

UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-09-20

An approach to Mobile Grid platforms for
the development and support of complex

ubiquitous applications

Carlo Bertolli, Daniele Buono, Gabriele Mencagli
and Marco Vanneschi

October 29, 2009
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700, FAX: +39 050 2212726

ABSTRACT
Several complex and time-critical applications require the existence of novel distributed,
heterogeneous and dynamic platforms composed of a variety of fixed and mobile processing
nodes and networks. Such platforms, that can be called Pervasive Mobile Grids, aim to merge
the features of Pervasive Computing and High-performance Grid Computing onto a new
emerging paradigm. In this Chapter we study a methodology for designing high-performance
distributed computations, able to exploit the heterogeneity and dynamicity of Pervasive Grids,
by expressing Adaptivity and Context Awareness directly at the application level. We
describe a programming model approach, and we compare it with other existing research
works in the field of Pervasive Mobile Computing, discussing the rationales of the
requirements and the features of a novel programming model for the target platforms and
applications. In order to exemplify the proposed methodology we introduce our evaluation
framework ASSISTANT, and we provide some interesting future directions in this research
field.

INTRODUCTION
An increasing number of critical applications require the existence of novel distributed,
heterogeneous and dynamic ICT platforms composed of a variety of fixed and mobile
processing nodes and networks. Notable examples of such applications are (but not limited to)
risk and emergency management, disaster prevention, homeland security and i-mobility.
These platforms are characterized by full virtualization of ubiquitous computing resources,
data and knowledge bases and services, embedded systems, PDA devices, wearable
computers and sensors, interconnected through fixed, mobile and ad-hoc networks. Wireless-
based platforms, enabling the robust, flexible and efficient cooperation of mobile components,
including both software components and human operators, are of special interest. Users
themselves are part of the distributed platform. These platforms, that aim to merge the
features of Pervasive Computing and of Grid Computing onto a new emerging paradigm for
heterogeneous distributed platforms, can be called Pervasive Mobile Grids (Hingne, Joshi,
Finin, Kargupta, & Houstis, 2003; Priol & Vanneschi, 2008).
Figure 1 shows an abstract view of a Pervasive Grid platform focusing on the heterogeneity of
computing resources and on interconnection network technologies.
The Pervasive Grid paradigm implies the development, deployment, execution and
management of applications that, in general, are dynamic in nature. Dynamicity concerns the
number and the specific identification of cooperating components, the deployment and
composition of the most suitable versions of software components, processing and networking
resources and services, i.e., both the quantity and the quality of the application components to
achieve the needed Quality of Service (QoS). The specification and requirements of QoS itself
are varying dynamically during the application, according to the user intentions and to the
information produced by sensors and services, as well as according to the monitored state and
performance of networks and nodes.

The general reference point for this kind of platforms is the Grid paradigm (Bermam, Fox, &
Hey, 2003; Foster & Kesselman, 2003) which, by definition, aims to enabling the access,
selection and aggregation of a variety of distributed and heterogeneous resources and
services. However, though notable advancements have been achieved in recent years, current
Grid technology is not yet able to supply the needed software tools with the features of high
adaptivity, ubiquity, proactivity, self-organization, scalability and performance,
interoperability, as well as fault tolerance and security, of the emerging applications running
on a very large number of fixed and mobile nodes connected by various kinds of networks.

Pervasive Grid applications include data- and compute-intensive processing (e.g. forecasting
and decision support models) not only for off-line centralized activities, but also for on-line
and decentralized activities. Consider the execution of software components performing a
forecasting model or of a decision support system model, which are critical compute-intensive
activities to be executed respecting operational real-time deadlines. In “normal” connectivity

conditions we are able to execute these components on a centralized server, exploiting its
processing power to achieve the highest performance as possible. Critical conditions in the
application scenario (e.g. in emergency management) can lead to different user requirements
(e.g. increasing the performance to complete the forecasting computation within a given, new
deadline). Changes in network conditions (e.g. network failures or congestion situations) can
lead to the necessity to execute a version of the application model directly on spatially local
resources which are available to the users (e.g. personnel, rescuers, emergency managers and
stakeholders): when central servers are not available or reachable, such resources are interface
nodes and/or mobile devices themselves. In such cases, the forecasting model can be executed
on different or additional computing resources, including a set of distributed mobile resources
running different application software versions which are specifically defined and designed to
exploit such kind of resources. In other words, in this scenario it is important to assure the
service continuity, adapting the application to different user requirements but also to the so-
called context: the actual conditions of the both the surrounding environment and the
computing and communication platform. So the key-issue is the definition of programming
paradigms, models, and frameworks to design and develop these kinds of complex and
dynamic applications, focusing on Adaptivity and Context Awareness as crucial issues to be
solved and to be integrated with high-performance and real-time features.

Figure 1. A schematic view of a Pervasive Grid infrastructure.

So, in Pervasive Grids various, heterogeneous fixed and mobile computers (e.g. PDA,
wearable devices, new generation handphones) and networks must be able to capillary
provide users with the necessary services in various connectivity, processing and location-
based conditions. According to the current trends in computer technology, interface nodes and
mobile devices can be equipped with very powerful, parallel computing resources, such as
multi-/many-core components or GPUs, thus rendering the embedding of compute intensive
functions quite feasible at low power dissipation. These devices can be part of self-
configuring ad-hoc/mesh networks, in such a way that they can cooperatively form a

distributed embedded system executing specific application components, as well as being are
able to cooperate with centralized servers (e.g. a workstation cluster) and wired networks.

