
by another give up move from the other player: in the former case the process
goes on whereas in the latter it is interrupted with a failure and in a way that
does not necessarily involve the use of pass moves.


10.2 The pure model


In the case of the pure model the situation we are interested in can be
described in the following terms.
We have one player that wants to exchange an item with another player but
none of them has a knowledge of the items the other is willing to barter.
The only way to proceed is through an iterative process. At each step of the
process a pair of items (i, j) is proposed and such a pair may be either accepted
or refused in some way.
In the former case the process ends with a success so that the barter occurs. In
the latter case we may have:


- a pass move so the next move is up to the other player,


- a reject move so the next move is up to the same player;


- a counter proposal.


At the beginning of the barter we have:


the set of pairs-of-items-to-be-bartered of A is I0;
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the set of pairs-of-items-to-be-bartered of B is J0.


We therefore have an initialization phase where we put:


- I0 = ∅, J0 = ∅, i = 1 and j = 1;


- we select at random who moves first, be it A. The other case being fully
symmetrical will not be examined here.


In the description of the algorithm we use the notation proposeA to summarize
the execution of the following steps:


1. A presents a [counter] proposal pA = (i, j);


2. Ii = Ii−1 ∪ pA;


3. i = i + 1;


and symmetrically we use the notation proposeB to summarize the execution of
the following steps:


1. B presents a [counter] proposal pB = (i′, j′);


2. Jj = Jj−1 ∪ pB;


3. j = j + 1;


The main structure of the algorithm in this case is the following:


(0) initialization phase;


(1) proposeA;


(2) B may:


(2a) accept ; go to (4);


(2b) reject ; proposeB; go to (3);


(2c) proposeB; go to (3);


(2d) give up; go to (5);


(2e) pass ; go to (6);


(3) A may:


(3a) accept ; go to (4);


(3b) reject ; proposeA; go to (2);


(3c) proposeA; go to (2);


(3d) give up; go to (5);


(3e) pass ; go to (6);


(4) end;
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If we denote with the player i either A or B and with j either B or A we can
define the moves that can follow either a pass or a give up move in the following
ways:


(5) a give upi move may be followed by:


(5a) proposej ; go to (3) if j = B else go to (2);


(5b) give upi; go to (4);


(6) a passi move may be followed by:


(6a) proposej ; go to (3) if j = B else go to (2);


(6b) passj; give upi; give upj; go to (4);


(6c) give upj ; go to (5);


The execution of either an accept or a reject move on a proposal (i, j) from
player A (the case of player B is fully symmetrical and will not be analyzed) is
based on the consideration of the values vA(j) and vA(i) through a function:


evalA(i, j) = fA(vA(j), vA(i)) (77)


where the function fA synthesizes the procedure of comparison from A between
the values vA(j) and vA(i). In its simplest form we can express it as:


fA(vA(j), vA(i)) = vA(j) − vA(i) (78)


Such function can be used in rules such as the following20:


if(evalA(i, j) ≥ 0) then acceptA else refuseA (79)


so to establish a strict preference ordering � on the proposals. We can indeed
say21:


(i, j) �A (i′, j′) ⇔ evalA(i, j) > evalA(i′, j′) (80)


and the same holds also for B.


10.3 The mixed model


In the mixed model we have an asymmetric situation where one of the
players, be it A, shows to the other, B, his set of items I ′ whereas the first move
is up to the other player, B in this case.
The algorithm in this case has the following structure that is very similar to the
one we have seen in section 10.2 but for the initialization phase and the starting
move.


(0) initialization phase;


20We could have evalA(i, j) ≥ ε with ε > 0 if a minimum gain is required or ε < 0 if a
maximum loss is acceptable.


