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Abstract


Service composition concerns both integration of heterogeneous dis-
tributed applications and dynamic selection of services. QoS-aware selec-
tion enables a service requester with certain QoS requirements to classify
services according to their QoS guarantees. In this paper we present a
method that allows for a fuzzy-valued description of QoS parameters.
Fuzzy sets are suited to specify both the QoS preferences raised by a ser-
vice requester such as ‘response time must be as lower as possible and
cannot be more that 1000ms’ and approximate estimates a provider can
make on the QoS capabilities of its services like ‘availability is roughly
between 95% and 99%’. We propose a matchmaking procedure based on
a fuzzy-valued similarity measure that, given the specifications of QoS pa-
rameters of the requester and the providers, selects the most appropriate
service among several functionally-equivalent ones, using a fuzzy ordering
relation. We also devise a method for dynamical update of service offers
by means of runtime monitoring of the actual QoS performance.


This Technical Report is an extended version of the article in press
D. Bacciu, M. Buscemi and L. Mkrtchyan, ”Adaptive Fuzzy-valued Service
Selection”, Proceedings of the 25th ACM Symposium On Applied Computing
(SAC’10), 2010, ACM
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1 Introduction


In the recent years, the widespread development of web-based applications has
promoted an incredible growth in the number of Web Services offered throughout
a highly dynamical environment, thus making adaptive service discovery and
composition a critical issue. Dynamic Web services composition essentially deals
with the discovery of service providers that satisfy consumer-related functional
and nonfunctional requirements, including cost and Quality of Service (QoS)
constraints, such as performance and availability. By dynamical environments
we refer to those contexts where services appear and disappear unpredictably,
being characterized by a continuous evolution of the runtime conditions, such
as changes to resource availability and/or to network connectivity. Hence, an
effective exploitation of such dynamic Web Service environments requires tools
and models supporting dynamic and adaptive service collaborations.


Meeting QoS requirements is one of the most fundamental aspects for ensur-
ing a successful service composition. The typical scenario comprises a service
requester, characterized by certain QoS requirements, which seeks the service
provider that, amongst a pool of candidate solutions, can best satisfy its QoS
constraints. The matchmaking of the service requests and offers is thus com-
posed of two parts


1. All providers fulfilling the requirements from the service requester are
selected (i.e. the candidate services).


2. Candidate services are ranked to choose the best solution, i.e. that offer
that is closer to and/or best satisfies the client QoS requirements.


We present a novel approach to adaptive QoS specification and service se-
lection that exploits ideas and concepts from Fuzzy Set Theory (FST). FST has
been developed starting from the observation that most real-life problems can
hardly be modeled by conventional mathematical tools, as they are character-
ized by an inherent ambiguity and uncertainty. The basic idea of the fuzzy
approach is to allow an element s to belong to a set ϕ with a degree of member-
ship ranging in the continuous real interval [0, 1] rather than in {0, 1}. Within
a service selection scenario, such fuzzyness in the description of the concepts
allows to intuitively model the vagueness of the service level specification and
matching.


In this paper we exploit FST to extend the service selection method described
in [15], thus obtaining a more expressive service specification as well as a flexible
service selection process, that can effectively deal with the inherent vagueness
and imprecision of QoS description both on the client and on the provider side.
More in detail, by smoothing the interval of legal QoS values to be fuzzy sets,
we can obtain a larger set of candidate services, i.e. of services meeting both
functional and QoS requirements, hence selecting a service even when other
non-fuzzy methods find no solution. Conversely, once we restrict to candidate
services, our technique yields results that are in accordance with the original
approach.
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The proposed method allows for a fuzzy-valued description of QoS param-
eters. Fuzzy sets are suited to specify both the QoS preferences raised by a
service requester such as ‘response time must be as lower as possible and can-
not be more that 1000ms’ and approximate estimates a provider can make on
the QoS capabilities of its services like ‘availability is roughly between 95% and
99%’. We propose a matchmaking procedure based on a fuzzy-valued similarity
measure that, given the specifications of QoS parameters of the requester and
the providers, selects the most appropriate service among several functionally-
equivalent ones, using a fuzzy ordering relation. We also devise a method for
dynamical update of service offers by means of runtime monitoring of the actual
QoS performance.


Our model has a prototype implementation, which is available as MAT-
LAB code. Consequently, we claim that our approach can be readily integrated
within the existing Dino platform with only minor modifications to the service
specification and matching modules. Nevertherless, we remark that tailoring
our method to Dino has been a matter of choice. In fact, we argue that our
technique can be smoothly adapted to provide fuzzy-valued extensions of other
non-fuzzy QoS matchmaking methods.


