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Minimal support and families for the semantics of
calculi with structured resources

Vincenzo Ciancia ?, Alexander Kurz ??, Ugo Montanari ? ? ?

Abstract. Calculi that feature resource-allocating constructs (e.g. the
pi-calculus or the fusion calculus) require special kinds of models. The
best-known ones are presheaves and nominal sets. But named sets have
the advantage of being �nite in a wide range of cases where the other two
are in�nite. The three models are equivalent. Finiteness of named sets
is strictly related to the notion of �nite support in nominal sets and the
corresponding presheaves. We generalise previous equivalence results by
introducing a notion of minimal support in presheaf categories indexed
over small categories of monos. We show that nominal sets are generalisd
by families, that is, free coproduct completions, indexed by symmetries.
Functors and categories of coalgebras may be de�ned over families. We
show that the �nal coalgebra has the greatest possible symmetry up-
to bisimilarity, which can be computed by iteration along the terminal
sequence, thanks to �niteness of the representation.

1 Introduction

Full abstraction and nominal calculi. One of the greatest concerns in program-
ming language semantics is to �nd fully abstract models, where all the semanti-
cally equivalent programs are identi�ed. A di�cult question in this area is how
to identify such models for the so-called interactive systems, where the focus
is not the �nal result of the computation, but rather on the interactions with
the environment along the possibly non-terminating behaviour of a system. For
languages such as the CCS [31] or the π-calculus [32], the operational semantics
is expressed in terms of labelled transition systems (LTS), and the fully abstract
model is the quotient of all the possbile systems with respect to bisimilarity.

Among the reasons to look for such models we mention not only the pos-
sibility of proving properties of programs, but also the applications to �nite
state methods such as equivalence checking, model checking and minimisation of
systems. Algorithms to perform these tasks are well-known for ordinary (�nite
state) labelled transition systems; in particular, minimisation and equivalence
checking can be done by partition re�nement [36], while a wide range of algo-
rithms for model checking exists, depending on the logic, and on a plethora of
optimisation techniques.
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Calculi with resource allocation mechanisms (the so called nominal calculi)
often have a notion of bisimulation that does not coincide with the standard
one in LTS. Thus, standard de�nitions and algorithms can not be reused. This
is solved by resorting to presheaf categories, that is, categories of functors from
a small category C to Set [20,8,7,21,30,29], or to �nitely supported permutation
algebras [33], that is, the nominal sets of Gabbay and Pitts [22]. Interestingly,
the latters were introduced to solve the problems arising in abstract syntax with
binding, and in particular from the axioms of α-conversion. Both syntax and
semantics are turned into standard notions (resp. initial algebras and �nal coal-
gebras) using these kinds of models. The operational semantics of a calculus
in presheaf models typically has in�nite states even for very simple processes,
making it di�cult to compute the abstract semantics, or to implement model
checking algorithms. Presheaves handle names, and in general resources, as hav-
ing a global meaning across all possible processes: the link between the names of
di�erent processes is established a priori. Thus, name generation must be imple-
mented in such a way that each generated name has its own, unique meaning.

Named sets. In the parallel research line of named sets [35,37], these di�culties
were overcome using local names; in this case, establishing a binding between
names of elements is necessary whenever two elements are related. This machin-
ery allows one to reuse previously generated names that have been discarded.
In [37], a number of formalisms including place-transition Petri nets equipped
with history preserving bisimulation, the CCS with localities and the π-calculus
have been mapped into named sets in a fully abstract way. The most important
�nding here is that modelling the symmetry of agents is necessary to have a
unique abstract model of the π-calculus. In [17,39,18], a minimsation algorithm
for the π-calculus has been implemented based on the model of history-dependent
automata, that is, coalgebras in the category of named sets. Remarkably, the
computed minimal system, which is the fully abstract model, that is, the �nal
coalgebra, contains an explicit representation, in terms of its generators, of the
greatest permutation group over names of an agent that preserves bisimulation.
Finally, in [41], a number of ad-hoc constructions on named sets used for the
π-calculus are turned into categorical notions such as products, coproducts, the
power set and name abstraction (also detailed in [10]), thus allowing one to reuse
the same machinery to represent the semantics of other calculi with names. The
importance of modelling symmetries has been recently recognised both in the
theory of programming language semantics [42] and in practical applications
such as model checking [15], making a generic symmetry reduction algorithm
appealing for the e�cient veri�cation of interactive systems. We remark that,
due to well known properties of group theory (in particular Lagrange's theorem,
see e.g. [14], �3.3), the symmetry has an e�cient representation in terms of gen-
erators: there exists a representation of each �nite group which is logarithmic
with respect to the size of the group. Moreover, many operations on groups can
be computed on the compressed representation [28].



The categorical equivalence between three models of nominal computation,
that is, nominal sets, named sets and the pullback-preserving full subcategory1
of SetI, called the Schanuel topos, has been established in [24,19].

Our contributions. A great advantage of presheaf categories is the additional
�exibility that can be obtained by varying the index category C, giving rise to
models that do not have only pure names, but rather more complex structures
(see e.g. [25], or [3]). However, the already mentioned problems related to the
intrinsically in�nite nature of presheaf models limit the practical applicability
of obtained result. As an example, consider a program that allocates a resource
y, makes this observable by sending it over a public channel x, and immediately
restarts using y as the public channel and generating a new resource, looping
inde�nitely. This is exempli�ed by the π-calculus agent P (x) = (νy)x̄y.P (y).
The semantics of this agent in nominal sets and presheaves is not a loop, but
rather an in�nite sequence of allocation actions, each one going into a di�erent
agent, because the fresh names in agents must be all di�erent. Therefore it is
not possible e.g. to run a model checker on such a semantics. In the named sets
representation, this agent is a loop. Each transition has an associated injective
relabelling, that allows the semantics to reuse the same fresh name in all the
steps (the interested reader may refer to [10] where this example is developed
in detail). This is a prototypical example of how the representation that we
advocate introduces a notion of garbage collection that allows the semantics to
reuse existing resources assigning to them a new meaning.

Perhaps the most important topic in [22] is the notion of �nite support, which
generalises the notion of free variables in terms. The support is in turn the key
ingredient to de�ne named sets. In this work, we de�ne a more general notion
of support. Exploiting this de�nition, we show that the equivalence result of
[24,19] can be extended to presheaves indexed by small categories, respecting
three conditions: the index category has wide pullbacks, and the presheaves
preserve them; the index category is made up of monos; all the arrows of the
index category from an object to itself are isomorphisms.

In �3 we show a representation of a presheaf category that is based on fam-
ilies (that is, free coproduct completions) of categories of symmetry groups.
Presheaves are presented as sets of elements that have an attached symmetry
on their available local interfaces. The representation we propose removes all the
redundant information that is present in a presheaf because of inclusions and
isomorphisms of stages. In particular, the representation can be �nite even if the
elements of the presheaf form an in�nite set. Also, the advantage of named sets
when modelling name generation is immediately generalised, because elements
that are obtained from isomorphic objects of the index category are identi�ed.

The three conditions that we mentioned may seem to limit the applicability
of the framework. Of these, the �rst two seem more important, giving to the
presheaf category the necessary structure to remove the redundant information.
1 Here I is the category of �nite subsets of the natural numbers and injections between
them.