21It is obvious that with �A we denote the strict preference relation of player A.
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(1) proposeB ;


(2) A may:


(2a) accept ; go to (4);


(2b) reject ; proposeA; go to (3);


(2c) proposeA; go to (3);


(2d) give up; go to (5);


(2e) pass ; go to (6);


(3) B may:


(3a) accept ; go to (4);


(3b) reject ; proposeB; go to (2);


(3c) proposeB; go to (2);


(3d) give up; go to (5);


(3e) pass ; go to (6);


(4) end;


For the points (5) and (6) and for the description of the proposeA and proposeB


moves we refer to the same points and the same description we gave in section
10.2.
The initialization phase is unchanged for B (so that again we have J0 = ∅ and
j = 1) but for A we must account for the presence of the set I ′ whose content is
defined by A freely and completely at his will for what concerns both the type
and the number of the contained items.
From this we have:


I0 ⊂ I ′ ⊗ I ′ (81)


where:
I ′ ⊗ I ′ = {(i, j) | i, j ∈ I ′ but i 6= j} (82)


so that I0 is rather fuzzily defined for B so reducing his seemingly initial ad-
vantage over A.


10.4 Possible strategies


We now present and analyze the possible strategies of the two players in
either the pure model or the mixed model.
In the pure model both players act without any knowledge of the other’s player
set of elements but with each player only knowing his bargaining set, IA if A
and JB if B.
In this case the player who moves first, be it A, can do no better than choosing
an element (i, j) from his bargaining set IA so to maximize the value:


evalA(i, j) = fA(vA(j), vA(i)) (83)
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This is possible for A if he chooses one of the two cases id = 4 or id = 6 of
Table 6 where he has full control of both the items of the proposed element
I1 = {(i, j)}.
In his turn B may use both JB and I1 to devise his [counter] proposal to A so
defining his set J1 after his first step.
At the generic step i > 1 for A and j > 1 for B we have that each player:


- knows the current proposal (i, j) and is able to evaluate it using the func-
tion22 evalh;


- can possibly devise a [counter] proposal (i′, j′) and propose it if it is pre-
ferred by the player to the current one according to the preference ordering
we introduced with relation (80) or if:


(i′, j′) �h (i, j) ⇔ evalh(i′, j′) > evalh(i, j) (84)


- can frame the new [counter] proposal on the knowledge of both Ii and
Jj so to favor at the best also the other player (therefore increasing the
probability of an acceptance) by using the common knowledge between
them;


- if the [counter] proposal of the foregoing steps cannot be devised the player
can either accept the current proposal, press the other for a change of route
(with a pass move) or signal the will to stop the process (with a give up
move).


As the last step we note how each player can use also his bargaining set for
framing a new [counter] proposal but with a lower probability of if being ac-
cepted by the other player.
In the mixed model the presence of an asymmetry does not modify very much
what we have seen before since the initial knowledge of B of the items of A
is rather fuzzy and, moreover, she is the player who must move first. We can,
therefore, state that the strategies we have seen for the pure model case can
be profitably used also in the n the mixed model case.


10.5 Satisfaction of the criteria and applications


We now examine if the proposed models satisfy or not the performance and
evaluation criteria we have introduced in section 9.3.
For what concerns the performance criteria we have that:


- guaranteed success is not always satisfied since a process of barter may
end without any effective barter and without any penalty for the player
who withdraws from the process;


22With the subscript h we denote either the player A or the player B depending on the
case.
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- individual rationality is guaranteed to each player that feels he engaged
himself in an unfavorable process from the availability of pass and giveup
moves;


- simplicity is assured by the fact that the frame of both algorithms is a
sequence of proposals and counter proposals until an agreement is reached
either to have a barter or to give up since no barter is effectively possible;


- stability is satisfied since both players have easy to follow and implement
strategies (see section 10.4).


We recall that the acceptance or not of a proposed barter is governed by the
relations (77), (78) and (79) of section 10.2.
For what concerns the evaluation criteria we have that if a barter occurs,
according to the previously recalled relations, then it is envy-free (see relations
(59) and (60)) for both players and therefore it is also proportional, from the
equivalence of the two concepts in the case of two players.
It is easy to verify, by the same relations, that if a barter is fair then it occurs.
The check of the equitability requires the check of the relations (63) (or of the
corresponding relation (65)) and (64) (or of the corresponding relation (66)).
Such a check may be performed by both players at every step of the barter so
that, in the best case:


- one player may propose a barter that for him is envy-free and equitable;


- the other may verify such a proposal and accept if he too thinks that for
him it is envy-free and equitable.