Related Work General approaches to QoS-based service selection are pre-
sented in [12] and [20]. Both models compare the QoS offered by a provider
with that of other competing providers during service selection, but they do not
take into account the QoS requirements by the service requester itself. In [12]
the QoS value offered by a provider is compared with the average QoS value
offered by all providers. In [20], each QoS offer is compared with the maximum
and minimum QoS values exposed by the alternative providers. Some works
model QoS-aware composition as an optimization problem: [4], for instance,
uses genetic algorithms to find a near-optimal service composition, while in
[1], the authors formulate the problem as a global optimization task by jointly
optimizing the composition across each possible execution path.


Research in QoS-aware service composition using fuzzy logic has produced
several interesting models in the recent years. In [14], for instance, a fuzzy ana-
lytic hierarchy is used to identify suitable service offers by accepting/discarding
solutions based on crisp priority weights resulting from the comparison of fuzzy-
valued QoS descriptions. In [11], QoS-aware service composition is discussed as
a fuzzy constraint satisfaction problem, while in [16] the problem is explored
as a distributed fuzzy constraint satisfaction task in which service providers
from different nested levels in a composition can collaborate to solve the joint
service aggregation problem. In [9], the authors propose a multi-agent consen-
sus approach based on fuzzy logic and semantic web technologies, that assists
providers and consumers in reaching consensus on their service advertisement
and request by taking into consideration their expectations and preferences.
A QoS-aware approach to service contract negotiation is presented in [2]: this
model uses fuzzy reasoning to provide tailored service configurations with an
adaptive pricing policy that allows trading the offer-request similarity with the
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price of the final solution.
The typical limitation of the above approaches is that they restrain the


use of fuzzy methodology to the requirements specification. In particular, the
fuzzy representation is typically abandoned when aggregating the solution over
multiple QoS dimensions and when ranking the alternative proposals. In this
paper, on the other hand, we provide a complete fuzzy-valued matchmaking
framework that exploits the power of fuzzy modeling throughout the whole QoS-
aware service agreement process, including ranking the acceptable solutions by
means of an ordering relation over fuzzy quantities.


The rest of this paper is organized as follows: Section 2 gives a brief de-
scription of the Dino approach. The extended fuzzy-Dino model is described
in Section 3, while Section 4 describes the adaptation mechanism that allows
to dynamically update fuzzy service descriptions as well as priority and trust-
worthiness weights. To show the effectiveness of the approach, in Section 3 and
Section 4 we provide numerical examples based on an automotive case study of
the EU Project Sensoria [10]. Finally, we give concluding remarks and future
work plans in Section 5.


2 QoS-Aware Service Composition in Dino


This section gives a brief overview of the service selection algorithm developed
within the Dino approach. The interested reader can refer to [15] for a more
detailed description of the method.


Dino provides a runtime infrastructure consisting of a number of brokers.
These brokers are responsible for, among other things, service discovery and
selection. Services can be discovered using a service registry or a search engine,
and by matching functional and QoS properties of each required service with
those of the offered services. Service requirements are specified in an ad-hoc
defined XML specification language. The requirement specification document
(ReqDoc) of a service requester declares the service requirements and, in par-
ticular, an interval of admitted values for every QoS dimension. Similarly, the
capability specification document (CapDoc) of a service provider contains a
range of values that expresses the capability offered for every QoS dimension.


For every request (using the ReqDoc documents), the broker first discovers
the candidate services (possibly supplied by different providers) by performing
functional and QoS matchmaking (using the CapDoc documents). If there is
more than one service that meets both functional and QoS requirements of the
requester, the broker assigns an appropriateness value to each of these services.
Such a value takes into account the relative benefit offered by a specific service
with respect to the requester-specified QoS criteria, as well as the trustwor-
thiness of the provider of that service, which is computed on the basis of the
provider’s past record in meeting its QoS obligations. Every time a Dino broker
discovers a violation of the service agreement, it decreases the trustworthiness
of the provider and starts adapting the service binding.


In Dino the appropriateness value AVj of the j-th service is made up of two
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components: a benefit value (ABVj) and a trust rate (TRj). ABVj is obtained
by the weighted sum of the BVij values, where each BVij represents the relative
benefit offered by the j-th service with respect to the i-th QoS dimension:


BVij =



1 -maxV alQi


−mpV alQi


lpV alQi
−mpV alQi


if mpV alQi
< lpV alQi


1 -mpV alQi
−minV alQi


mpV alQi
−lpV alQi


if mpV alQi
> lpV alQi


In the above formula, Qi is the i-th QoS dimension, minV alQi and maxV alQi


are the minimum and maximum values of Qi as offered by the service provider,
while mpV alQi


and mpV alQi
are the most preferred and the least preferred


values of Qi, respectively, as required by the service requester. The upper part
of the above formula is used when the most preferred value is smaller than the
least preferred one, like with a QoS parameter such as response time. In this
case, note that minV alQi


is not used. Indeed, the service selection procedure
only has to take into account the worse QoS values the provider can offer, i.e.
maxV alQi


. For instance, when considering response time, the only relevant
value offered by a given service is the maximum, while minimum is disregarded.
A similar argument applies to the lower part of the formula above, noting that
now the most preferred value is greater than the least preferred one, like in the
case of (service) availability.


