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ABSTRACT 
Several complex and time-critical applications require the existence of novel distributed, 
heterogeneous and dynamic platforms composed of a variety of fixed and mobile processing 
nodes and networks. Such platforms, that can be called Pervasive Mobile Grids, aim to merge 
the features of Pervasive Computing and High-performance Grid Computing onto a new 
emerging paradigm. In this Chapter we study a methodology for designing high-performance 
distributed computations, able to exploit the heterogeneity and dynamicity of Pervasive Grids, 
by expressing Adaptivity and Context Awareness directly at the application level. We 
describe a programming model approach, and we compare it with other existing research 
works in the field of Pervasive Mobile Computing, discussing the rationales of the 
requirements and the features of a novel programming model for the target platforms and 
applications. In order to exemplify the proposed methodology we introduce our evaluation 
framework ASSISTANT, and we provide some interesting future directions in this research 
field. 
 
 
INTRODUCTION 
An increasing number of critical applications require the existence of novel distributed, 
heterogeneous and dynamic ICT platforms composed of a variety of fixed and mobile 
processing nodes and networks. Notable examples of such applications are (but not limited to) 
risk and emergency management, disaster prevention, homeland security and i-mobility. 
These platforms are characterized by full virtualization of ubiquitous computing resources, 
data and knowledge bases and services, embedded systems, PDA devices, wearable 
computers and sensors, interconnected through fixed, mobile and ad-hoc networks. Wireless-
based platforms, enabling the robust, flexible and efficient cooperation of mobile components, 
including both software components and human operators, are of special interest. Users 
themselves are part of the distributed platform. These platforms, that aim to merge the 
features of Pervasive Computing and of Grid Computing onto a new emerging paradigm for 
heterogeneous distributed platforms, can be called Pervasive Mobile Grids (Hingne, Joshi, 
Finin, Kargupta, & Houstis, 2003; Priol & Vanneschi, 2008). 
Figure 1 shows an abstract view of a Pervasive Grid platform focusing on the heterogeneity of 
computing resources and on interconnection network technologies. 
The Pervasive Grid paradigm implies the development, deployment, execution and 
management of applications that, in general, are dynamic in nature. Dynamicity concerns the 
number and the specific identification of cooperating components, the deployment and 
composition of the most suitable versions of software components, processing and networking 
resources and services, i.e., both the quantity and the quality of the application components to 
achieve the needed Quality of Service (QoS). The specification and requirements of QoS itself 
are varying dynamically during the application, according to the user intentions and to the 
information produced by sensors and services, as well as according to the monitored state and 
performance of networks and nodes. 
 
The general reference point for this kind of platforms is the Grid paradigm (Bermam, Fox, & 
Hey, 2003; Foster & Kesselman, 2003) which, by definition, aims to enabling the access, 
selection and aggregation of a variety of distributed and heterogeneous resources and 
services. However, though notable advancements have been achieved in recent years, current 
Grid technology is not yet able to supply the needed software tools with the features of high 
adaptivity, ubiquity, proactivity, self-organization, scalability and performance, 
interoperability, as well as fault tolerance and security, of the emerging applications running 
on a very large number of fixed and mobile nodes connected by various kinds of networks. 
 
Pervasive Grid applications include data- and compute-intensive processing (e.g. forecasting 
and decision support models) not only for off-line centralized activities, but also for on-line 
and decentralized activities. Consider the execution of software components performing a 
forecasting model or of a decision support system model, which are critical compute-intensive 
activities to be executed respecting operational real-time deadlines. In “normal” connectivity 







conditions we are able to execute these components on a centralized server, exploiting its 
processing power to achieve the highest performance as possible. Critical conditions in the 
application scenario (e.g. in emergency management) can lead to different user requirements 
(e.g. increasing the performance to complete the forecasting computation within a given, new 
deadline). Changes in network conditions (e.g. network failures or congestion situations) can 
lead to the necessity to execute a version of the application model directly on spatially local 
resources which are available to the users (e.g. personnel, rescuers, emergency managers and 
stakeholders): when central servers are not available or reachable, such resources are interface 
nodes and/or mobile devices themselves. In such cases, the forecasting model can be executed 
on different or additional computing resources, including a set of distributed mobile resources 
running different application software versions which are specifically defined and designed to 
exploit such kind of resources. In other words, in this scenario it is important to assure the 
service continuity, adapting the application to different user requirements but also to the so-
called context: the actual conditions of the both the surrounding environment and the 
computing and communication platform. So the key-issue is the definition of programming 
paradigms, models, and frameworks to design and develop these kinds of complex and 
dynamic applications, focusing on Adaptivity and Context Awareness as crucial issues to be 
solved and to be integrated with high-performance and real-time features. 
 


 
Figure 1. A schematic view of a Pervasive Grid infrastructure. 