As to the [Pareto] efficiency we need to verify the the existence or not of
a pair (i′, j′) of items that satisfy the relations (67) and (68)). As we have
already seen both players have sufficient conditions to attain an efficient barter
even if such conditions require a co-operative attitude between the players and
such an attitude is not self-enforcing (Myerson (1991)) so that both players may
have (more or less plausible reasons) for individually deviating from it. Such
conditions, moreover, may be conflicting so that they cannot drive effectively a
strategy. Moreover the check of the relations (67) and (68)) may be impossible
since not all the possible elements (i, j) are known during the barter so that the
inefficiency of a barter may be discovered only when both players have accepted
it.
Summing up, we can say that:


- envy-freeness is guaranteed every time a barter occurs,


- proportionality is guaranteed every time a barter occurs,


- equitability may be guaranteed at every barter,


- efficiency may be attained, since the players have sufficient conditions for
attaining it, but may also be easily missed.
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From these considerations we have that the fairness of a barter is a by-product
of the barter process itself and is not a-priori guaranteed by its structure.
From all this we derive that each of the two players may judge an occurred
barter as either inequitable or inefficient or both and therefore unfair, since not
all the fairness criteria are verified.
Last but not least we comment a little on the possible applications of the
proposed models.
The pure model can be applied in all the cases where two players meet to
perform a barter but none of them has a knowledge of the items that the other
may be willing to barter so that this knowledge must be acquired during the
barter process itself through a try-and-error process.
In the current version of the pure model we imagined the two players as peers in
the barter, this fact being represented by the random move for the choice of the
first time mover. It is easy to remove this feature by giving, for some reason,
the right to make the first move to one of the two players. For the range of the
possible applications we refer to the tables we provided in this section, mainly
table 6, from where it is possible to understand the nature of the items that the
two players may wish to exchange.
On the other hand, the mixed model can be used in all the cases where one
of the two players cannot conceal or is forced to show the initial set of his items
so that the other has some information about the possible advantageous (for
him) proposals that he can make without even revealing any of the items of his
private set.
Also in this case we refer to the tables we provided in this section, mainly table
6, from where it is possible to understand the nature of the items that the two
players may wish to exchange.


11 Possible extensions to the iterative barter


models


Up to now we have seen the basic models involving a pair of players in a one
shot barter for the exchange of a pair of items.
In this section we briefly present the following planned extensions:


(e1) the possibility of having more than two players i.e. a plurality of players;


(e2) the possibility of performing repeated barters;


(e3) the possibility of performing multi-pairs barter.


In the following subsections we examine the various extensions singularly and
one independently from the others though it is obvious that they could be
combined together in various ways. The treatment is at an introductory level
since such extensions represent the core of a future research stream.
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11.1 A plurality of players


Instead of a pair of players A and B we may define a set P of n ≥ 4 players
(with n even23) that can form n/2 pairs (so to have n/2 contemporaneous
barters) in the following ways:


- by a random selection,


- by raising up of hands,


- by mutual selection.


In the case of random selection we may imagine a procedure that:


(0) starts with i = n;


(1) at the i−th step it chooses at random one of the i(i − 1)/2 values so to
match a pair of players;


(2) if i = 2 go to (3) else i = i − 2 go to (1);


(3) end;


At step (1) we may imagine to have a dice with i faces so that the outcome of
j ∈ [1, i] corresponds to one of the possible i(i − 1)/2 pairings. We have to see
how to assign the possible pairings to the faces of the dice. To do so we can set
up a n×n matrix V with all the elements at 0 but those above the main diagonal
that assume (row by row form left to right) the increasing integer values from
1 (for the element v(1, 2)) to n(n − 1)/2 (for the element v(n − 1, n)) so that
v(i, j) 6= 0 for j > i.
After each step we remove the two matched players, renumber the remaining
players, reduce accordingly the matrix V , reassign the values v(i, j) with the
same rule and repeat the procedure.
In the case of raising hands we can imagine that one player raises up one of
his hands. If more that one player raises then each of them lowers his hand,
waits for some random amount of time and then raises again his hand. This
goes on until there is only one hand up at a time. At this point one or more
of the others may join him to form a pair for a barter. If more than one player
express the wish to join there is a random selection of one of them. The process
goes on until n/2 pairs have been formed, at each step the number of waiting
players being decremented by 2.
In the case of mutual selection the players are divided, through the use of


23In abstract term we might have two cases:


(1) n is even so n/2 pairs of players form and no player is left out;


(2) n is odd so n/2 pairs form but one player is left out.


