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Abstract. Hidden Tree Markov Models describe probability distributions over tree-structured data by defining
a top-down generative process from the root to the leaves of the tree. We provide a novel compositional hidden
tree Markov model that inverts the generative process, allowing hidden states to better correlate and model
the co-occurrence of substructures among the child subtrees of internal nodes. To this end, we introduce a
mixed memory approximation that factorizes the joint children-to-parent state transition matrix as a mixture
of pairwise transitions. This Technical Report provides and in-depth introduction to the Bottom-Up Hidden
Tree Markov Model, including the details of the learning and inference procedures.

1 Introduction

The Hidden Tree Markov Model (HTMM) has been introduced as a general tool for modeling probability distri-
butions over spaces of trees [1, 2]. Similarly to how an Hidden Markov Model (HMM) processes sequential data,
HTMM defines a generative process for labeled trees that starts at the root node and ends with the leaves emission.
Given the direction of the generative process, we refer to these models as top-down HTMMs.

Taken as a Bayesian network, a top-down tree generative process builds on a strong assumption, i.e. that
child subtrees are independent provided that the parent state is observed. This entails that no hidden state of
the Markovian model can capture information concerning the co-occurrence of particular substructures in its child
subtrees. As for the root node, the top-down generative process results in its hidden state assignment depending
solely on the prior distribution, likewise to the initial state of an HMM. Although this appears as a perfectly
sensible choice when dealing with sequential data, its application to hierarchically structured information is quite
counterintuitive, as commonsense suggests that the root is the best node where to convey information concerning
the whole tree structure.

A natural way to consider the dependency between sibling subtrees while routing sufficient structural information
to the root node is to take a bottom-up approach to tree generation, which entails inverting the parent-child
causal dependencies in the HTMM model. The Hidden Recursive Model (HRM) [3] has long since postulated the
opportunity of a bottom-up, or recursive, probabilistic approach, but this has been described only within the scope
of a theoretical framework whose realization seemed to be limited to small trees with binary out-degree, due to the
computational problem introduced by the inversion of the parent-children causal relationship. Since each node in a
tree has at most one parent but a possibly large number of children, the introduction of a bottom-up state transition
brings in an explosion of the parameters space whose size grows exponentially with the nodes’ outdegree. This has,
so far, prevented the development of practical bottom-up probabilistic models for trees, whereas in other areas of
the machine learning community, such as neural networks [3, 4], the bottom-up approach is the prominent model
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for non-flat data. This is motivated by the inherently recursive nature of hierarchical information, which can be
effectively captured only by taking a compositional approach that first discovers the less articulated substructures
at the bottom of the tree, before tackling with the complexity of deep subtrees.

We introduce a novel Bottom-Up Hidden Tree Markov Model (BHTMM, in short) that defines a generative
process propagating from the leaves to the root of the tree, where the joint state transition problem is efficiently
tackled by resorting to an approach known as mixed memory approximation in coupled HMMs [5] or as switching
parent model in dynamic Bayesian networks [6]. This approximation allows factorizing complex state spaces into a
mixture of simpler distributions and, as such, can be used to break the joint children-to-parent transition matrix into
a mixture of pairwise child-to-parent state transition probabilities. Here, we show novel and efficient procedures for
parameter learning and inference that incorporate the mixed memory approximation and account for the inversion
of the conditional independence relationships of the bottom-up model.

2 The Bottom-Up Hidden Tree Markov Model (BHTMM)

A rooted tree yn is an acyclic directed graph consisting of a set of nodes Uyn , each characterized by an observed
label yu, that are connected with each other through a set of directed edges defining a parent to child relationship.
By definition, each node u has at maximum one parent, denoted as pa(u). We also assume a finite maximum
outdegree L, i.e. the number of children of a node. Likewise sequential data, an observed tree is modeled by a
generative process defined by a set of hidden states variables Qu ∈ [1, . . . , C] following the same indexing as the
observed node u.

The Markovian assumption for a top-down HTMM dictates that the current state of a node u depends solely
on that of its parent pa(u) (see the corresponding Bayesian Network in Fig. 1). Given an observed tree yn and the
hidden states assignment Q1 = xi1 , . . . , QUyn = xiUyn

, their joint distribution can be factorized by exploiting such
conditional independence relations, obtaining

P (yn, Q1, . . . , QUyn
) = P (Q1)p(y1|Q1)

Uyn∏
u=2

P (yu|Qu)P (Qu|Qpa(u)). (1)

A Bottom-up Hidden Tree Markov Model (BHTMM) reverses the parent-to-children dependency described by
(1), hence assuming that state transitions are dependent on the hidden state of the children (confront the top-
down model in Fig. 1 with the bottom-up in Fig. 2). Again, assume a known hidden states assignment Q1 =
xi1 , . . . , QUyn = xiUyn

; the bottom-up generative process for tree yn factorizes as

P (yn,Q1 = xi1 , . . . , QUyn
= xiUyn

) =
∏

u′∈leaf(yn)

prior︷ ︸︸ ︷
P (Qu′ = xiu′ )×

leaves emission︷ ︸︸ ︷
P (yu′ |Qu′ = xiu′ )

×
∏

u∈Uyn\leaf(yn)

P (yu|Qu = xiu)︸ ︷︷ ︸
emission

×P (Qu = xiu |Qch1(u) = xich1(u) , . . . , QchL(u) = xichL(u))︸ ︷︷ ︸
transition

(2)

where leaf(yn) denotes the set of leaves in tree yn and chl(u) identifies the l-th child of node u. The transition
probability in (2) states that the hidden state of an internal node is conditional on all its children state. The
likelihood of the BHTMM model is obtained by marginalizing the unknown hidden state associations in (2)

L =
N∏
n=1

∑
xi1 ,...,xiiUyn

P (yn, Q1 = xi1 , . . . , QUyn
= xiUyn

) (3)

where N is the number of trees in the data set. In practice, the sum-marginalization in (3) is rewritten as a
(more tractable) product over state assignments, when maximizing the log-likelihood completed by hidden indicator
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Fig. 1. Bayesian network for the top-down Hidden Tree Markov Model: shaded nodes denote observed labels while hidden
state variables are depicted as empty nodes.

variables znui that denote which state xi is responsible for the generation of node u (see [7] for details). The resulting
complete log-likelihood is

logLc = log
N∏
n=1

∏
u′∈leaf(yn)

C∏
i=1

{P (Qu′ = xi)× P (yu′ |Qu′ = xi)}z
n
u′i

×
∏

u∈Uyn\leaf(yn)

C∏
i=1

C∏
j1,...,jLu=1

{P (yu|Qu = xi)}z
n
ui ×

{
P (Qu = xi|

L⋂
l=1

Qchl(u) = xjl)

}znui∏L
l=1 z

n
chl(u)jl

.

