

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-09-22

On the Predictive Effects of

Markovian and

Architectural Factors of

Echo State Networks

Claudio Gallicchio, Alessio Micheli

Dipartimento di Informatica, Università di Pisa,

Largo B. Pontecorvo, 3, 56127 Pisa, Italia

e-mail:gallicch@di.unipi.it, micheli@di.unipi.it

November 23, 2009

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

On the Predictive Effects of Markovian and

Architectural Factors of Echo State Networks

Claudio Gallicchio, Alessio Micheli

Dipartimento di Informatica, Università di Pisa,

Largo B. Pontecorvo, 3, 56127 Pisa, Italia

e-mail:gallicch@di.unipi.it, micheli@di.unipi.it

November 23, 2009

Abstract

Echo State Networks (ESNs) represent an emerging paradigm for mod-
eling Recurrent Neural Networks (RNNs). In this report we try to identify
and investigate some of the main aspects that can be accounted for the
success and limitations of this class of models. Independently of the ar-
chitectural design, we first show the effect on ESNs behavior due to the
contractivity of the state transition function and the related Markovian
bias. The purpose of our study is also to give an insight on how and
why a larger reservoir may improve the predictive performance. We iden-
tify four key factors which can influence the performance of ESNs: input
variability, multiple time-scales dynamics, non-linear interactions among
units and regression in a high dimensional state space. Several variants of
the basic ESN model are introduced in order to study these main factors.
The proposed variants are tested on four datasets: the Mackey-Glass
chaotic time series, the 10th order NARMA system, and two predictive
tasks on a symbolic sequence domain with Markovian/anti-Markovian fla-
vor. Experimental evidence shows that all the key identified factors have
a major role in determining ESNs performances.

1 Introduction

Echo State Networks (ESNs) [16, 21] constitute a novel approach for efficiently
modeling Recurrent Neural Networks (RNNs). An ESN (typically) consists in
a large and sparsely connected reservoir layer of recurrent neurons, connected
to a simple readout layer of linear neurons. The striking feature of ESNs is that
the recurrent part of the network is initialized according to a specific criterion
and then is left untrained. The only trained part is the linear readout, which
can be adapted by using efficient linear regression. ESNs have been successfully
applied in several sequential domains, such as non linear system identification
[17], robot control [29, 15, 14], speech processing [33], time series prediction and
noise modeling [21]. Besides this widespread success in applications, a number
of open issues still remain and motivate the research effort in this area. Some
of the main research topics on ESNs [20] focus on the optimization of reservoirs
towards specific problems [15, 30, 31], the role of topological organization of

1

reservoirs [43] and the properties of reservoirs that are responsible for successful
or unsuccessful applications [28, 10]. In particular, this last topic, considered
also in relation with the (usually) high dimensionality of reservoirs, is of a special
interest for the aims of this paper.

It is a known fact that RNNs initialized with contractive state transition
functions are able to discriminate among different (recent) input histories even
prior to learning [12, 36], according to a Markovian organization of the state
dynamics. Input sequences sharing a common suffix drive the same network
into states which are close to each other proportionally to the length of the
common suffix. The Markovian characterization of contractive mappings has
been studied in the contexts of Iterated Function Systems (IFSs), variable length
memory predictive models, fractal theory and for describing the bias of trainable
RNNs initialized with small weights [12, 36, 37].

Such analysis also applies to ESNs due to the contractive setting of the state
transition function. In particular, ESNs exploit the consequences of Markovian-
ity of state dynamics in combination with a typically high dimensionality of
the recurrent reservoir. The importance of a richly varied ESN state dynamics
within a large number of reservoir units has been theoretically and experimen-
tally pointed out in ESN literature (e.g. [16, 21, 37, 39]), although not com-
pletely analyzed. Moreover, high dimensional reservoir constitutes the basis
to argue an universal approximation property with bounded memory of ESNs,
even in presence of a linear readout layer [37]. Indeed, although the Marko-
vian organization of the reservoir state space rules the dynamics of ESNs, it is
known (e.g.[39, 26, 19]) that large reservoirs show a goodness of predictive re-
sults on sequence tasks which is almost proportional to the number of reservoir
units. The Markovian characterization of the reservoir state space is therefore
not sufficient to completely explain the performances of the model.

These points open interesting issues, motivating our investigation on the
factors which may influence the model behavior and on the assessment of their
relative importance.
Markovianity of state dynamics is considered in relation to the issue of identify-
ing relevant factors which might determine success and limitations of the ESN
model on predictive tasks.
The aspect of high reservoir dimensionality is studied by asking to which extent
performance improvements obtained by increasing the number of reservoir units
is due to a larger number of recurrent dynamics or to the effect of the possibility
to regress an augmented state space.
Relating to the same issue, we also propose a study of the different architec-
tural factors of ESN design which allow the model units to effectively diversify
their activations and lead to enrichment of the reservoir dynamics. This is
done by measuring and comparing the effects on the final predictive accuracy
(performance in the following) due to the inclusion of individual factors and
combination of factors in the design of ESNs. This study also investigates the
effectiveness of the characteristic of sparsity among reservoir units connections,
which is commonly claimed to be a crucial feature of ESN modeling.

Recently, there has been a growing interest in studying architectural vari-
ants and simplifications of the basic ESN model. In particular, a number of
reservoir models with a simpler architecture than ESN have been proposed. A
model with self-recurrent connections only, linear reservoir neurons and unitary
input-to-reservoir weights, the so called “Simple ESN” (SESN) was presented

2

in [7]. A feed-forward variant of ESN, the “Feed-Forward ESN” (FFESN), was
introduced in [3], while in [4] a further simplification of the model with reservoir
units organized into a tapped delay line was proposed. Other recent works on
the effects of the ESN components on the predictive performance, such as the
settling time and spectral radius, can be found in [38]. Our work, being directed
towards a deeper understanding of the comparative predictive performance ef-
fects of different architectural factors of ESN design, can also be intended in
these research directions as well.

The rest of this report is organized as follows. Section 2 reviews RNNs in
the framework of sequence transduction processing. Section 3 provides an in-
troduction to the main concepts of ESN modeling, using the same framework
introduced in Section 2. Section 4 focuses on the Markovian organization of
reservoirs state dynamics deriving from contractivity of state transition func-
tions. Section 5 introduces the identified architectural factors of ESN design and
the corresponding architectural variants proposed to the basic ESN model. Ex-
perimental results are illustrated in Section 6, by firstly discussing the influence
of Markovianity on ESN performance based on two ad-hoc designed tasks, and
then assessing the relevance of the proposed architectural factors for standard
sequence processing tasks showing a significant effect of the reservoir dimen-
sionality. Finally, Section 7 summarizes the main general results of the report
as well as a number of simple outcomes for practical use of ESNs.

2 A Framework for Recurrent Sequences Pro-

cessing

In this paper we are interested in processing sequence domains. Let U be an
input space, then by U∗ we denote the set of all possible sequences of finite
length on U . In the same way we denote by Y an output space and by Y∗

the set of all finite length sequences on Y . A function T , mapping a sequence
domain into another sequence domain, is called a sequence transduction:

T : U∗ → Y∗ (1)

We denote by u ∈ U an input (vector) element, while s(u) ∈ U∗ is an input
sequence. In particular, if s(u) is of length n, then we can show its elements by
using the notation s(u) = [u(1),u(2), . . . ,u(n)], where u(1) is the oldest entry
and u(n) is the most recent one. An empty input sequence is denoted by s(u) =
[]. An output element and an output sequence are likewise represented by y ∈ Y
and s(y) ∈ Y∗, respectively. For our purposes, a sequence transduction T can
be usefully decomposed into an encoding function τ and an output function g,
as follows

T = g ◦ τ (2)

The encoding function τ maps an input sequence into a sequence of elements in
a (hidden) feature space H:

τ : U∗ → H∗ (3)

An element in the feature space H is denoted by x. The output function maps
a sequence on H into a sequence of output elements:

g : H∗ → Y∗ (4)

3

Note that the encoding function and the output function are defined as sequence
transductions themselves.
Both the encoding and the output functions can be computed by resorting to
element-wise applied recurrent functions:

τ̂ : H× U → H
x(n) = τ̂(x(n − 1),u(n))

ĝ : H → Y
y(n) = ĝ(x(n))

(5)

where u(n), x(n) and y(n) are the input, feature and output elements for step
n, respectively. A sequence transduction T can be qualified in several ways. We
say that T is ([8, 11])

• Input-Output Isomorphic, or sequence-to-sequence, if it associates an out-
put element y(n) for each input element u(n). In this case the input
sequence s(u) is always the same length as the output sequence s(y). A
particular instance concerns the case of next-step prediction tasks.
Another noteworthy case is when a single output element y is associated
to each input sequence s(u), generally in correspondence to the last in-
put entry. In this case the output space contains only vectors of a fixed
size and the transduction is said to be a sequence-to-element transduc-
tion. This case describes sequence classification and real valued output
time-series prediction tasks.

• Causal if the output computed for u(n) depends on u(n) itself and a
number of input entries which are in a causal relation to u(n). A very
common kind of causality is always assumed when processing temporal
sequences. Temporal causality means that the output computed by T at
a certain time step n does only depend on the actual input u(n) and the
previous input entries u(n − 1),u(n − 2), . . . ,u(1).

• Stationary if the function applied by T to compute an output element in
correspondence of the input entry u(n) does not change as the input entry
changes.

• Adaptive if the function computed by T is learned from data. Opposite to
adaptive transductions are fixed transductions, which are defined a-priori
for a class of data or tasks. A sequence transduction T as in equation
(2) is fully adaptive if both the encoding and the output functions are
adaptive, and partially adaptive is only one of them is adaptive. Adap-
tive transductions are preferable to fixed ones because of their broader
applicability, but on the other hand they might require expensive training
algorithms which could even make the application on real world problems
almost infeasible.

Recurrent Neural Networks (RNNs) [13] are neural network models capable
of computing transductions on sequence domains according to the decomposi-
tion elucidated above. In the simplest RNN architecture there are three layers
of units: an input layer, an hidden layer of recurrent units which compute the
encoding function τ̂ , and a layer of output units which compute the output

4

function ĝ. In this case, the input, hidden and output spaces are real subspaces
denoted by R

NU , R
NR and R

NY , respectively1. The element-wise application of
the encoding function is the state transition function:

x(n) = τ̂ (x(n − 1),u(n)) = f(Winu(n) + Ŵx(n − 1)) (6)

where Win ∈ R
NR×NU+1 is the input-to-hidden weight matrix also containing

the biases for the hidden neurons, Ŵ ∈ R
NR×NR is the recurrent weight matrix,

and f is the activation function which usually is a nonlinearity of sigmoidal type.
The feature element computed by the network at pass n is called the state of the
network at pass n, i.e. x(n). The state at n = 0, i.e. x(0), is called the initial
state of the network. We also introduce an iterated version of the element-wise
encoding function τ̂ of equation (6):

τ̃ : R
NR × (RNU)∗ → R

NR

∀x ∈ R
NR , ∀s(u) ∈ (RNU)∗ :

τ̃(x, s(u)) =

{

τ̂ (τ̃ (x, [u(1), . . . ,u(n − 1)]),u(n)) if s(u) = [u(1), . . . ,u(n)]
x if s(u) = []

(7)
where τ̃ (x, s(u)) is the state of the network which has been driven by the input
sequence s(u) starting from initial state x.
The output layer computes the function ĝ:

y(n) = ĝ(x(n)) = fout(Woutx(n)) (8)

where Wout ∈ R
NY ×NR+1 is the hidden-to-output weight matrix (plus the bi-

ases) and fout is the activation function of the output units.
The class of sequence transductions computed by RNNs, as described here, can
be classified as fully adaptive (as both the encoding function and the output
function can be learned from data) and stationary. In the following we also
assume temporal causality, as we only deal with temporal sequences.
RNNs are theoretically very powerful, indeed they have been shown to be
Turing-equivalent [32]. Moreover, they have been successfully applied to many
real world application domains, such as signal processing, speech recognition,
financial forecasting, biological sequence processing, and robotics, just to name
a few (see for instance [22] and the references therein).