In this section we assume that n is even since the case n odd has no sense but in cases of
repeated barters (see section 11.2) where the player who is left out at one stage gains some
precedence at the next stage according to a form of balanced alternation (Brams and Taylor
(1999)).
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any suitable random device24, in two subsets of n/2 elements each: the former
P1 contains the choosers and the latter P2 the choices.
Each player of P1 chooses at his will a player from P2: if the latter accepts the
pair forms otherwise the two players switch from one set to the other. If there
are multiple selections the choice is up to the player of P2 that is forced to select
one of his choosers. The matched players are removed from the respective sets.
When, according one of the foregoing ways, the n/2 pairs are formed each of
them may use one of the algorithms we have seen in section 10 to perform a
barter.
The basic idea is that the n players are willing to engage each other in a barter
so the n/2 pairs form even if there is no guarantee that this turns out in n/2
effective barters.


11.2 Repeated barters


In this case we may use some concepts from Game Theory (Myerson (1991))
and consider each barter as a single stage of the potentially endless process of
repeated barters between two players A and B.
To get this chaining effective we need to make some changes to the models of
section 10. Such changes include:


- the addition of moves to implement the chaining;


- the introduction of state variables through which each player records the
attitude of the confronting player during the previous stages (Axelrod
(1985), Axelrod (1997));


- the definition of a barter as either with memory or memoryless.


As to the moves we need:


- to modify the accept move in a accept and stop move so to signal a
lack of will to go on with the barter;


- to add the accept and repeat move so to signal to the other player the
willingness to the execution of one more stage;


- to add the repeat? move so to allow a player to request to the other the
execution of one more stage;


- to add a repeat move so to answer affirmatively to an explicit or implicit
request for one more stage;


- to add a refuse move so to answer negatively to an explicit or implicit
request for one more stage.


24We can imagine a urn containing n balls, n/2 red and n/2 blue, and n selections without
replacement for the assignment of each extracting player to one of the two subsets according
the color of the extracted ball.
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so to allow the players to link two stages together in a repeated barter.
The state variables represent private information of each player through which
he may record, from one stage to another, if the attitude of the other player
at the previous stages has been more cooperative or more exploitative. In this
way each player may implement long run strategies of retaliation so to punish
spiteful attitudes.
Last but not least we define a barter as with memory if at the end of each
stage the composition of the revealed set is a valid common knowledge (Myerson
(1991)) between the players whereas it is defined as memoryless if it is lost
and has no common knowledge value since each player is free to modify at his
will the composition of his set without any notice to the other. This feature of
a repeated barter must be agreed upon by both players at the very offset of the
process, may be changed only after a new mutual agreement after each stage is
over and forms a common knowledge between the two players.


11.3 Multi pairs barter


In this case every player at each step may propose more than one pair of
items to be bartered. For instance, A may propose:


(ij , jl)(ih, jk) (85)


and B can reply with a counter proposal with even more or less elements or can
even accept. The acceptance might be:


- partial if the agreement can involve only a subset of a [counter] proposal;


- global if the agreement involves a [counter] proposal as a whole.