(4)

where the Markovian assumption on the label emission has been used to take P (yu|Qu = xi) out of the znui
∏L
l=1 z

n
chl(u)jl

exponentiation (i.e. emission yu is conditionally independent from the rest of the variables given Qu).
The term P (Qu = xi|

⋂L
l=1Qchl(u) = xjl) is a short form for the children-dependent state transition probability

in (2), while the innermost product in the second line of (4) marginalizes the hidden state assignment for the
children nodes. Notice that L represents the maximum number of distinct children in the trees: for the purpose
of this paper, we assume strict positional stationarity, hence we define a null state x∅ that is used to model the
absence of a the l-th child, i.e. Qchl(u) = x∅.

The problem with the formulation in (4) is that it becomes computationally impractical for trees other than
binary due to the explosive size of the joint conditional transition distribution, that is order of CL+1. From an
alternative perspective, the model described in (4) can be interpreted as an higher order Hidden Markov model
(HO-HMM), i.e. with a memory of length L > 1. Within this context, it has been proposed an approximation of the
transition distribution as a mixture of simpler distributions. In practice, such re-parametrization, known as Mixed
Memory Markov Model [5] or Mixture Transition Distribution [8], represents the joint transition matrix as a convex
combination of L elementary transition matrices. In our scenario, we seek an approximation to the joint transition

P (Qu = xi|
L⋂
l=1

Qchl(u) = xjl) = P (Qu = xi|Qch1(u) = xj1 , Qch2(u) = xj2 , . . . , QchL(u) = xjL). (5)



4 Davide Bacciu, Alessio Micheli, and Alessandro Sperduti

This corresponds to a graphical model with L children nodes Qch1(u), . . . , QchL(u) with directed arrows entering Qu.
Suppose that we introduce a fictitious node (with an arrow entering Qu, see Fig. 2) that defines a switching latent
variable Su ∈ {1, . . . , L} such that

P (Qu = xi|Su = l, Qch1(u) = xj1 , . . . , Qchl(u) = xjl , . . . , QchL(u) = xjL) = P (Qu = xi|Qchl(u) = xjl). (6)

Given that we interpret Su as a latent variable, we can marginalize it out to recover the original expression in (5),
that is

P (Qu = xi|Qch1(u) = xj1 , . . . , Qchl(u) = xjl , . . . , QchL(u) = xjL)

=
L∑
l=1

P (Qu = xi, Su = l|Qch1(u) = xj1 , Qch2(u) = xj2 , . . . , QchL(u) = xjL)

=
L∑
l=1

P (Su = l)P (Qu = xi|Qchl(u) = xjl)

(7)

where we’ve used the assumption that Su is independent of Qch1(u), . . . , QchL(u). This equation states that the joint
transition distribution can be approximated as a mixture of L elementary distributions P (Qu = xi|Qchl(u) = xjl)
where the influence of the l-th children on state transition of node u is determined by the weight P (Su = l). Given
that the switching variable is latent, we can learn its prior distribution P (Su = l) as part of the EM process.

The actual size of the mixture transition approximation depends on the stationarity assumptions that are taken.
For instance, the original Mixed Memory model in [5] assumes full stationarity, given that the mixing weights (i.e.
the prior distribution of the switching parent) is independent w.r.t. the node u, i.e. ϕl ≈

∑
u P (Su = l): this choice

has a straightforward interpretation in terms of time series, since ϕl collects statistics on the influence of events that
appeared l time steps before the current event. Hence, parameter ϕl determines the generic memory of the system
and has a size equal to L, i.e. the maximum allowed memory in the model, resulting in an approximation requiring
only O(C2 + Lmax) parameters (where Lmax is the maximum out degree among the trees). On the other hand, we
might be interested in learning the correlation between a node and its child chains l, hence retaining some form
of positional stationarity which can be implemented, for instance, by modeling the following mixture transition
approximation

P (Qu = xi|Qch1(u) = xj1 , . . . , Qchl(u) = xjl , . . . , QchL(u) = xjL)

=
L∑
l=1

P (Su = l)pl(Qu = xi|Qchl(u) = xjl)
(8)

where the transition probability pl(Qu = xi|Qchl(u) = xjl) now explicitly depends on the position l of the child
node, that is to say that there are Lmax transition distributions for each couple of parent-child states, resulting in
an approximation that requires O(LmaxC2 + Lmax) independent parameters, which is still feasible if compared to
the original O(CLmax+1).

By substituting the results of (7) into the complete likelihood in (4), we obtain the following approximation

logLc = log
N∏
n=1

∏
u′∈leaf(yn)

C∏
i=1

{P (Qu′ = xi)× P (yu′ |Qu′ = xi)}z
n
u′i

×
∏

u∈Uyn\leaf(yn)

C∏
i=1

C∏
j1,...,jLu=1

{P (yu|Qu = xi)}z
n
ui ×

{
L∑
l=1

P (Su = l)P (Qu = xi|Qchl(u) = xjl)

}znui∏L
l=1 z

n
chl(u)jl

,

(9)
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Fig. 2. Bayesian network for the Bottom-up Hidden Tree Markov Model with a shared (i.e. stationary) Switching Parent.

that, by introducing indicator variables tnul for the switching parent, can be reformulated as follows

logLc = log
N∏
n=1

∏
u′∈leaf(yn)

C∏
i=1

{P (Qu′ = xi)× P (yu′ |Qu′ = xi)}z
n
u′i

×
∏

u∈Uyn\leaf(yn)

C∏
i=1

C∏
j1,...,jLu=1

{P (yu|Qu = xi)}z
n
ui

{
L∏
l=1

{P (Su = l)P (Qu = xi|Qchl(u) = xjl)}t
n
ul

}znui∏L
l=1 z

n
chl(u)jl

.

(10)

Finally, this rewrites as

logLc = log
N∏
n=1

∏
u′∈leaf(yn)

C∏
i=1

{P (Qu′ = xi)× P (yu′ |Qu′ = xi)}z
n
u′i

×
∏

u∈Uyn\leaf(yn)

C∏
i=1

C∏
j=1

L∏
l=1

{P (yu|Qu = xi)}z
n
ui × {P (Su = l)P (Qu = xi|Qchl(u) = xj)}z

n
uit

n
ulz

n
chl(u)j

(11)

whose graphical interpretation is given in Fig. 2. Likewise in the top-down HTMM, we can use EM to update the
prior, emission and transition distributions as part of the M-Step; in addition, we will need to estimate the mixed
memory distribution P (Su = l) and the related posterior (in the E-Step).