A natural question here is to understand when non-monic index categories are
really necessary in the semantics of programming languages, and when it is
possible to �nd equivalent representations that fall under our hypothesis (e.g. in
[3] a category having just monic arrows is used to model explicit fusions).

Moreover, the results in ��4-5, that we now introduce, do not depend on these
conditions (in particular, on the arrows of the index category being monos), but
rather they are properties of families in general, and are the main reason why
we consider families appealing for computer science. An eventual generalisation
of the conditions we require would still have these properties.

Presheaves and families have a very di�erent nature. We refer to this as lo-
cality of interfaces. In �4 we give a mathematical explanation of this property,
which is re�ected in the product construction. The product is just computed
point-wise in presheaves, while it involves a mapping of the local interfaces of
each involved element into a greater one, in the case of families. This corresponds
to two radically di�erent, though equivalent, views on how systems with inter-
faces may be related, namely by either assuming a naming authority giving a
global meaning to each available resource, or by relying on locally scoped links
that connect the di�erent systems. The former is the view of the π-calculus and
related literature, while the latter may be more useful in modelling decentralised
systems such as sensor networks or peer to peer systems. In �5, we show how
to compute the behavioural symmetry of an element of a coalgebra, that is, the
greatest group of isomorphisms that leave an element bisimilar to itself. This is
done by iteration along the terminal sequence, exploiting the ��nitistic� nature
of the representation. A detailed analysis of the algorithm and the possibility to
take advantage of generators of symmetry groups for complexity improvements
are left as future work. Finally, in �6 we provide the link to the existing theory,
explaining how the equivalence of [24,19] is an instance of our framework.

Related work. The work presented here directly extends [24,19]. The most closely
related work is [2], whose Thm. 3.3 is very similar to our Thm. 2. However,
they require at least that the index category is accessible and has an initial
object, and the proof is carried out only in the case when the category is locally
presentable. On the other hand, our paper is focused on generalising the �nite
support condition of Gabbay and Pitts to other index categories, and exploits
this to give a representation inspired by the model of named sets. The proof we
present does not have the requirements of [2], and in particular does not rely on
existence of an initial object, therefore it works uniformly also when the index
category is a disconnected category, or as a special case, a discrete category, that
is, a multi-sorted set. This clari�es that one result is not a consequence of the
other (the theorem of [2] can not be in turn a consequence of our result, since it
also deals with index categories that are not small). The intended application of
the theory we develop is to represent the semantics of process calculi in a �nite
way, and to provide a generic minimization and symmetry-reduction procedure.
Indeed, this aspect is not studied at all in [2], whose aim is to unify various
mathematical notions that generalise the analytic functors of Joyal.



2 Background

Here we introduce the basic notions related to the family construction, which is
a representation of the free coproduct completion of a category.

Remark 1. (notational conventions). For C a category, we denote with |C| its
objects, with C(n,m) the set of arrows from n to m. We extend some categorical
notations to sets of arrows. Let F ⊆ C(n,m) be a set; we de�ne dom(F ) = n
and cod(F ) = m. When F and G are two such sets, with dom(F ) = cod(G),
f : cod(G) → m′, and g : m′′ → dom(F ), we de�ne f ◦ G = {f ◦ g | g ∈ G},
F ◦ g = {f ◦ g | f ∈ F}, and F ◦ G = {f ◦ g | f ∈ F, g ∈ G}. As a notation for
the elements of the coproduct

∐
x∈S Px in Set, we use the set of pairs {〈x, p〉 |

x ∈ S, p ∈ Px}. The copairing of a tuple of arrows fi∈I is denoted with
∐

i∈I fi.
We often omit the parenthesis in function and functor application, e.g. we write
Ffx to denote the action of the functor F : C → Set on the arrow f , applied to
the element x. With pullbacks we actually refer to wide, but small, pullbacks.

A direct description of the free coproduct completion of a category C is ob-
tained by the family construction, de�ned as follows.

De�nition 1. Given a small category C, objects of the category Fam(C) are fam-
ilies of objects of C, that is, coproducts

∐
i∈I{ni} of singletons in Set, where I

is a set, and, for each i ∈ I, ni ∈ |C|. An arrow from
∐

i∈I{ni} to
∐

j∈J{mj} is
a tuple 〈f,

∐
i∈I{Hf

i }〉, where f : I → J and, for each i ∈ I, Hf
i : ni → mf(i).

A family is a set I, where each element i ∈ I has an associated C-object ni.
The set I may represent, for example, the set of states of a system. The object
ni represents the interface of the state i. For example, ni can be a set of names,
a network topology, or any other possible feature associated to the states of a
process calculus. Each arrow is a function f between two sets I and J , and for
each i ∈ I there is a map Hf

i from the interface of i to that of f(i). This re�ects
the idea that interfaces are local to each element, therefore to properly de�ne
a function between such elements, one also has to specify how the interfaces of
destination and source elements are related. When we use families to represent
presheaves, as we shall see, these maps go in the other direction, that is, from the
destination to the source. Looking at the above de�nition, this does not make
a big di�erence, as one can just consider the category Fam(Cop) to get these
�backwards� arrows, as we shall do in the following. A real-world example of
local interfaces which can help the intuition is the injective relabelling of memory
locations that may happen after an invocation of the garbage collector in a
garbage-collected language. System states in this case have an associated memory
layout (its �interface� in our terminology), that may change at each step of the
execution. The relabelling is the �backward� arrow that we mention, mapping
the memory layout of the destination into that of the source, thus tracking the
history of variables and their memory locations along the computation.

There is a canonical embedding of C into Fam(C), which is also full.



De�nition 2. The embedding H : C→ Fam(C) acts on objects as Hn =
∐

i∈1{n},
and on arrows f ∈ C(n,m) as Hh = 〈id1,

∐
i∈1{h}〉.

For completeness, we recall that coproducts in Fam(C) are freely generated,
and each object of Fam(C) is a coproduct of objects in the image of H.

De�nition 3. The coproduct in Fam(C) of two objects
∐

i∈I{ni} and
∐

j∈J{mj}
is de�ned as

∐
k∈I+J{ok}, where ok = ni if k = 〈I, i〉, and ok = mj if k = 〈J, j〉.

3 Representing pullback-preserving presheaves

Presheaves are functors from a small index category to Set. We start from the
point of view that objects of the index category are interfaces, or speci�ca-
tions [40], that systems expose, by which one can manipulate the semantics of
a program or compose subsystems into a larger system. The monos of the index
category allow an interface to be embedded into a larger one, for composition
purposes. If the index category has pullbacks, and the functors preserve those,
then we have a similar situation to the �nite support condition in the work by
Gabbay and Pitts on nominal syntax [23]: each system has a unique �proper
interface�, from which all the larger ones can be recovered using the operations.
Such systems may be represented in two alternative ways; as presheaves, that
is, multi-sorted collections of elements, and operations over them, or as enriched
sets, with a local interface attached to elements. The latter notion is formalised
by the means of families, that we advocate as an alternative, �more computa-
tional� abstract model for the operational semantics of calculi.

The fundamental idea of representing presheaves by families of symmetries
comes from Staton [38], where it appears as a proof technique to show that
named sets and the Schanuel topos are equivalent. The technical results that we
present in this section are a direct generalisation of that work, even though the
purposes are di�erent, since we aim to explain the computational properties of
the families model, which is done in the rest of the paper.