Partial agreements are fully meaningful only within a repeated barter setting
whereas in a one shot barter we usually speak of global multi pairs agreement
whenever the two players agree on bartering all the items contained in one
proposal.6


12 Concluding remarks and future plans


This section presents for the members of both the family F1 and the family
F2 some concluding remarks and hints of future research plans.
In sections 5 and 6 we presented some auctions mechanisms of two distinct
types. Those of the former type are termed positive auctions and resembles
classical mechanisms but for the fact that they aim at the allocation of chores
rather than goods.
The one of the latter type faces the problem of the allocation through an auc-
tion from a negative perspective since the chore is allocated to the bidder who
proves less capable of avoiding it but that is compensated for this incapability.
Both types of mechanisms need a deeper and more formal analysis of their struc-
ture, their properties, the possibility of collusions and, most important, their
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practical applications in the area of environmental problem solving.
In section 8 we have introduced a family of barter models between two ac-
tors that execute a one shot barter through which they exchange, according to
one among various mechanisms, the goods of two separate and privately owned
pools. The various models have been introduced under the hypothesis of addi-
tivity according to which the value of a set is given by the sum of the values of
its composing elements.
In that section we presented the basic algorithms for the one-to-one barter, we
showed the possible uses of the proposed models, we verified if some criteria
of fairness are satisfied by the proposed models or not and we also introduced
some extensions.
The main extension we presented is the relaxing of the additivity hypothesis
with the adoption of superadditive sets where the value of a set is at least equal
to the sum of the values of its elements. In this way we model functional rela-
tions among the goods that increase their joint values.
The presentation we made in section 8 is at an introductory level and a lot of
formalization is still to be done for what concerns both the presented models,
their extensions and the possible uses in concrete cases .
We need indeed to examine more formally the basic models of one shot barter;
to improve the proposed algorithms; to examine the properties of such algo-
rithms and their plausibility and, last but not least, to analyze and formalize
the extensions we essentially only listed in section 8.9.
In section 10 we have introduced two algorithms that can be used in the case
of one shot barter between a pair of players.
In the former algorithm we have asymmetric situation where the two players
try to conclude a barter through an incremental revelation of the sets of items
each of them is willing to barter.
In the latter algorithm, on the other hand, the situation is asymmetrical since
one of the player either does not want to or cannot hide the set of his items to
the other player that therefore has an initial advantage and the right to make
the starting offer.
The section presented both a description of the algorithms and their evaluation
according to well defined classical performance criteria.
In the closing part of that section we also presented some possible extensions
whose analysis and formalization are still to be completed. Similarly we need
to complete the analysis of the possible applications of the proposed models to
real world cases where exchanges of items occur between players that aim at
attaining their objectives without sharing any common scales of qualitative or
quantitative values.
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Appendix A: candle auctions


The scope of the procedure


We define an auction inspired procedure through which an agent A (the so
called initial auctioneer) allocates a chore to one agent from a predefined set of
sub-agents by letting them arrange the things among themselves including the
definition of the compensation for the losing sub-agent.
The compensation is a multiple of the fee f that A fixes at his will and the
selected sub-agents are called bidders or players.
The procedure is implemented through a simple algorithm that involves the
sub-agents without any further intervention of A.


The motivations of the procedure


The proposed procedure is based on certain assumptions on both the auc-
tioneer side and the bider side.
On the auctioneer side it assumes that the auctioneer does not know very
well the features of the bidders (but only knows that each of them can carry
out the chore) and therefore prefers that they find an allocation solution among
themselves and that such solution may, on one hand, compensate at the most
one of them without, on the other hand, charging excessively any of the others.
On the bidders side it aims at defining an adaptive sharing of the final contri-
bution to the losing bidder (the one who gets the chore at the end of the auction)
from the other bidders that exclude an a-priori defined subdivision (such as a
uniform subdivision25 or a proportional subdivision).
In this way we aim at a procedure that is adaptive and potentially more re-
warding for the losing bidder without charging too much each of the winning
bidders and without hurting in any way the auctioneer


The algorithm


The [initial] auctioneer A:


- chooses the n bidders of B;


- chooses the chore to be auctioned;


- fixes the fee f that each bidder may pay for not accepting the candle (see
further on).