 
So, in Pervasive Grids various, heterogeneous fixed and mobile computers (e.g. PDA, 
wearable devices, new generation handphones) and networks must be able to capillary 
provide users with the necessary services in various connectivity, processing and location-
based conditions. According to the current trends in computer technology, interface nodes and 
mobile devices can be equipped with very powerful, parallel computing resources, such as 
multi-/many-core components or GPUs, thus rendering the embedding of compute intensive 
functions quite feasible at low power dissipation. These devices can be part of self-
configuring ad-hoc/mesh networks, in such a way that they can cooperatively form a 







distributed embedded system executing specific application components, as well as being are 
able to cooperate with centralized servers (e.g. a workstation cluster) and wired networks.  
 
In this Chapter we study a methodology for designing high-performance computations, able 
to exploit the heterogeneity and dynamicity of Pervasive Grids, by expressing Adaptivity and 
Context Awareness directly at the application level. We describe a programming model 
approach, and we compare it with other existing research works in the field of Pervasive 
Mobile Computing, discussing the rationales of the requirements and the features of a novel 
programming model for the target platforms and applications. As a consequence we discuss 
the advantages of a programming model methodology with respect to some standard 
middleware-based solutions. As a concrete example, we introduce a partial view of the 
ASSISTANT programming model, which is intended to be a first starting-point to express the 
identified main features of the Pervasive Grid approach. Finally we describe a set of 
interesting and opened research problems in the field of complex ubiquitous applications, 
concerning with a unified approach to define processing and communication strategies and 
with different methodologies to express application adaptivity and context-awareness.   
 
 
BACKGROUND 
In this section we describe the state of the art concerning adaptive and context-aware 
applications for pervasive distributed platforms. In particular our objective is to describe how 
adaptivity and dynamicity are expressed, focusing on the expressiveness of different 
approaches.  
In many cases adaptivity is expressed at the run-time support level only. During the 
execution, the run-time system can select different protocols, algorithms or alternative 
implementations of the same mechanisms, in response to specific events which describe the 
actual context situation. This support level is often called middleware (Emmerich, 2003): a set 
of common services, operating on lower level resources, utilized by distributed cooperating 
application components. At the middleware level adaptivity can be expressed by a proper 
static or dynamic selection of different service implementations, or by setting specific 
parameters of configurable primitives. In many instances of this approach all the 
reconfigurations and adaptation processes are fully invisible to the applications. 
In other research works adaptivity is a key-issue which is directly expressed at the application 
level. Mechanisms and tools are provided that allow programmers to define how their 
applications can be reconfigured and what the sensed events are. Applications can be defined 
in such a way that multiple versions of the same component or module are defined, and a 
proper version selection strategy must be expressed by the programmer. So, adaptation 
strategies and policies are directly part of the application semantics, which can be 
characterized by a functional part and a control logic (manager) expressing the adaptive 
behavior of the application. 
 
Odyssey (Noble et al., 1997; Noble, 2000) is a research framework for the definition of mobile 
applications able to adapt their behavior, and especially their resource utilization, according to 
the actual state of the surrounding execution environment. The framework features run-time 
reconfigurations which are noticed by the final users as a change in the application execution 
quality. In Odyssey this quality concept is called fidelity: a fidelity decrease leads to a lower 
utilization of system resources (e.g. memory occupation and battery consumption). The 
framework periodically controls these system resources, and interacts with applications 
raising or lowering the corresponding fidelity levels. In the case of Odyssey, all these 
reconfigurations are automatically activated by the run-time system without any user 
intervention. For instance, in a media player application the fidelity can be the available 
compression of the played audio file, which can be dynamically selected according to the 
actual available network bandwidth. 
 
In Odyssey applications are composed of two distinct parts: the first one produces input data 
according to a certain fidelity level, and the second one executes the visualization activities on 







the previous data. The first part of each application is managed by a set of specific framework 
components called Warden. Each warden produces data with the predefined fidelity level, and 
they are coordinated by a unique entity called Viceroy. The viceroy is responsible for 
centralized resource management, for monitoring the resource utilization level and it handles 
incoming application requests routing them to the proper wardern. If the actual resource level 
is outside a defined range (i.e. window of tolerance), applications are notified via upcalls. 
Applications respond to these notifications by changing their fidelity level and using different 
wardens. The communications and interactions between the two application parts are 
managed by a kernel module (Interceptor), which extends the operation system features 
providing resource monitoring activities. 
 
In Odyssey adaptivity is performed by a collaborative interaction between the run-time 
system (i.e. operating system or middleware) and the individual applications. This approach 
encourages a coordinated adaptivity between different applications which is not completely 
subsumed by the run-time system. As a counterpart, the fidelity concept (which is a key-point 
of this approach) is application-dependent: in general, it is not possible to define generic 
fidelity variation strategies which can be parametrically configured for every applications. 
Another relevant consideration is the narrow relationship between the fidelity level and the 
quality of visualized data: the mobile parts of Odyssey applications exploit only visualization 
activities. This assumption can be restrictive when we consider more complex applications 
involving an intensive cooperation between computation, communication and visualization. 
In this case adaptivity must concern not only the quality of the visualized data, but also 
optimized algorithms, protocols and the performance of critical computations. 
 