In this Chapter we study a methodology for designing high-performance computations, able
to exploit the heterogeneity and dynamicity of Pervasive Grids, by expressing Adaptivity and
Context Awareness directly at the application level. We describe a programming model
approach, and we compare it with other existing research works in the field of Pervasive
Mobile Computing, discussing the rationales of the requirements and the features of a novel
programming model for the target platforms and applications. As a consequence we discuss
the advantages of a programming model methodology with respect to some standard
middleware-based solutions. As a concrete example, we introduce a partial view of the
ASSISTANT programming model, which is intended to be a first starting-point to express the
identified main features of the Pervasive Grid approach. Finally we describe a set of
interesting and opened research problems in the field of complex ubiquitous applications,
concerning with a unified approach to define processing and communication strategies and
with different methodologies to express application adaptivity and context-awareness.

BACKGROUND
In this section we describe the state of the art concerning adaptive and context-aware
applications for pervasive distributed platforms. In particular our objective is to describe how
adaptivity and dynamicity are expressed, focusing on the expressiveness of different
approaches.
In many cases adaptivity is expressed at the run-time support level only. During the
execution, the run-time system can select different protocols, algorithms or alternative
implementations of the same mechanisms, in response to specific events which describe the
actual context situation. This support level is often called middleware (Emmerich, 2003): a set
of common services, operating on lower level resources, utilized by distributed cooperating
application components. At the middleware level adaptivity can be expressed by a proper
static or dynamic selection of different service implementations, or by setting specific
parameters of configurable primitives. In many instances of this approach all the
reconfigurations and adaptation processes are fully invisible to the applications.
In other research works adaptivity is a key-issue which is directly expressed at the application
level. Mechanisms and tools are provided that allow programmers to define how their
applications can be reconfigured and what the sensed events are. Applications can be defined
in such a way that multiple versions of the same component or module are defined, and a
proper version selection strategy must be expressed by the programmer. So, adaptation
strategies and policies are directly part of the application semantics, which can be
characterized by a functional part and a control logic (manager) expressing the adaptive
behavior of the application.

Odyssey (Noble et al., 1997; Noble, 2000) is a research framework for the definition of mobile
applications able to adapt their behavior, and especially their resource utilization, according to
the actual state of the surrounding execution environment. The framework features run-time
reconfigurations which are noticed by the final users as a change in the application execution
quality. In Odyssey this quality concept is called fidelity: a fidelity decrease leads to a lower
utilization of system resources (e.g. memory occupation and battery consumption). The
framework periodically controls these system resources, and interacts with applications
raising or lowering the corresponding fidelity levels. In the case of Odyssey, all these
reconfigurations are automatically activated by the run-time system without any user
intervention. For instance, in a media player application the fidelity can be the available
compression of the played audio file, which can be dynamically selected according to the
actual available network bandwidth.

In Odyssey applications are composed of two distinct parts: the first one produces input data
according to a certain fidelity level, and the second one executes the visualization activities on

the previous data. The first part of each application is managed by a set of specific framework
components called Warden. Each warden produces data with the predefined fidelity level, and
they are coordinated by a unique entity called Viceroy. The viceroy is responsible for
centralized resource management, for monitoring the resource utilization level and it handles
incoming application requests routing them to the proper wardern. If the actual resource level
is outside a defined range (i.e. window of tolerance), applications are notified via upcalls.
Applications respond to these notifications by changing their fidelity level and using different
wardens. The communications and interactions between the two application parts are
managed by a kernel module (Interceptor), which extends the operation system features
providing resource monitoring activities.

In Odyssey adaptivity is performed by a collaborative interaction between the run-time
system (i.e. operating system or middleware) and the individual applications. This approach
encourages a coordinated adaptivity between different applications which is not completely
subsumed by the run-time system. As a counterpart, the fidelity concept (which is a key-point
of this approach) is application-dependent: in general, it is not possible to define generic
fidelity variation strategies which can be parametrically configured for every applications.
Another relevant consideration is the narrow relationship between the fidelity level and the
quality of visualized data: the mobile parts of Odyssey applications exploit only visualization
activities. This assumption can be restrictive when we consider more complex applications
involving an intensive cooperation between computation, communication and visualization.
In this case adaptivity must concern not only the quality of the visualized data, but also
optimized algorithms, protocols and the performance of critical computations.

In Aura (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002) the heterogeneity of Pervasive
Grid platforms is the main issue that has been faced. For each resource type proper
applications exist, which make it possible to fully exploit the underlying device features. As
an example a word-editor for a smartphone has probably less features than a standard one, but
it is able to utilize the device touchpad. In Aura adaptivity is expressed introducing the
abstract concept of Task: a specific work that a user has submitted to the system (e.g. write a
document). A task can be completed by many applications (called services or Suppliers), and
the framework dynamically utilizes the most-suitable service. The framework executes all the
support activities to migrate a task from an application to another. Consider the following
situation: a user must prepare his presentation for a meeting and he uses the personal
computer localized in his office. Then the user is late, so he must leave the office and
complete his presentation by using a mobile device (e.g. his PDA device). Aura framework
takes care of all the necessary reconfiguration and adaptation processes. So, the user’s partial
work is automatically transferred to his PDA and transformed for the mobile application.