Next, the value of BVij is multiplied by the confidence level (if specified) of
the service provider in the offered values. That is, for every provider BV ij =
Cij ·BVi, where the value Cij specifies the required minimum confidence level of
the j-th service provider in delivering the capabilities of the i-th QoS dimension.
The value of the confidence attribute is between 0 and 1, and it is an indicative
of the probability that the stated QoS values will be delivered by the provider.
Once the values of BVij for i and j are computed, the aggregate benefit value
ABVj of the j-th solution is obtained as the weighted average of the BVij values:


ABVj =
1
n


n∑
i=0


Pi ·BVij


where Pi is the relative priority of Qi as expressed by the service requester, and
which has a value between 0 and 1.


The appropriateness value AVj of the j-th service is now computed as the
weighted average of ABVj and the trust rating TRj . By default, ABVj and TRj
are assigned equal weights, i.e. AVj = 1


2 (BVj + TRj). A service requester can
assign different weights to BVj and TRj if required, by providing the weights
to be used to the Dino broker. Finally, the service with highest AVj is selected
by the broker.


3 Fuzzy-valued Service Provider Selection


This section proposes a generalization of the Dino’s matchmaking process by
extending it to allow the specification and processing of imprecise QoS proper-
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Figure 1: Fuzzy Dino Architecture


ties by means of fuzzy numbers. Such representation is intended to provide
Dino with an increased expressivity, that enables a straightforward human-
understandable interpretation of the QoS specification while introducing a more
robust matchmaking process that is able to smoothly cope with the underly-
ing vagueness of QoS requirements. To this end, we introduce the use of fuzzy
sets in the XML specification language provided by Dino, allowing the defini-
tion of requirement and capability documents containing fuzzy terms. Follow-
ing the architectural sketch in Figure 1, a fuzzy broker first receives the fuzzy
requirement specification from the service requester and the fuzzy capability
specification documents from the service providers. Then, it performs a fuzzy
matchmaking process, selecting the best matching offer to be presented to the
requester based on a novel ordering relation defined over fuzzy-valued appropri-
ateness values. In the remainder of the section, we first introduce the basic idea
of fuzzy-valued service description (Section 3.1), before moving to the details of
the fuzzy matchmaking process (Section 3.2).


3.1 Fuzzy-Valued Service Description in Dino


Dino’s approach to QoS specification can be well explained by a graphical in-
terpretation of its constraint description. Consider, for instance, a customer
requesting a specific service with a Response Time between 400ms and 1000ms.
The specification of such QoS request results in the scenario described in Fig.2.a:
the membership value on the y-axis indicates the acceptability of the response
time values, where 1 specifies acceptable values while 0 identifies unacceptable
response times. Clearly, there is an abrupt change between acceptable and un-
acceptable values. In real life, the transition from satisfactory to unsatisfactory
solutions is seldom so sharp, with a smooth interpolation between what it is con-
sidered fully adequate to what is perceived as totally unacceptable. Graphically,
this can be well represented by a smooth membership function which degrades
softly from its supremum to its infimum values. Formally, such vagueness and
imprecision can be modeled by fuzzy sets and fuzzy sets theory. Figure 2.b, for
instance, formalizes the linguistic QoS constraint ”Response Time is roughly be-
tween 400ms and 1000ms” by means of a trapezoidal fuzzy number whose mem-
bership function indicates that values in [500, 900] are fully satisfactory, while
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Figure 2: QoS specification using flat intervals (a) and trapezoidal fuzzy sets
(b).


acceptability reduces as the response time falls below 500ms (or increases above
900ms), being totally unsatisfactory under 100ms (respectively, over 1300ms).
A similar argument applies if the above statement ’Response Time between
400ms and 1000ms’ refers to the QoS capability of a given service. In this last
case the membership function may for instance express the degree of accuracy
of the provider measurement.


Before proceeding with the formalization of fuzzy Dino approach, we briefly
review the basic concepts of fuzzy set theory that are used throughout the paper,
starting with the definition of fuzzy sets and fuzzy numbers.


Definition 3.1 A fuzzy set Ã ∈ FU over a universe of discourse U is charac-
terized by a membership function µÃ(x) associating each element x ∈ U to a
value in the interval [0, 1], that is the membership value of x in Ã.


Definition 3.2 A fuzzy set Ã on U is convex if and only if for all x1, x2 ∈ U
it holds


µÃ(λx1 + (1− λ)x2) > min(µÃ(x1);µÃ(x2))


where λ ∈ [0, 1].


Definition 3.3 A fuzzy set Ã on U is normal if ∃xi ∈ U s.t. µÃ(xi) = 1.