In Aura (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002) the heterogeneity of Pervasive 
Grid platforms is the main issue that has been faced. For each resource type proper 
applications exist, which make it possible to fully exploit the underlying device features. As 
an example a word-editor for a smartphone has probably less features than a standard one, but 
it is able to utilize the device touchpad. In Aura adaptivity is expressed introducing the 
abstract concept of Task: a specific work that a user has submitted to the system (e.g. write a 
document). A task can be completed by many applications (called services or Suppliers), and 
the framework dynamically utilizes the most-suitable service. The framework executes all the 
support activities to migrate a task from an application to another. Consider the following 
situation: a user must prepare his presentation for a meeting and he uses the personal 
computer localized in his office. Then the user is late, so he must leave the office and 
complete his presentation by using a mobile device (e.g. his PDA device). Aura framework 
takes care of all the necessary reconfiguration and adaptation processes. So, the user’s partial 
work is automatically transferred to his PDA and transformed for the mobile application. 
 
Aura framework is composed of a set of different layers. The task manager (called Prism) 
analyzes context information (e.g. user location and motion) guessing the user intentions. 
Context data are obtained by means of a Context Observer (i.e. a set of sensor devices and the 
corresponding raw data interpretation activities). Service Suppliers represent all the services 
that are able to execute a specific submitted task. They are implemented by wrapping existing 
applications providing the predefined Aura interfaces. These interfaces make it possible to 
extract all the useful information from the actual utilized service, and employ this information 
as a partial computed task which can be completed by a different supplier. 
 
In this framework application adaptivity is expressed by selecting the most proper service, 
according to environmental data (e.g. the user location) obtained from sensor devices. It is an 
example of adaptivity mainly expressed at the run-time system level: each service supplier is 
a standard application not aware of any adaptation process. The run-time support decides the 
service selection strategies by using interpreted context data, but this is not directly part of the 
application semantics. In particular Aura essentially considers very simple applications (e.g. 
write a presentation). On the other hand, if we consider more complex mobile applications 
(e.g. executing a forecasting model for disaster prevention), transferring a partial computed 







task to a different supplier can be a critical issue. As an alternative to Aura’s approach, 
programmers could exploit the structure of the computation providing the transformations and 
the adaptivity logic necessary to complete a partial task by using a different supplier (e.g. 
changing the sequential algorithm and/or the parallelism pattern).  
 
Cortex (Chang, Hee Kim, & Kim, 2007) is a programming model for adaptive context-aware 
applications, focusing on time-critical distributed applications (e.g. automatic car control 
systems and air traffic control avoiding collisions). For these applications it is very critical to 
properly manage the system response time without any centralization point in the underlying 
system architecture and adapting the application components to lead the system into a safe 
state, even in case of unexpected environmental changes. As an example, an air traffic system 
controls thousands of airplanes during their taking-off and landing phases, preserving the safe 
distances and avoiding traffic congestions. 
 
In Cortex an application is composed of a set of Sentient Objects. Each object is a small 
context-aware system which can cooperate with the other objects by means of asynchronous 
events. A sentient object has a set of sensors to obtain context data and a set of actuators (i.e. 
physical devices capable of real-world actuations). Sensor data can pre-processed executing 
data-fusion techniques and interpreted by using a specific hierarchical Context Model. The 
most important part is the Inference Engine: interpreted context data are utilized to infer new 
facts and situations by using a set of rules which the programmer can express in CLISP (C 
Language Integrated Production System).  
 
Cortex is a very interesting approach to context-aware systems, especially in the case of 
developing applications capable of perceiving the state of the surrounding environment, 
operating independently of human control, and being proactive (i.e. being anticipatory and 
taking own decisions without the user intervention). This research work presents many 
positive features, though it is mainly an ad-hoc solution for mobile control systems. 
Programming the inference engine by means of CLISP rules and using the corresponding 
context model can be a difficult task, critical for the system response and the adaptive 
behavior of applications. It requires very skilled programmers and the management code 
could be very difficult to be reused for other applications. 
 
MB++ (Lillethun, Hilley, Horrigan, & Ramachandran, 2007) is a framework for developing 
compute-intensive applications in Pervasive Grid environments. Such applications are 
pervasive (i.e. designed for small mobile devices) and require also the execution of high-
performance computations performed by HPC centralized resources (e.g. a cluster 
architecture). Typical examples are transformations on data streams (e.g. data-fusion, format 
conversion, feature extraction and classifications).  These applications are described as data-
flow graphs, whose nodes are transformations on data streams and the results are visualized 
by mobile nodes. An example of MB++ application is a metropolitan-area emergency 
response infrastructure. A large set of input data are obtained from pervasive and sensor 
devices: e.g. traffic cameras, mobile devices from local police and alarms located in specific 
buildings. These data are made available for monitoring activities, but they are also useful for 
executing complex real-time analysis (e.g. forecasting models and decision support systems) 
by using HPC centralized resources.  
 