Aura framework is composed of a set of different layers. The task manager (called Prism)
analyzes context information (e.g. user location and motion) guessing the user intentions.
Context data are obtained by means of a Context Observer (i.e. a set of sensor devices and the
corresponding raw data interpretation activities). Service Suppliers represent all the services
that are able to execute a specific submitted task. They are implemented by wrapping existing
applications providing the predefined Aura interfaces. These interfaces make it possible to
extract all the useful information from the actual utilized service, and employ this information
as a partial computed task which can be completed by a different supplier.

In this framework application adaptivity is expressed by selecting the most proper service,
according to environmental data (e.g. the user location) obtained from sensor devices. It is an
example of adaptivity mainly expressed at the run-time system level: each service supplier is
a standard application not aware of any adaptation process. The run-time support decides the
service selection strategies by using interpreted context data, but this is not directly part of the
application semantics. In particular Aura essentially considers very simple applications (e.g.
write a presentation). On the other hand, if we consider more complex mobile applications
(e.g. executing a forecasting model for disaster prevention), transferring a partial computed

task to a different supplier can be a critical issue. As an alternative to Aura’s approach,
programmers could exploit the structure of the computation providing the transformations and
the adaptivity logic necessary to complete a partial task by using a different supplier (e.g.
changing the sequential algorithm and/or the parallelism pattern).

Cortex (Chang, Hee Kim, & Kim, 2007) is a programming model for adaptive context-aware
applications, focusing on time-critical distributed applications (e.g. automatic car control
systems and air traffic control avoiding collisions). For these applications it is very critical to
properly manage the system response time without any centralization point in the underlying
system architecture and adapting the application components to lead the system into a safe
state, even in case of unexpected environmental changes. As an example, an air traffic system
controls thousands of airplanes during their taking-off and landing phases, preserving the safe
distances and avoiding traffic congestions.

In Cortex an application is composed of a set of Sentient Objects. Each object is a small
context-aware system which can cooperate with the other objects by means of asynchronous
events. A sentient object has a set of sensors to obtain context data and a set of actuators (i.e.
physical devices capable of real-world actuations). Sensor data can pre-processed executing
data-fusion techniques and interpreted by using a specific hierarchical Context Model. The
most important part is the Inference Engine: interpreted context data are utilized to infer new
facts and situations by using a set of rules which the programmer can express in CLISP (C
Language Integrated Production System).

Cortex is a very interesting approach to context-aware systems, especially in the case of
developing applications capable of perceiving the state of the surrounding environment,
operating independently of human control, and being proactive (i.e. being anticipatory and
taking own decisions without the user intervention). This research work presents many
positive features, though it is mainly an ad-hoc solution for mobile control systems.
Programming the inference engine by means of CLISP rules and using the corresponding
context model can be a difficult task, critical for the system response and the adaptive
behavior of applications. It requires very skilled programmers and the management code
could be very difficult to be reused for other applications.

MB++ (Lillethun, Hilley, Horrigan, & Ramachandran, 2007) is a framework for developing
compute-intensive applications in Pervasive Grid environments. Such applications are
pervasive (i.e. designed for small mobile devices) and require also the execution of high-
performance computations performed by HPC centralized resources (e.g. a cluster
architecture). Typical examples are transformations on data streams (e.g. data-fusion, format
conversion, feature extraction and classifications). These applications are described as data-
flow graphs, whose nodes are transformations on data streams and the results are visualized
by mobile nodes. An example of MB++ application is a metropolitan-area emergency
response infrastructure. A large set of input data are obtained from pervasive and sensor
devices: e.g. traffic cameras, mobile devices from local police and alarms located in specific
buildings. These data are made available for monitoring activities, but they are also useful for
executing complex real-time analysis (e.g. forecasting models and decision support systems)
by using HPC centralized resources.

MB++ system architecture is composed of some clients, which are mobile devices producing
or consuming information, and a set of HPC resources which execute the main system
components: the Type Server, the Stream Server and a set of Transformation Engines. Type
server dynamically manages data type definitions for each stream and all the transformation
requests received from the clients. Stream server is responsible for executing data-flow graphs
submitted by clients. A Scheduler, inside the stream server, enqueues the received graphs in
specific command queues for each transformation engine. A transformation engine is
executed on each HPC resource present in the system. The stream server allocates data-flow

graphs (or part of them) onto a set of transformation engines, whereas the source code of
corresponding transformations are provided by the type server.

MB++ is one of the first research works focusing on high-performance computations in
pervasive scenarios. The data-flow graph assignment is performed statically by the stream
server when the graphs are allocated for the first time. So, in specific situations, we are not
able to obtain a load-balancing execution as in other approaches (Danelutto & Dazzi, 2006).
In MB++ adaptivity and context awareness are not expressed and there are no interactions
between mobile devices (except those with the stream server). In particular client mobile
devices execute only pre-processing or post-processing activities, whereas data-flow graphs
can be executed on HPC resources only. In many other critical scenarios, such as emergency
response systems, we require also the possibility to dynamically execute real-time intensive
computations on a distributed set of localized mobile resources.

In this section we have presented the actual state of the art concerning adaptive and context-
aware systems. From our point of view there is not a unified approach for programming large
pervasive grid infrastructures, especially for defining time-critical ubiquitous applications.
Some research works focus on HPC computations in real-time environments, but in these
approaches the “pervasive part” of application definition is essentially missing. It means that
there are no tools, programming constructs or methodologies to manage and define
interactions with sensor devices and to manage context information by means of proper
knowledge models. Other research works achieve the necessary expressiveness to define
context-aware and adaptive applications, but they do not face on intensive real-time
computations performed by HPC centralized resources nor by distributed systems of mobile
devices.