3 Parameter Fitting in the Bottom-Up Model

As discussed previously, the actual form of the model parameters depends on the stationarity assumptions: in the
following we assume a mixed memory model with child-specific (i.e. positional) transition matrices. The complete
log-likelihood of the model in (11) is rewritten to explicitly include the positional dependency on the child node l
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as follows

logLc =
N∑
n=1

∑
u′∈leaf(yn)

C∑
i=1

znu′i logP pos(u
′)(Qu′ = xi)

+
N∑
n=1

∑
u∈Uyn

C∑
i=1

znui logP (yu|Qu = xi)

+
N∑
n=1

∑
u∈Uyn\leaf(yn)

L∑
l=1

tnul logP (Su = l)

+
N∑
n=1

∑
u∈Uyn\leaf(yn)

C∑
i,j=1

L∑
l=1

znuijl logP l(Qu = xi|Qchl(u) = xj),

(12)

where pos(u) returns the position of node u in the subtree of pa(u). The new indicator zuijl = znuit
n
ulz

n
chl(u)j is a

reformulation of the previous hidden variables stating that node u is in state xi while its l-th child is in state xj .

3.1 E-Step

Following the EM algorithm, we need to maximize the expectation of the complete log-likelihood in (12). In the
E-Step, the expected value of the log likelihood function is computed with respect to the distribution the hidden
variables Z, conditional on the observed data Y and the current estimate of the parameters θ(k), that is

E[logLc(θ; Y, Z)|Y, θ(k)]

As discussed previously, the model parameters θ are the positional initial state probability P pos(u
′)(Qu′ = xi),

the positional stationary state transition probability P l(Qu = xi|Qchl(u) = xj), the mixed memory distribution
P (Su = l) as well as the parameters of the emission distribution P (yu|Qu = xi). The hidden variables Z comprise
both the hidden state variables znui, the switching parents variables tnul, as well as the position-dependent indicators
zuijl for the mixed memory model. Given the complete log-likelihood in (12), their conditional expected values
correspond to the following posterior probabilities

E[znui|yn, θ(k)] = P (Qu = xi|yn), (13)

E[zuijl|yn, θ(k)] = P (Qu = xi, Qchl(u) = xj , Su = l|yn) (14)

E[tul|yn, θ(k)] = P (Su = l|yn) (15)

where E[zuijl|yn, θ(k)] is the joint posterior probability of node u being in state xi while its l-th child is in state xj .
These posteriors can be estimated by message passing on the structure on the nodes dependency graph by applying
the principles of the upward-downward algorithm. The BHTMM model reverses the conditional dependencies with
respect to the standard HTMM model thus preventing the use of standard upward-downward rules. In the following,
we present a procedure tailored to the bottom-up mixed memory HTMM model, i.e. inverted upward-downward
algorithm, based on the smoothed probabilities model in [9] and that incorporates the estimation of the switching
parents posterior distribution.

In the following, we will show the details of the inverted upward/downward passes; throughout the derivation
of the E-step rules we use the following additional notation:

– Yu = yu denotes the observed subtree rooted at node u (i.e. y1 is the whole tree);
– Ychl(u) = ychl(u) denotes the l-th child subtree of node u;
– Y1\u = y1\u is the observed tree (i.e. rooted at 1) without the yu subtree.
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The upward-downward algorithm allows computing the posteriors P (Qu = xi|y) and P (Qu = xi, Qchl(u) = xj , Su =
l|y) by exploiting a factorization into terms computed by a downward pass, i.e. from the root to the leaves of the
tree, and by an upward pass, i.e. from the leaves to the root of the tree. The smoothed algorithm in [9] exploits the
following decomposition

εu(i) = P (Qu = xi|Y1 = y1) = P (Qu = xi|Y1\u = y1\u,Yu = yu)
bayes

=

=
P (Y1\u = y1\u|Qu = xi)

P (Y1\u = y1\u|Yu = yu)
P (Qu = xi|Yu = yu)

(16)

such that the factorization εu(i) = αu(i)βu(i) can be computed using the upward parameters

βu(i) = P (Qu = xi|Yu = yu) (17)

as well as the downward parameters

αu(i) =
P (Y1\u = y1\u|Qu = xi)

P (Y1\u = y1\u|Yu = yu)
. (18)

In order to compute the βu(i) parameters in the bottom-up pass, it is also needed to compute and propagate the
auxiliary upward parameters

βu,chl(u)(i) =
P (Ychl(u) = ychl(u)|Qu = xi)

P (Ychl(u) = ychl(u))
. (19)

Upward Recursion. The upward recursion can be straightforwardly computed for the leaf nodes yu as

βu(i) = P (Qu = xi|Yu = yu)
bayes

=
P (Yu = yu|Qu = xi)P pos(u)(Qu = xi)

P (Yu = yu)

=
P (Yu = yu|Qu = xi)P pos(u)(Qu = xi)

Nu

(20)

where P pos(u)(Qu = xi) is the current estimate of the prior distribution on the leaves, while Nu is chosen to ensure∑
j βu(i) = 1, yielding

βu(i) =
P (Yu = yu|Qu = xi)P pos(u)(Qu = xi)∑C
j=1 P (Yu = yu|Qu = xj)P pos(u)(Qu = xj)

, ∀u ∈ leaf(y). (21)

The βu(j) values on the internal and root nodes u is computed by the following recursion

βu(i) = P (Qu = xi|Yu = yu)
cond. prob.

=
P (Qu = xi,Yu = yu)

P (Yu = yu)
subtree decomp.

=

=
P (Qu = xi, Yu = yu,Ych1(u) = ych1(u), . . . ,YchL(u) = ychL(u))

P (Yu = yu)
cond. prob.

=

=
P (Yu = yu|Qu = xi,ych1(u), . . . ,ychL(u))P (Qu = xi,ych1(u), . . . ,ychL(u))

P (yu)

=
P (Yu = yu|Qu = xi)P (Qu = xi,ych1(u), . . . ,ychL(u))

P (yu)

(22)
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... ...

Y chL(u)Y chl(u)

Qu

Y ch1(u)

Fig. 3. Child subtrees meet head to head at Qu: hence they are independent given that Qu (nor its descendants) are not
observed.

where notation has been contracted for the sake of conciseness. The last equality in (22) holds given the Hidden
Markov model assumption where node emission is conditionally independent from other variables given the re-
alization of node hidden state. The second term in the numerator needs to be further decomposed following the
dependencies in the Bayesian network, that is

P (Qu = xi,ych1(u), . . . ,ychL(u)) = P (Qu = xi|ych1(u), . . . ,ychL(u))P (ych1(u), . . . ,ychL(u))
child indep.

=

= P (Qu = xi|ych1(u), . . . ,ychL(u))
L∏
l=1

P (ychl(u))
(23)

where the last equality holds given the independency of child subtrees ychl(u) when the parent hidden node Qu is
not observed (see Fig. 3).