MB++ system architecture is composed of some clients, which are mobile devices producing 
or consuming information, and a set of HPC resources which execute the main system 
components: the Type Server, the Stream Server and a set of Transformation Engines. Type 
server dynamically manages data type definitions for each stream and all the transformation 
requests received from the clients. Stream server is responsible for executing data-flow graphs 
submitted by clients. A Scheduler, inside the stream server, enqueues the received graphs in 
specific command queues for each transformation engine. A transformation engine is 
executed on each HPC resource present in the system. The stream server allocates data-flow 







graphs (or part of them) onto a set of transformation engines, whereas the source code of 
corresponding transformations are provided by the type server. 
 
MB++ is one of the first research works focusing on high-performance computations in 
pervasive scenarios. The data-flow graph assignment is performed statically by the stream 
server when the graphs are allocated for the first time. So, in specific situations, we are not 
able to obtain a load-balancing execution as in other approaches (Danelutto & Dazzi, 2006). 
In MB++ adaptivity and context awareness are not expressed and there are no interactions 
between mobile devices (except those with the stream server). In particular client mobile 
devices execute only pre-processing or post-processing activities, whereas data-flow graphs 
can be executed on HPC resources only. In many other critical scenarios, such as emergency 
response systems, we require also the possibility to dynamically execute real-time intensive 
computations on a distributed set of localized mobile resources. 
 
In this section we have presented the actual state of the art concerning adaptive and context-
aware systems. From our point of view there is not a unified approach for programming large 
pervasive grid infrastructures, especially for defining time-critical ubiquitous applications. 
Some research works focus on HPC computations in real-time environments, but in these 
approaches the “pervasive part” of application definition is essentially missing. It means that 
there are no tools, programming constructs or methodologies to manage and define 
interactions with sensor devices and to manage context information by means of proper 
knowledge models. Other research works achieve the necessary expressiveness to define 
context-aware and adaptive applications, but they do not face on intensive real-time 
computations performed by HPC centralized resources nor by distributed systems of mobile 
devices. 
 
 
A PROGRAMMING MODEL APPROACH 
 
Programming Pervasive Grid environments 
The development of complex and time-critical applications for Pervasive Grids requires a 
novel approach which has not been completely faced in the previous research works. This 
approach must be characterized by a strong synergy between two different research fields: 
Pervasive Computing (Weiser, 1999; Hansmann, Merk, Nicklous, & Stober, 2003) and Grid 
Computing (Berman et al., 2003; Foster & Kasselman 2003). Both of them consist of a set of 
methodologies to define applications and systems for heterogeneous distributed execution 
environments, but this common objective is faced by adopting very different points of view. 
Pervasive Computing is centered upon the creation of systems characterized by a multitude of 
heterogeneous ubiquitous computing and communication resources, whose integration aims to 
offering seamless services to the users according to their current needs and intentions. In this 
scenario the main issue is to provide a complete integration between the final users and the 
surrounding execution platform. Currently, many Pervasive Computing projects favor an 
infrastructured approach based on some middleware architectures. On the other hand, Grid 
Computing focuses on the efficient execution of compute-intensive processes by using 
geographically distributed computing platforms. In this field, techniques to deal with the 
heterogeneity and the dynamicity of network and computing resources (e.g. scheduling, load 
balancing, data management) are more oriented towards the achievement of given levels of 
performance, efficiency and security.  
Next generation Pervasive Grid platforms (Priol & Vanneschi, 2007) are still at the beginning: 
the integration of traditional applications and ubiquitous applications and devices is a field 
still requiring intensive theoretic and experimental research. The integration must provide a 
proper combination of high-performance programming models and pervasive computing 
frameworks, in such a way to express a QoS-driven adaptive behavior for critical high-
performance applications. In the remaining part of this section we will identify the main 
features of this novel approach.  
 







In the previous section we have described some research works concerning adaptive and 
context-aware systems for pervasive platforms. These approaches are fundamental for our 
purposes, although they are suitable for classes of pervasive infrastructures (e.g. smart houses 
and control systems) characterized by static environments only, like a room or a building, in 
which some centralized resources are identified. This assumption has simplified the system 
design (e.g. Odyssey and Aura), since critical components and support mechanisms can be 
performed by fixed entities, exploiting the necessary coordination between all the system 
resources including the mobile ones. Novel approaches must consider fully decentralized and 
mobile solutions, characterized by applications able to adapt their behavior according to the 
actual state of the application environment and of the execution environment: that is, the 
current performance and availability of networks and computing nodes are of special interest 
in the context definition.  
 