One of the major issues concerning RNN models regards learning. In general,
both the encoding and the output functions are adapted by a training algorithm
which is responsible for properly adjusting the weight matrices Win, Ŵ and
Wout in a task dependent way. A number of training algorithms have been pro-
posed for RNNs, most of them are based on a gradient-descending technique.
BackPropagation Through Time (BPTT) [40] and Real-Time Recurrent Learn-
ing (RTRL) [41] are among the others two of the most known implementations
of this technique. Unfortunately, several drawbacks are involved in using this
standard class of training algorithms. One of the major problems is their high
computational training costs, which could make their applications to several real
world domains almost infeasible. Other main problems concern the possibility

1NR refers to the dimensionality of the state space representation, i.e. of the reservoir for
ESNs.

5

of getting stuck in local minima, slow convergence and the problem of learning
long term dependencies [44]. These issues motivate the efforts in designing new
solutions for training RNNs, which is still an open area of ongoing research.

In this paper we consider an alternative RNN modeling approach which goes
by the name of Reservoir Computing. Reservoir Computing (RC) [23] is a de-
nomination for a class of RNN models that share some basic common features.
Reservoir networks are characterized by a conceptual separation between a re-
current dynamical part (the reservoir) and a simple non-recurrent output tool
(the readout). In the most basic setting, the reservoir is implemented by a
large (high dimensional) and random layer of recurrent hidden neurons, which
is initialized according to some criterions and then left untrained. The readout
is implemented through a layer of (typically) linear neurons and is adapted by
using a simple and efficient training algorithm for (non-recurrent) feedforward
networks.
RC is also claimed to have a strong biological plausibility. Indeed several re-
lationships have been discovered between the properties of animal brains and
reservoir networks. Examples of these relationships can be found in [27, 5, 6,
42, 9].
Reservoir networks implement causal, stationary and partially adaptive se-
quence transductions in which the encoding function (the state transition func-
tion) is realized by a fixed dynamical reservoir, and the output function is re-
alized by the adaptive readout. The key observation about reservoirs is that
as long as they satisfy some very easy-to-check properties, they are able to dis-
criminate among different input histories even in the absence of training. In this
way it is possible to restrict the training just to a simple recurrent-free readout.
This eliminates the recurrent dependencies in the weight adjusting process and
leads to a very efficient RNN design.
RC includes several classes of RNN models, including the popular Echo State
Networks (ESNs) [16], Liquid State Machines (LSMs) [24] and other approaches
such as BackPropagation Decorrelation (BPDC) [34, 35] and Evolino [30]. In
this paper we focus on the ESN approach. The next Section introduces the
basics of ESN modeling in the framework defined so far.

3 Echo State Networks

3.1 Model

Echo State Networks have been introduced in [16] and further investigated in
many other works (e.g. [18, 17]). An ESN consists in an input layer of NU units,
a number of NR recurrent hidden units (the reservoir) and an output layer of
NY typically linear and non recurrent units (the readout). The basic equations
describing the computation carried out by an ESN are the same as equations
(6) and (8):

x(n) = τ̂ (x(n − 1),u(n)) = f(Winu(n) + Ŵx(n − 1))

y(n) = ĝ(x(n)) = Woutx(n)
(9)

where Win ∈ R
NR×NU+1 is the input-to-reservoir weight matrix, Ŵ ∈ R

NR×NR

is the recurrent reservoir weight matrix and Wout ∈ R
NY ×NR+1 is the reservoir-

6

to-output weight matrix. Equation (9) also describes the basic ESN architecture
which is referred in this paper as standard ESN. Moreover, hyperbolic tangent
is typically used as reservoir activation function (i.e. f = tanh), while the
output of the network is a linear combination of the reservoir output. An
ESN computes a sequence transduction in which the encoding function (state
transition function) is fixed and the output function is adapted from training
data. In particular, the reservoir of the network computes the element-wise
encoding function τ̂ , while the readout computes the element-wise version of
the output function, ĝ. This means that only the weights to the output layer of
the network are adjusted, i.e. Win and Ŵ are fixed and only Wout is adapted.
Figure 1 illustrates the architecture of an ESN. Not every choice of Win and
Ŵ leads to a valid echo state network. Indeed the reservoir must satisfy the so
called echo state property. This is discussed in the following.

Win Wout

Input Reservoir Readout

u(n) x(n) y(n)

W^

Figure 1: Basic architecture of an ESN with a number of NU = 3 input units, NR = 4
reservoir units and NO = 2 output units.

3.2 Echo State Property and Contractivity

A valid ESN satisfies the so called echo state property [16]. This says that the
state in which the network is after being driven by a long input sequence does
only depend on the input sequence itself. The dependence on the initial state
of the network is progressively lost, as the length of the input sequence goes to
infinity. Equivalently, the current state x(n) of the network is a function of its
past input history independently of initial state values. In formulas, the echo
state property may be expressed as follows:

∀sn(u) = [u(1), . . . ,u(n)] ∈ (RNU)n input sequence of length n,

∀x,x′ ∈ R
NR :

‖τ̃(x, sn(u)) − τ̃ (x′, sn(u))‖ → 0 as n → ∞

(10)

which means that the distance between the states in which the network is driven
by an input sequence of length n approaches zero (for any choice of the initial

7

states) as n goes to infinity. In [16] a valid echo state network has also been
characterized as “input forgetting”, “state contracting” and “state forgetting”.
Moreover, two conditions have been provided as necessary and sufficient, re-
spectively, for a network (with tanh as activation function) having echo states.
The necessary condition is that the spectral radius (the largest eigenvalue in
absolute value) of the reservoir recurrent weight matrix is less than one

ρ(Ŵ) < 1 (11)

If this condition is violated, the dynamical reservoir is locally asymptotically
unstable at the zero state 0 ∈ R

NR and echo states cannot be guaranteed if the
null sequence is an admissible input for the system. The sufficient condition for
the presence of echo states is that the largest singular value of Ŵ is less than
unity,

σ(Ŵ) < 1 (12)

The Euclidean norm of Ŵ is equal to its largest singular value provided that Ŵ
is a square matrix, thus the sufficient condition can be restated as ‖Ŵ‖2 < 1.
This condition ensures global stability of the system and thus the presence of
echo states.
Another very important characteristic of echo state networks is contractivity of
its state dynamics. The state transition function τ̂ is contractive if it satisfies
the following condition:

∃K ∈ R, 0 < K < 1, ∀x,x′ ∈ R
NR , ∀u ∈ R

NU :

‖τ̂(x,u) − τ̂ (x′,u)‖ ≤ K‖x− x′‖
(13)

in other words, τ̂ must be Lipschitz continuous with a parameter K less than
unity. Contractivity of the state transition function ensures the echo state prop-
erty of equation (10). Indeed, if τ̂ is contractive with parameter K < 1, then for
every input sequence of length n, [u(1), . . . ,u(n)], and for every initial states x
and x′:

‖τ̃(x, [u(1), . . . ,u(n)]) − τ̃ (x′, [u(1), . . . ,u(n)])‖
= ‖τ̂(τ̃ (x, [u(1), . . . ,u(n − 1)]),u(n)) − τ̂ (τ̃ (x′, [u(1), . . . ,u(n − 1)]),u(n))‖
≤ K‖τ̃(x, [u(1), . . . ,u(n − 1)]) − τ̃ (x′, [u(1), . . . ,u(n − 1)])‖
≤ . . .

≤ Kn−1‖τ̃ (x, [u(1)]) − τ̃ (x′, [u(1)])‖
= Kn−1‖τ̂ (τ̃ (x, []),u(1)) − τ̂ (τ̃ (x′, []),u(1))‖
= Kn−1‖τ̂ (x,u(1)) − τ̂ (x′,u(1))‖
≤ Kn‖x − x′‖

(14)
which clearly approaches 0 as n → ∞. Note that this argument is valid for
any norm in which τ̂ is a contraction, hence contractivity of the state transition
function in any norm is a sufficient condition for the echo state property2.
On the other hand, if contractivity of the state transition function cannot be
guaranteed, at least definitely for any couple of network states that can be

2In the original definition of the echo state property in [16], the Euclidean norm ‖ · ‖2 is
used. However, as finite-dimensional norms are all equivalent, if the echo state property holds
for any given norm, then it also holds for the Euclidean norm, and the original echo state
property is satisfied.

8

reached after a long common input sequence, the presence of echo states, in
general, cannot be guaranteed as well.
For networks using the hyperbolic tangent as activation function, contractivity
in the Euclidean norm is very easily ensured if the condition σ(Ŵ) = ‖Ŵ‖2 < 1
holds. Indeed, in this case τ̂ is always a contraction in this norm:

‖τ̂ (x,u) − τ̂ (x′,u)‖2

= ‖tanh(Winu + Ŵx) − tanh(Winu + Ŵx′)‖2

≤ max(|tanh′|)‖Ŵ(x − x′)‖2

≤ ‖Ŵ‖2‖x − x′‖2

This leads to the sufficient condition of equation (12) proposed in [16]. Note
that even if τ̂ is not contractive in the Euclidean norm, it could be contractive
in another norm, and in this case the echo state property would hold anyway.
In [2], a different norm (D-norm) is introduced for which the contraction con-
dition of the state transition function is less restrictive than the condition in
equation (12). For simplicity, however, in this work we use only contractivity
in the Euclidean norm.

3.3 Obtaining and Training ESNs

To build up a valid echo state network it is possible to start with a randomly
generated matrix Ŵrandom and then rescale it to satisfy the required condition
(equation (11) or (12)). For the sufficient condition, this is done as follows:

Ŵ =
σ

σ(Ŵrandom)
Ŵrandom (15)

which ensures that the obtained matrix Ŵ has a maximum singular value equal
to σ. The same could be done to rescale the spectral radius of Ŵ to a desired
value. In most of the ESN literature, the spectral radius of Ŵ is scaled to
meet the necessary condition (ρ(Ŵ) < 1), which does however not ensure echo
states. In this work, instead, as we are mainly interested in contractivity, we
focus on the stronger condition on the Euclidean norm (σ(Ŵ) < 1), which is
quite restrictive but always guarantees the contractivity of the state transition
function and thus the echo state property.
Moreover, the typical recipe for echo state network preparation prescribes that
Ŵ is a sparse matrix with a fixed (usually less than 20%) percentage of connec-
tivity. The intuition behind this is that a sparsely connected recurrent reservoir
would ensure a rich and loosely coupled pool of dynamics from which the read-
out should take advantage. However, it has been noted (e.g. [43]) that reservoir
units (even with sparse connectivity) may exhibit coupled behaviors, and thus
the original intuition is probably misleading. Nonetheless, sparsely connected
reservoirs are however preferable to fully connected ones for computational rea-
sons. In this work we consider both fully connected and sparsely connected
ESNs.
In the following, the Euclidean norm is always assumed and the symbol σ is
used to refer the Euclidean norm of the recurrent weight matrix Ŵ (properly
scaled as in (15)). The value of σ is also called the contraction coefficient of
the network, as it governs the contractivity (at least in the Euclidean norm) of

9

the state transition function. As a consequence, the value of the contraction
coefficient should be properly set to match the target system dynamics. As a
rule of thumb, a larger σ corresponds to slower dynamics and longer memory of
the target system and a smaller σ corresponds to faster dynamics and smaller
memory [16].