To factorize the distribution P (Qu = xi|ych1(u), . . . ,ychL(u)) we need to look further into the structure of the
BHTMM dependency graph. In the standard upward-downward algorithm, this distribution can be factorized in
terms of the product of the children distributions P (ychl(u)|Qu = xi). Such an equality holds for a top-down HTMM
model (i.e. with dependencies oriented from the root to the leaves) since children subtrees are d-separated by the
parent hidden state variable Qu (see Fig. 4.a). In the bottom-up HTMM model, on the other hand, the dependency
relations are inverted and the children subtrees u, i.e. ych1(u), . . . ,ychL(u), share a common descendant in Bayesian
terms, that is the hidden variable Qu (see Fig. 4.b). Hence, the realization of the hidden variable Qu introduces a
pairwise dependency between all the children subtrees in the corresponding moral graph [10]. Therefore, the joint
distribution P (Qu = xi|ych1(u), . . . ,ychL(u)) cannot be straightforwardly factorized. However, if we introduce again
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the switching parents approximation, we can rewrite it as follows

P (Qu = xi|ych1(u), . . . ,ychL(u))
marginalize

=
L∑
l=1

P (Qu = xi, Su = l|ych1(u), . . . ,ychL(u))
cond. prob.

=

=
L∑
l=1

P (Su = l|ych1(u), . . . ,ychL(u))P (Qu = xi|Su = l,ych1(u), . . . ,ychL(u))
switch par.

=

=
L∑
l=1

P (Su = l)P (Qu = xi|ychl(u))
bayes

=

=
L∑
l=1

P (Su = l)
P (ychl(u)|Qu = xi)P (Qu = xi)

P (ychl(u))
.

(24)

Inserting the results of (23) and (24) back into (22) yields

βu(i) =

(
L∑
l=1

P (Su = l)
P (ychl(u)|Qu = xi)

P (ychl(u))
P (Qu = xi)

) ∏L
l′=1 P (ychl′ (u))

P (yu)
P (Yu = yu|Qu = xi)

βu,chl(u) def.
=

=

(
L∑
l=1

P (Su = l)βu,chl(u)(i)P (Qu = xi)

) ∏L
l′=1 P (ychl′ (u))

P (yu)
P (Yu = yu|Qu = xi)

Nu def.=

=
P (Yu = yu|Qu = xi)

∑L
l=1 P (Su = l)βu,chl(u)(i)P (Qu = xi)

Nu
,

(25)

where Nu is, again, a normalization factor ensuring
∑
j βu(i) = 1, yielding

βu(i) =
P (Yu = yu|Qu = xi)

∑L
l=1 P (Su = l)βu,chl(u)(i)P (Qu = xi)∑C

j=1

∑L
l′=1 P (Yu = yu|Qu = xj)P (Su = l′)βu,chl′ (u)(j)P (Qu = xj)

. (26)

In order to compute the expression in (26), we need to propagate the values for computing the internal node
prior P (Qu = xi), as well as the βu,chl(u)(i) from the each child l of node u. The standard upward-downward
algorithm requires an initial downward recursion in order to propagate the prior P (Q1 = xi) from the root node to
the internal nodes and the leaves. In our bottom-up approach, priors are propagated from the leaves to the root as
part of the upward recursion (hence there is no need of an additional downward pass): the corresponding update
rule is

P (Qu = xi) =
L∑
l=1

C∑
j=1

P (Su = l)pl(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xj). (27)
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... ...

Y ch1(u) Y chl(u) Y chL(u)

Qu

(a)

......

Y ch1(u) Y chl(u) Y chL(u)

Qu

(b)

Fig. 4. Child subtrees d-separation: (a) in the top-down model, the subtrees meet tail to tail at Qu and share no common
ancestors, hence they are conditionally independent given the observation of Qu. In the bottom-up model (b), the child
subtrees meet head-to-head in Qu; since Qu is a common ancestor of the subtrees Ychl(u), then its realization introduces
pairwise dependency links in the corresponding moral graph (the dashed lines in (b)) [10]. Therefore the subtrees are not
conditionally independent give Qu.

The computation of the βu,chl(u)(i) is performed as part of the upward pass following the factorization

βu,chl(u)(i) =
P (Ychl(u) = ychlu|Qu = xi)

P (Ychl(u) = ychl(u))
marginal

=

=

∑C
j=1 P (Ychl(u) = ychl(u), Qchl(u) = xj |Qu = xi)

P (Ychl(u) = ychl(u))
Bayes

=

=

∑C
j=1 P (Qu = xi|Ychl(u) = ychl(u), Qchl(u) = xj)P (Ychl(u) = ychl(u), Qchl(u) = xj)

P (Ychl(u) = ychl(u))P (Qu = xi)
Bayes

=

=

∑C
j=1 p

l(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xj |Ychl(u) = ychl(u))P (Ychl(u) = ychl(u))

P (Ychl(u) = ychl(u))P (Qu = xi)
simplif

=

=

∑C
j=1 p

l(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xj |Ychl(u) = ychl(u))
P (Qu = xi)

βchl(u)def
=

=

∑C
j=1 p

l(Qu = xi|Qchl(u) = xj)βchl(u)(j)
P (Qu = xi)

,

(28)

which concludes the derivation of the upward pass.

Downward Recursion. Learning in the downward recursion is based on computing the factors αu(i), or directly the
smoothed probabilities εu(i). Given the definition in (16), the smoothed probability of the root node Q1 is computed
as

ε1(i) = P (Q1 = xi|Y1 = y1) = β1(i) (29)

where β1(i) has been computed during the upwards pass. Each internal and leaf node is, clearly, an l-th child of his
parent node (where l defines its position among the children). Hence, to estimate the posterior in (14) we need to
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decompose the pairwise smoothed probability as

εlu,chl(u)(i, j) = P (Qu = xi, Qchl(u) = xj , Su = l|Y1 = y1)
cond. prob.

=

= P (Qu = xi, Qchl(u) = xj , Su = l,Y1 = y1)P (Y1 = y1).
(30)

From Bayes rule, we know that, for every node u′, P (Qu′ = xj′ |Y1 = y1) = P (Qu′ = xj′ ,Y1 = y1)P (Y1 = y1):
choosing u′ = u and inserting this result into (30), it can be rewritten as

εlu,chl(u)(i, j) =
P (Qu = xi, Qchl(u) = xj , Su = l,Y1 = y1)P (Qu = xi|Y1 = y1)

P (Qu = xi,Y1 = y1)
. (31)

The denominator in (31) can be factorized, for any child chl(u) of node u, by the following Bayes expansion

P (Qu = xi,Y1 = y1) = P (Qu = xi,Ychl(u) = ychl(u),Y1\chl(u) = y1\chl(u))
cond. prob.

=

= P (Qu = xi,Y1\chl(u))P (Ychl(u)|Qu = xi,Y1\chl(u))
Bayes

=

= P (Qu = xi,Y1\chl(u))

× P (Ychl(u))P (Qu = xi|Ychl(u))P (Y1\chl(u)|Qu = xi,Ychl(u))
P (Y1\chl(u)|Qu = xi)P (Qu = xi)

.