Adaptivity makes it possible to face the dynamicity of the surrounding computing platform 
and to achieve and maintain specific QoS levels. We consider the term QoS as a set of 
metrics, reflecting the experienced behavior of an application such as: its memory occupation, 
battery consumption, the estimated performance (service time, response time), as well as the 
user degree of satisfaction, e.g. the precision of computed results. From this point of view the 
QoS concept is very similar as the fidelity level in Odyssey, but with crucial differences. First 
of all it is not only concerned with the quality of visualized data, but all non-functional 
properties of applications can be involved. A notable example is (but it is not limited to) the 
performance of an intensive computation which can be mapped onto different kind of nodes: 
the computation can adapt its performance by changing the number of utilized computing 
nodes (i.e. parallelism degree) and networks, the mapping between application modules and 
corresponding utilized resources, or modifying the behavior of some specific components 
(using different algorithms or parallelization schemes).  
 
We want to study how to describe and design applications that are dynamically self-
reconfiguring during their execution life. Reconfigurations can be triggered by analyzing 
monitored performance metrics and the actual state of the execution environment (e.g. node 
or network failures, presence of new available mobile nodes, or emergency conditions). So 
applications must be aware of their execution context (i.e. Context Awareness) obtaining this 
information by using proper monitoring services or exploiting sensor devices. A Pervasive 
Grid programming model must offer the necessary programming constructs and 
methodologies to describe the reconfigurations and the interactions between application 
components and the context data providers, interpreting also raw data by using proper Context 
Models: e.g. ontology-based approaches (Gruber, 1993; Uschold & Grunninger, 1996), key-
value approaches or logic-based models (Baldauf, Dustdar, & Rosenberg, 2007). 
 
We have identified the three main features to achieve the necessary expressiveness for 
programming complex ubiquitous applications: high-performance, adaptivity and context 
awareness. We focus on each of these individual issues in the remaining part of this section. 
 
Features of a Programming Model approach 
 
Expressing HPC computations 
In large-scale distributed environments the development of high-performance dynamic 
applications is characterized by two distinct approaches: a low-level approach by using 
directly Grid middleware services, as stated in Mache (2006), and a high-level approach by 
using high-level programming models.  
In the former case applications utilize some middleware services directly to control the Grid 
resources, leaving the programmer the full knowledge of middleware adaptation mechanisms 
and the full responsibility of their utilization.  
In the high-level approach, instead, a uniform approach is provided: strategies to drive 
dynamic adaptivity are expressed in the same high-level formalism of the programming 
model, without having to deal with the implementation of adaptation mechanisms, in the same 







way in which the programmer has no visibility of the implementation of the traditional 
programming constructs. This approach has several interesting features, in particular it 
reduces the design and development phases of complex ubiquitous applications and, at the 
same time, a good trade-off between programmability and performance can be achieved. 
 
A high-level approach is the only solution to one of the most crucial issues in high-
performance applications design, i.e. the so-called performance portability: defining parallel 
programs having a reasonable expectation about their performance, and in general their 
behavior, when they are executed on different architectures (e.g. a multiprocessor, a 
workstation cluster, a distributed system of pervasive devices or multicore components). 
Performance portability is even more important in Pervasive Grids, that must be able to 
dynamically reconfigure the applications onto very different and heterogeneous computing 
and communication resources. 
Structured Parallel Programming (Cole, 2004) is a considerable high-level approach for 
developing highly-portable parallel applications. In this approach parallel programs are 
expressed by using well-known abstract parallelism schemes (e.g. task-farm, pipeline, data-
parallel, divide&conquer), for which the implementation of communication and computation 
patterns are known. Performance portability can be exploited by using proper performance 
models for each specific scheme, which make it possible to measure and dynamically modify 
the application performance and its resource utilization (e.g. performance and memory 
utilization, battery consumption for mobile nodes). This feature renders it feasible the 
definition of efficient fault-tolerance (Bertolli, 2009) and adaptivity (Vanneschi & Veraldi, 
2007) high-performance mechanisms, which, as seen in the Background section, are not 
present in other pervasive computing projects.  
 
Expressing Adaptivity and application reconfigurations 
Structured parallel programming is a valuable starting point, however it is not sufficient for a 
Pervasive Grid programming model, that must be characterized also by reconfiguration 
mechanisms to achieve adaptivity. We distinguish two kinds of reconfigurations: functional 
and non-functional ones.  
 
Non-functional reconfigurations preserve the application semantics and involve non-
functional parameters of a computation (e.g. its memory utilization, its performance, or power 
consumption). In parallel processing projects and in pervasive computing projects (notably 
Aura) an “invisible” approach to adaptivity is adopted, i.e. delegating the reconfiguration 
actions to the run time system, without introducing specific mechanisms visible to the 
programmer. However, an invisible approach is not sufficient for complex ubiquitous 
applications. Suppose to have an intensive computation which is processed on a centralized 
HPC server. Due to some events related to the state of the surrounding execution platform, we 
could require the migration of this computation onto a set of mobile intelligent devices. This 
migration is a complex operation, concerning not only simple technological issues (e.g. 
changing the data format and migrating a partial task, as in Aura), but also concerning the 
relevant differences of new available resources and their efficient exploitation. A parallel 
computation for a cluster architecture could not be efficiently executed on a set of mobile 
nodes, due to their possible limitations, such as memory and processing capacity, or the 
performance offered by their mobile interconnection networks. In this case, a reconfiguration 
approach can exploit a specific property of Structured Parallel Programming: we can change 
the composition of different parallelization schemes without modifying the computation 
semantics (Vanneschi, 2002), for example the parallelism degree, the data partitioning 
scheme, the aggregation/disaggregation of program modules according known cost models. In 
this way we are able to express multiple compatible behaviors of a certain application part, 
replacing it without modifying the other parts.  
 