Consider a supervised learning task on a sequence domain described by a
training set of Ntrain examples (u(n), ŷ(n))Ntrain

n=1 , where [u(1), . . . ,u(Ntrain)]
is the training input sequence and [ŷ(1), . . . , ŷ(Ntrain)] is the target output se-
quence. The goal of the ESN training procedure is to find the appropriate values
of the reservoir-to-output weights of matrix Wout which minimize the averaged
squared error on the training set. In an off-line setting this can be accomplished
in a very simple way by computing the reservoir states corresponding to the
presentation of the input sequence to the network and then using these states
as input for training the readout. Let denote by x(1), . . . ,x(Ntrain) these states.
If the reservoir is a valid reservoir, the echo state property of equation (10) en-
sures that, after a sufficiently long input sequence, the state of the network is
a function of the input sequence only, and the dependence on the initial condi-
tions have died out. For this reason, we can dismiss the first Ntransient states
of the network which may still be affected by the initial conditions and con-
sider only the remaining states x(Ntransient +1), . . . ,x(Ntrain). The time steps
corresponding to the dismissed states are also known as the initial transient, or
washout, of the network. As this transient depends on how fast the state dynam-
ics forgets the initial conditions, a longer initial transient is generally required
for reservoirs with a larger contraction coefficient. To make the notation more
compact, we denote by X the matrix whose columns are the reservoir states
x(Ntransient +1), . . . ,x(Ntrain). In a similar way, the corresponding target vec-
tors ŷ(Ntransient + 1), . . . , ŷ(Ntrain) are column-wise arranged into the matrix
Ŷ.
For sequence-to-element transductions, for which the output is computed after
the complete presentation of the input sequence, the training set is composed
of Ntrain examples (sn(u), ŷ(n))Ntrain

n=1 , where sn(u) is the n-th input sequence
and ŷ(n) is the corresponding target output. In this case, the state of the
network corresponding to the n-th input sequence is the state in which the net-
work is driven after a complete presentation of the sequence sn(u). Moreover,
to account for the initial transient, each input sequence is actually presented a
prescribed number of consecutive times to the reservoir before the corresponding
state is stored in X.

Training the readout is then a simple problem of linear regression consisting
in minimizing the squared error

‖WoutX − Ŷ‖2 (16)

This is usually solved by using a pseudo-inversion of matrix X:

Wout = ŶX+ (17)

The readout of an ESN can also be trained in an on-line fashion. This can
be done by using the Recursive Least Mean Squares algorithm, as pointed out
in [17], while the Least Mean Squares algorithm is usually unsuitable because
of the high eigenvalue spread of the correlation matrix of X [20, 17].

In this paper we use off-line training with pseudo-inversion.

10

4 Markovian Characterization of ESNs

Contractivity of the state transition function is also responsible for putting a
bias on the theoretical computational capabilities of a RNN. In [12] it has been
proved that the class of RNNs with contractive state transition function and
bounded state space is equivalent to (can be approximated arbitrarily well by)
the class of definite memory machines (DMMs), i.e. they can only compute
functions with a bounded memory on the input history. This architectural
bias has been qualified as Markovian in [36]. In fact, as a consequence of the
contractivity of the state dynamics, the influence of old inputs in determining the
actual state of the network gradually dies out. If two any input sequences share
a common suffix (i.e. the last input elements), then they will drive the network
into close states, and these states will be closer to each other for longer common
suffixes, a condition which can be related to the echo state property of equation
(10). Through a contractive initialization of the state transition function, the
state dynamics of RNNs exhibits the capacity of discriminating between input
sequences in a Markovian way even prior to learning. Thus, if a task of interest
only involves Markovian processes then it can be faced by a contractive RNN in
which the state transition function is left untrained, such is the case of ESNs.
Note that ESNs are characterized by contractivity, as explained above, and
have a bounded state space under very mild assumptions (e.g. for bounded
activation functions like the hyperbolic tangent). Therefore the ESN dynamics
are clearly characterized by a Markovian nature. This is also supported by the
results on the “fading memory” property ([16]) accounting for the closeness of
ESN representations of sequences sharing the most recent inputs. We can thus
expect a good performance of this class of models on Markovian tasks, and a
poorer one on tasks with a less prominent Markovian nature or which are non-
Markovian at all (in particular anti-Markovian tasks). To face non-Markovian
tasks a form of adaptation of the state dynamics is needed, which leads out to
the aim of the paper.

The intrinsic Markovian characteristic of reservoir dynamics is called in this
paper the Markovian factor. This factor characterizes every ESN with con-
tractive dynamics independently of the architectural design. In this paper the
contraction coefficient is used to control the Markovian factor, with smaller σ

corresponding to a more prominent Markovianity.
The relevance of this factor can be highlighted introducing specific experi-

ments aimed at showing that it characterizes easy/hard tasks independently of
the architectural design (see Section 6.2).

There is another interesting question arising from the observation that the
class of ESNs is equivalent to the class of DMMs. As contractivity seems to be
the ruling characteristic of reservoirs, then one could expect that even a smaller
contractive reservoir, or a contractive reservoir of neurons with any possible ar-
chitecture of connectivity (e.g. only self recurrent connections) would perform
well on Markovian tasks just as standard ESNs would do. If this intuition were
true, then even a single-unit reservoir (even a linear one) could be used to solve
any Markovian task as long as it is characterized by a contractive state dynam-
ics.
However, several works have reported that larger reservoirs of neurons have
better predictive performances than smaller ones on different non-linear tasks
(e.g. see [39]). Increasing the dimensionality of reservoirs seems to be the sim-

11

pler way to get better performances. Moreover, as pointed out in [28], different
reservoir instances, obtained with the same scaling settings of the recurrent
weight matrix, may result in different performances on the same task.

Our investigation about the key architectural factors which may improve
large reservoirs performance stems from these observations. Accordingly, several
architectural variants of the basic ESN model are introduced in Section 5.

5 Architectural Factors of ESNs

Even though reservoirs dynamics are governed by the Markovian factor, there
still are several other factors, related to the architectural design, which might
influence the richness of the Markovian dynamics and thus the prediction perfor-
mance of ESNs. Indeed ESNs with the same contractive coefficient but different
topologies can lead to different results on the same task. At the same time, the
richness of the dynamics is related to the growth of the number of units (reservoir
dimensionality). It is therefore interesting to investigate the factors determining
the differentiation among the units.

We identified four architectural factors which may have an impact on ESNs
performance, namely: input variability, multiple time-scale dynamics, non-
linear interactions among units and regression in a high dimensional feature
space. Each factor is described more extensively in the following:

Input Variability. This refers to the possibility for the reservoir units of look-
ing at each element of the input sequence under several points of view.
The configuration without input variability is obtained fixing the same
values of the input weights for all the reservoir units. Input variability
is implemented through a random initialization of the input-to-reservoir
weight matrix Win with different values among units.

Multiple Time-Scale Dynamics. This refers to the possibility for the reser-
voir units to behave as dynamical systems with different time-scale dy-
namics. Supporting multiple time-scales is equivalent to a reservoir hav-
ing individual neurons with different contractive dynamics. In this paper
we implement this possibility by controlling the reservoir recurrent weight
matrix Ŵ. As said in Section 3, the contractive dynamics of the reservoir
is governed by the contraction coefficient of the state transition function,
which in the Euclidean norm is σ = ‖Ŵ‖2. However, individual neurons

may exhibit different contractive dynamics if Ŵ is arranged in a proper
way. In particular, we study the case in which Ŵ is a diagonal matrix. In
this case σ = max

i=1,...,NR

σi, where σi is the contraction coefficient of each

single unit i. This situation is equivalent to a RNN with self-recurrent
connections only in the hidden layer. If different self-recurrent weights
are used, then each neuron is able to show different contractive dynamics
while being driven by the same input sequence. The Markovian behavior
of the ESN does not only depend on the global value of σ but on the whole
set of dynamics determined by the single values σi, ∀i = 1, . . . , NR. We
conjecture that this architectural factor is crucial to achieve a rich dy-
namics of the global transition function corresponding to good predictive
performance.

12

Non-linear Interactions among Units. This factor refers to the presence
of non-linear interactions among unit activations in a reservoir. It is im-
plemented by using a Ŵ matrix with non-zero extra-diagonal values, i.e.
the reservoir units are mutually connected. Note that using mutually and
self-recurrent connectivity (including also non-zero diagonal values), the
different units dynamics due to the multiple time-scale factor are enriched
by the recurrent non-linear combination of the dynamics of each unit. In
this paper we consider both the cases of a dense recurrent matrix (fully
connected reservoir) and a sparse recurrent matrix (sparsely connected
reservoir). Note that since the very first work on ESNs [16] this architec-
tural factor is one of those that are claimed to be responsible for producing
“rich” reservoir dynamics, and thus good predictive performance. We pro-
pose to study this point in comparison to the other three identified and
to show how it really influences the performance of reservoirs. Moreover,
through a comparison between the sparsely and the fully connected ar-
chitectures we intend to investigate if a full connectivity among neurons
is actually needed to observe an influence of the non-linear interactions
among units factor or if a small number of recurrent connections among
neurons is sufficient.

Regression in a High Dimensional Feature Space. This factor refers to
the influence that having a high dimensional reservoir may have in the
predictive accuracy of an ESN. This last point has actually much to do
with the readout part of ESNs. The conjecture here is that a linear read-
out might perform much better in a high dimensional reservoir state space.
To assess and to measure the effect of this factor we introduce a partic-
ular reservoir variant which is called ϕ-ESN in which a smaller number
of recurrent reservoir units (thus a smaller number of network recurrent
dynamics) is projected into an higher dimensional space by a non-linear
mapping. This study should give some insight on how much of the good-
ness of ESN performance is due to a sufficient number of network dynamics
and how much of it is due to the augmented possibility of discriminating
input patterns in a high dimensional feature space (even with a linear
readout).

We propose to investigate how the identified factors influence the reservoir
dynamics by studying several architectural variants on the main ESN model of
equation (9) (see Figure 1). In particular, we consider the following architec-
tures:

• ESN full . This corresponds to the basic ESN model described in Sec-
tion 3, where Ŵ is characterized by full connectivity.

• ESN sparse . As above, but Ŵ is a sparse matrix. This distinction is
useful to study the effects of non linear interactions among reservoir units
even in presence of a very small number of such interactions.

• DESN3. Stands for Diagonal Echo State Network, in which Ŵ is a diag-
onal matrix whose diagonal entries w11, w22, . . . , wNRNR

are all the same

3In literature the acronym DESN is also used to refer a different approach called Decoupled
ESN model [43].

13

and such that |wii| = σ, ∀i = 1, 2, . . . , NR (see Figure 2). In this case

σ is also equal to the spectral radius of Ŵ. A particular case is when
wii = σ, ∀i = 1, . . . , NR, that corresponds to a reservoir having only
positive self-recurrent connections:

xi(n) = f(Winu(n) + σxi(n − 1)) ∀i = 1, 2, . . . , NR (18)

Win Wout

Input Reservoir Readout

W^

u(n) x(n) y(n)

Figure 2: Diagonal ESN architectures with a number of NU = 3 input units, NR = 4
reservoir units and NO = 2 output units. The same recurrent weight is shared by
every reservoir unit for a DESN, while different recurrent weights are possible in a
RDESN.

The individual neurons of a DESN implement dynamical systems which
are all governed by the same contractivity properties (the same Marko-
vianity), but which may look at the same input sequence through different
input weights depending on the presence or absence of input variability. In
particular, in the absence of input variability, all neurons in the reservoir
of a DESN are identical, and the dynamics of a DESN is the same as the
dynamics of a single neuron reservoir. If input variability is added, ev-
ery reservoir neuron may differentiate its dynamics and thus performance
prediction is expected to be better in this latter case.

• RDESN. Stands for Random Diagonal Echo State Network, which con-
sists in a DESN with possibly different self-recurrent weights. If σ is the
contraction coefficient of the reservoir, then the diagonal weights of Ŵ
are chosen according to a uniform distribution in [−σ, σ] (see Figure 2).

xi(n) = f(Winu(n) + wiixi(n − 1)) ∀i = 1, 2, . . . , NR (19)

Also in this case the contractivity coefficient σ is equal to the spectral
radius of Ŵ. The reservoir of a RDESN has NR self recurrent units, each
of which is characterized by contractive dynamics with different time-
scales. This variant is mainly used to evaluate the influence that multiple
time-scale dynamics might have on the model performance, in particular
when compared with the DESN architecture. An architectural variant

14

very similar to this one is known in ESN literature as the Simple ESN
(SESN) model [7]. However, in the basic SESN setting the input weights
to the reservoir are always fixed to 1.0 and the recurrent units are typically
linear.