(32)

where, for the sake of conciseness, we have been using Yu′ as a short form for Yu′ = yu′ . Within a top-down HTMM
model we could have used conditional independency to rewrite P (Y1\chl(u)|Qu = xi,Ychl(u)) = P (Y1\chl(u)|Qu =
xi) and simplify the expression in (32) accordingly. However, in a bottom-up model, such independence assumption
does not hold due to the coupling between the child subtrees of u, that are enclosed in Y1\chl(u), and the l-th
child subtree in the conditioning part (see the graphical interpretation in Fig. 5). Hence, we seek for an alternative
factorization: first, we rewrite

P (Y1\chl(u)|Qu = xi)
tree decomp

=

= P (yu,Y1\u,Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u)|Qu = xi)
cond. prob.

=

= P (yu|Y1\u,Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u), Qu = xi)

P (Y1\u,Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u)|Qu = xi)
HTMM emission=

= P (yu|Qu = xi)P (Y1\u,Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u)|Qu = xi)
cond. prob.

=

= P (yu|Qu = xi)P (Y1\u|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u), Qu = xi)

P (Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u)|Qu = xi)
cond ind=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)

P (Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u)|Qu = xi)
Bayes

=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)P (Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))
P (Qu = xi)

cond ind=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)
∏
l′ 6=l

P (Ychl′ (u))
P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

P (Qu = xi)
.

(33)



12 Davide Bacciu, Alessio Micheli, and Alessandro Sperduti

Y 1\u

yu

Y ch1(u), ..., Y chL(u),

Qu

Y chl(u)

Fig. 5. Markov Blankets for the components of the Y1\chl(u) tree with respect to hidden state Qu and subtree Ychl(u):
the tree of ancestors of node u, i.e. Y1\u, as well as the emission yu are d-separated from the rest of the tree by
Qu, which is their Markov blanket (in light gray). On the other hand, the Markov blanket for the child subtrees
Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . .YchL(u) (in dark gray) has to include also the subtree Ychl(u) given that it is the
parent of a common child (i.e. Qu).

Similarly, we factorize the term in the numerator of (32) as follows,

P (Y1\chl(u)|Qu = xi,Ychl(u))
Bayes+ind

=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)

P (Ych1(u), . . . ,Ychl(u),Ychl+1(u), . . . ,YchL(u)|Qu = xi,Ychl(u))
Bayes

=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)

P (Ych1(u), . . . ,Ychl(u), . . . ,YchL(u)|Qu = xi)
P (Ychl(u))|Qu = xi)

Bayes+ind
=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)
L∏
l′=1

P (Ychl′ (u))
P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))P (Qu = xi)

P (Qu = xi)P (Ychl(u)|Qu = xi)
(34)
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Inserting the results of (33) and (34) back into (32), yields

P (Qu = xi,Y1 = y1) = P (Qu = xi,Y1\chl(u))
P (Ychl(u))P (Qu = xi|Ychl(u))

P (Qu = xi)

× P (yu|Qu = xi)P (Y1\u|Qu = xi)
∏L
l′=1 P (Ychl′ (u))P (Qu = xi)

P (Ychl(u)|Qu = xi)P (yu|Qu = xi)P (Y1\u|Qu = xi)
∏
l′ 6=l P (Ychl′ (u))

× P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))
P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

simplif
=

= P (Qu = xi,Y1\chl(u))
P (Ychl(u))P (Qu = xi|Ychl(u))

P (Qu = xi)

× P (Ychl(u))P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))P (Qu = xi)
P (Ychl(u)|Qu = xi)P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

Bayes
=

= P (Qu = xi,Y1\chl(u))P (Ychl(u)|Qu = xi)

× P (Ychl(u))P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))P (Qu = xi)
P (Ychl(u)|Qu = xi)P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

simplif
=

= P (Qu = xi,Y1\chl(u))
P (Ychl(u))P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))P (Qu = xi)

P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))
,

(35)

which is the final expression for the denominator of (31).

On the other hand, the first term in the numerator of (31) factorizes as follows

P (Qu = xi, Qchl(u) = xj , Su = l,Y1) = P (Qu = xi, Qchl(u) = xj , Su = l,Ychl(u),Y1\chl(u))
cond. prob.

=

= P (Ychl(u)|Qu = xi, Qchl(u) = xj , Su = l,Y1\chl(u))P (Qu = xi, Qchl(u) = xj , Su = l,Y1\chl(u))
cond.ind.=

= P (Ychl(u)|Qchl(u) = xj)P (Qu = xi, Qchl(u) = xj , Su = l,Y1\chl(u))
Bayes

=

= P (Ychl(u)|Qchl(u) = xj)P (Qu = xi,Y1\chl(u))P (Qchl(u) = xj , Su = l|Qu = xi,Y1\chl(u))
marginal

=

= P (Ychl(u)|Qchl(u) = xj)P (Qu = xi,Y1\chl(u))

×
C∑

J1\l=1

P (Qch1(u) = xj1 , . . . , QchL(u) = xjL , Qchl(u) = xj , Su = l|Qu = xi,Y1\chl(u)) =

= P (Ychl(u)|Qchl(u) = xj)P (Qu = xi,Y1\chl(u))

×
C∑

J1\l=1

P (CH1\l(u) = J1\l, Qchl(u) = xj , Su = l|Qu = xi,Y1\chl(u))

(36)

where the sum marginalizes over the hidden states J1\l = {j1, . . . , jl−1, , jl+1, . . . , jL} of the children CH1\l(u) =
{Qch1(u), . . . , Qchl−1(u), . . . Qchl+1(u), . . . , QchL(u)} of node u except the l-th child node.
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Applying Bayes formula to the argument of the summation yields

P (CH1\l(u) = J1\l, Qchl(u) = xj , Su = l|Qu = xi,Y1\chl(u)) =

=

A1︷ ︸︸ ︷
P (Y1\chl(u)|CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)

A2︷ ︸︸ ︷
P (CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)

P (Qu = xi)P (Y1\chl(u)|Qu = xi)︸ ︷︷ ︸
A3

.

(37)

The term A2 in (37) can be expanded as follows

P (CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)
cond. prob.

=

= P (Qu = xi, Su = l|CH1\l(u) = J1\l, Qchl(u) = xj)P (CH1\l(u) = J1\l, Qchl(u) = xj)
switch par

=

= p(Su = l)pl(Qu = xi|Qchl(u) = xj)P (CH1\l(u) = J1\l, Qchl(u) = xj)
cond ind=

= p(Su = l)pl(Qu = xi|Qchl(u) = xj)
L∏
l′=1

P (Qchl′ (u) = xjl′ ),

(38)

where the latter equality stems from the fact that the hidden states of the children are independent when the parent
state is not observed. The term A1, on the other hand, can be factorizes as follows

P (Y1\chl(u)|CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)
tree decomp

=

= P (yu,Y1\u,Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u)|CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)
c.pr.
=

= P (yu|Y1\u,Ych1(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)

× P (Y1\u,Ych1(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l) HTMM emission=
= P (yu|Qu = xi)

× P (Y1\u,Ych1(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)
cond. prob.

