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Abstract. In the last few years many numerical techniques for computing eigenvalues of structured rank matrices have been
proposed. Most of them are based on QR iterations since, in the symmetric case, the rank structure is preserved and high accuracy
is guaranteed. In the unsymmetric case, however, the QR algorithm destroys the rank structure, which is instead preserved if LR
iterations are used. We consider a wide class of quasiseparable matrices which can be represented in terms of the same parameters
involved in their Neville factorization. This class, if assumptions are made to prevent possible breakdowns, is closed under LR steps.
Moreover, we propose an implicit shifted LR method with a linear cost per step, which resembles the qd method for tridiagonal
matrices. We show that for totally nonnegative quasiseparable matrices the algorithm is stable and breakdowns cannot occur, if the
Laguerre shift, or other shift strategy preserving nonnegativity, is used. Computational evidence shows that good accuracy is obtained
also when applied to symmetric positive definite matrices.
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1. Introduction. In the recent literature quasiseparable matrices have received a great deal of interest
(see [7, 9, 3] and references therein). In fact, matrices with this structure appear naturally in many appli-
cation fields such as systems theory, signal processing or integral equations. Also covariance matrices, or
matrices involved in multivariate statistics or discretization of elliptic PDEs have often the quasiseparable
structure.


The class of quasiseparable matrices includes many important matrices such as companion matrices of
polynomials, tridiagonal matrices and their inverses (Green’s quasiseparable), unitary Hessenberg, banded
matrices. In [7] the class is proved to be closed under inversion, and a linear complexity inversion method
is proposed.


An interesting research topic is the development of fast algorithms, both for the solution of linear
systems and for eigenvalue and eigenvector computation, taking advantage of the representation of the
matrix in terms of a small number of parameters.


The main purpose of this paper is to propose an LR scheme for eigenvalue computation of a quasisep-
arable matrix not necessarily Hermitian. In fact, for unsymmetric quasiseparable matrices, it is well know
that the QR algorithm destroys the rank structure with an increase of the cost of the computation of the
eigenvalues. The LR algorithm, on the contrary, maintains the rank structure providing a valid alternative
once the stability is guaranteed. The main objection to the use of LR iterations is the possible instability.
However, Fernando and Parlet [10] and Parlett in [17], suggested to apply the LR algorithm to symmetric
positive definite tridiagonal matrices, showing the good performance and stability of the qd-type methods
over the standard QR method. The idea behind qd-type algorithms, first proposed by Rutishauser [20], is to
represent tridiagonal matrices as the product of the bidiagonal factors of the LU factorization, and to update
the bidiagonal factors with formulas requiring only quotients and sums. The algorithm is highly accurate
and has become one of LAPACK’s main tool for computing eigenvalues of symmetric tridiagonal matrices.
Since many interesting algorithms for semiseparable and quasiseparable matrices have been derived from
similar techniques employed on tridiagonal matrices (see for example [16, 19, 22]), our idea is to design
an algorithm inspired by the qd-type algorithms. While these algorithms for tridiagonals perform well on
symmetric positive definite matrices, it turns out that the methods we propose in this paper achieve a high
accuracy and stability when applied to totally nonnegative matrices.


The association between totally nonnegative and quasiseparable matrices, was recently done by Dopico,
Bella and Olshevsky in two different talks [5], [6] and by Gemignani in [14]. They presented necessary
and sufficient conditions to verify if a quasiseparable matrix is totally nonnegative, and proposed fast and
stable algorithms for the solution of linear systems.
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A historical example of a totally nonnegative and quasiseparable matrix is the influence function ma-
trux for a string with both ends fastened [11].


For totally nonnegative matrices, we are able to prove that the algorithms here proposed for the compu-
tation of the eigenvalues are subtraction free and turn out to be very effective when used with the Laguerre
shift strategy. The formulation of the algorithms in terms of recurrences, where some intermediate variable
are introduced to avoid possible cancellations, makes these methods similar to the qd-type algorithms for
tridiagonals matrices. For a quasiseparable, totally nonnegative matrices Gemignani in [14], following an
idea of Koev [15], sketched an algorithm for the reduction into a similar tridiagonal form. We extend this
algorithm for the matrices that we call Neville-representable1, showing the effectiveness when associated
with a qd scheme.


The paper is organized as follows. In Section 2 some preliminary definitions and results are provided.
In Section 3 the class of Neville-representable quasiseparable matrices is introduced, and structural results
for the the L and R factors of the LU factorization of matrices in this class are given. A complete character-
ization of the class of the Neville-representable quasiseparable matrices is given in terms of the generators
of the quasiseparable matrix. Section 4 contains a description of the shifted LR-iterations, and theoretical
results about the preservation of the structure. In Section 6, as an alternative for the computation of the
eigenvalue, we show a tridiagonalization procedure that can be followed by qd-type iterations as well as
any other eigensolver for unsymmetric tridiagonal matrices. Section 7 contains the numerical experiments.
In particular, we tested our methods both on random unsymmetric matrices, and on totally nonnegative
matrices. The results show a good performance, in terms of time required and accuracy achieved, also
for matrices not totally nonnegative. A comparison, for symmetric matrices with EIGSSD routine2 im-
plementing implicit QR steps is performed, showing the better behavior of our methods still achieving a
comparable accuracy.


2. Preliminary results. In this section we present some preliminary results useful in the remaining
part of the paper.


DEFINITION 1. An n× n matrix S is called a semiseparable matrix if the following properties are
satisfied:


rankS(i : n,1 : i)≤ 1, rankS(1 : i, i : n)≤ 1, for i = 1, . . . ,n−1.


All semiseparable matrices S = si j can be represented by using six vectors u,v, t,p,q and r in this way
(see Def 2.14 in [24]):


si j =


 uiti−1ti−2 · · · t jv j, 1≤ j < i≤ n,
uivi = piqi, 1≤ j = i≤ n,
piriri+1 · · ·r j−1q j, 1≤ i < j ≤ n.


(2.1)


If S is irreducible, t and r can be chosen as unit vectors, thus the representation is made up with the four
vectors u,v,p and q, called generators, and S is said to be generator-representable. If some ti or ri is zero,
S is reducible. However, if S is reducibile but symmetric or triangular, then it can always be expressed as
the direct sum of two or more generator-representable matrices. See [2] for the details.


In this paper a generalization of the semiseparable plus diagonal matrices is considered, that is the
class of quasiseparable matrices introduced in [8, 21].


There are many definition of quasiseparable matrix [24]. The most general is the following.
DEFINITION 2. A n× n matrix S is called a quasiseparable matrix if the following conditions are


satisfied:


rankS(i+1 : n,1 : i)≤ 1, rankS(1 : i, i+1 : n)≤ 1, fori = 1, . . . ,n−1.


This definition captures semiseparable matrices, tridiagonal matrices and semiseparable plus diagonal
matrices. Note that also noninvertible matrices as well as block diagonal matrices are included in the class,
while this does not happen if other definitions are chosen.


1We call Neville-representable, the matrices for which the Neville elimination process can be completed
2EIGSSD is a Matlab function included in the package SSPack developed by the group at K. U. Leuven.
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A very convenient way to represent quasiseparable matrices is the one introduced in [4, 8]. The Givens-
vector representation as well as the generator representation can be both be considered as special cases of
this quasiseparable representation [24]. An unsymmetric quasiseparable matrix A can be expressed by
means of 7n−8 parameters, as follows


A =





δ1 q2 p1 q3r2 p1 q4r3:2 p1 · · · qnrn−1:2 p1
u2v1 δ2 q3 p2 q4r3 p2 · · · qnrn−1:3 p2


u3t2v1 u3v2 δ3 q4 p3 · · · qnrn−1:4 p3


u4t3:2v1 u4t3v2 u4v3
. . .


...
...


...
... δn−1 qn pn−1


untn−1:2v1 untn−1:3v2 untn−1:4v3 · · · unvn−1 δn



, (2.2)


where ti: j = titi−1ti−2 · · · t j, for i > j. Note that the redundancy of parameters allows to express quasisep-
arable matrices with zeros subblocks. The relevance of this representation is proved by the following
theorem [24].