• ϕ-ESN. This variant accounts for the last architectural factor. The
reservoir state space is projected into a higher dimensional feature space
through a non-linear random mapping. The encoding function τ̂ com-
puted by the reservoir of the ESN is further decomposed into an encoding
function τ̂ ′ and a feature mapping ϕ:

τ̂ = ϕ ◦ τ̂ ′ (20)

where ϕ : R
NR → R

Nϕ , and R
Nϕ is the new augmented reservoir state

space. The reservoir is subdivided into a recurrent part, which implements
τ̂ ′ and acts as a standard dynamic reservoir, and a feed-forward (static)
part, which implements the function ϕ:

ϕ(x(n)) = fϕ(Wϕx(n)) (21)

where Wϕ ∈ R
Nϕ×NR+1 is the weight matrix (plus the bias) for the con-

nections from the recurrent part to the feed-forward part of the reservoir.
Wϕ is set with random values in a bounded range. In our settings, the
hyperbolic tangent is used as non-linear activation function fϕ. As the
reservoir state space is now R

Nϕ , the matrix Wout of equation (9) is a
NY × Nϕ + 1 matrix. Figure 3 illustrates the architecture of a ϕ-ESN.

Note that the recurrent part of a ϕ-ESN may be arranged according to
one of the previously described architectures. We can thus have ϕ-ESN
full, ϕ-ESN sparse, ϕ-DESN and ϕ-RDESN.

6 Experimental Results

The experiments presented in the following aimed at testing the empirical effects
of the architectural factors introduced in Section 4 and 5. Firstly, in Section 6.2,
we use two tasks to show the condition underlying the ESN state space organi-
zation, i.e. the Markovian assumption. Under such extreme condition we show
that the Markovian factor dominates the behavior of the model and then com-
plex architectures are even not necessary. In particular, the Markovian task is
designed to be an easy task that can be solved by a 1-unit model, while the
anti-Markovian task is conceived to be an hard task independently of the archi-
tectural design.
Then, in Section 6.2.2, we use two well-known tasks (Mackey-Glass and NARMA
system) for which large ESN architectures are useful to achieve high predictive
accuracies (showing that 1-unit is not sufficient independently of the value of
the contraction coefficient).
On these two last tasks, where the architectural design has a relevant role, in
Section 6.3 we show and evaluate the progressive positive influence on the ESN
performance of the architectural factors introduced in Section 5. For the sake
of completeness we tested the effects of the architectural factors also on the first

15

Wϕ

Win

Input Reservoir Readout

W Wout

StaticDynamic

^

u(n) y(n)x(n)

Figure 3: Architecture of a ϕ-ESN, with a number of NU = 3 input units and NO = 2
output units. The dynamic part of the reservoir contains NR = 4 recurrent units, while
the static part is implemented through a feed-forward layer of Nϕ = 10 feed-forward
units.

16

two task (Markovian/anti-Markovian), allowing us to provide a further support
to the result of Section 6.2 on the major role of the Markovian factor.

The next Section introduces details and experimental conditions on the tasks
used in all the experiments.

6.1 Tasks

We considered four tasks. The first two are prediction tasks on a symbolic
sequence domain, where the targets are of a distinct Markovian and anti-
Markovian nature, respectively. The other tasks are one-step prediction tasks on
the Mackey-Glass chaotic time series and on a 10-th order non-linear NARMA
system.

To evaluate the performance we computed the mean squared and the stan-
dard deviation of errors. The mean squared error (measure) is computed as
follows:

E =
1

N

N
∑

n=1

(y(n) − ŷ(n))2 (22)

where y(n) and ŷ(n) respectively denote the actual output of the model and
the target one for pass n, while N is the number of samples on which the error
function is evaluated. A number of Ntrials = 10 independent repetitions4 of
each experiment has been carried out and the average results are reported in
the following.

The following subsections describe the considered tasks more in detail.

6.1.1 Markovian/Anti-Markovian Symbolic Sequences

For this task we considered symbolic sequences on an input alphabet of 10
symbols, A = {a, . . . , j}. Each element in a sequence was selected according to a
uniform distribution over A. The length of the sequence s is denoted by |s|. The
symbols in s are denoted by s(1), s(2), . . . , s(|s|), where s(1) is the oldest symbol
and s(|s|) is the most recent one. A mapping function M : A → {0.1, . . . , 1.0} is
defined, such that M(a) = 0.1, M(b) = 0.2, . . . , M(j) = 1.0. Hence, each input
element is defined by u(n) = M(s(n)). On such sequences we defined two kind
of sequence-to-element tasks with a Markovian nature.
A first kind of Markovian tasks is obtained by associating to each sequence a
target defined by the equation

ŷ(s) =

|s|
∑

n=1

u(n)

λ|s|−n
(23)

where λ > 1 is a real number that controls the degree of Markovianity of the
task. Indeed the target value associated to a string s depends on each symbol
s(n), weighted by a value which exponentially decreases with decreasing n,
i.e. recent entries have a greater influence on the target than older ones. The
distance among target values reflects the length of common suffix of the input
sequences, i.e. sequences with similar suffixes lead to similar target values,
whereas the closeness of targets is proportional to length of the similar suffix.
Hence, this task is an instance in the class of Markovian processes (in particular

4This number turned out to be sufficient as explained at the beginning of Section 6.3.

17

those related to positive feedback systems). It would provide an example of
easy task for ESNs, for which we expect an excellent performance. Every target
value obtained by applying the equation (23) was then rescaled to the range
[−1, 1].
The second task is an anti-Markovian task, in which the target value associated
to s is computed as

ŷ(s) =

|s|
∑

n=1

u(n)

λn−1
(24)

where again λ > 1 controls the degree of Markovianity, but in this case the
weight associated to each input entry is greater for older entries and smaller for
more recent ones. It is designed to be an hard task for ESNs, in the sense that
we expect that ESNs perform quite bad on it. Also for this task, the target
values were rescaled to the range [−1, 1].
A number of Ntrain = 500 and Ntest = 100 input sequences, of length between
50 and 100, were used for training and testing, respectively, while each input
sequence was fed three consequently times to the networks to account for the
transient. We used λ = 2 for the Markovian task and λ = −2 for the anti-
Markovian one.

6.1.2 Mackey-Glass Time Series

The Mackey-Glass time series [25] is a standard benchmark for chaotic time
series prediction models, on which ESNs have been successfully applied (e.g.
[16][21]) showing a very good performance. It is defined by the following differ-
ential equation:

∂u(t)

∂t
=

0.2u(t − α)

1 + u(t − α)10
− 0.1u(t) (25)

The most used values for α are 17 and 30, where for α > 16.8 the system has a
chaotic attractor. We used α = 17. The task consists in a next-step prediction
of a discrete version of the equation (25).
For each repetitions of the experiments, we generated 10000 time steps of the
series, of which the first Ntrain = 5000 were used for training and the last
Ntest = 5000 were used for testing. An initial transient of Ntransient = 1000
time steps was discarded before training the readout. Every element of the
Mackey-Glass sequence was shifted by −1 and passed through the tanh function
as in [16, 21].

6.1.3 10th Order NARMA System

This task consists in predicting the output of a 10-th order non-linear autore-
gressive moving average (NARMA) system. The task has been introduced in [1]
and has been tackled by ESN models in [17] and [4]. The input of the system is a
sequence of elements u(n) randomly chosen according to a uniform distribution
over [0, 0.5]. The output of the target system is computed as:

ŷ(n) = 0.3ŷ(n−1)+0.05ŷ(n−1)(
10
∑

i=1

ŷ(n− i))+1.5u(n−10)u(n−1)+0.1 (26)

18

Given the input value u(n), the task is to predict the corresponding value of
ŷ(n). The training set was made up of Ntrain = 2200 input-target examples,
of which Ntransient = 200 were used as initial transient. A sequence of length
Ntest = 2000 was used for testing.

6.2 Markovian Factor

We tested ESNs with one single (self-recurrent) neuron versus ESNs with a
number of 100 reservoir units (NR = 1 or 100) and contractive dynamics ruled
by the same value of σ ranging in the interval [0.1, 0.9] with a step size of 0.1.
Reservoirs with multiple neurons posses a full connectivity, and are initialized
according to Section 3.3. In particular, weight values in Ŵ are drawn from a
uniform distribution over [−1, 1] and then Ŵ is rescaled to the specific contrac-
tion coefficient σ. Reservoirs with one single unit are actually unidimensional
DESNs, where for the Markovian sequences task the setting is done according
to the simplest case, i.e. equation (18), and using a linear activation function.
Weights for the input-to-reservoir connections were initialized according to a
uniform distribution over [−0.1, 0.1].

6.2.1 Markovian/Anti-Markovian Tasks

Figure 4 shows the results of this experiment obtained for the Markovian se-
quences task. It is evident that for the appropriate value of the contraction

1e-20

1e-15

1e-10

1e-05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Te
st

 E
rro

r

sigma

Markovian Sequences - 1 neuron vs 100 neurons

1 linear neuron
100 linear neurons

100 non-linear neurons

Figure 4: Mean squared test errors on the Markovian sequences task for reservoirs of
1 linear unit (DESN) and 100 units (ESN full), with linear and non-linear activation
functions. Results are reported for increasing values of the contraction coefficient σ.

coefficient the single unit model with linear activation function is able to re-
produce the target dynamics with almost no error, beating models with larger
reservoirs. The point of best performance is actually due to the particular choice

19

of the parameter λ = 2 in the definition of the task (see equation (23)), which
indeed corresponds to a value of σ = 0.5 in the linear unit dynamics. These
results represent a strong evidence that for this particular task, with such a dis-
tinct Markovian nature, the Markovian factor is the dominant factor influencing
the predictive performance of ESNs. In such a case more complex architectures
are even not necessary. None of the architectural factor included in the ESN full
could improve the ad-hoc solution fitted by the single neuron with appropriate
setting of parameters. Note that, however, to obtain the best performance, the
contraction coefficient of the neuron must match the right degree of Markovian-
ity of the target system. If this does not happen, then other architectural factors
may be useful to improve the performance. In fact, for values of the contraction
coefficient other than 0.5, the single unit model is always outperformed by the
full configuration of ESN with multiple units.

The results obtained for the anti-Markovian sequences task are reported in
Figure 5. As expected, none of the tested architectures was able to solve this

0.14

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Te
st

 E
rro

r

sigma

Anti-Markovian Sequences - 1 neuron vs 100 neurons

null model
1 neuron

100 linear neurons
100 non-linear neurons

Figure 5: Mean squared test errors on the anti-Markovian sequences task for reser-
voirs with 1 unit and 100 units, with linear and non-linear activation functions. Results
are reported for increasing values of the contraction coefficient σ. The error obtained
by a null model is also reported for a further comparison.

task with a satisfactory accuracy. Through a comparison between Figures 4 and
5, it is indeed apparent that the error on the anti-Markovian sequences task is
several orders of magnitude higher than the error on the Markovian sequences
one. For a further comparison, we also reported in the same Figure the results
obtained with the null model, i.e. a trivial model whose output is always equal
to the mean target value of the training set. In particular, single unit models
performed just as the null model for every choice of the contraction coefficient.
Moreover, larger reservoirs led to even poorer results, especially for a non-linear
activation function. None of the architectural factor included in the ESN full

20

could help to face the task. These observations further remark the importance
of the Markovian factor, showing that tasks of a remarkable anti-Markovian
kind cannot be solved with ESN models, independently of the choice of the
contraction coefficient and of the other architectural details.

6.2.2 Mackey-Glass and NARMA System Tasks

Figures 6 and 7 provide the results for the Mackey-Glass and the NARMA
system tasks for the 1 unit versus 100 units setting.

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Te
st

 E
rro

r

sigma

Mackey-Glass Time Series - 1 neuron vs 100 neurons

1 neuron
100 neurons

Figure 6: Mean squared test errors on the Mackey-Glass task for reservoirs of 1 unit
and 100 units (ESN full), with non-linear activation function. Results are reported
for increasing values of the contraction coefficient σ.