A PROGRAMMING MODEL APPROACH

Programming Pervasive Grid environments
The development of complex and time-critical applications for Pervasive Grids requires a
novel approach which has not been completely faced in the previous research works. This
approach must be characterized by a strong synergy between two different research fields:
Pervasive Computing (Weiser, 1999; Hansmann, Merk, Nicklous, & Stober, 2003) and Grid
Computing (Berman et al., 2003; Foster & Kasselman 2003). Both of them consist of a set of
methodologies to define applications and systems for heterogeneous distributed execution
environments, but this common objective is faced by adopting very different points of view.
Pervasive Computing is centered upon the creation of systems characterized by a multitude of
heterogeneous ubiquitous computing and communication resources, whose integration aims to
offering seamless services to the users according to their current needs and intentions. In this
scenario the main issue is to provide a complete integration between the final users and the
surrounding execution platform. Currently, many Pervasive Computing projects favor an
infrastructured approach based on some middleware architectures. On the other hand, Grid
Computing focuses on the efficient execution of compute-intensive processes by using
geographically distributed computing platforms. In this field, techniques to deal with the
heterogeneity and the dynamicity of network and computing resources (e.g. scheduling, load
balancing, data management) are more oriented towards the achievement of given levels of
performance, efficiency and security.
Next generation Pervasive Grid platforms (Priol & Vanneschi, 2007) are still at the beginning:
the integration of traditional applications and ubiquitous applications and devices is a field
still requiring intensive theoretic and experimental research. The integration must provide a
proper combination of high-performance programming models and pervasive computing
frameworks, in such a way to express a QoS-driven adaptive behavior for critical high-
performance applications. In the remaining part of this section we will identify the main
features of this novel approach.

In the previous section we have described some research works concerning adaptive and
context-aware systems for pervasive platforms. These approaches are fundamental for our
purposes, although they are suitable for classes of pervasive infrastructures (e.g. smart houses
and control systems) characterized by static environments only, like a room or a building, in
which some centralized resources are identified. This assumption has simplified the system
design (e.g. Odyssey and Aura), since critical components and support mechanisms can be
performed by fixed entities, exploiting the necessary coordination between all the system
resources including the mobile ones. Novel approaches must consider fully decentralized and
mobile solutions, characterized by applications able to adapt their behavior according to the
actual state of the application environment and of the execution environment: that is, the
current performance and availability of networks and computing nodes are of special interest
in the context definition.

Adaptivity makes it possible to face the dynamicity of the surrounding computing platform
and to achieve and maintain specific QoS levels. We consider the term QoS as a set of
metrics, reflecting the experienced behavior of an application such as: its memory occupation,
battery consumption, the estimated performance (service time, response time), as well as the
user degree of satisfaction, e.g. the precision of computed results. From this point of view the
QoS concept is very similar as the fidelity level in Odyssey, but with crucial differences. First
of all it is not only concerned with the quality of visualized data, but all non-functional
properties of applications can be involved. A notable example is (but it is not limited to) the
performance of an intensive computation which can be mapped onto different kind of nodes:
the computation can adapt its performance by changing the number of utilized computing
nodes (i.e. parallelism degree) and networks, the mapping between application modules and
corresponding utilized resources, or modifying the behavior of some specific components
(using different algorithms or parallelization schemes).

We want to study how to describe and design applications that are dynamically self-
reconfiguring during their execution life. Reconfigurations can be triggered by analyzing
monitored performance metrics and the actual state of the execution environment (e.g. node
or network failures, presence of new available mobile nodes, or emergency conditions). So
applications must be aware of their execution context (i.e. Context Awareness) obtaining this
information by using proper monitoring services or exploiting sensor devices. A Pervasive
Grid programming model must offer the necessary programming constructs and
methodologies to describe the reconfigurations and the interactions between application
components and the context data providers, interpreting also raw data by using proper Context
Models: e.g. ontology-based approaches (Gruber, 1993; Uschold & Grunninger, 1996), key-
value approaches or logic-based models (Baldauf, Dustdar, & Rosenberg, 2007).

We have identified the three main features to achieve the necessary expressiveness for
programming complex ubiquitous applications: high-performance, adaptivity and context
awareness. We focus on each of these individual issues in the remaining part of this section.

Features of a Programming Model approach

Expressing HPC computations
In large-scale distributed environments the development of high-performance dynamic
applications is characterized by two distinct approaches: a low-level approach by using
directly Grid middleware services, as stated in Mache (2006), and a high-level approach by
using high-level programming models.
In the former case applications utilize some middleware services directly to control the Grid
resources, leaving the programmer the full knowledge of middleware adaptation mechanisms
and the full responsibility of their utilization.
In the high-level approach, instead, a uniform approach is provided: strategies to drive
dynamic adaptivity are expressed in the same high-level formalism of the programming
model, without having to deal with the implementation of adaptation mechanisms, in the same

way in which the programmer has no visibility of the implementation of the traditional
programming constructs. This approach has several interesting features, in particular it
reduces the design and development phases of complex ubiquitous applications and, at the
same time, a good trade-off between programmability and performance can be achieved.