THEOREM 1. A matrix A is quasiseparable if and only if is representable as in (2.2).
In the following simple results are reported, about representations of quasiseparable matrices, which


will be useful in the following sections.
COROLLARY 2. A quasiseparable matrix A can be decomposed as A = S(u) +Q, where


S(u) =



0
... Sn−1
0
0 0 · · · 0


 ,


where Sn−1 is a (n− 1)× (n− 1) symmetric semiseparable matrix, representable with parameters q =
(q2, . . . ,qn)T , p = (p1, . . . , pn−1)T and r = (r2, . . . ,rn−1)T as in (2.1), and Q is a lower triangular matrix.
Similarly A = S(l) +P, where S(l) embeds a symmetric semiseparable matrix of size n−1 with zeros in the
first row and in the last column, and P is an upper triangular.


Proof. From (2.2) we see that the upper right (n−1)× (n−1) minor of A has a semiseparable struc-
ture (2.1) in the upper triangular part. We set Sn−1 = triu(A,1)+ tril(AT ,−2). Matrix Q is defined as the
difference between A and S(u), and it is easy to see that it is lower triangular.


LEMMA 2.1. If a quasiseparable matrix A is such that all the ri 6= 0, i = 2, . . . ,n−1 in the represen-
tation (2.2), we have


A = p̂q̂T +K,


with K lower triangular.
Proof. Using Corollary 2, A = S(u) +Q. If ri 6= 0, we can define the the vectors p̂ and q̂ as follows q̂1 = 0


q̂2 = q2
q̂i = qiri−1ri−2 · · ·r2, i = 2, . . . ,n,


 p̂1 = p1
p̂i = pi/(riri−1 · · ·r2) i = 1, . . . ,n−1
p̂n = 0.


We have S(u) = p̂ q̂T +Z, where Z is a lower triangular matrix. Then A = p̂ q̂T +K with K = Q+Z.


3. The Neville representation. Neville elimination is a classical elimination technique which, differ-
ently from the standard Gaussian method, uses consecutive rows (columns) to reduce a matrix into an upper
(lower) triangular form. When this elimination can be completely accomplished over rows and columns
to reduce the matrix to diagonal form without interchanges, its formulation in terms of Gauss elementary
matrices allows to represent the matrix as the product of O(n) bidiagonal matrices: these factors give the
Neville representation of the matrix, which is called Neville-representable. Neville elimination for rank-
structured matrices is considered in [14].


In this section we introduce a subclass of quasiseparable matrices which are Neville-representable.
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First, we present some general results about LU factorization of quasiseparable matrices, then we
consider the Neville representation for quasiseparable matrices, showing conditions for its existence.


We will refer as LU factorization the usual factorization of a matrix into the product of a unit lower
triangular and an upper triangular. Usually, in the following, we will denote with L unit lower triangular
and with R unit upper triangular matrices.


THEOREM 3. Let A be a quasiseparable matrix, and assume there exist L,R and D such that A = LDR
where L and R are unit lower and upper triangular and D is diagonal. Then L and R can be chosen
having quasiseparable structure. Moreover, L and R can be represented, according to (2.2), with the same
parameters ui, ti, qi, ri appearing in the representation of A.


Proof. Since A is LU-factorizable, if A is nonsingular then it is also strongly nonsingular, and the thesis
follows from a known result, which states that in this case L and R must be quasiseparable (see [24], p.
171).
In the case A is singular, we have that at least one of the di’s is zero. Writing A = S(l) + P, where S(l) is
strictly lower triangular and quasiseparable, and P is upper triangular, we have LD = AR−1 = S(l) R−1 +
PR−1, and looking at the tril(LD,−1) = tril(S(l) R−1,−1), we see that LD is quasiseparable, and the
generators can be expressed in terms of the generators of A. In detail, denote by u,v, t the generators of
the lower triangular part of A, by ũ, ṽ, t̃ the generators of tril(LD,−1) and by wi j the (i, j) entry of R−1, we
have


ũi = ui, t̃i = ti, ṽi =
i


∑
j=1


ti: j+1v jw ji.


Thus L can be chosen, in infinitely many ways, as a unit lower triangular semiseparable matrix, generated
by the same ũ, ˜̃v, t̃, where ˜̃vidi = ṽi.


Similarly, R can be chosen as a unit upper triangular semiseparable matrix, generated by the same q,r
generating the upper triangular part of A.


Now we will consider a set of quasiseparable matrices which are Neville-representable. A Neville-
representable matrix, can be expressed as a product of this form, see [12]:


L(n−1) · · ·L(1)DR(1) · · ·R(n−1),


where D is diagonal, and the factors L(i), R(i) are unit bidiagonal, lower and upper respectively, with zero
entries in these positions:


L(i)
k+1,k = R(i)


k,k+1 = 0, for k = 1, . . . , i−1.


DEFINITION 3. Let S be the set of matrices A admitting the following factorization:


A = Ls L1 DR1 Rs, (3.1)


where


L−1
s =



1
−x1 1


−x2 1
. . .


. . .
−xn−1 1


 L1 =



1
−a1 1


−a2 1
. . .


. . .
−an−1 1





R1 =



1 −b1


1 −b2
. . .


. . .
1 −bn−1


1


 R−1
s =



1 −y1


1 −y2
. . .


. . .
1 −yn−1


1
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and D is a diagonal matrix. It is straightforward to see that the matrices introduced by Definition 3 are
LU-factorizable and semiseparable. Moreover, they are also Neville-representable, because if we set


L(i) = I +diag(xiei,−1), R(i) = I +diag(yiei,1), i = n−1, . . . ,2,


L(1) = (I +diag(x1e1,−1))L1, R(1) = R1(I +diag(y1e1,1)),


where ei is the i-th vector of the canonical basis of Rn−1, we have


A = Ls L1 DR1 Rs = L(n−1) · · ·L(1)DR(1) · · ·R((n−1)),


that is the Neville representation of A. Therefore (3.1) can be seen as a variant of the Neville reprentation.
The factorization (3.1) is not unique: even when A is strongly nonsingular and the products L = LsL1 and
R = R1Rs are uniquely determined, there are infinely many values of x1,a1,b1,y1 giving the same matrices
L(1) and R(1), and therefore the same A: they can be freely chosen according to the conditions x1−a1 = l21
and y1−b1 = r12.
Nevertheless there are LU-factorizable quasiseparable matrices which are not Neville-representable. For
instance, the matrix


A =


 1 1 1
0 1 1
1 1 1


 ,


is factorizable A = LDR, where


L =


 1 0 0
0 1 0
1 0 1


 ,


but we cannot find any xi and ai such that Ls L1 = L.
The matrices in S can be recognized also as the LU-factorizable quasiseparable matrices which admit a
representation (2.2) satisfying the following conditions:


a) ui 6= 0, for i = 2,3, . . .n;
b) qi 6= 0, for i = 1,2, . . . ,n−1.


Let us call S1 the set of these matrices.
REMARK 1. One can see some ambiguity in the definition of S1, due to the fact that the same


semiseparable matrix has infinitely many representations (2.2). For instance, a semiseparable matrix hav-
ing zero entries only in the last row is in S1, because it can represented according to (2.2) with un = 1,
tn−1 = vn−1 = δn = 0, but it can also be represented with un = δn = 0, for arbitrary choices of tn−1 and
vn−1. Two simple characterizing prescriptions for matrices in S1 are the following:
c) if there is an entry ai j = 0 in the strictly lower triangular part, then ak j = 0 for k = i+1, . . . ,n;
d) if there is an entry ai j = 0 in the strictly upper triangular part, then aik = 0 for k = j +1, . . . ,n.


A quasiseparable matrix which violates (c) or (d) cannot be represented with all nonzero ui and qi. We
could overcome the question by saying that the matrices in S1 are all those that admit a representation (2.2)
with ui = qi = 1, for every i, as we will see in Corollary 5.


THEOREM 4. The class S coincides with the class S1.
Proof. We prove the theorem by showing that the S ⊆ S1 and S1 ⊆ S .
Let us start by proving that if A ∈ S , then A ∈ S1. First, A is factorizable A = LDR with L = Ls L1 and


R = R1 Rs. To prove that A is quasiseparable it is sufficient to prove that it is quasiseparable in the lower
and upper triangular parts.


Observe that Ls is semiseparable, in fact the rank-one structure propagates to the main diagonal. We
distinguish two cases, according with the possible reducibility of Ls.