Definition 3.4 A fuzzy number is a fuzzy subset on U that is both convex and
normal. A trapezoidal fuzzy number ñ is a quadruplet (n1, n2, n3, n4) such that
its membership function µñ(x) is defined as


µñ(x) =





0, if x < n1


x−n1
n2−n1


, if n1 ≤ x ≤ n2


1, if n2 ≤ x ≤ n3


n4−x
n4−n3


, if n3 ≤ x ≤ n4


0, if x > n4


.
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Table 1: Priority/trustworthiness fuzzy values and corresponding linguistic
terms [19]


Linguistic Variables Triangular Fuzzy Values
Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)
Medium Low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium High (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)
Very High (VH) (0.9, 1.0, 1.0)


If n2 = n3 = c, ñ = (l, c, r) is a triangular fuzzy number.


Notice that standard concepts and operators from crisp set theory can be
seamlessly generalized to fuzzy sets, yielding to the definition of fuzzy emptiness,
equality, intersection and union [22]. Further, traditional crisp functions can
be extended to work on fuzzy sets, via the extension principle [6]: for instance
crisp arithmetic operators can be generalized to fuzzy numbers, yielding to the
definition of fuzzy algebras. By exploiting such generalization, we build a fuzzy
matchmaking procedure that extends the crisp service provider selection process
implemented by Dino. In particular, following the definitions given above, we
describe Dino’s QoS specifications as trapezoidal fuzzy numbers (see Fig. 2.b),
while priority and trustworthiness are expressed as fuzzy triangular weights.
Following a standard approach from fuzzy decision making literature [19], we
model priority Pi by a linguistic variable taking values from a set of linguistic
terms, such as Very low or High, each associated to a specific triangular fuzzy set
as described in Table 1. The use of linguistic variables allows the user to gather
an immediate interpretation of the priority constraint that it is being placed on
the QoS attribute by choosing a Pi value. The same approach, possibly with
different specification of the linguistic terms, is taken for modeling the fuzzy-
valued trustworthiness of the j-th provider, i.e. the linguistic variable TRj .


With respect to the XML specification of the fuzzy QoS constraints, we
need to extend Dino’s specification language to admit the description of ser-
vice properties as trapezoidal fuzzy sets. In particular, the original interval
value couples (lpVal ,mpVal) used in the specification of ReqDoc and the worse
value the provider can offer as expressed in CapDoc (either minVal or maxV al)
are replaced by the quadruplets (leftSp, leftCore, rightCore, rightSp), that de-
note the trapezoidal fuzzy numbers with support in [leftSp, rightSp] and core
(i.e. elements with membership equal to 1) in [leftCore, rightCore]. Simi-
larly, the original crisp specification of priority and trustworthiness TR are re-
placed by triangular fuzzy numbers with support in [0, 1], defined by the triplet
(leftSp, centr , rightSp). Each of such triangular fuzzy numbers can be associated
to a linguistic term (see Table 1), possibly defined within a constraints’ ontology,
to facilitate human interpretation of priority and trustworthiness values.
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Table 2: QoS Requirements and Priorities for Map Services
Request Priority


Response time (0, 0, 0, 2000) (0.9, 1, 1)
Availability (.94, .99, 1, 1) (0, 0.1, 0.3)


Table 3: QoS Capabilities and Trustworthiness values of Map Services
Resp. Time Caps. Avail. Cap. Trustworth.


M1 (1200, 1300, 1500, 1600) (.92, .93, .95, .96) (0.3, 0.5, 0.7)
M2 (1000, 1100, 1300, 1400) (.93, .94, .96, .97) (0.7, 0.9, 1)
M3 (300, 400, 600, 700) (.90, .91, .93, .94) (0.3, 0.5, 0.7)


In [15] the selection algorithm shown in Section 2 has been applied over
an example that is taken from an automotive case study of the EU Project
Sensoria. In this scenario, a service entity called Driving-Assistant provides a
route planning service for giving route-guiding instructions to a driver. In order
to provide the route planning service, Driving-Assistant in turn requires a Map
service. Dino allows to select the most appropriate Map service according to
two QoS requirements placed by Driving-Assistant, namely response time and
availability. Throughout this section we will consider a fuzzy-valued variant of
that example to show how our procedure extends the original Dino approach
by offering a more flexible tool for QoS-aware service selection. The results are
generated by running a prototype implementation of our method.


Table 2 shows the fuzzy sets representing requirements of Driving-Assistant
on response time and availability of the Map service, along with their respective
priority. For instance, the interpretation of availability is that the requester:
(i) does not accept a service with availability less than 94%, (ii) is increasingly
more satisfied with values between 94% and 99%, and (iii) is fully satisfied with
any value over 99%. Moreover, the priority values correspond to assigning to re-
sponse time a very high priority while giving availability a low priority. Assume
now the broker has discovered three functionally equivalent Map services. In
Table 3, we report the fuzzy sets (leftSp, leftCore, rightCore, rightSp) specifying
approximated yet informative estimates of the worse offered value for every QoS
dimension (see Section 4 for more details on how such performance evaluation
can be obtained) and the trustworthiness TR of the service providers.