From now on, we let C be a small category, and SetC♦ the wide-pullback-
preserving full subcategory of SetC. Our theory can be instantiated under the
following conditions, that we assume in the rest of the paper:

� all the arrows of C are monic;
� C has (small, wide) pullbacks;
� for every object n of C, each f ∈ C(n, n) is an isomorphism.

Notice that we do not require strong properties on C e.g. completeness or co-
completeness. Some examples may clarify the applicability of the framework.

Discrete categories: the one-object and one-arrow category 1 can be used
as an index, resulting in a degenerate instantiation of the framework that
actuall just contains sets and functions. This is correct, as Set1 is Set. More
generally, discrete categories can be used, in this case the representation that
we will de�ne is just the set of elements of each presheaf, that is, pairs 〈n, x〉



where n is the index where x lives. This is a very natural representation of
multi-sorted sets. These two examples show that the de�nition works also in
these degenerate cases, giving the expected representation.

Finite sets and injections: in this case, the obtained equivalence is that be-
tween the Schanuel topos and named sets of [19,24]. The associated categories
have been used in a wide range of applications as we already emphasized.

Finite graphs and injections: this category can be used to model calculi
whose network structure is made explicit in the semantics (as opposed to
the π-calculus, where the network structure is left implicit in the knowledge
of channels by agents) and whose semantics is closed with respect to adding
links to the network. An example calculus with an explicit network topology,
that will be object of investigation, is the network coordination policies calcu-
lus [9], whose states are pairs consisting of the network topology, represented
as a graph, and a policy, which is a program.

Fusions: the category F of �nite sets and all functions has been used in [29] to
model the fusion calculus. This category is not included in our framework
since it is not made up of monos, but more prominently the category in
question does not have wide pullbacks. Therefore it seems unlikely to obtain
a representation in the spirit of this work, even if the restriction to monos
was not present. It is possible to use a di�erent approach: fusions may also be
described by the means of monos, if the objects of the index category are rich
enough. This is witnessed by [3], where fusions are modelled using a category
of equivalence relations that only has monic arrows. However, in that case
the index category does not have all pullbacks. We plan to investigate the
usage of the category of relations over a �nite domain, and monic, monotone
maps between them. This category has pullbacks, falls into the conditions of
our framework, but it has a rich structure of objects that may be used for
fusions (see also [25,30]).

3.1 The category Sym(C)

De�nition 4. We de�ne the (small) category Sym(C) of symmetries over C:

|Sym(C)| =
⋃

n∈|C|
{Φ ⊆ C(n, n) | Φ is a group w.r.t. composition}

Sym(C)(Φ1, Φ2) = {h ◦ Φ1 | h ∈ C(dom(Φ1), dom(Φ2)) ∧ Φ2 ◦ h ⊆ h ◦ Φ1}
The identity of each object is de�ned as idΦ = iddom(Φ) ◦Φ = Φ; the composition
law is given by (h2 ◦ Φ2) ◦ (h1 ◦ Φ1) = h2 ◦ h1 ◦ Φ1.

Arrows of the category are sets of arrows from C, obtained by composition
of a group of isomorphisms with a single arrow. It is very important to observe
that the composition symbol on the left hand side of the last equation is the
composition in Sym(C) which is being de�ned, and not composition of set of
arrows, while the composition on the right is composition of sets of arrows, as
from Remark 1. However the following lemma ensures that the two possible
interpretations coincide. This is a consequence of the condition Φ2 ◦ h ⊆ h ◦ Φ1.



Lemma 1. Consider two Sym(C) arrows h2◦Φ2 : Φ2 → Φ3 and h1◦Φ1 : Φ1 → Φ2.
It holds that (h2 ◦ h1) ◦ Φ1 = {h2 ◦ ϕ2 ◦ h1 ◦ ϕ1 | ϕ2 ∈ Φ2 ∧ ϕ1 ∈ Φ1}.

Finally we note that C has a full embedding into Sym(C).
De�nition 5. The embedding J : C → Sym(C) is de�ned on objects as J(n) =
{idn} and on arrows as J(f) = {f}.

3.2 The equivalence between SetC♦ and Fam(Sym(C)op)

We employ the following well-known proposition (see [6], Lemma 42), used in
[38], to prove the equivalence between named sets and the Schanuel topos.
Proposition 1. Let D be a locally small category having small coproducts, and
C a small category. A functor F : C → D can be extended to an equivalence
from Fam(C) to D if it satis�es the following conditions: F is an embedding (it is
injective on objects and morphisms); objects in the image of F are indecomposable
(for each object n of |C|, the homset functor D(Fn,−) preserves coproducts); every
object of D is a coproduct of objects in the image of F.

We now exhibit a functor F : Sym(C)op → SetC♦.
De�nition 6. The functor F : Sym(C)op → SetC♦ acts on each object Φ returning
a presheaf in SetC♦ as FΦn = {h◦Φ | h ∈ C(dom(Φ), n)}, and FΦf(h◦Φ) = f◦h◦Φ.
F acts on each arrow h ◦Φ1 : Φ2 → Φ1 of Sym(C)op returning a natural transfor-
mation, de�ned at each index n as (F(h ◦ Φ1))n(h′ ◦ Φ2) = h′ ◦ h ◦ Φ1.

The intuition here is that the functor F reconstructs a presheaf �almost freely�
starting from a symmetry Φ, that is, the action of each operation h is freely
generated, but the set of possible arrows h is quotiented by composition with Φ,
meaning that two arrows h and h′ such that h′ = h ◦ ρ for ρ ∈ Φ are identi�ed.

We show that F is a functor from Sym(C)op to SetC♦.
Theorem 1. F is a functor and for each Φ, FΦ preserves wide pullbacks.

As SetC♦ has coproducts, F can be extended to a covariant functor from
Fam(Sym(C)op) to SetC♦, making one direction of the categorical equivalence.
De�nition 7. The functor Presh : Fam(Sym(C)op)→ SetC♦ is de�ned as

Presh
∐

i∈I{Φi} =
∐

i∈I FΦi Presh〈f,
∐

i∈I{Hf
i }〉 =

∐
i∈I(ιf(i) ◦ FHf

i )

where 〈f,
∐

i∈I{Hf
i }〉 :

∐
i∈I{Φi} →

∐
j∈J{Φ′j}, and ιf(i) denotes the f(i)th

injection of the coproduct
∐

j∈J FΦ′j.
Next, we show that F respects the �rst and second conditions of Prop. 1. First,
recall that if C is small, the functor category SetC is locally small and has co-
products (de�ned pointwise), hence Prop. 1 is applicable.
Proposition 2. F is an embedding, i.e. injective on objects and morphisms.
Proposition 3. For each object Φ : Sym(C), FΦ is indecomposable, that is, the
homset functor SetC♦(FΦ,−) preserves coproducts.



3.3 The symmetric decomposition of a presheaf

In this section we conclude the proof that F respects the conditions of Prop. 1,
by providing a characterisation of functors in SetC♦. First, we recall the notion of
element of a presheaf. Hereafter, we let G denote an arbitrary functor in SetC♦.