If Ls is irreducible, then all xi 6= 0. Hence it can be written as Ls = ūv̄T +P, where ūi = ∏
i−1
k=1 xk, v̄i =


ū−1
i , P is a strictly upper triangular matrix with superdiagonal entries pi,i+1 = x−1


i . Writing the bidiagonal
matrix L1 as L1 = I−diag(a,−1), we have


A = (ūv̄T +P)(I−diag(a,−1))DR


= (ūv̄T +P− ūv̄T diag(a,−1)−P diag(a,−1))DR


= ū(v̄T − v̄T diag(a,−1))DR+(P−P diag(a,−1))DR.
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Setting ṽT = (v̄T − v̄T diag(a,−1))DR, and P̃ = (P−P diag(a,−1))DR we have that A = ūṽT + P̃. P̃ is
an upper triangular matrix having −aidix−1


i as i-th diagonal entry. So A is the sum of a rank-one matrix
and an upper triangular matrix, and hence is quasiseparable in the lower triangular part. In a similar way
we can show that A is quasiseparable in the upper triangular part. Note that all the entries of ū are nonzero,
since ūiv̄i = 1. Hence, condition a) of definition of class S1 is satisfied.


If Ls is reducible, then one or more xi = 0. For simplicity let us consider only the case we have
xi = 0 and x j 6= 0 for all j 6= i. The generalization to multiple blocks is straightforward. We already ob-
served that reducible triangular semiseparable matrices can be expressed as the direct sum of generator
representable semiseparable matrices. In this case Ls = L(1)


s ⊕L(2)
s where L(1)


s and L(2)
s are generator repre-


sentable semiseparable irreducible matrices of sizes n1 and n2 respectively, and hence L(1)
s = u(1)v(1)T


+P1,
and L(2)


s = u(2)v(2)T
+ P2, with P1 and P2 strictly upper triangular matrices. Moreover, u(1) and u(2) have


no zero entries, since u(1)
i v(1)


i = 1, u(2)
i v(2)


i = 1. Let us partition the matrix according with the partition on
Ls, thus we have D = blkdiag(D1,D2), and


R = R1 Rs =
[


R11 R12
0 R22


]
.


In the same way as before we get


A =


[
u(1)w(1)T


0
κu(2)eT


n1
u(2)w(2)T


]
+
[


P11 P12
0 P22


]
,


where en1 is the n1-th vector of the canonical basis in Rn1 , κ =−v(2)
1 dn1 ai, w(1)T


= (v(1)T −v(1)T
diag(a(1 :


i−1),−1))D1 R11 and w(2)T
= (v(2)T −v(2)T


diag(a(i+1 : n−1),−1))D2 R22 +κeT
n1


R12. Moreover, P11
and P22 are upper triangular matrices. Note that the block in position (2,1) is null except for the last
column, and this column is proportional to u(2). Then tril(A) is quasiseparable and the following is a
possible choice of generators for A:


t j =
{


0 for j = i
1 for j 6= i , u j =


{
u(1)


j for 1≤ j ≤ i


u(2)
j−i for i+1≤ j ≤ n


, v j =



w(1)


j for 1≤ j < i
κ for j = i
w(2)


j−i for j +1≤ j ≤ n
.


Clearly all u j’s are nonzero. A similar proof can be given for the upper triangular part of A.
Let us prove that S1 ⊆ S , that is for every quasiseparable, LU-factorizable matrix with ui 6= 0 and qi 6= 0
we can find parameters x,a,b,y,d such that A = Ls L1 DR1 Rs.
By assumption we have A = LDR, where L is unit lower triangular, D diagonal and R is unit upper triangular.
We want to prove that it is possible to factorize L as Ls L1 and R as R1 Rs. By Theorem 3, we have that L
and R can be chosen quasiseparable, so, in detail


L =





1
ũ2ṽ1 1


ũ3t̃2ṽ1 ũ3ṽ2 1
ũ4t̃3:2ṽ1 ũ4t̃3ṽ2 ũ4ṽ3 1


...
...


...
. . .


ũnt̃n−1:2ṽ1 ũnt̃n−1:3ṽ2 ũnt̃n−1:4ṽ3 · · · ũnṽn−1 1



,


where ũi 6= 0 since ũi = ui, which are assumed to be nonzero. Is now easy to prove that L can be factorized
as the product of Ls and L1 by observing that the Neville elimination can be applied to the rows of L.
In particular, Ls is the inverse of the bidiagonal matrix I− diag(x,−1) having the Neville multipliers as
codiagonal entries, i.e. xi−1 =−ũit̃i−1/ũi−1, i = 3, . . . ,n.
Reasoning in the same way for the upper triangular part of A we can complete the proof.
The following corollary weakens the redundancy of the representation (2.2) for matrices in S .


COROLLARY 5. If A ∈ S , then it can be represented, according to (2.2), with ui = qi = 1, i =
2, . . . ,n, ti = xi, ri = yi, i = 2, . . . ,n−1.
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Proof. By direct inspection, a simple choice for the parameters involved in the representations of the
semiseparable matrices L and R of the factorization A = LDR is the following:


ui = 1, vi = xi−ai, i = 2, . . . ,n, ti = xi, i = 2, . . . ,n−1, for L,


qi = 1, pi = yi−bi, i = 2, . . . ,n, ri = yi, i = 2, . . . ,n−1, for R.


Theorem 3 says that the parameters ui, ti, qi and ri for A can be taken from the representions of L and R.


It is easy to prove that S contains all quasiseparable and Neville-representable matrices.
THEOREM 6. Any quasiseparable Neville-representable matrix is in S .
Proof. Since S = S1, we show that a Neville-representable quasiseparable matrix must be in S1. As-


sume by contradiction this is not true, then by Remark 1, one of conditions (c),(d) would not be obeyed,
say (c). This means that there exist, in the strictly lower triangular part, some ai j = 0 with ai+1, j 6= 0, and,
as a consequence of the rank structure, all the entries in the i-th row of the strictly lower triangular part
would be zero. Then the i-th row could not be used to eliminate the (i + 1)-th one, and the Neville row
elimination would fail. But this would cause a contradiction.


3.1. Quasiseparable Totally nonnegative matrices. Neville elimination is deeply connected with
totally nonnegative matrices [15, 12, 13].


DEFINITION 4. A matrix A is called totally nonnegative (TN) if all its minor of any order are nonneg-
ative.


THEOREM 7. If A ∈ S and xi,yi ≥ 0, ai,bi ≤ 0 and di ≥ 0 then A is totally nonnegative.
Proof. The theorem holds for nonsingular matrices as proved in [14]. In the case A is nonsingular also


the converse is true. If A is a singular matrix in S , with xi,yi ≥ 0, ai,bi ≤ 0 and di ≥ 0, then A is TN since
product of TN matrices.


REMARK 2. We can easily recognize matrices in S diagonally similar to TN matrices. The general
condition is that xiyi ≥ 0, di ≥ 0, aibi ≥ 0 with aixi ≤ 0.


The class of totally nonnegative matrices has nice properties that resemble those of positive semidefi-
nite Hermitian matrices, in particular its eigenvalues are real and nonnegative. Another similarity between
the two classes of matrices is that also for TN matrices we can give an interlacing Theorem [11, 1].


THEOREM 8. Let A be TN with eigenvalues λ1 ≥ λ2 · · · ≥ λn. Suppose Ak is a k× k submatrix of A
lying in rows and columns with consecutive indices and having eigenvalues λ̃1 ≥ λ̃2 · · · ≥ λ̃k. Then


λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . ,k.


4. On the shifted LR-algorithm. In this section we present the shifted LR algorithm acting implicitly
on the representation (3.1) of A. The shifted LR method proceeds iteratively as follows3, let A(0) = A, we
obtain the sequence of matrices A(k) in this way:{


A(k) = L(k) D(k) R(k),


A(k+1) = L(k)−1
A(k)L(k)−σk+1 I = D(k) R(k) L(k)−σk+1 I, k = 0,1, . . . ,


(4.1)


where, for every k, the parameter σ(k+1) is chosen in accordance with some shift strategy to accelerate
convergence 4. Usually, instead of computing explicitly the factorization of A(k), and multiplying the
factors in reverse order according to (4.1), we proceed implicitly performing the transition A(k)→ A(k+1)


in terms of their Neville representations. Note that A(k+1) is no more similar to A(k) because the at each
step we subtract off a shift, but we never restore it. This means that we have to accumulate the shifts during


3The superscript notation ·(i) will be used only for depicting LR-steps performed on matrices. We will omit this superscript as
much as possible, not to overload the notation.