=

= P (yu|Qu = xi)P (Y1\u|Ych1(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)

× P (Ych1(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l) cond ind=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)

× P (Ych1(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)
cond. prob.

=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)P (Ych1(u)|Ych2(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l)

× P (Ych2(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l) cond ind=

= P (yu|Qu = xi)P (Y1\u|Qu = xi)P (Ych1(u)|Qch1(u) = xj)

× P (Ych2(u), . . . ,YchL(u),CH1\l(u) = J1\l, Qchl(u) = xj , Qu = xi, Su = l) =

= · · · = P (yu|Qu = xi)P (Y1\u|Qu = xi)
∏
l′ 6=l

P (Ychl′ (u)|Qchl′ (u) = xjl′ )

(39)

where the product runs over all the children l′ of node u except l, given that Y1\chl(u) includes all the tree except
the subtree rooted in chl(u). Finally, for the term A3 we can use the expression in (33). Introducing the expressions
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for terms A1, A2 and A3 back into (37) yields

P (CH1\l(u) = J1\l, Qchl(u) = xj , Su = l|Qu = xi,Y1\chl(u)) =

=

A2︷ ︸︸ ︷
p(Su = l)P (lQu = xi|Qchl(u) = xj)

L∏
l′=1

P (Qchl′ (u) = xjl′ )

×

A1︷ ︸︸ ︷
P (yu|Qu = xi)P (Y1\u|Qu = xi)

∏
l′ 6=l

P (Ychl′ (u)|Qchl′ (u) = xjl′ )

P (yu|Qu = xi)P (Y1\u|Qu = xi)
P (Qu = xi)

∏
l′ 6=l

P (Ychl′ (u))P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))︸ ︷︷ ︸
A3

(40)

By applying simplifications and Bayesian transformation we obtain the final expression

P (CH1\l(u) = J1\l, Qchl(u) = xj , Su = l|Qu = xi,Y1\chl(u)) =

=
p(Su = l)pl(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xjl)P (Qu = xi)
P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

∏
l′ 6=l

P (Qchl′ (u) = xjl′ )P (Ychl′ (u)|Qchl′ (u) = xjl′ )

P (Ychl′ (u))
Bayes

=

=
p(Su = l)pl(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xjl)P (Qu = xi)
P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

∏
l′ 6=l

P (Qchl′ (u) = xjl′ |Ychl′ (u))
Def βch

l′ (u)(jl′ )
=

=
p(Su = l)pl(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xjl)P (Qu = xi)
P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

∏
l′ 6=l

βchl′ (u)(jl′)

(41)

By plugging the results of (41) into the pairwise transition probability in (36), we obtain

P (Qu = xi, Qchl(u) = xj , Su = l,Y1) =

= p(Su = l)pl(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xjl)P (Qu = xi)

× P (Ychl(u)|Qchl(u) = xj)P (Qu = xi,Y1\chl(u))
P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

×
C∑

J1\l=1

∏
l′ 6=l

βchl′ (u)(jl′).

(42)

Notice that the term
∑C
J1\l=1

∏
l′ 6=l βchl′ (u)(jl′) = 1 given that it marginalizes out all the hidden state independently

for each child subtree. Hence, it can be omitted in the final formulation. Introducing the results of (35) and (42)
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into the smoothed probability in (31) yields

εlu,chl(u)(i, j) = P (Qu = xi, Qchl(u) = xj , Su = l|Y1 = y1)

= P (Qu = xi|Y1 = y1)p(Su = l)pl(Qu = xi|Qchl(u) = xj)P (Qchl(u) = xjl)P (Qu = xi)

× P (Ychl(u)|Qchl(u) = xj)P (Qu = xi,Y1\chl(u))
P (Qu = xi,Y1\chl(u))P (Ychl(u))P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))

× P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))

P (Qu = xi|Ych1(u), . . . ,Ychl−1(u),Ychl+1(u), . . . ,YchL(u))P (Qu = xi)
.

(43)

By simplifying and restructuring the order of some terms, this rewrites as

εlu,chl(u)(i, j) =

=
P (Qu = xi|Y1 = y1)P (Ychl(u)|Qchl(u) = xj)P (Qchl(u) = xj)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Ychl(u))P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))
.

(44)

Given the definition of βchl(u)(j), we can rewrite it as

βchl(u)(j) = P (Qchl(u) = xj |Ychl(u)) =
P (Ychl(u)|Qchl(u) = xj)P (Qchl(u) = xj)

P (Ychl(u))
. (45)

and by introducing this result in (44) it yields to

εlu,chl(u)(i, j) =
P (Qu = xi|Y1 = y1)βchl(u)(j)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))
, (46)

where we still need to determine an expression for the term in the denominator. Again, by resorting to the switching
parents approximation, we can rewrite such term as follows

P (Qu = xi|Ych1(u), . . . ,Ychl(u), . . . ,YchL(u))
marginal Sl

′
u=

=
L∑
l′=1

P (Qu = xiSu = l′|Ych1(u), . . . ,Ychl(u), , . . . ,YchL(u), )
switch par

=

=
L∑
l′=1

P (Su = l′)P (Qu = xi|Ychl′ (u))
Bayes

=

=
L∑
l′=1

P (Su = l′)P (Ychl′ (u)|Qu = xi)P (Qu = xi)

P (Ychl′ (u))

def βu,ch
l′′ (u)(i)

=

= P (Qu = xi)
L∑
l′=1

P (Su = l′)βu,chl′ (u)(i).

(47)

By inserting the results of (47) back into (46), this finally yields to

εlu,chl(u)(i, j) =
P (Qu = xi|Y1 = y1)βchl(u)(j)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Qu = xi)
∑L
l′′=1 P (Su = l′′)βu,chl′′ (u)(i)

def εu(i)
=

=
εu(i)βchl(u)(j)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Qu = xi)
∑L
l′′=1 P (Su = l′′)βu,chl′′ (u)(i)

.

(48)
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From the definition of the pairwise transition probability in (48), we can easily obtain an expression for εchl(u)(j)
by marginalizing the hidden states of the parent node, that is

εchl(u)(j) =
C∑
i=1

εlu,chl(u)(i, j) =

= βchl(u)(j)
C∑
i=1

εu(i)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Qu = xi)
∑L
l′′=1 P (Su = l′′)βu,chl′′ (u)(i)

.