De�nition 8. The set of elements of G is de�ned as El(G) =
∐

n∈|C| Gn.

For readability, but without loss of generality, in the following we assume
that all the Gn are disjoint, so that we are able to denote with just x the element
〈n, x〉 ∈ El(G). When necessary, we denote the stage n of x as st(x ).

Roughly, we aim to represent presheaves by quotienting all the elements that
are �reachable� from some common element by the action of arrows. To make
this formal, we introduce the notion of orbit.

De�nition 9. Given x ∈ El(G), its orbit Ox is the set of elements y ∈ El(G)

such that there exist a span st(x )
fx← s

fy→ st(y) and an element z ∈ Gs, with
Gfxz = x and Gfyz = y.

In other words, an orbit is a connected component in the category of elements.
In the following, for x ∈ El(G), we let Dx be the diagram in C consisting of the
morphisms {d : n → st(x ) | ∃y ∈ G(n).Gdy = x}, for n ranging over |C|. Notice
that, for each d, y is uniquely determined: Gd is injective because G is pullback-
preserving, hence mono-preserving.

The following lemma forms the grounds of our representation. It is perhaps
the most important property of orbits, due to pullback preservation of SetC♦.

Lemma 2. Let x and y belong to the same orbit. Let n be the pullback object of
Dx and m be the pullback object of Dy. There exists an isomorphism between n
amd m making n a pullback of Dy.

We now de�ne the support of an element x, which is, roughly speaking, the
smallest index where an element having the same properties of x can be found.

De�nition 10. Let xO denote a choice of an element in Ox. We de�ne the sup-
port of x, denoted with Sx, as the pullback object of D(xO), and the normalising
arrow Nx : Sx → st(x ) as the diagonal of the pullback diagram of Dx, where we
choose Sx as the pullback object by Lemma 2.

With diagonal here we mean the composition of any arrow in Dx with the
corresponding arrow making the pullback commute.

We are going to see that an object of SetC♦ is determined (up-to isomorphism)
just by a set of representatives x̂ of elements, called proper elements, and by the
set of isomorphisms over the stage of each x̂ whose action leaves x̂ unchanged.
Preservation of pullbacks plays a fundamental role here, allowing us to prove the
following lemma and to de�ne the representative of an element.

Lemma 3. There exists a unique element x̂ ∈ GSx such that GNxx̂ = x.



De�nition 11. Let x ∈ El(G). We denote with x̂ the representative of x, that
is, the element of GSx such that GNx(x̂) = x. The set of proper elements of G is
de�ned as Pel(G) = {x̂ | x ∈ El(G)}.

In this construction, Nx plays the role of a canonical arrow whose action
recovers x from its representative x̂. The symmetry associates to each proper
element an object of Sym(C).

De�nition 12. The symmetry of x̂ ∈ Pel(G) is the group of isomorphisms
Gbx = {ρ : Sx → Sx | Gρx̂ = x̂}.

Now we can de�ne a functor from SetC♦ to Fam(Sym(C)op) which, together
with the functor Presh of Def. 7, completes the categorical equivalence.

De�nition 13. The symmetric decomposition SymDec : SetC♦ → Fam(Sym(C)op)
is de�ned on each presheaf G and natural transformation f : G1 → G2 as

SymDec(G) =
∐

bx∈Pel(G)

{Gbx} SymDec(f) = 〈λx̂.f̂Sx
(x̂),

∐

bx∈Pel(G1)

{Nf(bx)◦Gf̂Sx (bx)
}〉

The action of the functor on objects just records the proper elements of G,
and their symmetry. The action on arrows is an arrow of Fam(Sym(C)op), thus
a function between the two index sets, and a family of arrows in Sym(C)op .
The former returns, for each representative x̂, the representative of fSx(x̂). The
mappings associated to the arrow are the normalising arrows of every obtained
element, composed with the corresponding symmetry. Using it, one can recon-
struct fSx(x̂) from its representative. A bit more intuition may be obtained by
considering the support and symmetry of an element as a local interface of that
element. The arrow Nf(bx) ◦ Gf̂Sx (bx)

embeds the interface of f̂Sx(x̂) into the in-
terface of fSx(x̂), which is the same of x̂ because f is de�ned pointwise. The
normalising arrow is the so-called history of names along morphisms2 used in
the literature on named functions, and in coalgebras it plays a similar role to
the injective relabelling of memory locations done by garbage collectors in the
implementation of programming languages.

Lemma 4. We have Ĝhx̂ = x̂, and NGhbx ∈ h ◦ Gbx.

Theorem 2. Every presheaf G in SetC♦ is isomorphic to Presh(SymDec(G)).

The main result of this section is the sum of Prop. 1, 2, 3 and Thm. 2.

Theorem 3. The category SetC♦ is equivalent to Fam(Sym(C)op).

From now on, given an arbitrary object P =
∐

i∈I{Φi} of Fam(Sym(C)op), we
call I the set of elements, or underlying set, of P , and we say that Φi is the
symmetry of the element i ∈ I. It is straightforward to check the following.
2 In our case, we should call it the history of interfaces along morphisms.



Proposition 4. The Yoneda embedding y : Cop → SetC is equal to Presh ◦ H ◦ J
where H and J come from Def. 2 and Def. 5.
Remark 2. A great advantage of the proposed representation of presheaves using
families is to reduce the size (the number of elements) of the represented presheaf,
even getting a �nite set out of an in�nite one, while preserving the categorical
properties. For example, the �inclusion� presheaf Gn = n, Gf = f in SetI, that is,
the object of names in SetI, is represented by a family having a single element
in Fam(Sym(I)op), namely

∐
i∈1{id1}. The intuitive meaning of this assertion is

that each natural number is not distinguishable from any other, and has a single
�name� (and trivial symmetry) as its interface. This ��nitistic� representation
is the main reason why named sets and history-dependent automata have been
considered appealing for the static analysis of nominal calculi (model checking
[26], and bisimulation checking [18]).

4 Locality of interfaces: the product construction
In [41], one of the authors extended the equivalence of [24,19] to the categories of
coalgebras of equivalent endofunctors, in order to give a categorical characteri-
sation of the various constructions that had been used in the past for named sets
(including minimisation of the π -calculus). Here we generalise the result on rep-
resenting the product in the category of named sets exploiting multi-coproducts
in a suitable category (the category Symset that here is recalled in �6).

Multi-(co)products are a specialisation of the notion of multi-(co)limit, stud-
ied in detail by Diers [13]. It is well known (see e.g. [11], remark 5) that Fam(C)
has products whenever C has multi-products, and dually, Fam(Cop) has products
if C has multi-coproducts. Here we provide a concrete characterization of the
functor, that emphasizes the di�erence between global and local interfaces. The
results presented here do not rely on arrows of C being mono.
De�nition 14. Given a diagram D consisting of a tuple of objects 〈n1, . . . , nk〉,
the multi-coproduct of D is a set mcp(D) of cocones over D such that for all
cocones L′ = 〈f1 : n1 → m′, . . . , fk : nk → m′〉 over D there exists a unique
cocone L = 〈ι1 : n1 → m, . . . , ιk : nk → m〉 ∈ mcp(D), and a unique arrow
uL′ : m→ m′ making the diagram L ∪ L′ ∪ uL′ commute. The unique cocone L
will be denoted, with a bit of overloading, with mcp(L′).