4In section 4.3 we describe in detail the choice of the Laguerre shift, that is particularly suited when dealing with totally
nonnegative matrices.
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the computation and add them back once the approximation of each eigenvalue becomes available. An
important result is that the quasiseparable structure is preserved under LR step.


THEOREM 9. The quasiseparable structure is preserved under LR steps.
Proof. Let A = LDR, we want to prove that the matrix A(1) = DRL is still quasiseparable, although the


possible symmetry of A is not preserved. By Corollary 2, there exists a symmetric semiseparable matrix
S(u), and a lower triangular matrix Q such that A = S(u) +Q, so we have A(1) = L−1AL = L−1(S(u) +Q)L.
As remarked in Section 2, if S(u) is irreducible, then it is is generator representable, otherwise it is the
direct sum of generator representable matrices. Assume that S(u) is irreducible, therefore S(u) = pqT + X ,
where X is a strictly lower triangular matrix. Then A(1) = L−1pqT L+L−1XL+L−1QL. Setting p̃ = L−1p,
q̃ = LT q, Q̃ = L−1(X + Q)L, we have A(1) = p̃q̃ + Q̃. Then the minors taken out of the strictly upper
triangular part of A(1) have rank at most one. In the case S(u) is reducible, we can use the same arguments
for each of the irreducible diagonal blocks, obtaining that A(1) is reducible too and is quasiseparable in the
upper triangular part.


Similarly, we can prove that A(1) has the quasiseparable structure in the strictly lower triangular part.


In this section we present two different methods. The first, presented in Section 4.1 works on the
parameters ai,bi,xi,yi and di, the second one, described in Section 4.2, considers the aggregated parameters
mi = xiyi and takes advantage on the fact that there are some quantities that are invariant during the steps
as explained in the following Corollary.


COROLLARY 10. Let A be a quasiseparable matrix in S . If xi 6= 0 and yi 6= 0, for i = 1, . . . ,n−1 we
can define the quantities


hi =
ai di


xi
, ki =


bi di


yi
, i = 1, . . . ,n−1. (4.2)


These quantities are invariant under LR steps without shift.
Proof. By Corollary 5, in the representation (2.2) of A we have that ri 6= 0 for i = 2, . . . ,n− 1. By


Lemma 2.1, A = p̂q̂T + K, where K is lower triangular. Consider the diagonal entries of A, that for the
previous equality, are given by the sum of the diagonal entries of p̂q̂T and the diagonal entries of K, say
ki. This means δi = piqi + ki. The diagonal entries of the new quasiseparable matrix A(1) = L−1AL =
L−1(p̂q̂T + K)L, since L is unit lower triangular, we have that the diagonal entries of the lower triangular
term L−1KL are still equal to ki, which then remain constant during all the iterative steps.


Let denote by ∆ = diag(K). The matrix B = A−∆ has a semiseparable structure in the upper triangular
part, which extends to the main diagonal. Since A = LsL1DR1Rs, B can be expressed as


B = A−∆ = LsT Rs, (4.3)


where T = L1DR1−L−1
s ∆R−1


s is tridiagonal. The upper triangular matrix Rs is irreducible semiseparable,
therefore by Lemma 2.1 it can be written as Rs = p̃q̃T + K̃, where K̃ is strictly lower triangular. Substituting
in (4.3) we find


B = LsT p̃q̃T +LsT K̃,


thus we see that the diagonal of B agrees with the one-rank structure in the upper triangular part only if
the lower triangular matrix LsT K̃ has all zeros as diagonal entries, and this happens only if T is lower
bidiagonal. So we readily obtain ki = dibi


yi
.


Repeating the same reasoning for the lower triangular part of A we obtain the that hi = diai
xi


are invari-
ants too.


4.1. A qd-type method. In this section we show how to obtain, starting from a matrix A = A(k) in
S , expressed as A = LsL1DR1Rs the new representation of A(k+1) = DR1RsLsL1−σk+1I in terms of the
updated parameters, that is A(k+1) = ¯̄Ls


¯̄L1
¯̄D ¯̄R1


¯̄Rs, under the assumption that A(k+1) ∈ S .
The entire procedure consists in updating the parameters xi,yi,di,ai,bi which define quasiseparable


matrices in S . The updating process starts with the computation of Ã = DR1RsLsL1, and replaces products







QD-TYPE METHODS FOR QUASISEPARABLE MATRICES 9


of the type RL with products of the type LDR, with D diagonal. In particular, we have


Ã = DR1 (RsLs)L1 = DR1(L̄s ER̄s)L1 (4.4)


= (DR1L̄s)ER̄s L1 = ( ¯̄LSFR̄1)ER̄s L1 (4.5)


= ¯̄LSFR̄1 (ER̄s L1) = ¯̄LS FR̄1(L̄1G ¯̄Rs) (4.6)


where D,E,F and G are diagonal matrices. Equations (4.4), (4.5), (4.6) make sense if the intermediate
matrices RsLs, DR1L̄s, and ER̄s L1 are all LU-factorizable. Anyway, if the procedure described by equations
(4.4), (4.5), (4.6) can be carried on and A(k+1) = Ã−σk+1I is LU-factorizable too, then


A(k+1) = ¯̄LS FR̄1L̄1G ¯̄RS−σk+1I = ¯̄LS
¯̄L1


¯̄D ¯̄R1
¯̄RS, (4.7)


where ¯̄D is diagonal.
The assumptions required by the updating equations (4.4), (4.5), (4.6), besides the preliminary request for
A(k+1) to be in S , are satisfied in case A is a TN matrix and the shift is properly chosen, as we will see later.


Let us describe the updating process described by equality (4.4). Set


L̄sER̄s = RsLs,


for a suitable nonsingular diagonal matrix E. If we rewrite the above equation as R̄−1
s E−1L̄−1


s = L−1
s R−1


s ,
where all the matrices involved are bidiagonal or diagonal, and define the auxiliary variables{


αi = e−1
i − xi−1yi−1, i = 1, . . . ,n−1


αn = 1,


we obtain the following recurrences:
e−1


i = αi + xi−1yi−1, i = n, . . . ,2
αi−1 = αi/e−1


i , i = n, . . . ,2,


e−1
1 = α1.


Then, we can compute the entries of L̄−1
s and R̄−1


s as follows


x̄i = xi/e−1
i+1, i = 1, . . . ,n−1


ȳi = yi/ei+1, i = 1, . . . ,n−1.


The updating described in (4.5) consists of


¯̄LSFR̄1 = DR1L̄s,


for a suitable nonsingular diagonal matrix F . Again we can use the fact that the inverse of matrices of type
Ls is bidiagonal. We have FR̄1L̄−1


s = ¯̄L−1
S DR1, and setting


βi = 1−bix̄i, i = 1, . . . ,n−1,


we obtain the following recurrences for the diagonal entries of F : f1 = d1β1,
fi = diβi/βi−1, i = 2, . . . ,n−1,
fn = dn/βn−1,


and the final ¯̄xi describing ¯̄Ls


¯̄xi = x̄i fi+1/di, i = 1, . . . ,n−1.


The intermediate entries of R̄1 are{
b̄1 = b1/β1,
b̄i = biβi/βi−1, i = 2, . . . ,n−1.
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Let us describe step (4.6), that is


L̄1G ¯̄RS = ER̄sL1.


If we re-write the above equation as R̄−1
s E−1L̄1 = L1G ¯̄R−1


S , and defining the auxiliary variables


γi = 1− ȳiai, i = 1, . . . ,n−1,


we obtain the following recurrences for the diagonal entries of G:
g1 = γ1/e−1


1 ,


gi = γi/(γi−1e−1
i ), i = 2, . . . ,n−1,


gn = 1/(γn−1e−1
n ).


The final entries of ¯̄Rs are computed as follows


¯̄yi = ȳigi+1/e−1
i+1, i = 1, . . . ,n−1,


while the intermediate entries of L̄1 are


āi = ai/(e−1
i+1gi), i = 1, . . . ,n−1.