A high-level approach is the only solution to one of the most crucial issues in high-
performance applications design, i.e. the so-called performance portability: defining parallel
programs having a reasonable expectation about their performance, and in general their
behavior, when they are executed on different architectures (e.g. a multiprocessor, a
workstation cluster, a distributed system of pervasive devices or multicore components).
Performance portability is even more important in Pervasive Grids, that must be able to
dynamically reconfigure the applications onto very different and heterogeneous computing
and communication resources.
Structured Parallel Programming (Cole, 2004) is a considerable high-level approach for
developing highly-portable parallel applications. In this approach parallel programs are
expressed by using well-known abstract parallelism schemes (e.g. task-farm, pipeline, data-
parallel, divide&conquer), for which the implementation of communication and computation
patterns are known. Performance portability can be exploited by using proper performance
models for each specific scheme, which make it possible to measure and dynamically modify
the application performance and its resource utilization (e.g. performance and memory
utilization, battery consumption for mobile nodes). This feature renders it feasible the
definition of efficient fault-tolerance (Bertolli, 2009) and adaptivity (Vanneschi & Veraldi,
2007) high-performance mechanisms, which, as seen in the Background section, are not
present in other pervasive computing projects.

Expressing Adaptivity and application reconfigurations
Structured parallel programming is a valuable starting point, however it is not sufficient for a
Pervasive Grid programming model, that must be characterized also by reconfiguration
mechanisms to achieve adaptivity. We distinguish two kinds of reconfigurations: functional
and non-functional ones.

Non-functional reconfigurations preserve the application semantics and involve non-
functional parameters of a computation (e.g. its memory utilization, its performance, or power
consumption). In parallel processing projects and in pervasive computing projects (notably
Aura) an “invisible” approach to adaptivity is adopted, i.e. delegating the reconfiguration
actions to the run time system, without introducing specific mechanisms visible to the
programmer. However, an invisible approach is not sufficient for complex ubiquitous
applications. Suppose to have an intensive computation which is processed on a centralized
HPC server. Due to some events related to the state of the surrounding execution platform, we
could require the migration of this computation onto a set of mobile intelligent devices. This
migration is a complex operation, concerning not only simple technological issues (e.g.
changing the data format and migrating a partial task, as in Aura), but also concerning the
relevant differences of new available resources and their efficient exploitation. A parallel
computation for a cluster architecture could not be efficiently executed on a set of mobile
nodes, due to their possible limitations, such as memory and processing capacity, or the
performance offered by their mobile interconnection networks. In this case, a reconfiguration
approach can exploit a specific property of Structured Parallel Programming: we can change
the composition of different parallelization schemes without modifying the computation
semantics (Vanneschi, 2002), for example the parallelism degree, the data partitioning
scheme, the aggregation/disaggregation of program modules according known cost models. In
this way we are able to express multiple compatible behaviors of a certain application part,
replacing it without modifying the other parts.

Functional reconfigurations consist in providing a set of different versions of the same
application or component, each one suitable for specific context situations (e.g. mapping onto
specific available resources or when some network conditions occur). All these versions have

a different but compatible semantics: they can exploit different sequential algorithms,
different parallelization schemes or optimizations, but preserving the component’s interfaces
in such a way that the selection of a different version does not modify the behavior of the
global application. Again, the run-time system is not able to decide the proper version
selection strategy in an invisible way. Instead, the programmer is directly involved in defining
the mapping between different context situations and corresponding functional
reconfigurations: for this purpose, specific programming constructs for reconfigurations are
provided by the programming model..

In conclusion, both for functional and non-functional reconfigurations, adaptivity is not
completely application-transparent, since the programmer must be aware of the adaptation
process, i.e. similarly to the application-aware adaptivity in Odyssey, but according to an
approach which is not limited to the quality of visualized data, but includes the quality any
application phase..

Exploiting the Context knowledge
Context awareness is a common issue in many pervasive frameworks. Context-aware
applications are able to adapt their behavior without explicit user intervention, improving the
application usability by taking environmental information into account. For example Aura
applications can be location-aware, observing the user motion and reacting to this
information. In general, the term context can be defined as “any information that can be used
to characterize the situation of entities (i.e. whether a person, place, or an object) that are
considered relevant to the interaction between a user and an application, including the user
and the application themselves” (Dey, 2001, p. 3).
In Pervasive Grids. the application must adapt its behavior mainly considering the application
context (e.g. the state of a flood and the identified damages), as well as the context of
computing and network resources (e.g. values of the communication and computation
bandwidth and/or latency, availability and connectivity), which can lead to different execution
requirements (e.g. improving the performance of a real-time forecasting computation in such
a way that it can be completed until a specific deadline), thus to proper application
reconfigurations.
In a Context-aware system three aspects are very important: how to obtain context-related
data, how to represent and manage this information, and how to use this data to trigger proper
application reconfigurations.

Context-related raw data can be acquired by sensor devices, failure detectors and monitoring
services. In many approaches low-level details about this acquisition process are hided from
the applications. In some middleware solutions (Chen, Finin, & Joshi, 2003) a Context Server
is introduced. It is a fixed entity, which gathers all the sensor data applying proper context
models to extract implicit knowledge, in such a way to represent a centralized view about the
entire application execution context. This approach encourages a hierarchical system
architecture with one or many centralized support-level components. This solution is no
longer admissible in large-scale dynamic pervasive infrastructures: a programming model
approach must face the explicit definition of the so-called “context logic” of each application.
Each application component must be a context-aware adaptive unit, exploiting also parallel
computations. To define its behavior, the programming model must offer all the necessary
programming constructs to express its “functional logic” (i.e. different versions), its “control
logic” (i.e. mapping between context situations and corresponding reconfigurations) and also
the necessary “context logic” (i.e. what context data are sensed, how they are interpreted and
how to define the necessary context situations).