As results show, independently of the contraction coefficient, on both these tasks
the multiple neurons architecture outperformed the single neuron one. Even
though the Markovian factor continues to characterize reservoir dynamics, it
is evident that larger architectures can exploit the increased dimensionality to
obtain better performances, especially for large value of sigma.

6.2.3 Remarks on Markovian Factor Results

As explained in Section 4, contractivity is the key feature of valid reservoirs of
neurons and allows ESNs to solve Markovian tasks even without training the
recurrent connections. However, the results presented in this Section point out
that just contractivity is not enough. Indeed, for (simple) tasks with a distinct
Markovian nature even one single contractive neuron (with linear activation
function) is able to outperform a larger reservoir. In particular, this is possible
when the Markovian dynamics of the target process is known and can thus be
reproduced in the neuron. However, for highly non-linear tasks, which do not
obey a predefined Markovian rule, single contractive neurons turned out to be

21

0.002

0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Te
st

 E
rro

r

sigma

NARMA System - 1 neuron vs 100 neurons

1 neuron
100 neurons

Figure 7: Mean squared test errors on the NARMA system task for reservoirs of
1 unit and 100 units, with non-linear activation function. Results are reported for
increasing values of the contraction coefficient σ.

inferior to larger reservoir organized as in standard ESNs. In these cases the
Markovian factor turn out to be not sufficient to completely characterize the
behavior of the ESN. The problem is then in understanding the features that
make a reservoir of neurons with fixed dynamics able to successfully solve highly
non-linear tasks. In Section 5 we identified four possible key architectural factors
that may improve the performance of fixed reservoirs. The results concerning
the architectural factors are reported in the next subsection.

6.3 Architectural Factors

We tested the proposed architectural variants on the same benchmark datasets
introduced in Section 6.1, using the same experimental framework of Section 6.2.
The reported results present the performance of the tested models for increasing
reservoir dimensionality, allowing us to show the progressive effect of differen-
tiation introduced among units due to each architectural factor. The reser-
voir dimensionality considered varied in NR = 1, 10, 100, 300, 500, while for
the ϕ-ESN model we used a number of recurrent reservoir units varying as
NR = 1, 5, 10, 100, 200, with a projection into a Nϕ = 500 dimensional feature
space. Weight values in matrix Wϕ were randomly chosen according to a uni-
form distribution over [−1.0, 1.0]. For ESNs full and ESNs sparse, the recurrent

reservoir weight matrix Ŵ was initialized with random weight values according
to a uniform distribution over [−1, 1]. For the case of sparse reservoirs, we used

a percentage of connectivity equal to 5%. Ŵ was then rescaled to the desired
value of the contraction coefficient. The weights in matrix Win were selected
according to a uniform distribution in [−0.1, 0.1]. In reservoirs not support-

22

no input var. input var.

DESN 1.0619 × 10−2 2.9994 × 10−7

RDESN 1.0112 × 10−8 1.5195 × 10−9

ESN full 2.2556 × 10−9 3.9408 × 10−10

ESN sparse 2.8331 × 10−9 4.2421 × 10−10

Table 1: Mean squared test errors on the Mackey-Glass task for DESNs, RDESNs,
ESNs full and ESNs sparse, with and without input variability. Errors are reported
for a number of reservoir units of NR = 500 and a constant value of the contraction
coefficient σ = 0.9.

ing input variability, all weights in Win were randomly initialized to the same
value. For every task, we tested networks with the same value of the contraction
coefficient σ. For the Mackey-Glass and the NARMA system tasks we set the
value of σ to 0.9 (which provide the best setting founded in Section 6.2.2). For
the Markovian/anti-Markovian tasks a value of σ = 0.5 was used. In the next
subsections we report the results of these experiments together with an analysis
of the influence of the single architectural factor.

The predictive performance of DESNs, RDESNs and ESNs with and without
input variability is provided in Figures 8, 9, 10 and 11 for the Mackey-Glass,
NARMA system, Markovian sequences and anti-Markovian sequences, respec-
tively. Tables 1, 2, 3 and 4 report the averaged squared errors for the same
tasks and with NR = 500.

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 300 500

Te
st

 E
rro

r

NR

Mackey-Glass Time Series - DESN, RDESN, ESN

DESN without Input Variability
DESN with Input Variability

RDESN without Input Variability
RDESN with Input Variability

ESN full without Input Variability
ESN full with Input Variability

Figure 8: Mean squared test errors on the Mackey-Glass task for DESNs, RDESNs,
ESNs full, with and without input variability. Errors are reported for increasing reser-
voir dimensionality and a constant value of the contraction coefficient σ = 0.9.

As a first general result, the graphs show that the test error initially dra-

23

0.0001

0.001

0.01

1 10 100 300 500

Te
st

 E
rro

r

NR

NARMA System - DESN, RDESN, ESN

DESN without Input Variability
DESN with Input Variability

RDESN without Input Variability
RDESN with Input Variability

ESN full without Input Variability
ESN full with Input Variability

Figure 9: Mean squared test errors on the NARMA system task for DESNs, RDESNs,
ESNs full, with and without input variability. Errors are reported for increasing reser-
voir dimensions and a constant value of the contraction coefficient σ = 0.9.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1 10 100 300 500

Te
st

 E
rro

r

NR

Markovian Sequences - DESN, RDESN, ESN

DESN without Input Variability
DESN with Input Variability

RDESN without Input Variability
RDESN with Input Variability

ESN full without Input Variability
ESN full with Input Variability

Figure 10: Mean squared test errors on the Markovian sequences task for DESNs,
RDESNs, ESNs full, with and without input variability. Errors are reported for
increasing reservoir dimensions and a constant value of the contraction coefficient
σ = 0.5.

24

0.1

1

10

1 10 100 300 500

Te
st

 E
rro

r

NR

Anti-Markovian Sequences - DESN, RDESN, ESN

DESN without Input Variability
DESN with Input Variability

RDESN without Input Variability
RDESN with Input Variability

ESN full without Input Variability
ESN full with Input Variability

Figure 11: Mean squared test errors on the anti-Markovian sequences task for
DESNs, RDESNs, ESNs full, with and without input variability. Errors are reported
for increasing reservoir dimension and a constant value of the contraction coefficient
σ = 0.5.

no input var. input var.

DESN 1.0503 × 10−2 7.5553 × 10−3

RDESN 1.5352 × 10−3 1.6236 × 10−3

ESN full 2.6440 × 10−4 3.1413 × 10−4

ESN sparse 2.8160 × 10−4 3.2208 × 10−4

Table 2: Mean squared test errors on the NARMA system task for DESNs, RDESNs,
ESNs full and ESNs sparse, with and without input variability. Errors are reported
for a number of reservoir units of NR = 500 and a constant value of the contraction
coefficient σ = 0.9.

no input var. input var.

DESN 1.3656 × 10−4 7.6448 × 10−12

RDESN 2.3728 × 10−6 2.1435 × 10−11

ESN full 6.8621 × 10−8 2.0681 × 10−9

ESN sparse 9.0994 × 10−8 1.6285 × 10−9

Table 3: Mean squared test errors on the Markovian sequences task for DESNs,
RDESNs, ESNs full and ESNs sparse, with and without input variability. Errors are
reported for a number of reservoir units of NR = 500 and a constant value of the
contraction coefficient σ = 0.5.

25

no input var. input var.

DESN 1.4149 × 10−1 1.7555 × 10−1

RDESN 1.4289 × 10−1 2.4279 × 10−1

ESN full 9.8374 × 10−1 1.5496 × 10

ESN sparse 1.0527 9.4444

Table 4: Mean squared test errors on the anti-Markovian sequences task for DESNs,
RDESNs, ESNs full and ESNs sparse, with and without input variability. Errors are
reported for a number of reservoir units of NR = 500 and a constant value of the
contraction coefficient σ = 0.5.

matically decreased5 as the number of units in the reservoir increased, i.e. along
with the increasing diversification on the reservoir dynamics induced by the ar-
chitectural factors. (An expected exception is due to the anti-Markovian task
where no choice of architectural factors can satisfactorily solve the task and the
more complex models overfitted the data). Note also that the influence of the
factors led to a saturation effect approaching the maximum number of units.
As expected, for the DESN model without input variability (corresponding to a
single unit dynamics) we found the same error value for every reservoir dimen-
sionality, except for small statistical fluctuations due to the random nature of
the experimental settings.
The variance of the test errors over the 10 repetitions of each experiment was
found to be not significant and is not reported in detail. For instance, for the
Mackey-Glass task the variance ranged from a minimum of 5.1732 × 10−22 (in
correspondence of an averaged squared error of 3.9408× 10−10) for NR = 500,
to a maximum of 1.0543× 10−4 (corresponding to an averaged squared error of
7.2033× 10−3) for NR = 1.

The discussion on the effect of each architectural factor is detailed in the
following basing on the order introduced in Section 5. The comparison between
the predictive performance of ESNs with full connectivity and ESNs with sparse
connectivity is discussed in Section 6.3.3. For this reason, the performance of
ESN sparse is not reported in the comparative Figures in this Section.

6.3.1 Input Variability

The effect of the input variability factor on the predictive performance can be
firstly evaluated by a comparison between the test errors of the DESN model
with and without input variability. Results show that the presence of input
variability improved the predictive performance of the DESN model for Mackey-
Glass, NARMA system and Markovian sequences tasks. In particular, for the
Mackey-Glass task, for NR = 500, this architectural factor alone was able to
enhance the predictive performance of five orders of magnitude (see Table 1).
The improvement is also noteworthy for the Markovian sequences task (Table
3), while it is much more limited for the NARMA system one (Table 2). On
the other hand, for the anti-Markovian sequences task we observed a negative
influence of this architectural factor, which in fact led to worse results (Table
4).

As a second aspect, the impact on the performance due to input variability
in presence of other architectural factors (RDESNs and ESNs with and without

5Note that the test errors in the plots are reported in logarithmic scale.

26

input variability) is reduced with respect to the absolute amount of the im-
provement for the DESN model. However, it still provides an improving effect
on the performance, as detailed in the following subsections.

Note that the best result on the Markovian sequences task is obtained by the
DESN model (initialized according to the setting of equation (18)) with input
variability. This remarks the importance and prevalence of this architectural
factor on this last task. For the specificity of the task (and especially because of
the linearity of the target), we found that linear variants of the models proposed
outperformed the non linear ones. This is illustrated in Figure 12 and Table 5.
From a comparison between Tables 3 and 5, we can see that for every variant the
linear versions of the model beat the non-linear counterparts. In particular it is
very striking the result obtained with DESN without input variability. Indeed
this architecture functionally correspond to one single neuron with a fixed self-
recurrent weight and a fixed input weight. This model outperformed every other
model with a greater number of functionally different neurons, except for the
DESN variant with input variability. As said in Section 6.2, the reason for this
great performance is in the fact that the dynamics of the target to be learned is
actually very well fitted by the dynamics of one single neuron if its parameters
are properly set.

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1 10 100 300 500

Te
st

 E
rro

r

NR

Markovian Sequences - DESN, RDESN, ESN (linear reservoirs)

DESN without Input Variability
DESN with Input Variability

RDESN without Input Variability
RDESN with Input Variability

ESN full without Input Variability
ESN full with Input Variability

Figure 12: Mean squared test errors on the Markovian sequences task for ESN
variants with linear activation function. Errors are reported for increasing reservoir
dimension and a constant value of the contraction coefficient σ = 0.5.

For the anti-Markovian sequences task, by contrast, input variability in-
creased the test errors for both RDESNs and ESNs (Figure 11). Moreover, note
that the performance prediction on the anti-Markovian sequences task worsened
for every choice of the architectural ESN variant. ESN models were not able to
satisfactorily face this task, as expected. The averaged test errors increased as
the reservoir dimensionality was increased, and mean error values greater than

27

no input var. input var.