It remains to describe the final updating which involves the terms in the brackets in (4.7). If no shift is
chosen, then A(k+1) = A(1), so ¯̄L1, ¯̄D, and ¯̄R1 have to be found such that


¯̄L1
¯̄D ¯̄R1 = FR̄1L̄1G. (4.8)


The final matrices ¯̄L1 and ¯̄R1 can be computed introducing auxiliary variables δi defined as{
δi = ¯̄di− āib̄i figi, i = 1, . . . ,n−1
δn = ¯̄dn.


We have the following recurrences for the final ¯̄D
δ1 = f1g1,
¯̄di = δi + āib̄i figi, i = 1, . . . ,n−1


δi+1 = δi fi+1gi+1/
¯̄di, i = 1, . . . ,n−1,


¯̄dn = δn.


(4.9)


The entries of ¯̄L1 and ¯̄R1 can be then obtained as follows


¯̄ai = āi fi+1gi/
¯̄di, i = 1, . . . ,n−1 (4.10)


¯̄bi = b̄i figi+1/
¯̄di, i = 1, . . . ,n−1. (4.11)


In case of shift σ = σk+1, note that A(k+1) = A(1)−σ I can be expressed as


¯̄LSFR̄1L̄1G ¯̄RS−σI = ¯̄LS(FR̄1L̄1G−σ ¯̄L−1
S


¯̄R−1
S ) ¯̄RS.


So we must modify only the updating of the variables ¯̄ai,
¯̄bi and ¯̄di described by equations (4.10), (4.11)


and (4.9). In particular equation (4.8) becomes


¯̄L1
¯̄D ¯̄R1 = FR̄1L̄1G−σ ¯̄L−1


S
¯̄R−1


S ,


and ¯̄L1, ¯̄D and ¯̄R1 can be computed by means of the following recurrences, where δi is defined as before as{
δi = ¯̄di− āib̄i figi, i = 1, . . . ,n−1
δn = ¯̄dn.
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The recurrences replacing (4.9) are
δ1 = f1g1−σ,
¯̄di = δi + āib̄i figi, i = 1, . . . ,n−1,


δi+1 = fi+1gi+1δi/
¯̄di−σ(1+ ¯̄xi( ¯̄yi− ¯̄bi)− fi+1giāi ¯̄yi/


¯̄di), i = 1, . . . ,n−1,
¯̄dn = δn.


(4.12)


The new ¯̄ai and ¯̄bi can be obtained as follows


¯̄ai = (āi figi+1−σ ¯̄xi)/ ¯̄di, i = 1, . . . ,n−1, (4.13)
¯̄bi = (b̄i fi+1gi−σ ¯̄yi)/ ¯̄di, i = 1, . . . ,n−1 (4.14)


Alternatively, one can first compute ¯̄ai and ¯̄bi with(4.13), and (4.14) and then express δi+1, as


δi+1 = fi+1gi+1δi/
¯̄di−σ(1+ ¯̄yi( ¯̄xi− ¯̄ai)− figi+1b̄i ¯̄xi/


¯̄di), i = 1, . . . ,n−1.


REMARK 3. We denoted the method described in this section as belonging to the family of qd algo-
rithms [20, 10, 17]. The reason is that it has similar characteristics, since the definition of the auxiliary
variables, αi,δi makes it possible, with some sign hypotheses (see Theorem 12), to get rid of subtractions
which are hidden in the auxiliary parameters: only divisions, multiplications and sums are needed (except
for the shift).


4.2. Working with invariants: another qd-type method. In Corollary 10 we proved that if xi 6= 0
and yi 6= 0 for all i = 1, . . . ,n− 1, then the quantities hi and ki defined as in (4.2) are invariant under
LR steps. This observation allows to rewrite the previous recurrences using these quantities. The new
algorithm, described by Algorithm 1, although applicable only to a subclass of matrices in S , has a lower
computational cost as we will see in section 5.


The new recurrences consider the aggregated quantities mi = xiyi, the invariants ki,hi and the diagonal
entries di. Once we want to recover the Neville representation of A(k), we can assign arbitrary nonzero
values say to the xi, compute yi = mi/xi and find ai,bi using the formulas for the invariants. Note that the
use of invariants allows to simplify the recurrences since we have only to update the values mi and the
new diagonal entries di. This procedure should be combined with an effective shift strategy. A particularly
convenient choice for the shift is described in Section 4.3.


As in the recurrences presented in Section 4.1 we see that we still need auxiliary variables αi and δi,
but the aggregation of parameters xi and yi into mi allows to reduce the number of recurrences. This method
has not a natural matrix formulation but it is easy to verify its correctness by merging the recurrences for
the updating of xi and yi to get the updating formula for mi.


4.3. The Laguerre shift. The choice of an adequate shift strategy is always of crucial importance
for the convergence. Various shift strategies have been proposed, ranging from the classical Rayleigh shift
defined as the entry in position (n,n), or the Wilkinson shift in the case the matrix might have complex
eigenvalues [26]. In this section we describe in detail a shift technique known as Laguerre shift [26, 18]
which has shown to be effective in the case of quasiseparable matrices with real positive eigenvalues.


In particular the shift σ = σk+1 in (4.12) is chosen in accordance with the following formula


σ =
n


s(k)
1 +


√
(n−1)(ns(k)


2 − (s(k)
1 )2


, (4.15)


where s(k)
1 = trace((A(k))−1) and s2 = trace((A(k))−2). The choice of the Laguerre shift guarantees that the


eigenvalues are computed in an ordered way since 0 < σ≤ µn, where µn is the smallest eigenvalues of A(k).
If µn is simple, then σ < µn.
We start from A(k) factorized as


A(k) = LsL1DR1Rs,
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Algorithm 1 [ ¯̄m, ¯̄h, ¯̄k, ¯̄d]←LRstep(m,h,k,d,σ)
αn← 1;
for i = n to 2 do


e−1
i ← αi−mi−1; {Auxiliary variables}


αi−1← αi/e−1
i ;


end for
e−1


1 ← α1;
for i = 1 to n−1 do


pi←
(


1− kimi
die−1


i+1


)(
1− himi


die−1
i+1


)
; {Auxiliary variables}


end for
for i = 1 to n−1 do


¯̄mi← mi pi+1di+1/(pidie−2
i+1); {Updating of mi}


end for
δ1← p1d1/e−1


1 −σ;
for i = 1 to n−1 do


¯̄di← δi +hikimi/(die−1
i+1); {Updating of di}


δi+1 ← δi pi+1di+1/(pi
¯̄die−1


i+1)−σ(1+ ¯̄mi(1+(σ− (hi + ki))/ ¯̄di));
end for
¯̄dn← δn; {Updating of the last dn}


for i = 1 to n−1 do
¯̄hi← hi−σ;
¯̄ki← ki−σ.


end for


so we need the diagonal entries cii of


C = (A(k))−1 = R−1
s R−1


1 D−1L−1
1 L−1


s .


In the case xi,yi 6= 0, using the invariants5 by direct computation, we have
cnn = d−1


n ,


cn−1,n−1 = d−1
n−1 +d−1


n mn−1(hn−1d−1
n−1−1)(kn−1d−1


n−1−1),
cii = d−1


i +(d−1
i+1 +∑


n−1
r=i+1(∏


r
j=i+1 m jh jk jd−2


j )d−1
r+1)mi(hid−1


i −1)(kid−1
i −1), i = n−2, . . . ,1.


Setting {
tn−1 = d−1


n mn−1,


ti = (d−1
i+1 +∑


n−1
r=i+1(∏


r
j=i+1 m jh jk jd−2


j )d−1
r+1)mi, i = n−2, . . . ,1,


the requested trace s1 can be computed with about 14n flops in this way:
cnn = d−1


n ,
tn−1 = d−1


n mn−1,


ti = (ti+1hi+1ki+1d−1
i+1 +1)mid−1


i+1, i = n−2, . . . ,1,


cii = d−1
i + ti(hid−1


i −1)(kid−1
i −1), i = n−1, . . . ,1,


s1 = trace(C) = ∑
n
i cii.


Since s2 = trace(C2) = ∑
n
i=1 cii +2∑


n−1
j=1 ∑


n
i= j+1 ci jc ji, the sum of all the products ci jc ji has to be computed.