In words, the multi-coproduct of two objects P and Q is a set of canonical
cospans between them, in the sense that they are quotiented by isomorphisms
of cospans, and they are minimal.

We note that Sym(C) has multi-coproducts.
Theorem 4. If C has wide pullbacks, then Sym(C) has multi-coproducts.

In the following de�nitions, we assume that C has multi-coproducts, that
P =

∐
i∈I{ni}, Q =

∐
i∈J{mj}, R =

∐
k∈K{ok} are three arbitrary objects of

Fam(Cop), and we denote with S the set {〈i, j, 〈ι1, ι2〉〉 | i ∈ I ∧ j ∈ J ∧ 〈ι1, ι2〉 ∈
mcp(〈ni, mj〉)}.



De�nition 15. The product of P and Q in Fam(Cop) is de�ned as the object
P ×Q =

∐
〈i,j,〈ι1,ι2〉〉∈S{cod(ι1)}.

Elements of the product P × Q are triples, formed by an element of P , an
element of Q, and a (canonical) cospan relating their symmetry.

De�nition 16. Let π′1 and π′2 denote the �rst two projections of the ternary
product S. The projections π1 : P ×Q→ P and π2 : P ×Q→ Q are de�ned as
π1 = 〈π′1,

∐
〈i,j,〈ι1,ι2〉〉∈S{ι1}〉, π2 = 〈π′2,

∐
〈i,j,〈ι1,ι2〉〉∈S{ι2}〉.

De�nition 17. The pairing of 〈f,
∐

k∈K{Hf
k}〉 : R → P and 〈g,

∐
k∈K{Hg

k}〉 :
R→ Q is the arrow 〈h,

∐
k∈K{Hh

k}〉, where h(k) = 〈f(k), g(k),mcp(〈Hf
k ,Hg

k〉)〉,
and Hh

k = u〈Hf
k ,Hg

k〉.

Theorem 5. The product, projections and pairing given above identify up to
isomorphism the binary product in Fam(Cop).

In the above de�nition, mcp(〈Hf
k ,Hg

k〉) and u〈Hf
k ,Hg

k〉 come from Def. 14. We
keep on with the intuition that the index category C in SetC should be perceived
as a set of possible types, or interfaces of elements of the presheaf. In this light,
the de�nition of the product above gives a notion of locality of interfaces in
families, as opposed to a notion of global interfaces in presheaf categories.

In SetC the product is de�ned pointwise, and two elements may be related by
just pairing them if they are in an appropriate (common) context. That is, any
two interfaces have a natural choice of an embedding into a common, greater
interface, thus their relative meaning is established once and for all. In the case
of names (that is, where the index category is I), this is the vision adopted by
the π-calculus, where the names of all the non-restricted channels of an agent
have a global, unique meaning across all participating parallel components of a
system, as if there was a naming authority assigning a meaning to any name.

In Fam(Cop), whenever we put two elements in a relation, we have to explicitly
establish a link between their interfaces by exhibiting them as subobjects of a
common object, acting as the interface of the obtained tuple. In the case of
names, this corresponds to having to �pull wires� among all parallel components
of a system to make explicit how they can interact. This may be the most
natural choice whenever one wants to model systems that do not have a naming
authority, such as peer-to-peer systems.

As an example, bisimilarity in Fam(Cop) is made up of triples, because it is a
subobject of the product: in order to compare two systems, we need to establish
a correspondence between their local interfaces.

5 Symmetry reduction by �nal semantics

The presheaf approach to operational semantics consists in de�ning a presheaf
P of terms, that is, the initial algebra of some endofunctor over a presheaf cat-
egory, possibly quotiented with structural axioms, and a coalgebra from P to



TP for some endofunctor T, providing the semantics of the calculus. The unique
morphism into the �nal coalgebra of T then gives the coinductive de�nition of the
abstract semantics. Here we link the symmetry of elements in Fam(Sym(C)op) with
behavioural equivalence, de�ned as the pullback object of a coalgebra morphism.
We note that coalgebraic bisimilarity and behavioural equivalence coincide if
the behavioural functor T preserves weak pullbacks (see [27] or [1] for details).
Given a coalgebra in Fam(Sym(C)op), and an element i, having symmetry Φ with
dom(Φ) = n, we explain how computing the image of i along the unique mor-
phism into the �nal coalgebra corresponds to identify the subobject of n that is
active in the semantics of i, and the greatest possible symmetry over this object
that preserves behavioural equivalence.

The interest of this result is in providing a clean framework (namely, the
equivalence between presheaves and families) for symmetry reduction of the
semantics of programming languages. Symmetry reduction is an actively re-
searched topic in computer science that consists in �nding compressed represen-
tations of systems that have a symmetry (see [12] and subsequent works, or the
more recent [16]). This is typically done exploiting equations on the syntax of
calculi, or by adding symmetry information �by hand� to models. The approach
that we propose is radically di�erent in the fact that it allows one to compute
the behavioural symmetry, that is, the best symmetry up-to bisimulation. This is
certainly wanted in all the cases where bisimulation is the equivalence relation of
choice (e.g. static analysis in service oriented computing and model checking of
Hennessy-Milner-like logics). Model checking can be performed e�ciently in the
presence of symmetry [15]. The material presented here does not depend on the
condition that arrows are mono, hence it is stable under a possible generalisation.

5.1 Symmetry reduction

The following proposition is easy to prove (a proof is available in [41]). We
assume in the following such a pair of equivalent endofunctors T′ and T.

Proposition 5. Each endofunctor T′ over SetC♦ that has a �nal coalgebra has an
equivalent endofunctor over Fam(Sym(C)op) admitting a �nal coalgebra, obtained
(up to isomorphism) as T = SymDec ◦ T′ ◦ Presh.

Remark 3. Even if for the scope of this work it su�ces to de�ne T = SymDec ◦
T′ ◦ Presh, it may be necessary to have a compositional de�nition of T so that
the elements of T(P ) are derived from those of P . In the case of the product,
for example, the de�nition of �4 is isomorphic to the one obtained from Prop. 5,
but not the same. This topic has been studied in detail in [41].

We now observe that each natural transformation in SetC♦ induces a symme-
try on elements of its source, explicitly represented in the corresponding arrow of
Fam(Sym(C)op). Consider a presheaf G =

∐
i∈I FΦi, a natural transformation f :

G→ G′, and the corresponding arrow 〈g,
∐

i∈I{Hg
i }〉 :

∐
i∈I{Φi} →

∐
j∈J{Φ′j}.



De�nition 18. Let Rf
n denote the relation coming from the kernel pair of the

component fn of f at n. Let x ∈ Gn. We call the set Gh
x = {ρ : n→ n | GρxRf

nx}
the symmetry on x induced by f .

Proposition 6. For each i ∈ I, n ∈ |C|, h ◦ Φi ∈ FΦin, and ρ : n→ n, we have
(FΦiρ(h ◦ Φi))Rf

n(h ◦ Φi) if and only if ρ ◦ h ◦ Hg
i = h ◦ Hg

i .