3.2 Matchmaking with Fuzzy-Valued Similarity Metrics


In the previous section, it has been shown how Dino’s service description can be
extended to allow specifying vague and imprecise QoS requirements by means
of trapezoidal fuzzy numbers. Similarly, there are several ways by which the
matchmaking process can be extended to cope with such fuzzy service descrip-
tions. The solution we propose in the following is motivated by the idea of
maintaining the expressivity of the fuzzy representation as much as possible,
by ranking the provider solutions directly from their aggregated fuzzy descrip-
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tion. To this aim, we need to define proper operators for implementing fuzzy
matchmaking, that are


• A function BVij = Sim(Ri, Oij) providing a fuzzy-valued assessment BVij
of the similarity of the fuzzy QoS request Ri with respect to the fuzzy
QoS value Oij offered by the j-th provider for the i-th service attribute.


• An aggregation function BVj = Sum(P1, . . . , Pn,
BV1j , . . . , BVnj) that, for a given provider j, computes a fuzzy-valued
score measuring the suitability of the aggregated solution as a function of
the fuzzy valued similarity of the request-offer on each QoS attribute, i.e.
BVij , weighted by the respective priority value Pi.


• A suitable ordering relation [17] on fuzzy quantities ≤F that can be used
to rank the fuzzy appropriateness values AV1, . . . , AVj , . . . , AVp, i.e. fuzzy
numbers measuring the appropriateness degree of each providers offer, and
to select the provider publishing the best-matching service.


In particular, the definition of Sim and of ≤F is not immediate, as it requires
a sound choice of ≤F among the many alternative options in the literature [17],
as well as the definition of a proper Sim. Due to this tight coupling between the
definition of the fuzzy-valued similarity function and the choice of the ordering
relation, we will first consider this two issues altogether, before moving further
to describe fuzzy valued aggregation.


To the best of our knowledge, the only approach to fuzzy-valued similarity
of fuzzy quantities has been introduced by Dubois and Prade [5, 7]. Their
approach, however, provides fuzzy-valued similarities that cannot be correctly
ranked by most of the existing ordering relations of fuzzy quantities ≤F (see [3]
for a detailed discussion). To solve this issue, in [3] it has been introduced an
ordered fuzzy-valued similarity measure SimOFM that allows to preserve a correct
ranking of the fuzzy similarity values. Given two fuzzy quantities k1 and k2, the
similarity SimOFM(k1, k2) is a triangular fuzzy quantity with support in [0, 1].
The core of such triangular fuzzy set (i.e. the element x ∈ [0, 1] with membership
1) is computed by a standard set-theoretic similarity measure between two fuzzy
quantities k1, k2 ∈ F , that is the well know Jaccard index [5]


SimJ(k1, k2) =
|k1 ∩F k2|
|k1 ∪F k2|


, (1)


where | · | is set cardinality, while ∩F and ∪F are fuzzy intersection and union,
respectively. The triangle extremes l, r of the SimOFM(k1, k2) fuzzy number (i.e.
the left l and right r spread of the triangle) are computed by the proximity-based
normalized Minkowski 1-metric [5]


l =
1
2
· (SimM (k1, k2)) =


1
2


(
1−


∫
X
|µk1 (x)− µk2 (x)| dx∫


X
dx


)
.


Roughly speaking, the proximity-based index allows assessing the uncertainty
of the similarity measured by the set-theoretic index, resulting in the infimum
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Table 4: Benefit values for Response Time and Availability
Response Time Y2 R. T. Availability Y2 A.


Map1 (0, 0.09, 0.54) 0.18 0.10, 0.13, 0.15 0.05
Map2 (0.02, 0.05, 0.08) 0.19 0.03, 0.23, 0.43 0.12
Map3 (0, 0.12, 0.50) 0.26 0.2, 0.05, 0.08 0.05


0̃OFM (i.e. maximum discrepancy) and the supremum 1̃OFM (i.e. equality) being
the singletons in 0 and 1, respectively. More formally, we have µ1̃OFM


(1) = 1
and µ1̃OFM


(x) = 0 ∀x 6= 1, and similarly for µ0̃OFM
(x). Given this choice of


infimum and supremum, we can assess fuzzy ordering by means of a standard
fuzzy ordering measure, i.e. Yager’s second index [21]


Y2(k) : F → R =
∫ 1


0


sup(kα) + inf(kα)
2


dα. (2)


By using such Yager index Y2 to define a ranking ≤F of the fuzzy-valued simi-
larities, it holds that 0̃OFM ≤F k̃ ≤F 1̃OFM for all k̃ ∈ FU .