5We have different formulas in the case some xi or yi are zero. We choose here to present only this case because it is simpler, but
other formulas when working with the full set of parameters can be found.
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Let us start from those involving co-diagonal entries ci,i−1ci−1,i, which have the following form


cn,n−1cn−1,n = mn−1(hn−1d−1
n−1−1)(kn−1d−1


n−1−1)d−2
n ,


cn−1,n−2cn−2,n−1 = (1+hn−1mn−1d−1
n (kn−1d−1


n−1−1))(1+ kn−1mn−1d−1
n (hn−1d−1


n−1−1))
mn−2(hn−2d−1


n−2−1)(kn−2d−1
n−2−1)d−2


n−1,


ci,i−1ci−1,i = (1+himi(kid−1
i −1)(d−1


i+1 +∑
n−1
r=i+1 d−1


r+1 ∏
r
j=i+1 m jh jk jd−1


j ))
(1+ kimi(hid−1


i −1)(d−1
i+1 +∑


n−1
r=i+1 d−1


r+1 ∏
r
j=i+1 m jh jk jd−1


j ))
mi−1(hi−1d−1


i−1−1)(ki−1d−1
i−1−1)d−2


i , i = n−2, . . . ,2.


If we set
t ′n−1 = (1+hn−1mn−1d−1


n (kn−1d−1
n−1−1)),


t ′′n−1 = (1+ kn−1mn−1d−1
n (hn−1d−1


n−1−1)),
t ′i = (1+himi(kid−1


i −1)(d−1
i+1 +∑


n−1
r=i+1 d−1


r+1 ∏
r
j=i+1 m jh jk jd−1


j )), i = n−2, . . . ,2,


t ′′i = (1+ kimi(hid−1
i −1)(d−1


i+1 +∑
n−1
r=i+1 d−1


r+1 ∏
r
j=i+1 m jh jk jd−1


j )), i = n−2, . . . ,2,


all co-diagonal entries products ci,i−1ci−1,i can be computed according to the following scheme, with 18n
flops: 


t ′n−1 = (1+hn−1mn−1d−1
n (kn−1d−1


n−1−1)),
t ′′n−1 = (1+ kn−1mn−1d−1


n (hn−1d−1
n−1−1)),


t ′i = hi+1mi+1di+2(1+ t ′i+1ki+1di+2), i = n−2, . . . ,2,
t ′′i = ki+1mi+1di+2(1+ t ′′i+1hi+1di+2), i = n−2, . . . ,2,
zn−1 = d−2


n ,


zi = (1+ t ′i+1(ki+1d−1
i+1−1))(1+ t ′′i+1(hi+1d−1


i+1−1)), i = n−2, . . . ,1,


ci,i−1ci−1,i = zi−1mi−1(hi−1d−1
i−1−1)(ki−1d−1


i−1−1), i = n, . . . ,2.


The sums ε j = ∑
n
i= j+2 ci jc ji, j = n−2, . . . ,1 can be computed in this way:


wn−1 = 0,


w j = (w j+1 + z j+1)m j+1h j+1k j+1d−2
j+1, j = n−2, . . . ,1,


ε j = w jm j(h jd−1
j −1)(k jd−1


j −1), j = n−2, . . . ,1.


Finally the sum ∑
n−1
j=1 ∑


n
i= j+1 ci jc ji which is required to complete the computation of s2 can be expressed as


n−1


∑
j=1


n


∑
i= j+1


ci jc ji = cn,n−1cn−1,n +
n−2


∑
j=1


(ε j + c j+1, jc j, j+1) =
n−1


∑
j=1


(w j + z j)m j(h jd−1
j −1)(k jd−1


j −1),


and costs 9n flops more.
In the case we deal with a restricted class of matrices, for example, when dealing with tridiagonal


or semiseparable matrices, we can simplify this procedure and compute the shift with a lower number of
operations. In Section 7 for example we simplified the computation of the shift when our method is applied
to tridiagonal matrices, obtaining the Laguerre shift with a lower number of flops.


5. Stability and computational cost. In Section 4.1 and 4.2 we described the implicit LR algorithm
acting on the Neville representation of the matrix, assuming that the algorithm proceeds without incurring
in situations requiring the algorithm to stop. However, it is well known [26] that LR algorithm occurs
in a breakdown if, at step k, the matrix A(k) is no more LU-factorizable. In practical cases, to overcome
this situation and resume the iterative process, one can change the value of the shift σk and hopefully the
problem does not present on the new matrix. When our method is applied however, as observed in Section
4.1, we can have that the process halts also because one of the quantities appearing in the denominator of
the recurrences in Section 4.1 or 4.2 annihilates. We will refer to this anomalous situation as a breakdown
too.


In this section we first show that the class of Neville representable quasiseparable matrices is closed
under shifted LR steps, then we analyze stability, structure preservation of the method when applied to
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totally nonnegative matrices. Moreover, we show that both breakdown situations do not occur when the
algorithm is applied to totally nonnegative matrices.


We first observe that the following Corollary holds.
COROLLARY 11. Let A ∈ S , if each LR-step does not occur in breakdown, then each A(k) in (4.1) is


still in S . The proof is based on the observation that, if we do not occur in breakdowns, at each step, we
can construct a matrix A(k+1) similar to A(k)−σk+1 I, by means of the updating of the parameters involved
in the Neville representation as described in Section 4.1 or 4.2.


The natural class to which the proposed algorithm can be applied is the class of TN matrices.
THEOREM 12. Each LR-step applied to a TN quasiseparable matrix A(k), with di > 0, without shift or


with a shift which preserves the positivity of the eigenvalues:
1. does not occur in breakdowns, and the updated parameters involved in the representation are all


nonnegative,
2. produces a new matrix which is still quasiseparable TN, with di > 0,
3. does not contain subtractions (except a subtraction for the shift).


Proof. For a totally nonnegative matrix A(k), from Theorem 7 we know that xi,yi ≥ 0, ai,bi ≤ 0. If we
assume xi,yi 6= 0, we have equivalently mi > 0, hi,ki ≤ 0. The shift σk+1 is such that 0 < σk+1 < µn, where
µn is the smallest eigenvalue of A(k).


1. We see immediately, by induction on i, that e−1
i ≥ αi > 0; as a consequence: x̄i, ȳi ≥ 0, βi,γi ≥ 1,


fi,gi > 0, ¯̄xi, ¯̄yi ≥ 0, āi, b̄i ≤ 0. Similarly, if we assume xi,yi 6= 0 and we refer to the formulation
introduced in Section 4.1 and used in Algorithm 1, we find that pi ≥ 1 and ¯̄mi ≥ 0.
If there is no shift, then ¯̄di≥ δi > 0, i = 1, . . . ,n−1, again by induction on i, and, as a consequence,
¯̄ai,


¯̄bi ≤ 0.
In the case of shift, we have by hypothesis that at each step σk+1 is such that 0 < σk+1 < µn. We
have to show that also in this case ¯̄di > 0. We know that


A(k+1) = L(k)A(k)L(k)−1−σk+1I = ¯̄LST ¯̄RS,


where T = FR̄1L̄1G−σk+1
¯̄L−1


S
¯̄R−1


S is tridiagonal. Now, let Tj be the j-th leading principal minor


of T , observe that for each j, det(Tj) > 0, since Tj is similar to A(k)
j −σk+1I j where A(k)


j is the
j-th leading principal minor of A(k). From the interlacing property for TN matrices (Theorem 8)
we have that 0 < µn−σk+1 ≤ µ( j)


i −σk+1, where µ( j)
i is an eigenvalue of A(k)


j . This means that


det(Tj) > 0, so T is strongly nonsingular, and in its LU factorization T = ¯̄L1
¯̄D ¯̄R1 the entries ¯̄di are


all positive. Moreover, ¯̄ai,
¯̄bi ≤ 0, as shown by (4.13) and (4.14).


No breakdown happens, because no division by zero can occur in computing the quantities αi, fi,
gi, pi, δi.


2. A(k+1) is still TN, because it is Neville-representable, with nonnegative parameters. In particular,
all ¯̄di are positive.