The bidders of the set B are chosen by A from a much bigger set and each
bidder may be seen as having associated a type (see section 12) that defines his
behavior in the course of the game as will be explained in section 12.
As to the entity of the fee f we note that it can be fixed freely by A at any value


25We say a sum x is shared in a uniform way among n actors if each of them is charged
with a fraction x


n
whereas we say it is shared in a proportional way if for a bid xi its bidder


is charged with a fraction x xi
X


where X =
∑n


i=1
xi.
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since that value has no effect on A himself. We note that if f = 0 the losing
bidder has no compensation (see further on) so that we pose the constraint
f > 0. On the other hand the lower is f the more easily the bidders are going
to pay it whereas the higher it is the more unlikely they are going to pay it.
Since the value of f affects the behavior of the bidders we can imagine, for
simplicity, that A extracts it from a urn containing all the integer values in the
interval [fmin, fmax]. The extremes of the interval are exogenous values to be
fixed in some way. Further details in section 12.
The algorithm is structured as follows:


- initialization phase;


- auction phase;


- compensation phase.


In the initialization phase A in zero time:


- initializes or switches on a flag that we call candle;


- performs a random initialization of the maximum value L of a counter on
an interval (unknown to the bidders) [0, M ];


- performs a random selection of one of the bidders, be it bi;


- gives the candle to bi;


- starts the counter t (that is incremented one tick at a time up to L ticks)
from 0.


The auction phase is structured as follows. We underline how the counter t is
incremented of one tick as stated in each case. At t = 1 bi has the candle:


(1) bi selects another bidder bj at his will and offers him the candle;


(2) bj can:


(a) accept it so bj takes the role of bi, t = t + 1, go to (1);


(b) refuse it and put the fee f in the common pot, t = t + 1, go to (1).


At the generic step t the content of the pot is kf (with k ∈ [0, t]) and this may
influence the behavior of both bi and the others bj that are contacted by him
(see section 12).
At each step the bidder bi must chose another bidder bj so to offer him the
candle. The choice can be made either to maximize the probability of keeping
the candle or to maximize the probability of giving it away: the former case
occurs whenever bi thinks he has a gain from having the candle when the counter
expires whereas the latter occurs whenever bi thinks he has a loss from having
the candle when the counter expires.
For further details we refer to section 12.
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The generic bidder bj to which the candle holder bi offers the candle can either
accept it or refuse it according to strategies we describe in section 12.
If bj accepts the candle then he takes the role of bi (the candle holder) and uses
the same search and offer procedure.
If bj refuses the candle hen he must put f in the common pot and bi goes on
with his imposed search and offer procedure.


The private information


Each bidder bj has the following private information:


- dj as the damage that derives to bj from having the candle when the
counter expires;


- a vector of values cj whose elements cj,h denote the damage that derives
to bj from having the candle owned by bh when the counter expires;


and can use them for his strategies either as the candle holder or as a contacted
bidder. We note that:


- cj,j = dj ;


- the vectors cj represent the rows of a square cost matrix C whose dimen-
sion coincides with the number of the bidders,


- the values cj,h can be used by bj to partition the set of the other bidders
in disjoint subsets and to order such subsets in increasing order of cost
(see section 12).


Besides such information each bidder bj knows his type tj whereas has a prob-
ability distribution for the type of every other bidder.
For the moment we consider only two possible types: green or conservative (g)
and selfish or exploitative (s).
From this we have that whenever bj faces another bidder bh he knows that with
probability p he is facing a g type bidder and with probability 1− p he is facing
an s type bidder.


Termination condition


When the counter t reaches L the bidder who has the candle loses the auction
and gets the chore and the amount of fees put in the common pot by the bidders
during the auction.


Compensation phase


When the auction is over the candle holder bi gets the chore and a compen-
sation equal to k∗f where with k∗ we denote the number of fees paid by the
players different from bi so that bi obviously does not count as a gain the sums
paid by himself.
We can have the following cases:
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(a) k∗f > di so that bi has a gain,


(b) k∗f = di so that bi is fully compensated,


(c) k∗f < di so that bi has a loss.


Why we say it is an auction


We define the proposed mechanism as an auction since at each step the
candle holder bi can be seen as the “auctioneer” whereas one of the others
either“bids” a fixed sum for not getting the candle or gets it and becomes the
current “auctioneer”.
In a traditional auction at the end the auctioneer gives away the auctioned good
and gets a certain amount of money whereas in this case the final auctioneer
gets the candle (i. e. a chore) and a compensation (the “net” common pot26)
that some of the others contributed to form in a way that resembles an all pay
auction.