To express control and context logics many methodologies can be utilized. One common
solution consists in defining these logics with a set of Event-Condition-Action rules (ECA).
An event defines a context-related situation, the condition is a boolean expression on the local
state of the computation, and the corresponding action is a proper reconfiguration operation.
Each application component has a set of adaptation rules (i.e. the adaptation policy). The

control logic of the component identifies the activated rules and performs the corresponding
reconfigurations (e.g. according to a non-deterministic choice). These reconfiguration actions
can be exploited when the adaptive computation reaches specific reconfiguration safe-points
(Bertolli, 2009). The rule definition requires also to express the meaning of the corresponding
interesting context events (i.e. the context logic). Low-level context data can be obtained from
some primitive providers (which we call context interfaces) and they can be interpreted by the
context logic to express high-level events utilized in corresponding adaptation rules. These
high-level events can be defined by using different methodologies: in the simplest case they
are first-order logic expressions (which are our starting-point), in other approaches it is
possible to exploit some logic languages as Event Calculus (Kowalski & Sergot, 1986) or
Fuzzy Logic (Cao, Xing, Chan, Feng, & Jin, 2005).

Figure 2. An HPC, Adaptive and Context-Aware application for flood prevention.

Figure 2 shows an abstract view of a complex ubiquitous application for river flood
management, defined by using the described programming model features The application is
composed of a set of interconnected adaptive and context-aware components and primitive
context interfaces. Each component is characterized by the three logics which express its
semantics according to an integrated approach of parallel programming methodologies and
adaptive context-aware solutions.

Adaptivity and Context Awareness in a HPC programming model
In order to exemplify the proposed methodology we introduce our evaluation framework
ASSISTANT (ASSIST with Adaptivity and Context Awareness) programming model
(Fantacci, Vanneschi, Bertolli, Mencagli, & Tarchi, 2009; Bertolli, Buono, Mencagli, &
Vanneschi, 2009) developed in the context of the research project In.Sy.Eme (Integrated
System for Emergency).

The starting point is the previous experience in the ASSIST programming model (Vanneschi,
2002). ASSIST is a programming environment oriented to the development of parallel and
distributed high-performance applications. An ASSIST application is described as a graph of
modules, each one exploiting a sequential or a parallel computation, and communicating via
typed data streams. The Parmod construct allows the programmer to instantiate and to

configure a parallel module according to any scheme of Structured Parallel Programming
even in complex and compound forms (e.g. general or dedicated farms, data-parallelism with
static or dynamic communication stencils). ASSIST has been developed for parallel
architectures such as shared memory multiprocessors and workstation clusters, and also for
high-performance Grid platforms. ASSIST partially faces the dynamicity and heterogeneity
of the execution environment, offering a limited approach to application-transparent
adaptivity (Aldinucci, Danelutto, & Vanneschi, 2006) concerning the non-functional
reconfiguration of the number of concurrent processes (Vanneschi & Veraldi, 2007) which
execute a parallel module.

ASSISTANT targets adaptivity and context-awareness of ASSIST programs by allowing
programmers to express how the parallel computation evolves reacting to specified events.
The new Parmod construct is extended to include all the three logics of an adaptive parallel
module: functional, control and context logics.
The functional logic support the design of all the different versions of the same module,
expressed in the ASSIST syntax.
The control logic (Parmod manager) support the design of adaptation strategies, i.e. the
functional and non-functional reconfigurations performed to adapt the Parmod behavior in
response to specified events. Control logics of different application Parmods can interact by
means of control events.
The context logic includes the context event definitions. The programmer can specify events
which correspond to sensor data monitoring the environment, as well as network and nodes
performance and state. Events related to the dynamic state of the computation (e.g. the service
time of a Parmod) can also be specified. All these events can be obtained by proper primitive
context interfaces.

The concept of adaptive versions is expressed by means of the operation construct. Each
Parmod can include multiple operations featuring the same input and output interfaces. Each
operation includes its own part of functional, control and context logics of the Parmod in
which it is defined. Therefore each operation is characterized by its own parallel algorithm,
but also its own control and context logics. A Parmod has a global state shared between its
different operations and it can define the events which it is interested to sense. Semantically,
only one operation for each Parmod can be currently activated by its control logic. When a
Parmod is started, a user-specified initial operation is performed. During the execution, the
context logic of a Parmod, or the control logic of other modules, can notify one or more
events. The control logic exploits a mapping between these events and reconfiguration
actions, defined by the programmer, to either select a new operation to be executed, or
execute non-functional reconfigurations e.g. modifying the parallelism degree by means of
the parallelism construct.
The control logic of an ASSISTANT Parmod can be described as an automaton: internal
states are the operations of the Parmod, input states are the admissible boolean event
expressions, and the output states are the corresponding reconfigurations that must be
performed. Figure 3 shows an automaton example.

In the example, the initial operation is OP0. If the predicate concerning event EV0 is true, we
continue the execution of OP0 performing non-functional reconfigurations (e.g. modifying its
parallelism degree): i.e., self-transition, starting and ending in the same internal state,
correspond to non-functional reconfigurations. Consider now the transition from OP0 to OP1
fired by a second predicate concerning event EV1. In this case a functional reconfiguration is
involved, a so-called operation switching. This switching can include pre- and post-
elaborations: for instance, we can reach some consistent state before moving from OP0 to OP1
in order to allow the former operation to start from a partially computed result, instead of
from the beginning.