DESN 2.4661 × 10−30 8.0326 × 10−32

RDESN 1.2328 × 10−12 2.6542 × 10−12

ESN full 8.0427 × 10−12 6.4403 × 10−12

ESN sparse 8.0515 × 10−12 2.5100 × 10−12

Table 5: Mean squared test errors on the Markovian sequences task for linear variants
of DESN, RDESN, ESN full and ESN sparse, with and without input variability.
Errors are reported for a number of reservoir units of NR = 500 and a constant value
of the contraction coefficient σ = 0.5.

four (corresponding to output values out of the target range) were found for
NR = 500, which is a clear signal that the readout overfitted the training data
(see Table 4).

6.3.2 Multiple Time-Scale Dynamics

The influence of multiple time-scales dynamics can be observed by comparing
the performance of DESN, which does not support it, with the performance of
RDESN, which does. Again, an inspection of Figures 8, 9 and 10, and Tables 1,
2 and 3 reveals that the presence of multiple time-scales support is helpful for
reservoirs.
To isolate the contribution given by this architectural factor we can focus on
the difference between DESN without input variability and RDESN without
input variability. For NR = 500 the improvement was of almost six orders
of magnitude for the Mackey-Glass task (Table 1), of one order of magnitude
for the NARMA system task (Table 2) and of two orders of magnitude for the
Markovian sequences task (Table 3). The contribution given by this factor alone
is thus superior to the one brought about by input variability alone, at least
for the Mackey-Glass and the NARMA system tasks. On the other hand, for
the Markovian sequences task the improvement due to input variability alone
outperformed the improvement due to multiple time-scales alone.

Moreover, note that the combined effect of both the factors together can
lead to better performances. This is visible for the Mackey-Glass task (see
Table 1), for which the RDESN with input variability variant led to an increase
in performance of almost seven orders of magnitude with respect to DESN
without input variability, of two orders of magnitude with respect to DESN
with input variability and of one order of magnitude with respect to RDESN
with no input variability (for a reservoir dimensionality of NR = 500). We can
say that for the Mackey-Glass dataset the interaction between input variability
and multiple time-scales actually combined the single factor improvements, and
led to a performance which is worse than the best recorded (ESNs full with input
variability) of less than one order of magnitude. For the NARMA system task
the results of RDESNs with or without input variability were the same (Table
2), suggesting that in this case supporting both multiple time-scales and input
variability was actually equivalent as supporting multiple time-scales only. For
the Markovian sequences task we found an appreciable effect of the combination
of the two architectural factors. In fact, the performance of the RDESN model
with input variability was five orders of magnitude better than the performance
of the same model without input variability. However, the combination of input

28

variability and multiple time-scales led to a result which was worse than what
obtained with input variability only (Table 3).
For the anti-Markovian task, the RDESN architecture without input variability
performed like the DESN model without input variability, which correspond
to the best performance obtained for this task. The interaction between input
variability and multiple time-scales support worsened the result a little more
than input variability alone (Table 4).

As a further remark, note that DESN and RDESN models provide dynamics
originating from a set of single neurons dynamics only. Even though the global
reservoir dynamics is ruled by a unique value of the contraction coefficient, the
variety introduced by input variability and multiple time-scales dynamics for
increasing reservoir dimension was able to differentiate the single Markovian
dynamics. This actually resulted in an enrichment of the reservoir dynamics
sufficient to produce the significant performance improvement observed here
and in Section 6.3.1.

6.3.3 Non-linear Interactions Among Units

We investigated the performance improvement obtained by introducing non-
linear interactions among reservoir neurons. As for the other architectural
factors, we found that the presence of non-linear interactions among neurons
enhanced the predictive performance of the tested models on the Mackey-Glass,
NARMA system and Markovian sequences tasks, while made it worse on the
anti-Markovian one.
In absence of the input variability factor, for NR = 500, the improvement with
respect to the DESN model without input variability was of seven orders of
magnitude for the Mackey-Glass time series (Table 1), of two orders of magni-
tude for the NARMA System (Table 2) and of almost four orders of magnitude
for the Markovian sequences task (Table 3). These results show that non-linear
interactions among reservoir units turned out to be a very effective factor for
the case of the NARMA system task (Figure 9), while its role was less crucial
for the Mackey-Glass one (Figure 8). On this last task, in fact, its impact was
similar to the one brought about by the multiple time-scales factor.

The combination of input variability and non-linear interactions led to a per-
formance improvement of almost one order of magnitude for both the Mackey-
Glass (Table 1) and the Markovian sequences tasks (Table 3). No appreciable
improvement due to this combination was found for the NARMA system dataset
(Table 2). From Figure 11 it is clearly apparent that for the anti-Markovian
task including non-linear interactions among neurons led to a worsening of the
results. The combined effect of units interactions and input variability made
the predictive performance even poorer.

Another remarkable fact is that ESNs with full connectivity and ESNs with
sparse connectivity led to almost the same results for all the four tasks exam-
ined (see Tables 1, 2, 3, 4). Figure 13 illustrates the averaged test errors for
ESN full and ESN sparse on the four tasks, with and without input variability.
What is interesting is that even a relatively small number of interconnections
inside a reservoir (5% in our experimental setting) had nearly the same impact
on the predictive performance as the presence of connections among all neu-
rons. Our results also support the idea that the original intuition of sparsity
as a characteristic of reservoirs with rich dynamics is actually misleading. The

29

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1 10 100 300 500

Te
st

 E
rro

r

NR

Mackey-Glass Time Series - ESN full and sparse architecture

ESN full without Input Variability
ESN full with Input Variability

ESN sparse without Input Variability
ESN sparse with Input Variability

0.0001

0.001

0.01

0.1

1 10 100 300 500

Te
st

 E
rro

r

NR

NARMA System - ESN full and sparse architecture

ESN full without Input Variability
ESN full with Input Variability

ESN sparse without Input Variability
ESN sparse with Input Variability

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 300 500

Te
st

 E
rro

r

NR

Markovian Sequences - ESN full and sparse architecture

ESN full without Input Variability
ESN full with Input Variability

ESN sparse without Input Variability
ESN sparse with Input Variability

0.1

1

10

100

1 10 100 300 500

Te
st

 E
rro

r

NR

Anti-Markovian Sequences - ESN full and sparse architecture

ESN full without Input Variability
ESN full with Input Variability

ESN sparse without Input Variability
ESN sparse with Input Variability

Figure 13: Averaged squared test errors for ESN full and ESN sparse architectures
on the four tasks. Errors are reported for increasing reservoir dimension and a constant
value of the contraction coefficient (σ = 0.9 for Mackey-Glass and NARMA System
tasks, σ = 0.5 for Markovian and anti-Markovian sequences task).

30

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1 5 10 100 200

Te
st

 E
rro

r

NR

Mackey-Glass Time Series - ϕ-ESN variants

ϕ-DESN without Input Variability
ϕ-DESN with Input Variability

ϕ-RDESN without Input Variability
ϕ-RDESN with Input Variability

ϕ-ESN full without Input Variability
ϕ-ESN full with Input Variability

Figure 14: Averaged squared test errors for ϕ-ESN variants on the Mackey-Glass
task. Errors are reported for increasing recurrent reservoir dimension, a constant
dimension Nϕ = 500 of the static part of the reservoir, and for a constant value of the
contraction coefficient σ = 0.9.

effective enrichment of reservoir state dynamics is due to the presence of archi-
tectural factors which may produce diversification among units, as resulted by
the presented experiments. The sparse setting of the reservoir weight matrix is
only an efficient way to include such factors in the design of ESNs, but it is not
responsible by itself for this enrichment.

6.3.4 Regression in a High Dimensional Feature Space

To investigate the benefit of having a high dimensional reservoir space for re-
gression, we tested the ϕ-ESN architectures varying the model used for the
recurrent part of the reservoir. Figures 14, 15, 16 and 17 provide the results for
the four tasks.

The predictive performance of ϕ-ESN variants resulted to be sensible to the
three other architectural factors described so far. The relevance of singular fac-
tors and of composition of factors on ϕ-ESN performance roughly reflected what
was found for the ESNs variants in Sections 6.3.1, 6.3.2 and 6.3.3, with a few
differences. For the Mackey-Glass dataset we found that RDESNs outperformed
ESNs full for both the cases of presence and absence of input variability (Figure
14). Also observe that the ϕ-DESN variant with input variability overfitted
training data for the NARMA system task (Figure 15).

What is probably more interesting is the comparison between the class of
ϕ-ESN variants and the class of ESN variants (representable in the following
by the variant providing the best result). As shown in Figures 18, 19, 20 and
21, and Tables 6 and 7, ϕ-ESN architectures compare well with standard ESNs.
In fact, for the Mackey-Glass task, ϕ-ESN full and ϕ-RDESN with only 10 re-

31

0.0001

0.001

0.01

0.1

1 5 10 100 200

Te
st

 E
rro

r

NR

NARMA System - ϕ-ESN variants

ϕ-DESN without Input Variability
ϕ-DESN with Input Variability

ϕ-RDESN without Input Variability
ϕ-RDESN with Input Variability

ϕ-ESN full without Input Variability
ϕ-ESN full with Input Variability

Figure 15: Averaged squared test errors for ϕ-ESN variants on the NARMA system
task. Errors are reported for increasing recurrent reservoir dimension, a constant
dimension Nϕ = 500 of the static part of the reservoir, and for a constant value of the
contraction coefficient σ = 0.9.

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1 5 10 100 200

Te
st

 E
rro

r

NR

Markovian Sequences - ϕ-ESN variants

ϕ-DESN without Input Variability
ϕ-DESN with Input Variability

ϕ-RDESN without Input Variability
ϕ-RDESN with Input Variability

ϕ-ESN full without Input Variability
ϕ-ESN full with Input Variability

Figure 16: Averaged squared test errors for ϕ-ESN variants on the Markovian se-
quences task. Errors are reported for increasing recurrent reservoir dimension, a con-
stant dimension Nϕ = 500 of the static part of the reservoir, and for a constant value
of the contraction coefficient σ = 0.5.

32

0.14

0.2

0.3

1 5 10 100 200

Te
st

 E
rro

r

NR

Anti-Markovian Sequences - ϕ-ESN variants

ϕ-DESN without Input Variability
ϕ-DESN with Input Variability

ϕ-RDESN without Input Variability
ϕ-RDESN with Input Variability

ϕ-ESN full without Input Variability
ϕ-ESN full with Input Variability

Figure 17: Averaged squared test errors for ϕ-ESN variants on the anti-Markovian
sequences task. Errors are reported for increasing recurrent reservoir dimension, a
constant dimension Nϕ = 500 of the static part of the reservoir, and for a constant
value of the contraction coefficient σ = 0.5.

current neurons achieved comparable results with ESNs full with 100 recurrent
neurons, while ϕ-ESNs and ϕ-RDESNs with 100 recurrent neurons were better
than ESNs full with 500 recurrent neurons (see Table 6). The best result on this
task was obtained by ϕ-RDESN with input variability and NR = 200, which
outperformed the best standard ESNs (i.e. ESN full with input variability) and
NR = 500 of almost two orders of magnitude. This remarks the fact that a
sufficient diversification of state dynamics can be produced even by reservoirs
with a simple organization and a limited number of recurrent units. For the
Mackey-Glass task, a number of 100 recurrent units turned out to be sufficient
for producing this diversification. The extra reservoir dimensions represent a
facility for the readout, but are not strictly necessary for the enrichment of the
state dynamics. Analogous considerations can be done for the NARMA sys-
tem task, for which we found that ϕ-ESNs and ϕ-RDESNs with input variability
beat the best ESNs full for a number of recurrent neurons of NR = 100. For
larger recurrent reservoirs the ESN full model achieved a performance which is
only slightly better than the best one obtained with ϕ-ESNs (Table 7). For the
Markovian sequences task the effect of the augmented reservoir dimensionality
is much less evident (see Figure 20). In general, we found no any relevant differ-
ence in the performance of standard ESNs and ϕ-ESN variants. It is apparent
that ϕ-DESN and ϕ-RDESN with input variability produced nearly the same
results as the best DESN model with input variability, while ϕ-ESN (both fully
and sparsely connected) lowered the performance of two orders of magnitude.
However, we can note that these results are again mainly due to the peculiarity
of the task, which is of a pronounced Markovian nature and, what is arguably
more important, of linear dynamics. Therefore it seems quite likely that a non-

33

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

 5 10 100 200 300 500

Te
st

 E
rro

r

NR

Mackey-Glass Time Series - ϕ-ESN vs ESN

ESN full
ϕ-DESN without Input Variability

ϕ-DESN with Input Variability
ϕ-RDESN with Input Variability
ϕ-ESN full with Input Variability

ϕ-ESN sparse with Input Variability

Figure 18: Averaged squared test errors for ϕ-ESN variants and the best ESN ar-
chitecture for the Mackey-Glass task. Errors are reported for increasing recurrent
reservoir dimension, a constant dimension Nϕ = 500 of the static part of the reservoir,
and for a constant value of the contraction coefficient σ = 0.9.