Given these sound ranking properties, we can compute Dino’s benefit value
BVij = SimOFM(Ri, Oij) of the j-th service as the fuzzy-valued similarity be-
tween QoS request Ri and offer Oij . The Yager index Y2 can then be used to
define the ordering ≤F over fuzzy-valued aggregated solutions, allowing to select
the provider offering the best-matching service. Following Dino’s matchmaking
specification, we need to smooth the benefit value BVij by including the con-
tribution of the confidence level Cij that the provider of the j-th service has on
the offered values for the i-th QoS dimension. Assuming the confidence level to
be a crisp value, we can compute the smoothed benefit by scalar multiplication


BV ij = Cij ·BVij


resulting in BV ij to be a triangular fuzzy number.
Going back to the Map service example, Table 4 gives the benefit values


BVij and their respective Yager indexes Y2. We assume confidence to take the
default value 1, i.e. BV ij = BVij . Indeed, confidence is kept a crisp parameter
in our model and, hence, it is of no particular interest for our method. A simple
summation of the BV values for every QoS-dimension suggests that map service
M2 is likely to be the most favourite candidate.


To provide a cumulative measure-of-fit ABVj for the j-th solution, we need
to define a suitable aggregation function that sums the fuzzy-valued smoothed
benefits BV ij for all the required service dimensions. Following the definition
in Section 2, we can generalize the crisp weighted sum to fuzzy quantities as


ABVj = (
1
n


)
n⊕
i=1


Pi ⊗BV ij (3)


where Pi is the fuzzy priority of BV ij defined in Section 3.1, while
⊕


and ⊗
are the fuzzy equivalents of crisp summation and multiplication, respectively.
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Table 5: Aggregated benefit values and Yager indexes
ABV Y2


Map1 (0, 0.05, 0.28) 0.09
Map2 (0, 0.07, 0.28) 0.10
Map3 (0.01, 0.12, 0.23) 0.12


A standard approach for the implementation of extended arithmetic operators
on fuzzy numbers is based on Zadeh’s extension principle which, however, re-
sults in computationally complex procedures that are equivalent to nonlinear
programming problems. On the other hand, we recall that both the Pi and
BV i terms in (3) are triangular fuzzy numbers, for which there exist compu-
tationally efficient operators based on a shape preserving approximation of the
extension principle. Hence, we can define Dino’s fuzzy matchmaking process
in terms of such approximated operators: given two triangular fuzzy numbers
T1 = (l1, c1, r1) and T2 = (l2, c2, r2), we define fuzzy multiplication as


T1 ⊗ T2 = (l1, c1, r1)⊗ (l2, c2, r2) = (l1 · l2, c1 · c2, r1 · r2) (4)


and fuzzy addition as


T1 ⊕ T2 = (l1, c1, r1)⊕ (l2, c2, r2) = (l1 + l2, c1 + c2, r1 + r2) (5)


which can be easily generalized to the summation operator
⊕n


i=1. Notice that
the addition operator in (5) is intrinsically shape preserving and provides the
same results as the addition implemented through the extension principle. Con-
versely, the multiplication based on the extension principle does not result in a
triangular fuzzy number, given that the triangle edges are polynomials of degree
≥ 2 instead of being linear functions. The shape preserving operator in (4) is
essentially providing a linear approximation to such complex polynomial. The
goodness of such approximation clearly depends on the degree of the polynomial.
In the proposed model, we only need to approximate 2nd degree polynomials,
given that the expression in (3) requires multiplication of only two fuzzy tri-
angular number. In [8], it is shown how shape preserving multiplication is an
acceptable approximation of the actual products for polynomials up to the 3rd
degree.


Considering again our running example, Table 5 reports the ABVj values and
their corresponding Yager indexes. At this intermediate stage, the most favorite
solution could be M3 rather than M2 as expected above. This fact comes with
no surprise since response time has a much higher priority than availability. In
fact, the ABVj values would confirm M2 being the favorite solution if response
time and availability had the same priority.


To complete the fuzzyfication of the crisp matchmaking process described
in Section 2, we need to integrate the fuzzy aggregated solution ABVj with
the contribution given by the trustworthiness estimate for j-th provider. By
defining trustworthiness to be a triangular fuzzy set TRj =(trlj , trcj , trrj), we
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Table 6: Crisp Requirements and Priorities for Map Services
Request Priority


Response time [0, 2000] 0.97
Availability [.94, 1] 0.15


Table 7: Crisp Capabilities and Trustworthiness values of Map Services
Resp. Time MaxVal Avail. MinVal Trustworth.


M1 1400 .94 0.5
M2 1200 .95 0.9
M3 500 .92 0.5


can compute the final appropriateness value of the j-th provider as the triangular
fuzzy set


AVj = 0.5 · (ABVj ⊕ TRj)
Once that the appropriateness values AVj have been computed for all providers,
the ranking index in (2) can be used to determine an ordering of the solutions
AVmin ≤F · · · ≤F AVj ≤F · · · ≤F AVmax where AVmax corresponds to the best
matching service configuration.


Consider again the Map service example. Recalling that the provider trust
rates are as in Table 3, the appropriateness values for the three map services
are Y2(AV1) = 0.30, Y2(AV2) = 0.49, and Y2(AV3) = 0.31. Hence, M2 is the
solution selected by the provider.