Observe that ρ ◦ h ◦ Hg
i = h ◦ Hg

i implies that, for each h′ in h ◦ Hg
i , there

is an isomorphism ρ′ ∈ Φ′g(i) such that ρ ◦ h′ = h′ ◦ ρ′, that is, the symmetry
induced by f is re�ected in Φ′g(i).

It is now obvious to observe that the symmetry induced by coalgebra mor-
phisms respects bisimulation. When f is the unique morphism into the �nal
coalgebra, the induced symmetry is the greatest possible such subset. We call it
the behavioural symmetry. In this case, the arrows in h◦Hg

i identify a subobject
of n that intuitively is the active �sub-interface� of an element, i.e. operations
that do not touch it may not a�ect the semantics. To make this more precise,
observe that, for each h′ ∈ h ◦ Hg

i , we either have ρ ◦ h′ 6= h′ or ρ ◦ h′ = h′. The
�rst case is the one where the symmetry Φ′g(i) actually plays a role. In the second
case, as all the arrows in h◦Hg

i are obtained by composition of h′ with an arrow
in Φ′g(i), composition with ρ leaves all of them unchanged. Then ρ is acting in
some sense outside of the subobject identi�ed by h ◦Hg

i . For example, when the
index category is I, the image of h is the set of active names of a system, that
is, names that are observable in the �nal semantics.

5.2 Partition re�nement as a generic symmetry reduction algorithm

Here and in the next section we explain how to compute bisimilarity on a subset
of the terms of a calculus, if certain �niteness conditions hold.

Consider a calculus equipped with a semantics in SetC♦, that is a coalgebra
s : P → FP for a suitable endofunctor F and a presheaf P representing the
terms of the calculus, as it is typical in the presheaf approach. As we have seen,
there is a corresponding coalgebra t : P ′ → TP ′ in Fam(Sym(C)op) of a suitable
endofunctor T corresponding to F.

The partition re�nement in Fam(Sym(C)op) can be computed on an object∐
q∈Q{Gq} (intended to be a subobject of P ′ above) as follows. First, we give an

abstract description of the general algorithm, then we explain in detail the single
steps and discuss some �niteness conditions to compute them in Fam(Sym(C)op).

De�nition 19. Coalgebraic partition re�nement is de�ned as follows:

Initialization: Let f = t, let h :
∐

q∈Q{Gq} → 1 be the unique morphism into
the �nal object of Fam(Sym(C)op), and z the unique morphism from T1 to 1.

Coinductive step(f, h, z): If z restricted to Im(Th ◦ f) is an isomorphism in
Fam(Sym(C)op) then return Th◦f . Otherwise let f ′ = Tf ◦f , h′ = Th, z′ = Tz,
and compute Coinductive step(f ′, z′, w′).



Correctness of the algorithm is well known by the theory of coalgebras (see
e.g. [43]). An intuition can be given as follows. At the nth iteration of the algo-
rithm, the kernel of Th◦f :

∐
q∈Q{Gq} → Tn1 is a partition of Q, which quotients

elements that have the same observations in n steps. At each step, this partition
is re�ned, that is, possibly split, according to the observations made in the nth

iteration of the system. When z is an isomorphism, a �xed point is reached, and
it is guaranteed that in all successives steps, the partition will remain unchanged.
Therefore, the elements of Q that are equalised by Th ◦ f are bisimilar. The iso-
morphism z is a subobject of the �nal coalgebra that represents the behaviour
of the elements of Q.

The pairs of bisimilar systems in Q are described by the kernel pair of the
�nal value of the arrow Th ◦ f , and the behavioural symmetry of each element
q ∈ Q is re�ected in the symmetry of its image along the same arrow. When C
is the free category over one object and T = Pfin(L×−), then Fam(Sym(C)op) is
Set, L is a set of labels, and the algorithm is the classical partition re�nement
for labelled transition systems. When C is I, there is a suitable endofunctor such
that the algorithm above is the partition re�nement procedure for the π-calculus
of [34,18] (see [41] for the details).

Computing the semantics

To be able to compute partition re�nement, we �rst need to describe the �nal
object in Fam(Sym(Cop)). In a similar fashion to Thm. 5, the �nal object in Fam(C)
is a family of multi-initial objects, that is, a set MI of C-objects such that for
each object c of C there is a unique element i ∈ MI and a unique arrow u : i→ c.
Similarly to Thm. 4, it is possible to show that if C has pullbacks, then Sym(C)op

has a set of multi-initial objects.

Proposition 7. Given a set MI of multi-initial objects in Sym(C), the object P =∐
Φ∈MI {Φ} is a �nal object in Fam(Sym(C)op). The unique arrow from

∐
j∈J{Φj}

to P is 〈λj.iΦj ,
∐

Φ∈Φj
{uΦj}〉, where iΦj and uΦj denote respectively the unique

element of MI and the unique arrow corresponding to Φj in MI .

It holds that if a category has an initial object i, then the singleton {i} is
a family of multi-initial objects. For example, in Fam(Sym(I)op) the �nal object
is a singleton equipped with the trivial symmetry id∅, and arrows from other
objects map all their elements to the unique one.

Getting back to partition re�nement, to compute h, z and f one needs that
Q is �nite and that from each object of q the corresponding element of the �nal
object is computable. We obviously assume that f is computable in each step
of the algorithm (otherwise the problem would not be solvable). Similarly to
the set-theoretical (classical) case, partition re�nement needs that the family of
reachable elements from Q is �nite. Indeed, this condition is not always satis-
�ed in Turing-equivalent calculi. However, static constraints may be imposed
(e.g. the �nite-control π-calculus agents of [18]). Notice that the elements in the
presheaf representation of Q need not be �nite; �niteness in Fam(Sym(C)op) is



only �niteness of the number of orbits of a presheaf. The most important exam-
ple where the Fam(Sym(C)op) representation is �nite, while the elements of the
presheaf are not, is that of systems allocating new resources in a loop, discarding
old resources so that the number of active resources is bound (see �5.3 and [10]).

One also needs that the image of f is �nite on all the elements of Q, in order
to be able to enumerate the elements on which z has to be an isomorphism. This
requirement is certainly satis�ed if T sends �nite families into �nite families.
This happens in many interesting cases, including polynomial functors, name
allocation, and certain non �nite subfunctors of the power set. Remarkably, in
[41] such a ��nitistic� representation is given for the early semantics of the π-
calculus, which is de�ned as an in�nitary transition system, as input transitions
are quanti�ed over all possible names.

Under the above restrictions, one has to check if z = 〈fz,
∐

i∈Im(Th◦f){Hfz

i }〉
is an isomorphism. The criterion in Fam(Sym(C)op) is that fz is an isomorphism in
Set and eachHfz

i is an isomorphism in Sym(C). To check the latter, it is necessary
to determine the symmetry of elements of Tn1 for each n. Having an e�ective
procedure to compute this symmetry depends on the chosen functor. In [41] it
is shown how to do this for polynomials, name abstraction and subfunctors of
the power set. We conjecture that these results generalise to other categories of
�nite structures, such as �nite graphs.

5.3 Garbage collection
We consider the representation using families appealing because it may allow one
to implement iteration along the terminal sequence on the operational semantics,
in the presence of fresh resouce allocation. We emphasize that fresh resources
are perhaps the most important reason to employ presheaves for the semantics
of programming languages.