0.0001

0.001

0.01

0.1

 5 10 100 200 300 500

Te
st

 E
rro

r

NR

NARMA System - ϕ-ESN vs ESN

ESN full
ϕ-DESN without Input Variability

ϕ-DESN with Input Variability
ϕ-RDESN with Input Variability
ϕ-ESN full with Input Variability

ϕ-ESN sparse with Input Variability

Figure 19: Averaged squared test errors for ϕ-ESN variants and the best ESN ar-
chitecture for the NARMA system task. Errors are reported for increasing recurrent
reservoir dimension, a constant dimension Nϕ = 500 of the static part of the reservoir,
and for a constant value of the contraction coefficient σ = 0.9.

34

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

 5 10 100 200 300 500

Te
st

 E
rro

r

NR

Markovian Sequences - ϕ-ESN vs ESN

DESN with Input Variability
ϕ-DESN without Input Variability

ϕ-DESN with Input Variability
ϕ-RDESN with Input Variability
ϕ-ESN full with Input Variability

ϕ-ESN sparse with Input Variability

Figure 20: Averaged squared test errors for ϕ-ESN variants and the best ESN archi-
tecture for the Markovian sequences task. Errors are reported for increasing recurrent
reservoir dimension, a constant dimension Nϕ = 500 of the static part of the reservoir,
and for a constant value of the contraction coefficient σ = 0.9.

0.14

0.2

0.3

 5 10 100 200 300 500

Te
st

 E
rro

r

NR

Anti-Markovian Sequences - ϕ-ESN vs ESN

DESN without Input Variability
ϕ-DESN without Input Variability

ϕ-DESN with Input Variability
ϕ-RDESN with Input Variability
ϕ-ESN full with Input Variability

ϕ-ESN sparse with Input Variability

Figure 21: Averaged squared test errors for ϕ-ESN variants and the best ESN ar-
chitecture for the anti-Markovian sequences task. Errors are reported for increasing
recurrent reservoir dimension, a constant dimension Nϕ = 500 of the static part of the
reservoir, and for a constant value of the contraction coefficient σ = 0.9.

35

Test Error

ESN full (NR = 100) 1.9690 × 10−9

ESN full (NR = 500) 3.9408 × 10−10

ϕ-ESN full (NR = 10) 2.2203e × 10−9

ϕ-RDESN (NR = 10) 1.8430 × 10−9

ϕ-ESN full (NR = 100) 1.0218 × 10−10

ϕ-RDESN (NR = 100) 1.4548 × 10−11

ϕ-ESN full (NR = 200) 4.7595 × 10−11

ϕ-RDESN (NR = 200) 6.1120 × 10−12

Table 6: Mean squared test errors on the Mackey-Glass task for ESNs and ϕ-ESN
variants. NR = 100, 500 for ESN with full connectivity. NR = 10, 100, 200 and
Nϕ = 500 for ϕ-ESN variants. Contraction coefficient σ = 0.9 for every model.

Test Error

ESN full (NR = 100) 1.7967 × 10−3

ESN full (NR = 500) 3.1413 × 10−4

ϕ-ESN full (NR = 100) 4.9291 × 10−4

ϕ-RDESN (NR = 100) 1.4637 × 10−3

ϕ-ESN full (NR = 200) 4.8569 × 10−4

ϕ-RDESN (NR = 200) 1.6815 × 10−3

Table 7: Mean squared test errors on the NARMA system task for ESNs and ϕ-ESN
variants. NR = 100, 500 for ESN with full connectivity. NR = 100, 200 and Nϕ = 500
for ϕ-ESN variants. Contraction coefficient σ = 0.9 for every model.

linear augment of the reservoir state space is not the architectural factor which
can determine a critical improvement in the predictive performance.
If we turn now to the anti-Markovian task, we can note from Figure 21 that
the overfitting problem is contained by augmenting the reservoir dimensionality.
However, for recurrent reservoirs organized in a more complex way than simple
DESN with no input variability (which is functionally equivalent to one single
unit) we obtained worse results. ϕ-ESN variants were not able to solve this
anti-Markovian task just as the ESN counterparts were.

A Note on the Predictive Performance of ϕ-ESNs

Performances of ϕ-ESN variants are also consistent with the best results re-
ported in literature. For instance, we tested the ϕ-ESN model on a variant
of the Mackey-Glass task considered in [21]. For each repetition of the ex-
periment, Ntrain = 3000 time steps of the series were generated for training,
Ntransient = 1000 of which were used as initial transient. After the training pro-
cess, the network was driven by a number of Nteacher = 3000 time steps of the
correct continuation of the training series. The network was then left run freely,
driven by its own output for a number of Nfreerun = 84 time steps, after which
the discrepancy between the network output and the correct continuation of the
time series was evaluated. A number of Ntrials = 100 independent repetitions
of the experiment has been carried out, in order to compute the normalized
root-mean squared error after 84 passes (NRMSE84), as in [21]:

NRMSE84 =

√

√

√

√

√

Ntrials
∑

n=1
(y(84) − ŷ(84))2

Ntrials V arsignal

(27)

36

where y(84) and ŷ(84) are respectively the network output and the correct value
of the time series after the free-run period, while V arsignal ≈ 0.046 is the vari-
ance of the Mackey-Glass time series signal.
ESNs achieved the best result known in literature on this task, with NRMSE84 ≈
10−4.2(= 6.3096 × 10−5) for a reservoir dimensionality equal to NR = 1000, a
sparse connectivity of 1% and a fixed value of the spectral radius ρ = 0.8, as
reported in [21]. In our experiments, network settings similar to those speci-
fied in [21] were adopted. Input-to-output connections were added to the ba-
sic model of equation (9), a constant input bias for reservoir units equal to
0.2 was used, and normal noise of size 10−10 was added to the input for the
readout before training. Reservoir weight matrices were scaled to have a fixed
spectral radius of value ρ = 0.9 and input-to-reservoir weight values were ran-
domly selected from a uniform distribution over [−1, 1]. For ESNs sparse with
NR = 1000 reservoir units and 1% of connectivity, we obtained an error value6

of NRMSE84 = 3.9034 × 10−5. For ϕ-ESNs we considered reservoirs with a
number of NR = 200 units in the recurrent part, with a projection into a feature
space of size Nϕ = 5000. Weight values in matrix Wϕ were randomly chosen
according to a uniform distribution over [−0.1, 0.1]. For a sparse connectivity
of 10% we obtained an error value of NRMSE84 = 3.73066× 10−5, while for a
connectivity equal to 25% the error was NRMSE84 = 2.7589× 10−5.

Note that both these results outperformed the performance of the standard
ESN model by using only one fifth of the recurrent reservoir units. Moreover,
compared to the standard ESN tested in this experiment, the ϕ-ESN model
with 10% of sparse connectivity had on average a smaller number of recurrent
reservoir connections, while for the ϕ-ESN model with 25% of connectivity the
averaged number of recurrent connections was the same 7.

7 Conclusions

Markovianity and high dimensionality of the reservoir state space representation
have revealed a relevant influence on the behavior and performance of the ESN
model.

First, we have observed that the contractivity of the state transition function
leads ESN states to suffix-based Markovian representation of input sequences.
This intrinsic Markovian organization of the reservoir state space of ESNs has
been called the Markovian factor in this paper. The role of the Markovian factor
(and of the ”fading memory” property of ESNs [16]) is not restricted to delineate
the basic ESN property, allowing the state to be independent of the initial con-
ditions, but it has much deeper implications. In particular, we have shown that
it is possible to define very easy or very hard tasks, by respecting or contrasting
the Markovian assumption, respectively. The Markovian factor defines a major
inherent limitation of the ESN approach whenever an anti-Markovian condition
characterizes the task at hand. On the other hand, we have shown that on tasks
with a distinct Markovian nature, the desired target behavior is synthesized by

6The fact that the NRMSE84 we found is smaller than what reported in [21] might depend
on the different value of the spectral radius adopted and on the different method used for the
Mackey-Glass time series discretization (see Appendix A).

7The averaged number of recurrent connections for the standard ESN model and the ϕ-
ESN model with 25% of connectivity was 10000, while for the ϕ-ESN model with 10% of
connectivity it was 4000.

37

the value of the contraction coefficient of the network. Thus one single reservoir
unit may result in the best performance, if its parameters are properly set. Our
subsequent investigations have risen from this base case, showing how different
architectural factors of ESN design can be used to introduce a diversification
in the model dynamics that reveal to be useful for common tasks that do not
belong to these two extreme classes.

The second general result of our investigation concerns the effect of high
dimensionality of the reservoir state space in the ESN design. We have identified
and evaluated architectural factors for which a high number of reservoir units is
effective. In fact, there are tasks for which the influence of the Markovian factor
can be characterized as in the middle between the outlined classes of easy and
hard tasks. For such tasks the architectural design has revealed a major role. In
particular, Markovianity is not sufficient to completely characterize the behavior
of the ESN model for tasks for which the best performance has been obtained
for high dimensional reservoirs. This situation is typical in tasks presented in
the ESN literature, such as the Mackey-Glass chaotic time series and the 10-th
order NARMA system, which have been used in this paper as test bed.

The effect of dimensionality has been experimentally analyzed firstly by con-
sidering the richness of dynamics introduced by differentiating the reservoir units
activations through few basic architectural factors of ESN design, namely vari-
ability on the input, variability on the contractivity of units (multiple time-scales
dynamics) and variability on the interaction among units, on reservoirs with the
same degree of contractivity. Accordingly, we have presented two variants on
the basic ESN model: the DESN model, which only supports input variability,
and the RDESN model, in which multiple time-scales may be supported as well.
The identified architectural factors have individually shown an influence in pro-
gressively improving ESN performance (with increasing reservoir dimension).
Moreover, their combination can sum the individual effects generally resulting
in a further improvement of the performance. For what concerns the assessment
of the relative importance of those three factors, we found that the different dy-
namics ruled by the multiple time-scales dynamics and non-linear interactions
factors have shown the major empirical effects. Nevertheless, input variability
among reservoir units can show by itself a significant, thought inferior, impact
on performance, as for the Mackey-Glass task. Interactions among reservoir
units has been observed to be more influent in the case of the NARMA sys-
tem task. Moreover, this last factor has shown to express a clear influence on
model performance even in presence of a small number of units interactions,
corresponding to a sparse reservoir connectivity.

As a global result, the general dependence of the ESN performance on the
reservoir dimensionality has thus been decomposed and traced back to the de-
pendence on the architectural factors that differentiate the reservoir dynamics.
Increasing the reservoir dimensionality is then a way to allow a better expression
of the units diversification due to the presence of such factors.