3. It is easy to check that the updating formulas in Section 4.1 and Algorithm 1 described in Sec-
tion 4.2 do not contain subtractions when applied to TN matrices, with the exception of a subtrac-
tion for the computation of δi+1. In fact, e−1


i , βi, γi are sums of nonnegative quantities, and pi in
the second loop of Algorithm 1 is the product of sums of nonnegative quantities, since ki,hi ≤ 0,
and the other factors are positive. Moreover, by induction we can prove that, in case no shift is
applied, δi > 0 and hence each ¯̄di is obtained as the sum of two nonnegative quantities, δi and
āib̄i figi, or ki hi mi/(die−1


i+1) in Algorithm 1.
In the case of shift, assume by way of contradiction that for a given i, δi ≤ 0. It is easy to see
that, if this is the case, δ j ≤ 0 for all j > i, since δi+1 is computed as the sum of two negative
quantities, in (4.12) and in the third loop of Algorithm 1 as well. But this is a contradiction since
¯̄dn = δn > 0, as already proved. The updating of the invariants does not involve subtractions since


hi,ki ≤ 0 and σk+1 > 0.


The approximation of distinct eigenvalues in increasing order is a well known property of LR conver-
gence in the real positive case, if the shift strategy preserves the ordering, as for Laguerre shift. More in
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detail, for nonsingular quasiseparable TN matrices the Laguerre shift σk+1 is such that 0 < σk+1 ≤ µn, thus
the shift is generally multiplied by a factor slightly less than one, also to prevent the effect of rounding
errors which could destroy the TN structure.


As a consequence of the shift strategy the eigenvalues are computed in increasing order, so the deflation
criterion is based only on the magnitude of the off-diagonal entries in the last row and column of A(k).


The cost of Algorithm 1 is of 17n flops without shift and of 27n in the case a shift strategy is applied.
The cost doubles if one works without invariants, and decreases, if one deals, for example, with tridiagonal
matrices, because the parameters xi and yi are not neeeded.


6. Reduction to tridiagonal form. The Neville representation of quasiseparable matrices makes it
easy to describe also an O(n2) algorithm for the reduction into tridiagonal form of a matrix in S . A tridiag-
onalization procedure for TN matrices with the generalized quasiseparable structure has been described by
Gemignani in [14] and inspires to the algorithm of Koev designed for a generic TN matrix [15]. However,


Algorithm 2 Tridiagonalization procedure


x̂← x; ŷ← y, â← a; b̂← b; d̂← d;
for j = 1 to n-1 do


for i = n−1 to j do
[x̂, ŷ, â, b̂, d̂]←swap(x̂, ŷ, â, b̂, d̂, i); {Annihilates row i}
[x̂, ŷ, â, b̂, d̂]←swap(ŷ, x̂, b̂, â, d̂, i); {Annihilates column i}


end for
end for


Algorithm 3 [x̂, ŷ, â, b̂, d̂]←swap(x,y,a,b,d, i)
Require: i <= n−1


α← x(i) {The Gauss transformation acting on rows i and i+1 is E =
[


1 0
α 1


]
}


x̂← x, ŷ← y, â← a, b̂← b, d̂← d; {Parameter initialization}
x̂(i)← 0;


w← 1+αy(i); {The new Gauss transformation acting on the left of Rs is E(1) =
[


w 0
α 1/w


]
}


ŷ(i−1)← wy(i−1), ŷ(i)← y(i)/w;


k← w−αb(i) {The new Gauss transformation acting on the left of R1 is E(2) =
[


k 0
α 1/k


]
}


b̂(i−1)← wb(i−1); b̂(i)← k b(i)/w;
if i 6= n−1 then


b̂(i+1)← k b(i+1)
end if
d̂(i)← k d(i); d̂(i+1)← d(i+1)/k;
â(i)← a(i)− (αd(i+1)/d(i));
if i 6= n−1 then


δ← (αd(i+1)/d(i))a(i+1)/a(i), {The Gauss transformation acting on rows i+1, i+2 on the left
of L1 is


E(3) =
[


1 0
δ 1


]
}


â(i+1)← a(i+1)+δ;
end if
if i 6= n−1 then


x̂(i+1)← δ− x(i+1)
end if


it is possible to see that the algorithm can be extended also to matrix not TN but belonging to the class S .
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TABLE 7.1
Results for totally nonnegative random matrices.


n niter E(abs) E(rel) E(rel2) QS-qd(sec)
10 37 3.3526e-15 4.8898e-16 1.4517e-14 0.38
50 239 5.6901e-14 3.5140e-15 1.0133e-14 0.56


100 488 1.3217e-13 6.0148e-15 1.5512e-13 1.65
200 993 2.2589e-13 7.3909e-15 1.5067e-13 4.62
300 1546 3.1303e-13 8.7152e-15 1.5241e-13 10.61
400 2080 3.0187e-13 7.6370e-15 6.3569e-13 19.29
500 2576 3.8896e-13 8.6375e-15 2.9228e-13 33.69
700 3812 6.1653e-13 1.1881e-14 3.2559e-12 68.83


1000 5689 9.5412e-13 1.4728e-14 8.9376e-13 135.19


In the case the tridiagonalization process is applied to TN matrices the stability of the process is guaran-
teed since it is subtraction free, and no breakdown can occur since there are no divisions by zero. Let us
describe the process of tridiagonalization of a matrix A ∈ S using the representation in terms of parameters
xi,yi,ai,bi,di. The algorithm can be described as follows.


To understand the tridiagonalization procedure, note that each time we apply the swap procedure with
parameter i, we annihilate the entry xi or yi appearing in the representation of the quasiseparable matrix.
We need to annihilate each xi several time, since the swap procedure creates a bulge that has to be removed
with more Gauss transformations. In particular, we have to apply swap on row i for each column, then
we have a total of n(n−1) calls to swap. The swap function, with parameter i, acts on rows i, i + 1 and
annihilates xi, multiplying by a Gauss elementary matrix Gi on the right and by its inverse on the left. We


have, G−1
i AGi = G−1


i Ls L1 DR1 Rs Gi, where Gi = Ii−1⊕E ⊕ In−i−1, and E =
[


1 0
x(i) 1


]
. Reasoning


similarly to what done for deriving the recurrences in Section 4.1, the Gauss transformation Gi acting on
the right is moved inside as follows:


G−1
i AGi = G−1


i Ls L1 DR1 (Rs Gi) = L(1)
s L1 DR1 G(1)


i R̂s


= L(1)
s L1 D(R1 G(1)


i ) R̂s = L(1)
s L1 DG(2)


i R̂1 R̂s


= L(1)
s G(3)


i+1L̂1 D̂ R̂1 R̂s = L̂s L̂1 D̂ R̂1 R̂s.


In particular, with the same notation of the pseudocode in Algorithm 3, we have G(1)
i = Ii−1⊕E(1)⊕ In−i−1,


with E(1) =
[


w 0
x(i) 1/w


]
, G(2)


i = Ii−1⊕E(2)⊕ In−i−1, with E(2) =
[


k 0
x(i) 1/k


]
, and finally G(3)


i+1 =


Ii⊕E(3)⊕ In−i−2, with E(3) =
[


1 0
δ 1


]
. Since G(1)


i Ls has the only effect of annihilating the i-th row, when


we multiply on the right by G(3)
i+1, this will only update the entry i+1 of the vector describing L(1)


s .
The swap procedure costs 19 flops, hence the cost of the tridiagonalization procedure is 19n2. Once


the tridiagonal matrix is available, one can apply one of the well known techniques for tridiagonal matrices.
For example, since we already have the LU factorization, we can proceed applying our method described in
Section 4.1 pruned of the unnecessary recurrences related to the updating of the parameters xi and yi, that
now are zero. Similarly one can apply the dqds algorithm [17]. Another possible way is to symmetrize the
tridiagonal matrix first, then apply the QR or the LLH method. The cost of dqds algorithm is about 6n flops
plus the cost of the shift, that is 31n if Laguerre shift is applied using a simplified version of the formulas
proposed in Section 4.3.


7. Numerical experiments. In this section we report some numerical results obtained using our
methods for the computation of all eigenvalues of a possible unsymmetric quasiseparable matrix. The
experiments where done using MATLAB 2006b on a Mac Powerbook, running OS X.5.