In presheaf models, whenever behavioural functors that may allocate new
resources, such as the functor δ for name abstraction of [21], are used to build
coalgebras, the operational semantics obtained by rules typically becomes in�nite
even in very simple cases. Again, this comes from the fact that interfaces have a
global meaning in presheaves, whereas in the family representation the symmetry
of each element is local. This is re�ected in the de�nition of arrows: in presheaves,
one does not need to provide information on how the interface of the destination
is mapped in the interface of the source, while this is exactly the role of the
family of arrows in Sym(C) (one for each element) that are the second component
of an arrow of Fam(Sym(C)op). Thus, elements that have the same behaviour
up-to an operation on their interface are not identi�ed using presheaves. This
is particularly problematic for recursive processes that allocate some resources
while discarding older ones, keeping a �nite quantity of resources allocated in
each state (as explained in [10]). Using families, on the other hand, by virtue
of the universal quanti�cation over all arrows of Def. 11, all these equivalent
elements are identi�ed. It is the purpose of the family of maps associated to each
arrow of the category to identify a subobject of the interface of each source state,
which is preserved in the destination state, thus discarding unused resources.



The functor SymDec maps an operational semantics de�ned on presheaves to
a canonical representation featuring a form of �garbage collection� along mor-
phisms, allowing iteration along the terminal sequence to converge in these cases.

6 Named Sets and the Schanuel Topos

Here we show how theorem 2 generalises the equivalence between two models
of name passing: named sets and the Schanuel Topos [24,19,38], that is, the
pullback-preserving full subcategory of SetI. For this, we adopt the �structured�
and simpli�ed notation of named sets developed in [41], that we recast in our
framework. There, a category of permutation groups and injective relabellings
quotiented by these groups, called Symset, is used.

De�nition 20. The category Symset is the category Sym(I)op, where I is the
category of �nite subsets of the set of natural numbers ω, whose morphisms are
total injective functions.

Named sets are then de�ned as pairs 〈Q,S〉 where Q is a set of elements and S
is a function from Q to |Symset|. Named functions are pairs 〈h,Σ〉 : 〈Q1, S1〉 →
〈Q2, S2〉 where h : Q1 → Q2 and for each q ∈ Q1, S2(q) ∈ Symset(h(q), q).
Indeed the de�nition can be paraphrased as follows.

De�nition 21. The category NSet is the category Fam(Sym(I)op).

Hence, the equivalence result of [24,19] is recovered as an instance of Thm.
3: NSet is equivalent to the Schanuel topos. In this light, we expect that the
algorithmic bene�ts of named sets, explained in detail in [10], will extend to
other cases, e.g. calculi indexed by graphs.

7 Concluding remarks

We have presented a framework to represent the semantics of programming lan-
guages that deal with resources or interfaces attached to system states: coalge-
bras over presheaf categories obeying to certain constraints, that give rise to a
��nitistic� representation. This representation removes the redundant informa-
tion coming from the notion of interfaces being global rather than local.

We can sketch some open questions. Removing the third condition should
result in families of monoids instead of groups; understanding whether there are
computational implications similar to symmetry reduction in the case of monoids
is of interest. Resource allocation is an hot topic in the semantics of program-
ming languages. Applications are of great interest in the area of service-oriented
computing, where resource allocation in the presence of network topologies [9],
or constraints [5] is an active �eld of research, and �nite representations are
of vital importance for the implementation of analysis algorithms. An e�cient
implementation of the generic symmetry reduction algorithm that we have pre-
sented should be studied. For that, one may take advantage of algorithms on



permutation groups exploiting the generators [28]. Finally, similar consideration
apply to model checking. The study of a Stone-type duality for coalgebras over
families in a similar fashion to [4], and a corresponding model checking algo-
rithm exploiting the cases where the representation is �nite, are one of our most
important long-term goals.

It is expected that the categorical equivalence that we presented, combining
the ease of specifying the semantics using presheaves with the implementative
advantages of named sets, will enable the development of a general framework to
specify (using presheaves) and analyse (using families) the semantics of calculi
that have richer interfaces than pure names, thus advancing the research line of
named sets and history dependent automata.
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A Appendix: Proofs

Proof (Lemma 1). First observe that Φ2◦h ⊆ h◦Φ1 implies, as Φ1 is a group, that
Φ2◦h◦Φ1 ⊆ h◦Φ1◦Φ1 = h◦Φ1. On the other hand, we have h◦Φ1 = id◦h◦Φ1 ⊆
Φ2 ◦ h ◦ Φ1 (because Φ2 contains the identity). Hence Φ2 ◦ h ◦ Φ1 = h ◦ Φ1, from
which (h2 ◦ Φ2) ◦ (h1 ◦ Φ1) = h2 ◦ (Φ2 ◦ h1 ◦ Φ1) = (h2 ◦ h1) ◦ Φ1.

Proof (Thm. 1). It is obvious that F preserves the identities. For composition,
let f1 = h1 ◦ Φ1 : Φ2 → Φ1 and f2 = h2 ◦ Φ2 : Φ3 → Φ2 in Sym(C)op . We have
F(f1 ◦f2)n(h′ ◦Φ3) = F((h2 ◦Φ2)◦(h1 ◦Φ1))n(h′ ◦Φ3) = F(h2 ◦h1 ◦Φ1)n(h′ ◦Φ3) =
h′ ◦ h2 ◦ h1 ◦ Φ1 = F(h1 ◦ Φ1)(h′ ◦ h2 ◦ Φ2) = F(h1 ◦ Φ1)n(F(h2 ◦ Φ2)n(h′ ◦ Φ3)).
It remains to show that FΦ is pullback-preserving. For i ranging over a set I,
consider a tuple of arrows fi : ni → m and the corresponding arrows gi : n→ ni,
forming a pullback diagram D in C. We prove that FΦD is a pullback diagram.

Let ki : s→ FΦni be a tuple of functions commuting with the FΦfi. We have
to �nd a unique u : s→ FΦn making the diagram commute. For each x ∈ s, and
each index i, let ki(x) = hi ◦ Φ.

Commutativity of the ki with the FΦfi implies that for each i and j, fi ◦hi ◦
Φ = fj ◦hj ◦Φ. Let ī ∈ I a choice of an index, ρī ∈ Φ a choice of an isomorphism
in Φ, and ρi, for i ∈ I \ {̄i}, such that fī ◦ hī ◦ ρī = fi ◦ hi ◦ ρi. Observe that the
tuple hi ◦ ρi, for i ∈ I, forms a commuting cone of the diagram fi in C. Hence
there exists a unique arrow v : domΦ→ n making the diagram commute.

We de�ne u(x) = v ◦ Φ. Commutativity is obtained because gi ◦ v ◦ Φ =
hi ◦ρi ◦Φ = hi ◦Φ = ki(x). For uniqueness, let u′ : s→ FΦn making the diagram
commute. By preservation of monos, for all i, FΦgi is mono, and FΦgi ◦ u =
FΦgi ◦ u′ = ki, hence u = u′.

The diagrams below depict the case of two arrows.
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Proof (Prop. 2). Injectivity on objects is trivial. Let f ◦ Φ′ 6= g ◦ Φ′ two arrows
in Sym(C)op from Φ to Φ′. Then the corresponding natural transformations di�er
at stage dom(Φ) on the element iddom(Φ) ◦ Φ because their respective action is
f ◦ Φ′ 6= g ◦ Φ′.