Figure 3. An example of an Event-Operation automaton.

Distinct operations can be defined to be efficiently executed on distinct computation and
communication resources: for example OP0 on a workstation cluster, and OP1 on a distributed
configuration of mobile or interface nodes connected by a wireless network. Event EV0 can
correspond to the request to decrease the service time of the cluster version, and EV1 to the
disconnection of some mobile devices from the central server and to the request of a user to
have granted, even in this situation, a certain continuity of service.
When the new operation must be executed on a different set of resources, all the necessary
deployment activities must be executed by the run-time support which implements this kind of
reconfigurations. This behavior is expressed in each operation of a Parmod by using the
on_event construct. Syntactically, the programmer makes use of nondeterministic clauses
whose general structure is described as a typical Event-Condition-Action rule.

FUTURE RESEARCH DIRECTIONS
There are many opened research directions concerning the design and the development of
complex ubiquitous applications.

A general class of research problems corresponds to the evaluation of the various mentioned
approaches to context awareness in relation to the expressiveness and efficiency of the
programming model.

A crucial issue concerns the methodology utilized to express adaptivity and the semantics of
the functional logic - control logic interaction of a same application module. This interaction
pattern recalls the classical approach of Control Theory, in which a system is monitored
triggering proper actions to maintain specific output requirements. From this point of view the
functional reconfigurations due to context changes are similar to a feedforward control
system, whereas non-functional reconfigurations can be described as a feedback control
system in which application non-functional properties are monitored (e.g. memory
occupation, battery consumption, and the estimated performance). Though some research
works (Kokar, Baclawski, & Eracar, 1999) introduce the mentioned analogy, this research
direction is still opened especially to formalize a well-defined semantics for adaptive systems.

Moreover, in Pervasive Grids transformations from raw data to user-oriented information are
implemented through a sort of interleaved chain of processing and communication phases.
Several communication strategies can be explicitly programmed according to different
parallel algorithms, especially for scheduling, resource allocation and heterogeneous
networks, each one exploiting different requirements in terms of the provided latency,
throughput and fault tolerance features. These algorithms consider multiple parameters, and
the corresponding optimization problems need high computational capabilities. Traditionally,
communication activities are implemented in commercial dedicated network devices through
a best effort approach, but to achieve a more flexible and scalable solution these activities

could be explicitly programmed according to the specific application needs and requirements.
So, in a completely integrated approach, application-aware adaptivity must concern not only
the processing phases, but also the possibility to program communication activities expressing
the corresponding adaptation strategies. Some first implementations in Network Processors
(Venkatachalam, Chandra, & Yavatkar, 2003; Antichi et al., 2009) encourage this research
direction.

CONCLUSION
Complex ubiquitous applications exploit the high-degree of heterogeneity and dynamicity of
Pervasive Grids, and, at the same time, they often require high-performance. The consequence
of these features is the necessary integration between high-performance capability and
adaptive and context-aware behavior which applications must be able to express. Limitations
and drawbacks of existing approaches to pervasive applications can be removed by a high-
level high-performance programming model approach, which allows programmers to express
high-performance adaptive and context-aware computations in an integrated fashion. We have
described this approach and discussed it with respect to existing solutions mainly based on
some middleware infrastructure. In the final part we have introduced our experimental
framework ASSISTANT which can be considered a research framework in which theoretical
and experimental studies on this methodology can be carried on. Some future directions in the
field of High Performance Pervasive Computing, and Pervasive Mobile Grids, have been
introduced, which represent some interesting guidelines for future research works.

REFERENCES
Aldinucci, M., Danelutto, M., & Vanneschi, M. (2006, February). Autonomic QoS in ASSIST

Grid-Aware components. Paper presented at the 14th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, Montbeliard-
Sochaux, France.

Antichi, G., Callegari, C., Coppola, M., Ficara, D., Giordano, S., Meneghin, M., . . .

Vanneschi, M. (2009, July). A High Level Development, Modeling and Simulation
Methodology for Complex Multicore Network Processors. Paper presented at the
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems, Istanbul, Turkey.

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on Context-Aware systems.

International Journal of Ad Hoc Ubiquitous Computing, 2(4), 263-277.

Berman, F., Fox, G., & Hey, A. J. G. (2003). Grid computing: Making the global

infrastructure a reality. New York, USA: John Wiley & Sons.

Bertolli, C. (2009). Fault tolerance for High-Performance application using structured

parallelism models. Saarbrücken, Germany: VDM Verlag.

Bertolli, C., Buono, D., Mencagli, G., & Vanneschi, M. (2009, September). Expressing

adaptivity and context awareness in the ASSISTANT programming model. Paper
presented at the third International ICST Conference on Autonomic Computing and
Communication Systems, Limassol, Cyprus.

Cao, J., Xing, N., Chan, A. T. S., Feng, Y., & Jin, B. (2005, August). Service adaptation

using fuzzy theory in Context-Aware mobile computing middleware. Paper presented
at the 11th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, Hong Kong, China.

Chang, J. W., Hee Kim. J.,. & Kim, Y. K. (2007, June). Design of overall architecture
supporting Context-Aware application services in pervasive computing. Paper
presented at the 2007 International Conference on Embedded Systems &
Applications, Las Vegas, USA.

Chen, H., Finin, T., & Joshi, A. (2003). An ontology for context-aware pervasive computing

environments. The Knowledge Engineering Review, 3(18), 197-207.