Note that the algorithm described in this Section is a ‘sound’ generaliza-
tion of the procedure presented in Section 2. Indeed, if we consider a dummy
fuzzyfication of the data supplied to the original selection algorithm and we
restrict to candidate services (i.e. services that satisfy both functional and QoS
requirements), both procedures select the same service. Specifically, this fact
holds because the similarity function SimOFM(Ri, Oi) gives results that are in
agreement with the formula for computing benefit values BVi given in Section
2, when applied to crisp values that are expressed as fuzzy sets. For instance,
consider a crisp counterpart of the above-mentioned Map service example whose
input data are given in Tables 6 and 7. It can be seen that M3 is not a candidate
service as it does not match the availability requirements and that the original
service selection method would also choose M2. On the other side, remark that
our fuzzy-valued generalization increases the flexibility of the Dino’s approach.
Indeed, by smoothing the intervals of admitted values, our technique can yield
a broader class of candidate services and, hence, possibly select a service even
if a solution cannot be found in a crisp setting.


4 Adaptive Service Specification


The runtime monitoring of the service being delivered is a fundamental step
for ensuring client satisfaction, i.e. through the detection of violations of ser-
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vice agreement, as well as for allowing the provider to best allocate and use its
resources. This process entails measuring the actual QoS performance of the
service dimensions, providing a suitable representation for the measurements
that allows comparing the actual QoS values with the agreed service configura-
tion. Again, fuzzy numbers seem a natural approach to provide a flexible and
rich model of such performance values. Consider, for instance, to be able to
perform a runtime monitoring of the service (whether this is done at the level of
the client, provider or broker is of little importance at this point). Monitoring
a given QoS dimension i will, in general, result in a sequence of performance
measurements V ti across time t. A compact representation of the information
described by such time series can be built by the descriptive statistics called
five-number summary, consisting of


1. Mini - the smallest observation in the series;


2. Qi1 - the lower/first quartile, i.e. the sample that is larger than exactly
25% of the observations;


3. Mi - the median observation, i.e. the second quartile;


4. Qi3 - the upper/third quartile, i.e. the sample that is larger than exactly
75% of the observations;


5. Maxi - the largest observation in the series.


From this five-number summary, we can build a fuzzy representation of the ac-
tual performance V ti by defining the corresponding trapezoidal fuzzy number as
RTMi =
(Mini, Qi1, Qi3,Maxi). In other words, the measured QoS of the i-th attribute
is defined as a fuzzy set whose support is determined by the maximum and min-
imum observed values, while the lower and upper quartile determine the core
of the fuzzy number (see Fig. 3 for a graphical interpretation of a Normally-
distributed population).


Such a representation can be used at the provider side to dynamically update
the service offer, adapting it to the varying load conditions of the service host.
Previously, it has been noted how a provider defines its service offer by specifying
the QoS attributes by means of trapezoidal fuzzy numbers Oi. On the other
hand, the runtime monitoring of the performance of the i-th dimension results
in a fuzzy trapezoidal number RTMi. Hence, the provider can check, either
at runtime or a-posteriori, the degree of matching between the agreed service
configuration and its actual instantiation, for instance by comparing Oi and
RTMi using the Jaccard similarity in (1). Several policies can be implemented
at the provider side to dynamically update the offer: for instance, the provider
might decide to keep the offered QoS for the i-th dimension unchanged until
the similarity SimJ(RTMi, Oi) falls under a given threshold θ, in which case
it might set the new offered QoS Onewi = RTMi. More articulated policies can
be envisaged, such as setting the new offered QoS to a fuzzy description of the
mean performance across several service instantiations or selectively blocking
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Figure 3: Trapezoidal fuzzy set built on quartiles of a Normally distributed pop-
ulation: minimum min and maximum max elements define the fuzzy number
support (a and d points); lower (Q1) and upper quartile (Q3) identify the core
(b and c points, respectively).


certain service configurations if the similarity check suggests that the provider
is congested.


Considering again the Map scenario, assume that the provider of M1 is
supplying the services described in Table 3; suppose that the provider of M1


monitors its Response Time and Availability across a given time interval T ,
collecting N = 1000 measurements. We have simulated such measurements by
sampling response times from a Normal distribution N (m = 1500, σ2 = 100)
and by drawing availability from a uniform distribution U(.92, .96). By using
the five number summary, the provider can build the fuzzy representation of
the actual QoS measurements during T . Figure 4.a and 4.b compare the offered
fuzzy QoS, described in Table 3, with the actual response times and availability,
respectively. These plots suggest that the provider can trust its current offer for
the availability dimension while it should adapt its response time offer, since it
appears to be unable to deliver the offered QoS (e.g. the corresponding fuzzy
sets have Jaccard similarity equal to 0.43).