Functional reconfigurations consist in providing a set of different versions of the same 
application or component, each one suitable for specific context situations (e.g. mapping onto 
specific available resources or when some network conditions occur). All these versions have 







a different but compatible semantics: they can exploit different sequential algorithms, 
different parallelization schemes or optimizations, but preserving the component’s interfaces 
in such a way that the selection of a different version does not modify the behavior of the 
global application. Again, the run-time system is not able to decide the proper version 
selection strategy in an invisible way. Instead, the programmer is directly involved in defining 
the mapping between different context situations and corresponding functional 
reconfigurations: for this purpose, specific programming constructs for reconfigurations are 
provided by the programming model..  
 
In conclusion, both for functional and non-functional reconfigurations, adaptivity is not 
completely application-transparent, since the programmer must be aware of the adaptation 
process, i.e. similarly to the application-aware adaptivity in Odyssey, but according to an 
approach which is not limited to the quality of visualized data, but includes the quality any 
application phase.. 
 
Exploiting the Context knowledge 
Context awareness is a common issue in many pervasive frameworks. Context-aware 
applications are able to adapt their behavior without explicit user intervention, improving the 
application usability by taking environmental information into account. For example Aura 
applications can be location-aware, observing the user motion and reacting to this 
information. In general, the term context can be defined as “any information that can be used 
to characterize the situation of entities (i.e. whether a person, place, or an object) that are 
considered relevant to the interaction between a user and an application, including the user 
and the application themselves” (Dey, 2001, p. 3).  
In Pervasive Grids. the application must adapt its behavior mainly considering the application 
context (e.g. the state of a flood and the identified damages), as well as the context of 
computing and network resources (e.g. values of the communication and computation 
bandwidth and/or latency, availability and connectivity), which can lead to different execution 
requirements (e.g. improving the performance of a real-time forecasting computation in such 
a way that it can be completed until a specific deadline), thus to proper application 
reconfigurations. 
In a Context-aware system three aspects are very important: how to obtain context-related 
data, how to represent and manage this information, and how to use this data to trigger proper 
application reconfigurations.  
 
Context-related raw data can be acquired by sensor devices, failure detectors and monitoring 
services. In many approaches low-level details about this acquisition process are hided from 
the applications. In some middleware solutions (Chen, Finin, & Joshi, 2003) a Context Server 
is introduced. It is a fixed entity, which gathers all the sensor data applying proper context 
models to extract implicit knowledge, in such a way to represent a centralized view about the 
entire application execution context. This approach encourages a hierarchical system 
architecture with one or many centralized support-level components. This solution is no 
longer admissible in large-scale dynamic pervasive infrastructures: a programming model 
approach must face the explicit definition of the so-called “context logic” of each application. 
Each application component must be a context-aware adaptive unit, exploiting also parallel 
computations. To define its behavior, the programming model must offer all the necessary 
programming constructs to express its “functional logic” (i.e. different versions), its “control 
logic” (i.e. mapping between context situations and corresponding reconfigurations) and also 
the necessary “context logic” (i.e. what context data are sensed, how they are interpreted and 
how to define the necessary context situations). 
 
To express control and context logics many methodologies can be utilized. One common 
solution consists in defining these logics with a set of Event-Condition-Action rules (ECA). 
An event defines a context-related situation, the condition is a boolean expression on the local 
state of the computation, and the corresponding action is a proper reconfiguration operation. 
Each application component has a set of adaptation rules (i.e. the adaptation policy). The 







control logic of the component identifies the activated rules and performs the corresponding 
reconfigurations (e.g. according to a non-deterministic choice). These reconfiguration actions 
can be exploited when the adaptive computation reaches specific reconfiguration safe-points 
(Bertolli, 2009). The rule definition requires also to express the meaning of the corresponding 
interesting context events (i.e. the context logic). Low-level context data can be obtained from 
some primitive providers (which we call context interfaces) and they can be interpreted by the 
context logic to express high-level events utilized in corresponding adaptation rules. These 
high-level events can be defined by using different methodologies: in the simplest case they 
are first-order logic expressions (which are our starting-point), in other approaches it is 
possible to exploit some logic languages as Event Calculus (Kowalski & Sergot, 1986) or 
Fuzzy Logic (Cao, Xing, Chan, Feng, & Jin, 2005). 
 


 
Figure 2. An HPC, Adaptive and Context-Aware application for flood prevention. 