(49)

The downward recursion is based on the αu(i) term in the factorization εu(i) = αu(i)βu(i). The basis of the recursion
is at the root node: it is straightforward that α1(i) = 1 for all hidden state assignments xi. The recursive step is
computed for each node u′ = chl(u), that is the l-th child of parent u, as

αchlu(j) =
εchlu(j)
βchlu(j)

=
C∑
i=1

εu(i)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Qu = xi)
∑L
l′′=1 P (Su = l′′)βu,chl′′ (u)(i)

. (50)

Since εu(i) = αu(i)βu(i), this yields to

αchlu(j) =
C∑
i=1

αu(i)βu(i)P (Su = l)pl(Qu = xi|Qchl(u) = xj)

P (Qu = xi)
∑L
l′′=1 P (Su = l′′)βu,chl′′ (u)(i)

, (51)

that is the final update equation for the downward recursion. Notice that the posterior distribution of the switching
parents indicator variables in (15) can be straightforwardly obtained by marginalization of the pairwise transition
probability in (48), that is

P (Su = l|Y1 = y1) =
C∑

i,j=1

= P (Qu = xi, Qchl(u) = xj , Su = l|Y1 = y1) =
C∑

i,j=1

εlu,chl(u)(i, j). (52)

3.2 M-Step.

The posterior probabilities obtained at the previous step are sufficient statistics to compute the expectation of the
complete log-likelihood

E[logLc] =
N∑
n=1

∑
u′∈leaf(yn)

C∑
i=1

P (Qu′ = xi|yn) logP pos(u)(Qu′ = xi)

+
N∑
n=1

∑
u∈Uyn

C∑
i=1

P (Qu = xi|yn) logP (yu|Qu = xi)

+
N∑
n=1

∑
u∈Uyn\leaf(yn)

L∑
l=1

P (Su = l|yn) logP (Su = l)

+
N∑
n=1

∑
u∈Uyn\leaf(yn)

C∑
i,j=1

L∑
l=1

P (Qu = xi, Qchl(u) = xj , Su = l|yn) log pl(Qu = xi|Qchl(u) = xj)

(53)

whose maximization with respect to the model parameters θ leads to the update equations for the M-Step. Lets
consider the following parametrization for the bottom-up HTMM model
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– the positional initial state probability matrix π = {πli}l=1,...,L
i=1,...,C such that

πli = P pos(u)(Qu = xi), subject to πli ≥ 0 and
C∑
i=1

πli = 1 for 1 ≤ l ≤ L

– the mixed memory probability matrix ϕ = {ϕl}l=1,...,L such that

ϕl = P (Su = l), subject to ϕl ≥ 0 and
L∑
l=1

ϕl = 1

– the position-dependent state transition probability matrices A = {A1, . . . , Al, . . . , AL} where Al = {alij}l=1,...,L
i,j=1,...,C

such that

alij = P l(Qu = xi|Qchl(u) = xj), subject to alij ≥ 0 and
C∑
i=1

alij = 1, for 1 ≤ l ≤ L

– the emission probability matrix B = {bi(m)}i=1,...,C such that

bi(m) = P (yu = om|Qu = xi), subject to bi(m) ≥ 0 and
M∑
m=1

bi(m) = 1

where o1, . . . , oM is, for instance, a finite output alphabet.

Following such parametrization, lets denote the model parameters as θ = (π, ϕ,A,B) and their current estimate
as θ(k). The sum-to-one constraints for the model parameters can be incorporated in the maximization of the
likelihood expectation in (53) using Lagrange multipliers, yielding the following EM auxiliary function

Q(θ|θ(k)) = E[logLc|θ(k)]+
∑
l

ωl

(
C∑
i=1

πli − 1

)
+ η

(
L∑
l=1

ϕl − 1

)
+
∑
j,l

µli

(
C∑
i=1

alij − 1

)

+
∑
i

νi

(
M∑
m=1

bi(m)− 1

) (54)

where E[logLc|θ(k)] is the expectation of the complete log-likelihood in (53) computed using the current estimate
θ(k) of the model parameters. Given such parametrization, we can rewrite Q(θ|θ(k)) as a sum of functions that can
be optimized separately, that is

Q(θ|θ(k)) = Qπ +Qϕ +QA +QB (55)

where each Qx term incorporates both the likelihood term and the Lagrange multiplier that are dependent from
x ∈ θ. The iterative update rules are obtained as

θ(k+1)) = arg max
θ
Q(θ|θ(k)) (56)

by taking the first derivative of (56) with respect to the model parameters θ and solving it with respect to the
unknowns.

Prior Probability. Given the i-th hidden state and the l-th position in the child subtree, the prior probability update
can be obtained by solving ∂Qπ

∂πli
= 0, that yields

πli
(k+1)

=

∑N
n=1

∑
u∈leaf(yn) δ(pos(u), l)P (Qu = xi|yn, θ(k))∑N

n=1NL
l
n

(57)
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where NLln is the total number of leaves of the n-th tree that are the l-th child of their parent. The indicator
function δ(pos(u), l returns 1 when the pos(u) = l and 0 otherwise. The posterior P (Qu = xi|yn, θ(k)) corresponds
to the state occupancy probability εnu(i) at node u and can be straightforwardly obtained by marginalization of the
state transition posterior, i.e.

εnu(i) = P (Qu = xi|yn, θ(k)) =
C∑
j=1

L∑
l=1

P (Qpa(u) = xj , Qu = xi, Spa(u) = l|yn, θ(k)) =
C∑
j=1

L∑
l=1

εl,npa(u),u(j, i). (58)

The final update rule for prior probability is

πli
(k+1)

=

∑N
n=1

∑
u∈leaf(yn)

∑C
j=1 ε

l,n
pa(u),u(j, i)∑N

n=1NL
l
n

. (59)

In the remainder of the section, we will omit the θ(k) term in the distribution estimates for enhancing readability.

Mixed-Memory Probability. Differentiating with respect to ϕl yields

∂Qϕ
∂ϕl

=
N∑
n=1

∑
u∈Uyn\leaf(yn)

1
ϕl
P (Su = l|yn) + η = 0. (60)

By solving the Lagrange multipliers and inserting the posterior definition in (52), we obtain the following update
rule

ϕ
(k+1)
l =

∑N
n=1

∑
u∈Uyn\leaf(yn) P (Su = l|yn)∑N

n=1

∑
u∈Uyn\leaf(yn)

∑L
l=1 P (Su = l|yn)

=

∑N
n=1

∑
u∈Uyn\leaf(yn)

∑C
i,j=1 ε

l,n
u,chl(u)(i, j)∑N

n=1

∑
u∈Uyn\leaf(yn)

∑L
l=1

∑C
i,j=1 ε

l,n
u,chl(u)(i, j)

=

∑N
n=1

∑
u∈Uyn\leaf(yn)

∑C
i,j=1 ε

l,n
u,chl(u)(i, j)

L
∑N
n=1NIn

(61)

where NIn is the number of internal nodes (non leaves) of the n-th tree.