Cole, M. (2004). Bringing skeletons out of the closet: a pragmatic manifesto for skeletal

parallel programming. Parallel Computing, 30(3), 389-406.

Danelutto, M. & Dazzi, P. (2006, May). Joint structured/unstructured parallelism

exploitation in Muskel. Paper presented at the 6th International Conference on
Computational Science, Reading, UK.

Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing,
5(1), 4-7.

Emmerich, W. (2000, June). Software engineering and middleware: a roadmap. Paper

presented at the 22nd International Conference on Software Engineering, New York,
USA.

Fantacci, R., Vanneschi, M., Bertolli, C., Mencagli, G., & Tarchi, D. (2009). Next generation

grids and wireless communication networks: towards a novel integrated approach.
Wireless Communication and Mobile Computing, 9(4), 445-467.

Foster, I. & Kesselman, C. (2003). The Grid 2: Blueprint for a new computing infrastructure.

San Franscisco, USA: Morgan Kaufmann Publishers.

Garlan, D., Siewiorek, D., Smailagic, A., & Steenkiste, P. (2002). Project Aura: Toward

distraction-free pervasive computing. Pervasive Computing, 1(2), 22-31.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2), 199-220.

Hansmann, U., Merk, L., Nicklous, M. S., & Stober, T., (2003). Pervasive computing: The

mobile world (2nd ed.). Berlin, Germany: Springer-Verlag.

Hingne, V., Joshi, A., Finin, T., Kargupta, H., & Houstis, E. (2003, April). Towards a

pervasive grid. Paper presented at the 17th International Symposium on Parallel and
Distributed Processing, Nice, France.

Kokar, M. M., Baclawski, K., & Eracar, Y. A. (1999). Control Theory-Based Foundations of

Self-Controlling Software. IEEE Intelligent Systems, 14(3), 37-45.

Kowalski, R. & Sergot, M. (1986). A Logic-Based calculus of events. New Generation

Computing, 4(1), 67-95.

Lillethun, D. J., Hilley, D., Horrigan, S., & Ramachandran, U. (2007, August). Mb++: An

integrated architecture for pervasive computing and high-performance computing.
Paper presented at the 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, Daegu, Korea.

Mache, J. (2006). Hands on grid computing with Globus toolkit 4. Computing Sciences in

Colleges, 22(2), 99-100.

Noble, B. (2000). System support for mobile, adaptive applications. Personal
Communications, 7(1), 44-49.

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., & Walker, K. R.

(1997). Agile Application-Aware adaptation for mobility. ACM SIGOPS Operating
Systems Review, 31(5), 276-287.

Priol, T. & Vanneschi, M. (Eds.). (2007). Towards next generation grids. Proceedings of the

CoreGRID symposium 2007. Berlin, Germany: Springer Verlag.

Priol, T. & Vanneschi, M. (Eds.). (2008). From grids to service and pervasive computing.

Proceedings of the CoreGRID symposium 2008. Berlin, Germany: Springer Verlag.

Uschold, M. & Gruninger, M. (1996). Ontologies: principles, methods and applications.

Knowledge Engineering Review, 11(2), 93-136.

Vanneschi, M. (2002). The programming model of Assist, an environment for parallel and

distributed portable applications. Parallel Computing, 28(12), 1709-1732.

Vanneschi, M. & Veraldi, L. (2007). Dynamicity in distributed applications: issues, problems

and the Assist approach. Parallel Computing, 33(12), 822-845.

Venkatachalam, M., Chandra, P., & Yavatkar, R. (2003). A highly flexible, distributed

multiprocessor architecture for network processing. Journal of Computer and
Telecommunications Networking, 41(5), 563-586.

Weiser, M. (1999). The computer for the 21st century. SIGMOBILE Mobile Computing and

Communications Review, 3(3), 3-11.

KEY TERMS & DEFINITIONS
Grid: a distributed computing infrastructure for coordinated resource sharing and problem

solving in dynamic, multi-institutional virtual organizations, able to guarantee planned
levels of Quality of Service.

Shared or distributed memory architectures: parallel architectures in which the processors

interact via a shared memory space at some level (multiprocessor), or via an input-
output communication structure (multicomputer or cluster). In multicore technology, a
multiprocessor or multicomputer is integrated on a single chip.

Parallelism scheme (parallelism paradigm): a structure of a parallel computation with

precise semantics in terms of distribution of processing and data. Each scheme is
characterized by efficient implementations and related cost models (optimal degree of
parallelism, service time, completion time, speed-up or scalability).

Farm (also called master-worker): a parallelism scheme characterized by the replication of

functions into several identical copies (workers), with an additional scheduling
functionality able to balance the processing load of the workers with respect to a stream
of tasks.

Data-parallelism: a parallelism scheme characterized by the replication of functions and by

the partitioning of the related data structures into several workers, with additional
functionalities for data scattering, gathering, and possibly multicasting. In some cases
workers operate independently of each other (map scheme), in other cases they need to
interact during the computation (stencil scheme).

Adaptivity: feature of a system/application able to dynamically modify its behavior and/or its
structure in order to exploit the available computing and communication resources,
with the goal of achieving a planned level of Quality of Service and of satisfying the
user intentions.

Context Awareness: feature of a system/application able to dynamically know the functional

and non-functional characteristics of the context in which it operates. Context is defined
as “any information that can be used to characterize the situation of entities (i.e.
whether a person, place or an object) that are considered relevant to the interaction
between a user and an application, including the user and the application themselves.”
(Dey, 2001, p. 3).