The other aspect is related to the effect of high reservoir dimensionality in
making the readout regression easier. High dimensional representations of the
input sequences have been constructed by a non-linear random projection of
the reservoir activation into a higher dimensional feature space. This corre-
sponds to the introduced ϕ-ESN model. The effects of this state dimensionality
amplification have been compared with standard ESN models in terms of pre-
dictive performance, showing that actually a modest number of recurrent units

38

is sufficient to produce the necessary diversification in the reservoir state. For
instance, we have shown that for the Mackey-Glass time series prediction, the
set of diverse state dynamics obtained with 100 units reservoirs may result in
a higher probability of discriminating among different input patterns when the
state is randomly and non-linearly mapped into a 500 units space. Extra reser-
voir dimensions have thus turned out to be only partially responsible for the
enrichment of ESN dynamics. The other part of the effect of the increased
reservoir dimensionality has found to be just a facility for the linear readout
tool. The possibility of regressing a high dimensional reservoir state space has
revealed a relevant role in determining the performance of ESNs. For this reason
it has been identified as a distinct architectural factor.

Although the aim of this paper has been focused on analyzing and assessing
the properties of Markovianity and of other relevant reservoir architectural fac-
tors to give insights for future research, a number of simple and useful outcomes
can be derived for practical use of ESNs.

First, Markovianity can greatly help in characterizing a successful or unsuc-
cessful use of ESNs. A simple architectural design is convenient when the target
task has a strongly Markovian nature, while poor results are to be expected (in-
dependently of the architectural design and of the number of reservoir units) for
tasks with anti-Markovian properties. ESNs are not suitable for anti-Markovian
processing.

Second, despite ESN literature claims from the very beginning [16, 21], sparse
connectivity did not show to have a major role in defining the richness of reser-
voir dynamics, as a sparse configuration of the reservoir weight matrix did not
affect the behavior of the different architectures. However, provided that the
identified architectural factors are included in the ESN design, a sparse connec-
tivity among reservoir units provides an efficient solution.

Third, both variability and dimensionality of the reservoir state dynamics are
essential features in searching the best architectural configuration. The provided
architectural factors define some possible architectural variants with different
values. According to the suitable trade-off between efficiency and performance
for the task at hand, different combinations can be exploited.
For ESNs with a fixed global contractive parameter, a better performance can
be achieved whenever reservoir units can activate multiple time-scales dynamics
by differentiating their self recurrent weights. If efficiency is important, then the
simple diagonal reservoir architecture (i.e. RDESN), with number of recurrent
weights that is linear (instead of quadratic) in the number of units, should be
tried. Moreover, this factor, together with a ϕ-ESN architecture, may lead to a
high performance model.

Finally, although further studies are needed, the authors hope that intro-
duction of simple key factors analysis can contribute to the critical positioning
of the ESN model in the area of the machine learning for sequence processing.

A Appendix: Implementation Details

Our code was written in C++. For mathematical classes and functions we used
the IT++ 4.0.6 library8.
To train the linear readout in an off-line fashion, as explained in Section 3.3, we

8available at http://itpp.sourceforge.net/current/index.html.

39

used pseudo-inversion. This was implemented through singular value decompo-
sition, by using the IT++ function svd.

In the case of sparse reservoirs, the recurrent weight matrix Ŵ could result
in a null matrix with zero norm for small reservoir dimensions. In such cases the
null matrices were discarded until a valid one (with the correct desired norm)
was generated.

To obtain the discrete version of the Mackey-Glass time series (see Sec-
tion 6.1.2) we used a 4-th order Runge-Kutta method, with a sampling rate of
1.0 and integration step of 0.01. The implemented functions were adapted to
C++ from functions available at http://www.bme.ogi.edu/∼ericwan/data.html.
The initial conditions for the series were randomly chosen according to a uni-
form distribution over [0, 1]. Parameter α of equation (25) was set to 17.0 for
every experiment on this benchmark. The first 1000 elements of each generated
series were discarded as in [21]. Elements of each discrete sequence obtained
were shifted by −1 and passed through the hyperbolic tangent function, as in
[21].

For the NARMA system task we implemented input-target sequences accord-
ing to what specified in Section 6.1.3. Instances which resulted in a divergent
target sequence were rejected.

Markovian and anti-Markovian input sequences and target values were ob-
tained using equations (23) and (24). Each target value was then scaled into
the range [−1, 1]. This was done by firstly computing the minimum (minvalue)
and maximum (maxvalue) possible target values for a given range of possible
input sequence lengths. Then values in [minvalue, maxvalue] were rescaled into
[−1, 1].

The header file used to generate all benchmark data is available online at
http://www.di.unipi.it/∼gallicch/sources/.

References

[1] A. F. Atiya and A. G. Parlos. New results on recurrent network training:
unifying the algorithms and accelerating convergence. IEEE Transactions
on Neural Networks, 11(3):697–709, May 2000.

[2] M. Buehner and P. Young. A tighter bound for the echo state property.
IEEE Transactions on Neural Networks, 17(3):820–824, May 2006.

[3] M. Cernanský and M. Makula. Feed-forward echo state networks. In IJCNN
2005. Proceedings of the IEEE International Joint Conference on Neural
Networks, 2005, volume 3, pages 1479–1482, 2005.

[4] M. Cernanský and P. Tiño. Predictive modeling with echo state networks.
In Artificial Neural Networks - ICANN 2008, volume 5163/2008, pages
778–787. Springer Berlin / Heidelberg, 2008.

[5] P. F. Dominey, M. Hoen, J.M. Blanc, and T. Lelekov-Boissard. Neurolog-
ical basis of language and sequential cognition: Evidence from simulation,
aphasia, and erp studies. Brain and Language, 86(2):207 – 225, 2003.

40

[6] P.F. Dominey, M. Hoen, and T. Inui. A neurolinguistic model of
grammatical construction processing. Journal of Cognitive Neuroscience,
18(12):2088–2107, 2006.

[7] G. Fette and J. Eggert. Short term memory and pattern matching with
simple echo state networks. In ICANN (1), volume 3696 of Lecture Notes
in Computer Science, pages 13–18. Springer, 2005.

[8] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE Transactions on Neural Networks,
9:768–786, 1998.

[9] S. Haeusler and W. Maass. A Statistical Analysis of Information-Processing
Properties of Lamina-Specific Cortical Microcircuit Models. Cerebral Cor-
tex, 17(1):149–162, 2007.

[10] M.A. Hajnal and A. Lorincz. Critical echo state networks. In Artificial
Neural Networks ICANN 2006, pages 658–667, 2006.

[11] B. Hammer, A. Micheli, and A. Sperduti. Adaptive contextual processing
of structured data by recursive neural networks: A survey of computational
properties. In Perspectives of Neural-Symbolic Integration, volume 77/2007
of Studies in Computational Intelligence, pages 67–94. Springer Berlin /
Heidelberg, 2007.

[12] B. Hammer and P. Tiño. Recurrent neural networks with small weights
implement definite memory machines. Neural Computation, 15(8):1897–
1929, 2003.

[13] S. Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition).
Prentice Hall, 1999.

[14] J. Hertzberg, H. Jaeger, and F. Schönherr. Learning to ground fact symbols
in behavior-based robots. In ECAI. Proceedings of the 15th Eureopean
Conference on Artificial Intelligence, pages 708–712. IOS Press, 2002.

[15] K. Ishu, T. van der Zant, V. Becanovic, and P. Ploger. Identification of mo-
tion with echo state network. In OCEANS 2004. MTTS/IEEE TECHNO-
OCEAN 2004, volume 3, pages 1205–1210 Vol.3, November 2004.

[16] H. Jaeger. The ”echo state” approach to analysing and training recur-
rent neural networks. Technical report, GMD - German National Research
Institute for Computer Science, 2001.

[17] H. Jaeger. Adaptive nonlinear system identification with echo state net-
works. In NIPS. Advances in Neural Information Processing Systems 15,
pages 593–600. MIT Press, 2002.

[18] H. Jaeger. Short term memory in echo state networks. GMD-Report 152,
GMD - German National Research Institute for Computer Science, 2002.

[19] H. Jaeger. Tutorial on training recurrent neural networks, covering bppt,
rtrl, ekf and the echo state network approach. Technical report, GMD -
German National Research Institute for Computer Science, 2002.

41

[20] H. Jaeger. Reservoir riddles: suggestions for echo state network research.
IJCNN 2005. Proceedings of the IEEE International Joint Conference on
Neural Networks, 2005, 3:1460–1462 vol. 3, July-4 Aug. 2005.

[21] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304(5667):78–80,
April 2004.

[22] J.F. Kolen and S.C. Kremer, editors. A Field Guide to Dynamical Recurrent
Networks. IEEE Press, Inc., New York, 2001.

[23] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to recur-
rent neural network training. Computer Science Review, 3(3):127 – 149,
2009.

[24] W. Maass, T. Natschlager, and H. Markram. Real-time computing without
stable states: a new framework for neural computation based on perturba-
tions. Neural Computation, 14(11):2531–60, 2002.

[25] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control
systems. Science, 197(4300):287–289, 1977.

[26] M. Makula, M. Cernanský, and L. Benusková. Approaches based on marko-
vian architectural bias in recurrent neural networks. In SOFSEM 2004:
Theory and Practice of Computer Science, volume 2932 of Lecture Notes
in Computer Science, pages 257–264. Springer, 2004.

[27] D. Nikolic, S. Häusler, W. Singer, and W. Maass. Temporal dynamics
of information content carried by neurons in the primary visual cortex.
In NIPS. Advances in Neural Information Processing Systems 19, pages
1041–1048. MIT Press, 2006.

[28] M.C. Ozturk, D. Xu, and J.C. Principe. Analysis and design of echo state
networks. Neural Computation, 19(1):111–138, 2007.

[29] P. Plöger, A. Arghir, T. Günther, and R. Hosseiny. Echo state networks
for mobile robot modeling and control. In RoboCup, pages 157–168, 2003.

[30] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recur-
rent networks by evolino. Neural Computation, 19(3):757–779, 2007.

[31] B. Schrauwen, M. Wardermann, D. Verstraeten, J.J. Steil, and
D. Stroobandt. Improving reservoirs using intrinsic plasticity. Neurocom-
puting, 71(7-9):1159 – 1171, 2008.

[32] H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets.
Applied Mathematics Letters, 4:77–80, 1991.

[33] M.D. Skowronski and J.G. Harris. Minimum mean squared error time series
classification using an echo state network prediction model. In ISCAS 2006.
Proceedings of the IEEE International Symposium on Circuits and Systems,
2006, pages 4 pp.–3156, 0-0 2006.

42

[34] J. J. Steil. Backpropagation-decorrelation: online recurrent learning with
o(n) complexity. In IJCNN 2004. Proceedings of the IEEE International
Joint Conference on Neural Networks, 2004, volume 2, pages 843–848, July
2004.

[35] J. J. Steil. Online stability of backpropagation-decorrelation recurrent
learning. Neurocomputing, 69(7-9):642–650, 2006.

[36] P. Tiño, M. Cernanský, and L. Benusková. Markovian architectural bias
of recurrent neural networks. IEEE Transactions on Neural Networks,
15(1):6–15, Jan. 2004.

[37] P. Tiño, B. Hammer, and M. Bodén. Markovian bias of neural-based ar-
chitectures with feedback connections. In Perspectives of Neural-Symbolic
Integration, pages 95–133. Springer-Verlag, 2007.

[38] G. K. Venayagamoorthy and B. Shishir. Effects of spectral radius and
settling time in the performance of echo state networks. Neural Networks,
22(7):861 – 863, 2009.

[39] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An ex-
perimental unification of reservoir computing methods. Neural Networks,
20(3):391 – 403, 2007.

[40] P. J. Werbos. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[41] R. J. Williams and D. Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1:270–280, 1989.

[42] T. Yamazaki and S. Tanaka. The cerebellum as a liquid state machine.
Neural Networks, 20(3):290 – 297, 2007.

[43] X. Yanbo, Y. Le, and S. Haykin. Decoupled echo state networks with lateral
inhibition. Neural Networks, 20(3):365–376, 2007.

[44] Y.Bengio, P. Frasconi, and P. Simard. The problem of learning long-term
dependencies in recurrent networks. IEEE International Conference on
Neural Networks, 1993, pages 1183–1188 vol.3, 1993.

43