 
Figure 2 shows an abstract view of a complex ubiquitous application for river flood 
management, defined by using the described programming model features The application is 
composed of a set of interconnected adaptive and context-aware components and primitive 
context interfaces. Each component is characterized by the three logics which express its 
semantics according to an integrated approach of parallel programming methodologies and 
adaptive context-aware solutions. 
 
 
Adaptivity and Context Awareness in a HPC programming model 
In order to exemplify the proposed methodology we introduce our evaluation framework 
ASSISTANT (ASSIST with Adaptivity and Context Awareness) programming model 
(Fantacci, Vanneschi, Bertolli, Mencagli, & Tarchi, 2009; Bertolli, Buono, Mencagli, & 
Vanneschi, 2009) developed in the context of the research project In.Sy.Eme (Integrated 
System for Emergency). 
 
The starting point is the previous experience in the ASSIST programming model (Vanneschi, 
2002). ASSIST is a programming environment oriented to the development of parallel and 
distributed high-performance applications. An ASSIST application is described as a graph of 
modules, each one exploiting a sequential or a parallel computation, and communicating via 
typed data streams. The Parmod construct allows the programmer to instantiate and to 







configure a parallel module according to any scheme of Structured Parallel Programming 
even in complex and compound forms (e.g. general or dedicated farms, data-parallelism with 
static or dynamic communication stencils). ASSIST has been developed for parallel 
architectures such as shared memory multiprocessors and workstation clusters, and also for 
high-performance  Grid platforms. ASSIST partially faces the dynamicity and heterogeneity 
of the execution environment, offering a limited approach to application-transparent 
adaptivity (Aldinucci, Danelutto, & Vanneschi, 2006) concerning the non-functional 
reconfiguration of the number of concurrent processes (Vanneschi & Veraldi, 2007) which 
execute a parallel module.  
 
ASSISTANT targets adaptivity and context-awareness  of ASSIST programs by allowing 
programmers to express how the parallel computation evolves reacting to specified events. 
The new Parmod construct is extended to include all the three logics of an adaptive parallel 
module: functional, control and context logics.  
The functional logic support the design of all the different versions of the same module, 
expressed in the ASSIST syntax.  
The control logic (Parmod manager) support the design of adaptation strategies, i.e. the 
functional and non-functional reconfigurations performed to adapt the Parmod behavior in 
response to specified events. Control logics of different application Parmods can interact by 
means of control events.  
The context logic includes the context event definitions. The programmer can specify events 
which correspond to sensor data monitoring the environment, as well as network and nodes 
performance and state. Events related to the dynamic state of the computation (e.g. the service 
time of a Parmod) can also be specified. All these events can be obtained by proper primitive 
context interfaces. 
 
The concept of adaptive versions is expressed by means of the operation construct. Each 
Parmod can include multiple operations featuring the same input and output interfaces. Each 
operation includes its own part of functional, control and context logics of the Parmod in 
which it is defined. Therefore each operation is characterized by its own parallel algorithm, 
but also its own control and context logics. A Parmod has a global state shared between its 
different operations and it can define the events which it is interested to sense. Semantically, 
only one operation for each Parmod can be currently activated by its control logic. When a 
Parmod is started, a user-specified initial operation is performed. During the execution, the 
context logic of a Parmod, or the control logic of other modules, can notify one or more 
events. The control logic exploits a mapping between these events and reconfiguration 
actions, defined by the programmer, to either select a new operation to be executed, or 
execute non-functional reconfigurations e.g. modifying the parallelism degree by means of 
the parallelism construct. 
The control logic of an ASSISTANT Parmod can be described as an automaton: internal 
states are the operations of the Parmod, input states are the admissible boolean event 
expressions, and the output states are the corresponding reconfigurations that must be 
performed. Figure 3 shows an automaton example. 
 
In the example, the initial operation is OP0. If the predicate concerning event EV0 is true, we 
continue the execution of OP0 performing non-functional reconfigurations (e.g. modifying its 
parallelism degree): i.e., self-transition, starting and ending in the same internal state, 
correspond to non-functional reconfigurations. Consider now the transition from OP0 to OP1 
fired by a second predicate concerning event EV1. In this case a functional reconfiguration is 
involved, a so-called operation switching. This switching can include pre- and post- 
elaborations: for instance, we can reach some consistent state before moving from OP0 to OP1 
in order to allow the former operation to start from a partially computed result, instead of 
from the beginning.  
 







 
Figure 3. An example of an Event-Operation automaton. 


 
Distinct operations can be defined to be efficiently executed on distinct computation and 
communication resources: for example OP0 on a workstation cluster, and OP1 on a distributed 
configuration of mobile or interface nodes connected by a wireless network. Event EV0 can 
correspond to the request to decrease the service time of the cluster version, and EV1 to the 
disconnection of some mobile devices from the central server and to the request of a user to 
have granted, even in this situation, a certain continuity of service. 
When the new operation must be executed on a different set of resources, all the necessary 
deployment activities must be executed by the run-time support which implements this kind of 
reconfigurations. This behavior is expressed in each operation of a Parmod by using the 
on_event construct. Syntactically, the programmer makes use of nondeterministic clauses 
whose general structure is described as a typical Event-Condition-Action rule. 
 