The properties


The balances


The balances of the various bidders depend heavily on L since the higher is
L the higher may be k∗ for every bidder. From this we derive that L has a lower
bound. They also depend on the variety of the interactions among the players
and so on their strategies.
The losing bidder bi may be worse off if k∗ is not high enough.
The winning bidders bj with j 6= i pay on the average:


L


n
f (86)


and each has a gain of dj . For each bj the balance is27:


dj − kjf (87)


where kj is the number of times bidder bj refuses the candle and pays the fee,
with 0 ≤ ki ≤ L. Every bidder can control the amount of money that he puts
into the pot by controlling his number of refusals.


Collusions


Never occur. Who pays the fee to the pot has not the candle and who, at
the end, remains with the candle gets the content of the pot as a compensation.


26We call it “net” since we exclude the sums paid the the final auctioneer himself.
27We use the notation kj to denote the value k∗ for bidder bj since each bidder has his own


value k∗ as the number of times the other players paid the fee.
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The strategies


At this point we must specify, at each step, the possible strategies for both
the current candle holder bi and the players that may be contacted by him and
so bj with j 6= i.


(1) For what concerns bi he has two possible strategies and one constraint:


(a) attractive if he tries to keep the candle for himself by contacting
bidders that he is sure will refuse it so paying the fee f so increasing
the common pot;


(b) repulsive if he tries to give away the candle by contacting bidders
that is sure will prefer to accept it rather than paying the fee f .


The strategy (a) is worth following if some time has already elapsed since
the start of the game and/or the fees in the pot are such that bi is sure
to have a gain from getting the candle. This occurs for sure if k∗f > di.
Such strategy may either succeed or fail. If it succeeds it causes a further
increase of the common pot of f at the benefit of bi. Unfortunately it may
fail since the contacted player bj, using his private information, may find
the common pot high enough so to accept the candle without paying the
fee f .
On the other hand the strategy (b) is worth following if the game is at
the start and/or the common pot is low so the best thing bi to do is to
pass the candle to a bidder bj such that di − k∗f > ci,j . In this case the
best bidder bj is the one with the minimum ci,j . In order to prevent bi


from continuously contacting the same bj we introduced a constraint (see
further on).
Such strategy may either succeed or fail. If it fails the bidder bj pays the
fee f and this makes bi better off whereas if it succeeds it makes bi, at
least temporarily, better off.
We note that the common pot may be low for the following reasons:


- the game is in the initial phases,


- the game has been characterized by the passing of the candle among
the players so that few of them paid the fee f .


We note that the common pot may be high for the following reasons:


- the game has already been running for some time,


- the game has been characterized by a lot of refusals so that many of
the players paid the fee f .


The constraint we introduced imposes bi to contact at least half of the bid-
ders in turn, according to whatever ordering he choses, before contacting
again the same player so to prevent him from exploiting a refusing bidder
by repeatedly contacting him. The easiest ordering is based on the values
ci,j . Using such values bi can partition the set B−i of the other bidders
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in subsets of equal cost bidders so to get an ordering of such subsets and
contact their members according to an increasing costs criterion.


(2) For what concerns the bidders bj their repertoire of moves is reacher since
they can either accept or refuse the candle.
A player is said to refuse the candle is he does not accept it so we can
restrict ourself to the definition of the conditions for the acceptance of the
candle.
We recall that we may have either tj = g or tj = s.
If tj = g the bidder bj accepts the candle if he hopes to find a bidder bh


such that cj,h < cj,i even at the risk of remaining with the candle so to
suffer the damage dj independently from the content of the pot. In this
case we presumably have cj,h < dj < cj,i or cj,h < cj,i < dj .
If tj = s the bidder bj accepts the candle if he has a gain from getting it
so that k∗f > dj .
In the acceptance case bj becomes the candle holder and, at least for one
turn, acts as bi.
In the refusal case bj puts the sum f in the common pot and puts himself
on waiting for a possible future choice until the counter expiration time.