Proof (Prop. 3). We have

f ∈ SetC♦(FΦ, G1 + G2)
⇐⇒ fn : FΦn→ G1n + G2n
⇐⇒ fn : {h ◦ Φ | h ∈ C(dom(Φ), n)} → {〈1, x〉 | x ∈ G1n} ∪ {〈2, x〉 | x ∈ G2n}

Let fdom(Φ)(id ◦ Φ) = 〈i, y〉, for i ∈ {1, 2} (the index of the coproduct). Then
by naturality, for all n, we have fn(h ◦ Φ) = (G1h + G2h)(fdom(Φ)(id ◦ Φ)) =
〈i, Gi(y)〉, that is, all the images of the component functions fn are a subset of
the same index of the coproduct at stage n. Hence, we have SetC♦(FΦ, G1 +G2) =
SetC♦(FΦ, G1) + SetC♦(FΦ, G2).

Proof (Lemma 2). Let st(x )
fx← s

fy→ st(y) be a canonical choice of a span between
the two stages of x and y under the hypothesis of Def. 9. We have fx ∈ Dx and
fy ∈ Dy, hence we have two arrows f ′x : n → s and f ′y : m → s coming
from the pullbacks. Moreover, fy ◦ f ′x is in Dy, and fx ◦ f ′y is in Dx (because
G preserves pullbacks, which are then computed in Set). Hence, there are two
arrows ιx→y : n→ m and ιy→x : m→ n, again coming from the pullbacks, both
making a commuting triangle with f ′x and f ′y. They are easily seen to be a pair
of inverses, as all the arrows in C are monos.

Proof (Lemma 3). Preservation of pullbacks implies that GSx is a pullback object
of G(Dx) in Set, from which existence. For uniqueness, observe that preservation
of pullbacks implies preservation of monos, which are injective functions in Set.

Proof (Lemma 4). The �rst part of the lemma comes from Ghx̂ ∈ Ox, because
of the span st(x ) Nx← st(x̂ ) h→ st(Ghx̂ ). Notice that h ∈ DGhbx, and st(x̂ ) is the
pullback object of the diagram, hence there is an arrow ρ : st(x ) → st(x ) such
that NGhbx = h ◦ ρ, and we have Gρx̂ = x̂. By hypothesis, ρ is an isomorphism,
hence it is in Gbx.
Proof (Thm. 2). The natural isomorphism k : G→ Presh(SymDec(G)) is de�ned
as

kn(x) = 〈x̂,Nx ◦ Gbx〉



To see that it is injective, consider kn(x) = 〈x̂,Nx◦Gbx〉 = 〈ŷ,Ny◦Gby〉 = kn(y).
We have x̂ = ŷ and consequently Nx◦Gbx = Ny◦Gbx, thus there is ρ ∈ Gbx such that
Nx = Ny ◦ ρ. Then GNxx̂ = G(Ny ◦ ρ)x̂, and Gρx̂ = x̂⇒ GNxx = GNyy ⇒ x = y.

Next we prove that kn is surjective. Consider an element 〈x̂, h ◦ Gbx〉 of
Presh(SymDec(G)). As Ghx ∈ Ox by the span st(x ) Nx← st(x̂ ) h→ st(Ghx̂ ), we
have x̂ = Ĝhx̂⇒ kn(Ghx̂) = 〈Ĝhx̂,NGhbx ◦ GdGhbx〉 = 〈x̂,NGhbx ◦ Gbx〉. From Lemma 4
we also have NGhbx ∈ h ◦ Gbx, from which the thesis.

Finally, we show that k is natural. Let f ∈ C(n,m), and x ∈ Gn. We have
km(Gfx) = km(G(f ◦ Nx)x̂) = 〈x̂, f ◦ Nx ◦ Gbx〉 = Presh(SymDec(G))(f)(〈x̂,Nx ◦
Gbx〉) = Presh(SymDec(G))(f)(kn(x)).

Proof (Thm. 4). Consider a tuple of objects ni∈I in C for I a set. For each
cospan fi : ni → c between them, we attempt to construct its unique canonical
representative, that is, another cospan f ′i : ni → c′ having a unique arrow
u : c′ → c making the obtained diagram commute. The set of all the canonical
representatives then forms the multi-coproduct. Consider all cospans gi∈I,j∈J :
ni → cj , for J a set, such that there exist at least one v : cj → c commuting with
the fi. Intuitively, these cospans are all equivalent because they can be reached
by the arrow v in their category of cospans. All the v form a tuple of arrows D
having c as a common target. Let m denote the pullback of D. For each i ∈ I,
we have a cone gi,j∈J : ni → cj commuting with D, hence we have a unique
arrow ιi : ni → m. The cospan ιi∈I is �almost� the canonical representative of
fi: let d denote the diagonal of the pullback; observe that it is a good candidate
as the unique mediating arrow of the multi-coproduct in C, but it does not need
to be unique. Any other commuting arrow d′ is an arrow in D, hence there is
an isomorphism ρ : m→ m such that d′ ◦ ρ = d. Let Φ denote the set of all the
isomorphisms ρ obtained in this way; this de�nes a multi-coproduct in Sym(C),
by giving the canonical representative of the cospan fi ◦ Φi in Sym(C), where Φi

is an object of Sym(C) such that dom(Φi) = ni. The canonical representative is
the cospan ιi ◦Φi : Φi → Φ, and the unique mediating arrow is d ◦Φ, that is, the
set of all the arrows d′ mentioned above.

Proof (Thm. 5). We have to show that the pairing commutes with the pro-
jections and is unique. Commutativity is a simple calculation. For uniqueness,
observe that the �rst two components of h(k) are determined by the copairing
in Set of f and g, while the unique choice of the third component comes from
uniqueness of the multi-coproduct.

Proof (Prop. 6). For the �only if� direction, let y = fn(h ◦ Φi) = fn(ρ ◦ h ◦ Φi)
the image of both the elements in the �nal coalgebra at stage n. Then h ◦ Hf

i

contains the normalising arrow of y. By naturality, ρ acts as the identity on y,
thus any arrow ρ◦h′ ∈ ρ◦h◦Hg

i is in Dy. Let h′′ ∈ h◦Hg
i be the diagonal of the

pullback of Dy. In the pullback diagram of Dy, there is a morphisms (necessarily
an isomorphism) ρ′ such that ρ ◦ h′ ◦ ρ′ = h′′. Observe that ρ′ ∈ Gby. We have
h ◦ Hg

i = h′′ ◦ Gby = ρ ◦ h′ ◦ ρ′ ◦ Gby = ρ ◦ h′ ◦ Gby = ρ ◦ h ◦ Hg
i , and by uniqueness

of F , we also have ŷ = g(i) from which the thesis.



For the �if� direction, assume that we have an operation ρ such that ρ ◦ h ◦
Hg

i = h ◦ Hg
i . Then for each h′ ∈ Hg

i we have an operation ρ′ ∈ Φ′g(i) (possibly
the identity) such that ρ ◦ h ◦ h′ ◦ ρ′ = h ◦ h′. This implies that ρ acts as the
identity on fn(h ◦ Φi). The thesis then follows by naturality of f .