 
FUTURE RESEARCH DIRECTIONS 
There are many opened research directions concerning the design and the development of 
complex ubiquitous applications.  
 
A general class of research problems corresponds to the evaluation of the various mentioned 
approaches to context awareness in relation to the expressiveness and efficiency of the 
programming model. 
 
A crucial issue concerns the methodology utilized to express adaptivity and the semantics of 
the functional logic - control logic interaction of a same application module. This interaction 
pattern recalls the classical approach of Control Theory, in which a system is monitored 
triggering proper actions to maintain specific output requirements. From this point of view the 
functional reconfigurations due to context changes are similar to a feedforward control 
system, whereas non-functional reconfigurations can be described as a feedback control 
system in which application non-functional properties are monitored (e.g. memory 
occupation, battery consumption, and the estimated performance). Though some research 
works (Kokar, Baclawski, & Eracar, 1999) introduce the mentioned analogy, this research 
direction is still opened especially to formalize a well-defined semantics for adaptive systems. 
 
Moreover, in Pervasive Grids transformations from raw data to user-oriented information are 
implemented through a sort of interleaved chain of processing and communication phases. 
Several communication strategies can be explicitly programmed according to different 
parallel algorithms, especially for scheduling, resource allocation and heterogeneous 
networks, each one exploiting different requirements in terms of the provided latency, 
throughput and fault tolerance features. These algorithms consider multiple parameters, and 
the corresponding optimization problems need high computational capabilities. Traditionally, 
communication activities are implemented in commercial dedicated network devices through 
a best effort approach, but to achieve a more flexible and scalable solution these activities 







could be explicitly programmed according to the specific application needs and requirements. 
So, in a completely integrated approach, application-aware adaptivity must concern not only 
the processing phases, but also the possibility to program communication activities expressing 
the corresponding adaptation strategies. Some first implementations in Network Processors 
(Venkatachalam, Chandra, & Yavatkar, 2003; Antichi et al., 2009) encourage this research 
direction. 
 
 
CONCLUSION 
Complex ubiquitous applications exploit the high-degree of heterogeneity and dynamicity of 
Pervasive Grids, and, at the same time, they often require high-performance. The consequence 
of these features is the necessary integration between high-performance capability and 
adaptive and context-aware behavior which applications must be able to express. Limitations 
and drawbacks of existing approaches to pervasive applications can be removed by a high-
level high-performance programming model approach, which allows programmers to express 
high-performance adaptive and context-aware computations in an integrated fashion. We have 
described this approach and discussed it with respect to existing solutions mainly based on 
some middleware infrastructure. In the final part we have introduced our experimental 
framework ASSISTANT which can be considered a research framework in which theoretical 
and experimental studies on this methodology can be carried on. Some future directions in the 
field of High Performance Pervasive Computing, and Pervasive Mobile Grids, have been 
introduced, which represent some interesting guidelines for future research works. 
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KEY TERMS & DEFINITIONS  
Grid: a distributed computing infrastructure for coordinated resource sharing and problem 


solving in dynamic, multi-institutional virtual organizations, able to guarantee planned 
levels of Quality of Service. 


 
Shared or distributed memory architectures: parallel architectures in which the processors 


interact via a shared memory space at some level (multiprocessor), or via an input-
output communication structure (multicomputer or cluster). In multicore technology, a 
multiprocessor or multicomputer is integrated on a single chip. 


 
Parallelism scheme (parallelism paradigm): a structure of a parallel computation with 


precise semantics in terms of distribution of processing and data. Each scheme is 
characterized by efficient implementations and related cost models (optimal degree of 
parallelism, service time, completion time, speed-up or scalability). 


 
Farm (also called master-worker): a parallelism scheme characterized by the replication of 


functions into several identical copies (workers), with an additional scheduling 
functionality able to balance the processing load of the workers with respect to a stream 
of tasks. 


 
Data-parallelism: a parallelism scheme characterized by the replication of functions and by 


the partitioning of the related data structures into several workers, with additional 
functionalities for data scattering, gathering, and possibly multicasting. In some cases 
workers operate independently of each other (map scheme), in other cases they need to 
interact during the computation (stencil scheme).  


 







Adaptivity: feature of a system/application able to dynamically modify its behavior and/or its 
structure in order to exploit the available computing and communication resources, 
with the goal of achieving a planned level of Quality of Service and of satisfying the 
user intentions. 


 
Context Awareness: feature of a system/application able to dynamically know the functional 


and non-functional characteristics of the context in which it operates. Context is defined 
as “any information that can be used to characterize the situation of entities (i.e. 
whether a person, place or an object) that are considered relevant to the interaction 
between a user and an application, including the user and the application themselves.” 
(Dey, 2001, p. 3). 


 