Positional State-Transition Probability. Following the process described above, differentiating with respect to alij
yields

alij =

∑N
n=1

∑
u∈Uyn\leaf(yn) ε

l,n
u,chl(u)(i, j)∑N

n=1

∑
u∈Uyn\leaf(yn)

∑C
i=1 ε

l,n
u,chl(u)(i, j)

. (62)

Label Emission Probability. The exact parametrization of the emission distribution depends on form of the observed
labels, but the update equations are no different from those of a standard hidden Markov model. For instance, for
discrete labels the emission distribution is multinomial and the update equation is, trivially, as follows

bi(m) =

∑N
n=1

∑
u∈Uyn

P (Qu = xi|yn)δ(yu, om)∑N
n=1

∑
u∈Uyn

P (Qu = xi|yn)
=

∑N
n=1

∑
u∈Uyn

εnu(i)δ(yu, om)∑N
n=1

∑
u∈Uyn

εnu(i)
(63)

where the delta function δ(yu, om) ensures that only the observations equal to om contribute to the m-th emission
probability.
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In case of d-dimensional continuous observations o ∈ Rd, the emission corresponding to the i-th hidden state
can by modeled by a Normal distribution

bi(o) = N (o;µi, Σi) =
1

(2π)
d
2 |Σi| 12

exp
(
−1

2
(o− µi)T Σ−1

i (o− µi)
)
.

Update rules for the emission parameters are obtained by maximization of the following likelihood component

QB =
N∑
n=1

∑
u∈Uyn

C∑
i=1

P (Qu = xi|yn) logN (yu;µi, σi)

=
N∑
n=1

∑
u∈Uyn

C∑
i=1

P (Qu = xi|yn)
{
−d

2
log(2π)− 1

2
log(|Σi|)−

1
2

(yu − µi)T Σ−1
i (yu − µi)

} (64)

with respect to Σi and µi, yielding

µ
(k+1)
i =

∑N
n=1

∑
u∈Uyn

yuε
n
u(i)∑N

n=1

∑
u∈Uyn

εnu(i)
, (65)

and

Σ
(k+1)
i =

∑N
n=1

∑
u∈Uyn

(yu − µi) (yu − µi)T εnu(i)∑N
n=1

∑
u∈Uyn

εnu(i)
. (66)

4 Bottom-up Viterbi Algorithm

The Viterbi algorithm determines the most likely hidden states assignment Q1 = x for a given observed tree
Y1 = y1 or, equivalently,

max
x

P (Y1 = y1,Q1 = x). (67)

The Viterbi algorithm for a bottom-up HTMM model entails an upward recursion from the leaves to the root of
the tree, which follows from a factorization of (67). In particular, given a node u in the tree, we can rewrite it as

max
x

P (Y1 = y1,Q1 = x) = max
x

P (YCH(u),Y1\CH(u),Qu = xu,Q1\u = x1\u), (68)

where Yu is used as short form for Yu = yu and CH(u) indicates the set of children of node u (hence YCH(u)

stands for the observed subtrees rooted at each of the child of u, while Y1\CH(u) is the original observed tree
without the child subtrees of node u). By straightforward application of Bayes formula, equation (68) rewrites as

max
x

P (Y1 = y1,Q1 = x)
cond. prob.

=

= max
x

{
P (Y1\CH(u),Q1\u = x1\u|Qu = xu,YCH(u))P (Qu = xu,YCH(u))

}
cond ind=

= max
x

{
P (Y1\CH(u),Q1\u = x1\u|Qu = xu)P (Qu = xu,YCH(u))

}
max distr=

= max
xiu

{
max
x1\u

P (Y1\CH(u),Q1\u = x1\u|Qu = xiu) max
xCH(u)

P (Qu = xiu ,QCH(u) = xCH(u),YCH(u))

} (69)

which is the basis for the upward recursion. Let us define

δu(i) = max
xCH(u)

P (Qu = xi,QCH(u) = xCH(u),YCH(u)), (70)
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then, for each leaf node u′ we initialize the recursion as

δu′(i) = max
xCH(u′)

P (Q′u = xi) = P pos(u
′)(Q′u = xi), (71)

that is equivalent to the prior distribution of the bottom-up HTMM model. For each internal node taken upwards,
we have the following factorization

δu(i) = max
xCH(u)

P (Qu = xi,QCH(u) = xCH(u),YCH(u))
cond. prob.

=

= max
xCH(u)

{
P (Qu = xi|QCH(u) = xCH(u),YCH(u))P (QCH(u) = xCH(u),YCH(u))

}
cond ind=

= max
xCH(u)

{
P (Qu = xi|Qch1(u) = xi1 , . . . , QchL(u) = xiL)P (QCH(u) = xCH(u),YCH(u))

}
switch par

=

= max
xCH(u)

{
L∑
l=1

P (Su = l)P l(Qu = xi|Qchl(u) = xil)P (QCH(u) = xCH(u),YCH(u))

}
cond ind=

= max
xCH(u)


L∑
l=1

P (Su = l)P l(Qu = xi|Qchl(u) = xil)
∏

v∈CH(u)

P (Qv = xv,Yv)

 ,

(72)

where the latter equality holds since the couples of observed and hidden subtrees are independent from each other
when the parent (yu, Qu) is not given (formal proof can be obtained by repeated Bayesian decomposition, showing
that the Markov blanket of an observed subtree Yv includes only the corresponding hidden states Qv). Since
Yv = yv ∪YCH(v), we can rewrite (72) as follows

δu(i) = max
xCH(u)


L∑
l=1

P (Su = l)P l(Qu = xi|Qchl(u) = xil)
∏

v∈CH(u)

P (Qv = xv, yv,YCH(v))

 Bayes+emission
=

= max
xCH(u)


L∑
l=1

P (Su = l)P l(Qu = xi|Qchl(u) = xil)
∏

v∈CH(u)

P (yv|Qv = xiv )P (Qv = xv,YCH(v))

 max distr=

= max
xi1 ,...,xil ,...,xiL

{
L∑
l=1

P (Su = l)P l(Qu = xi|Qchl(u) = xil)

×
L∏
v=1

P (yv|Qv = xiv )
∏

v′∈CH(u)

max
xCH(v)

P (Qv′ = xv′ ,YCH(v′))

 def δv′=

= max
xi1 ,...,xil ,...,xiL


L∑
l=1

P (Su = l)P l(Qu = xi|Qchl(u) = xil)
L∏
v=1

P (yv|Qv = xiv )
∏

v′∈CH(u)

δv′(i′v)

 .

(73)

Equation (73) states that an intermediate node u receives, from each child subtree v′, a δv′ value and an emission
probability given an hidden state assignment for the child node. Then, node u determines the most likely hidden
states assignments for its direct child nodes, given its hidden state assignment xi. Finally, it forwards upwards the
generated δu(i) values to its parent node.

Such a recursion ends at the root node, where the first term in (69) evaluates to P (Y1\CH(1),Q1\1 = x1\1|Q1 =
xi1) = P (y1|Q1 = xi1): at this point, the root node can determine the hidden state assignment x∗i1 that maximizes
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the joint probability P (Y1 = y1,Q1 = x). Such an hidden state can be used to backtrack the most likely hidden
state assignments for the rest of the nodes in the tree, hence obtaining the generating latent points for each of the
subtrees in y1.
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