A detailed and formal description of the policies for dynamic offer update is
beyond the scope of this paper, since the choice of such rules is essentially
a decision related to the internal policies of the provider. Here, we focus
primarily on providing the tools and the descriptive power for implementing
such policies within an organic framework. The approach described above can
be effectively exploited within Dino’s architecture to enforce the adaptivity of
the broker, e.g. by identifying runtime violations of the contract terms or by
defining an adaptive process for the dynamic update of providers trustworthi-
ness. Assume, for instance, that the broker knows the fuzzy QoS measurements
RTM1,. . . ,RTMi,. . . , RTMn corresponding to a completed service between a
client Cl and a provider Pj . Further, the broker knows the fuzzy QoS specifi-
cation of such service agreement, e.g. O1, . . . , Oi, . . . , On. Given these two sets
of fuzzy numbers, it can compute the i-th client satisfaction with respect to
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Figure 4: Trapezoidal fuzzy sets describing the offered (dashed) and the actual
(solid) Response Time (a) and Availability (b) for M1.


provider Pj as


SVij = (
1
n


)
n⊕
i=1


SimOFM (RTMi;Oi),


where SimOFM is the fuzzy-valued similarity and
⊕


is the fuzzy sum operator
discussed previously. Indeed, a careful and clever application of this formula
should ensure that the singleton 1̃OFM is straightforwardly returned in place
of SimOFM (RTMi;Oi) whenever the provider is delivering a service where the
actual QoS measurement RTMi is clearly better that the offered QoS Oi, e.g.
when the actual response time is strictly lower than the offered one. The term
SVij resulting from the equation above is a triangular fuzzy number that can,
for instance, be compared with the standard trustworthiness values in Table 1
to select the most similar trustworthiness class, e.g. the linguistic terms High,
Medium, Medium Low, etc. For each delivered service, a provider receives an
evaluation in terms of the closest trustworthiness class, accumulating a variable
ec counting the number of times it has been assigned to each class c (similarly
to what happens with the customer feedback on E-Bay). Finally, each provider
can be assigned a fuzzy trustworthiness weight corresponding either to the fuzzy
set of the prevalent class from Table 1 (e.g. TRj = MediumHigh) or based on
a weighted average of the evaluations received so far, i.e.


TRj =
⊕


c=1,ec>0


ec
E
· TCc


where TCc is the triangular fuzzy set corresponding the c-th trustworthiness
class and E =


∑
c ec. For instance, Fig. 5 shows the SV values computed


for provider M1 using the simulated response time and availability, as well as
the cumulative trustworthiness value. Since actual availability matches closely
the offered availability, then the corresponding SV value shows a Very High
trustworthiness (see the linguistic terms definition in Table 1); on the other
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Figure 5: Fuzzy valued client satisfaction with respect to provider M1: the
dotted triangle refer to Response Time (with Jaccard index 0.43), the dashed
triangle to Availability (with Jaccard index 0.986) and the solid one to the
cumulative satisfaction.


hand, the discrepancy between the offered and the actual response time yields
the corresponding SV value to be associated to a Medium trustworthiness. As
a result, provider M1 is assigned a cumulative performance evaluation that is
closer to the Medium High linguistic term.


5 Conclusion


In this paper we have introduced a QoS-aware service selection procedure that
exploits fuzzy set theory both for specifying QoS requirements and capabil-
ities and for ranking the acceptable solutions by means of an ordering re-
lation over fuzzy quantities. Technically, we have extended an existing ap-
proach named Dino to express preferences and vague or imprecise QoS capabil-
ities/requirements as fuzzy sets, thus achieving a more flexible service selection
mechanism. In order to make our method effective in practice, we plan to inte-
grate the prototype implementation of our fuzzy-valued method into the Dino
framework. On the other side, our method is quite independent of the choice of
crisp QoS-aware algorithm, hence we expect that our procedure can be adapted
to generalize other similar techniques.


In future works, it would be interesting to study this issue deeply, by provid-
ing a general and flexible fuzzy matchmaking framework and by showing how
it can be tailored to the specificities of the main crisp matchmaking approaches
in literature. Another point worth noting is that the Yaeger index we use for
ranking the proposals can be computed only for normal fuzzy sets. We intend
to investigate whether a suitable alternative notion of ranking index can be de-
fined to account for ‘subnormal’ fuzzy sets. Finally, we have to note that, in our
effort to design a fully fuzzyfied matchmaking procedure, we have given little
consideration to a parameter that in the Dino framework is called confidence.


17







Such a parameter is a probabilistic measure of the confidence regarding the QoS
measurements at the providers side. The model described in the paper consid-
ers confidence as a crisp parameter. On the other hand, the modern fuzzy logic
offers a powerful means for incorporating such uncertainty within the fuzzy de-
scription of the offered QoS, that is Type II fuzzy sets [13, 18]. These are fuzzy
sets that map each element of the crisp domain to a fuzzy number bounded in
the range [0, 1], rather than to a crisp value in [0, 1]. This representation allows
to straightforwardly incorporate the confidence information within such map.
In our future work, we plan to extend further our model to deal with such type
II fuzzy sets and fuzzy confidence intervals.
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