We denote by λ = [λ1,λ2, . . . ,λn] the vector containing the exact eigenvalues and by λ̃ = [λ̃1, λ̃2, . . . , λ̃n]
the vector of the computed ones, sorted in such a way λ̃i is an approximation of λi. The error criteria for
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TABLE 7.2
A = (ones(n)+diag(0 : n−1))−1. A is an arrowhead symmetric matrix


n niter E(abs) E(rel) E(rel2) QS-qd(sec)
10 39 7.6328e-16 1.7383e-16 1.0623e-15 0.18
50 222 3.8659e-15 6.5444e-16 4.1704e-14 0.34


100 444 1.0880e-14 1.6580e-15 3.5737e-14 1.28
200 883 1.3769e-14 1.9065e-15 6.8910e-14 4.32
300 1314 1.1747e-14 1.5437e-15 3.0430e-13 9.56
500 2162 1.3649e-14 1.6849e-15 2.0812e-13 27.06


TABLE 7.3
Random sspd matrix. Comparison with QS-qd and EIGSSD


n E(abs) E(rel) QS-qd(sec) E(abs) E(rel) EIGSSD(sec)
10 2.7732e-15 1.0333e-15 0.08 1.0151e-14 3.7824e-15 0.14
50 4.6343e-13 7.5474e-14 0.39 7.4737e-14 1.2172e-14 0.94


100 2.7996e-13 3.1850e-14 1.36 2.7323e-13 3.1085e-14 3.29
200 3.0727e-12 2.3750e-13 5.25 1.0149e-12 7.8444e-14 12.59
300 2.4134e-12 1.4828e-13 14.80 8.9760e-12 5.5147e-13 32.64
500 6.9054e-12 3.5405e-13 35.29 2.6940e-12 1.3812e-13 78.63


measuring accuracys are as follows:


E(abs) = ‖λ− λ̃‖∞ = max
i


{
|λi− λ̃i|


}
, E(rel) = max


i


{
|λi− λ̃i|
|λi|


}
.


We also use the infinity norm relative criterion defined as


E(rel2) =
‖λ− λ̃‖∞


‖λ‖∞


.


Note that E(rel) < tol guarantees that all eigenvalues have been computed with a relative error lower than
the tolerance tol, while this is not true when E(rel2) is considered. In our experiments we compared the
eigenvalues computed with our method (denoted as QS-qd for quasiseparable-qd) with MATLAB eig,
and we used a cutting criterion of 10−16 as deflation tolerance. We know that, for rank structured matrices,
it is often more convenient to compute the eigenvalues applying directly an iterative method without the
preliminary reduction to tridiagonal or Hessenberg form [23]. In fact, the possibility of representing the
matrices with a low number of parameters, and the closure under GR-type [25] steps, makes it convenient to
apply directly an implicit method acting on the representation of the rank structured matrix. The overhead
of the computation of the tridiagonal structure is, in fact, not rewarded by the efficiency of the tridiagonal
eigensolver. The purpose of our experimentation is to show that good accuracy and efficiency can be
obtained applying QS-qd directly on the representation of a quasiseparable matrix.


For symmetric semiseparable plus diagonal matrices (both TN or not) we compared the results ob-
tained with our solver both in terms of accuracy and CPU time with the results obtained by using the QR
solver implemented by the routine EIGSSD by the group at K.U. Leuven which is available online. On
TN quasiseparable matrices, a comparison with the method (denoted by TridLR) described in Section 6,
that first reduces the matrix in tridiagonal form, and then applies the method dqds [17] for tridiagonal
matrices, are reported. We run tests also on arrowhead matrices, and on unsymmetric TN matrices. Ta-
ble 7.1 reports the results obtained by our method on instances of random generated totally nonnegative
matrices of different sizes. The time in seconds of our implementation is reported as well. We see that the
absolute and relative errors are quite good, and the increase of time respect to the size shows, as expected, a
quadratic behavior. To show the effectiveness of QS-qd also for matrices that are not totally nonnegative,
we report some results in Tables 7.2 and 7.3. In particular in Table 7.2 are reported the results obtained
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TABLE 7.4
Comparison for totally nonnegative sspd matrices between QS-qd and EIGSSD


n E(abs) E(rel) QS-qd(sec) E(abs) E(rel) EIGSSD(sec)
10 1.8438e-14 1.8196e-15 0.10 2.4170e-14 2.3852e-15 0.17
50 7.5067e-14 4.2194e-15 1.98 1.4532e-13 1.2172e-14 4.39


100 6.4859e-14 3.0592e-15 6.40 2.0281e-12 9.5658e-14 16.66
200 3.5978e-13 9.3222e-15 10.05 1.5309e-12 3.9668e-14 31.09
300 4.4886e-13 8.2383e-15 10.71 1.2081e-12 2.2174e-14 22.60
400 4.6996e-13 8.9675e-15 21.38 1.6238e-12 3.0985e-14 48.55
500 6.4709e-13 1.0402e-14 39.42 6.0125e-10 9.6647e-12 76.97


TABLE 7.5
For totally nonegative matrices, comarispon between the two approaches proposed in this paper. The TriLR first applies the


tridiagonalization procedure of Section 6 and the steps of dqds algorithm.


n E(abs) E(rel) TriLR(sec) E(abs) E(rel) QS-qd(sec)
10 3.3562e-15 7.2967e-16 0.17 6.2538e-15 1.3596e-15 0.10
50 3.7408e-14 3.1866e-15 0.78 3.6114e-14 3.0764e-15 0.38


100 9.8449e-14 4.4702e-15 2.26 1.1809e-13 5.3618e-15 1.35
200 2.1553e-13 7.0867e-15 8.74 2.5090e-13 8.2494e-15 4.69
400 2.4226e-13 6.3467e-15 39.96 3.1101e-13 8.1479e-15 21.79
600 3.3020e-13 6.5145e-15 80.22 4.8100e-13 9.4897e-15 49.92
800 3.9049e-13 7.1229e-15 149.61 7.0710e-13 1.2898e-14 91.31


1000 4.9826e-13 7.8901e-15 263.43 1.0501e-12 1.6629e-14 136.11


on a particular arrowhead matrix, with well distributed eigenvalues. The algorithm, in this case is fast
and accurate. The behavior of our method on random symmetric semiseparable plus diagonal matrices is
reported in Table 7.3. We compare of our method with the EIGSSD routine proposed by the group at K.U.
Leuven, which represents the state of the art of the QR implementation for symmetric semiseparable plus
diagonal matrices. In this case, our algorithm performs a little worst from the point of view of accuracy,
but is faster, requiring almost half the time required by the QR routine. To make a fair comparison, the
time for the conversion from our representation to the Givens-vector representation used by the EIGSSD
routine is not accounted for.


As we pointed out in Section 5, the stability of QS-qd is not guaranteed for a generic symmetric
matrix. However, the only potentially dangerous subtraction of Algorithm 1 can occur in the computation
of the pi at early steps of the process, since at convergence mi goes to zero.


In the case the matrix is totally nonnegative, our algorithm performs better also in terms of accuracy,
and we gain a digit over the QR implementation as can be observed from the results in Table 7.4.


In Section 6 we described a tridiagonalization procedure for quasiseparable, Neville-representable
matrices. The comparison between the flops required by the tridiagonalization procedure followed by
standard qd technique for tridiagonals (denoted, as mentioned before, as TridLR), and QS-qd, seems to
suggest that it is more convenient to reduce the matrix into tridiagonal form. However, if one compares the
time required by the two algorithms, reported in Table 7.5, we note that the times obtained are not those
expected, and the accuracy is comparable. This suggests that, together with flops count, a comparison of
the times is also interesting since the interpreter or compiler - depending on the language the code is written
in -can optimize the code to get faster execution times.


8. Conclusions. In this paper two approaches for the computation of the eigenvalues of a quasisepa-
rable Neville representable matrix have been proposed. The first one is a qd-type algorithm inspired by the
qd methods for tridiagonal matrices, the second idea is to reduce the matrix to tridiagonal form and then
apply a method for tridiagonal matrices, for instance the same qd algorithm.


We have presented several theoretical results showing the closeness of the class of Neville repre-
sentable matrices under LR steps. For totally nonnegative matrices we proved also, that the proposed
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algorithms are subtraction free, do not occur in breakdown and if a shift preserving positivity is adopted,
then each LR step produces a new matrix still totally nonnegative.


An extensive numerical testing has been performed showing the effectiveness of this approach.
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