At this point we have to establish a relation among the two pairs of strategies
we have defined:


- attractive and repulsive when the bidder is the candle holder,


- green and selfish when the bidder is not the candle holder,


From the descriptions we have that a tj = g bidder tends to adopt a repulsive
strategy when he plays as the candle holder whereas a tj = s tends to use an
attractive strategy when in the same role.


The timings


The counter starts from 0 and stops at a random value L. The unitary
increments occur at every acceptance or refusal so there is no way for the bidders
to loose time so to exploit an advantageous position.


The experimental side


The model should be implementable through the use of an agents system
by defining two populations of agents with the defined types and strategies and
by having them play the game for some random amount of time L with the
specified timings.
One possible extension, to be tested experimentally, could be the following: each
bidder bj has a randomly fixed sum of money Fj (integer multiple of f) that he
can use to pay the fee f so that when that sum is finished he can only accept
the candle without any further possibility of refusal.
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Appendix B: mathematical facts and findings


In this Appendix we simply recall or present and discuss some mathematical
results we have used in the text.


(1) A uniform random variable X over the interval [0, M ] has a distribution
function given by:


FX(x) = P (X ≤ x) =
x


M
(88)


and the corresponding density function:


fX(x) =
1


M
(89)


We recall that for independent random variables Xi, i = 1, . . . , k we have:


P (∩jXj ≤ x) = ΠjP (Xj ≤ x) (90)


If the k variables are, in addition, identically distributed we have:


P (∩jXj ≤ x) = ΠjP (Xj ≤ x) = FXj
(x)k (91)


and if they are uniformly distributed on the same interval [0, M ] we finally
have:


P (∩jXj ≤ x) = ΠjP (Xj ≤ x) = FXj
(x)k = (


x


M
)k (92)


(2) We recall equations (14) and (15) for the bidder bi and rewrite them here
for convenience:


Ei(xi) = p(xi − mi) + (1 − p)(mi − x1
xi


X
) (93)


or as:
Ei(xi) = pli + (1 − p)wi (94)


with:


li = (xi − mi), if bi loses;


wi = (mi − x1
xi


α+xi
), if bi wins;


where α =
∑


j 6=1,i xj .
In equation (14) we have a term wi that, in the case of the strategy
xi > mi, may assume a negative value.
Let us verify it. We have:


mi − x1
xi


α + xi


< 0 (95)


if:
mi(α + xi) < x1xi (96)


Since we have α + xi > xi but we may well have mi < x1 we have that
relation (96) may be satisfied so that using strategy xi > mi may cause a
loss to bidder bi. This is the reason why, in Table 1, we used the symbol
+/−. It is easy to verify that in the case of the strategies:
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- xi = mi


- xi < mi


this cannot occur.
In the case of the former strategy, by using relation (96), we would indeed
derive the obviously false inequality (α + xi) < xi whereas in the case of
the latter strategy it is immediately seen how relation (96) can never be
satisfied since we obviously have α + xi > x1 from the definition of lowest
bid x1.
From this we have that the value x∗


i of the bid of bi for which the term wi


changes sign is greater than mi (see next point and Figure 1 for details).


(3) In Figure 1 we label as (0) the graph of the term x1
x1


α+x1


of wi. Such a


term assumes the value x1
M


α+M
for xi = M (see the horizontal line above


the graph labeled (0)). On the other hand we have:


(1) denotes the behavior of wi if mi > x1
M


α+M
,


(2) denotes the behavior of wi if mi < x1
M


α+M
.


Figure 1: The possible graphs of wi


In the latter case we have the value x∗
i of the change of sign which is, as


we have already seen, greater than mi.
We can evaluate x∗


i if we impose:


mi − x1
xi


α + xi


= 0 (97)


so to get:


x∗
i =


miα


x1 − mi


(98)


In this way we have x∗
i > 0 iff x1 > mi. From relation (98) we get:
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- if xi < x∗
i then mi − x1


xi


α+xi
> 0,


- if xi > x∗
i then mi − x1


xi


α+xi
< 0.
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