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Abstract—It is common experience to upgrade 

firmware of mobile devices and obtain longer 

battery life, living proof of how software affects 

power consumption of a device. Despite this 

empirical observation, there is a lack for models 

and methodologies correlating computations with 

power consumption [3-5]. In this paper we propose 

an experimental approach to computational 

complexity and a methodology for conducting 

measures which result independent of the 

underlying system running the algorithm/software 

to be tested. Early experimental results are 

presented and discussed, showing that our 

methodology is robust and can be used in many 

settings. We also introduce the foundations of a 

theory for experimental algorithm complexity, 

which mimics what is predicted by the classic 

theory of computational complexity (big-O or 

Theta notations), except for some notable 

exceptions that we highlight and comment. This 

theory is validated in many scenarios, by 

considering several architectures and algorithms.  

Because of the relation between time complexity 

and energy consumption, we may suggest that our 

work measures the “information work”: namely, 

the energy required for performing information 

processing. 

 
Keywords- energy-profiling of algorithms, power 

consumption models, RAM model, Energon, experimental 

algorithm complexity, green computing. 

I. INTRODUCTION 

Programs are made of instructions that manipulate 

system resources to achieve a goal. These 

instructions are executed by a processor (CPU), 

which uses electric signals to change bit 

configurations according to their semantics. 

Copying bits in a system also involves certain 

amount of physical work. Therefore, for each 

instruction of a specific processor, it is in 

principle possible to give an estimate of its power 

absorption that is roughly related to the micro 

operations performed to fulfill the instruction 

semantics. In these cases, researchers typically 

consider embedded systems, where 

computational-units are simpler than general 

purpose processors, often based on a RISC and 

missing many of the power hungry functionalities 

(multimedia and floating point instructions, high 

performance memory controllers) that are 

commonplace in the world of full-fledged 

computers. It is therefore not surprising that for 

such simple devices authors come to the 

conclusion that all instructions have the same 

power cost, and derive regular behaviors as well 

as detailed system models (see e.g. [21]).  

However, modern CPUs are much more 

sophisticated than that, in terms of complexity and 

sheer number of transistors. They are intrinsically 

parallel and concurrent at the micro-architecture 

level, with the actual amount of energy required to 

execute a single instruction being suitably 

estimated on average at the best. The variance of 

these costs may be large, and it worsens as we 

move higher in the software stack. Take for 

example virtual machines, such as the Java 

Virtual Machine: here we want to associate an 

average power consumption to complex entities 

such as the intermediate language opcodes. These 

can actually trigger quite (energy-)costly side 

effects within both the virtual machine and the 

hosting operating system.  



It goes without saying that things get even more 

complicated when we need to define power cost 

models for programs, which thus involve a 

compilation step. This is the reason why [4] asked 

for “models to be developed at all abstraction 

levels and granularities. […] These models will 

provide a solid baseline for higher level models, 

and many intermediate levels that can be of use to 

various layers in the abstraction hierarchy.” 

 

As a result, we can currently devise two main 

approaches to power-consumption modeling: 

 

1. Accurate analytic models based on the explicit 

measurement of the energy consumption of a 

set of tests at the hardware level (see e.g. 

[13,15]). This approach is restricted to be used 

onto a narrow class of simple processors 

whose energy-consumptions features are well 

known and defined, such as embedded 

systems and/or micro controllers. 

2. Modeling of power at the simulation level (see 

e.g. [16,17]). Here power-consumption of the 

underlying virtual machine [14] or of the 

entire system is taken into account. 

Unfortunately, this approach is limited to be 

used on simple codes to be profiled.  

 

However, a model to be useful must be complex 

enough to capture the most important factors in 

the application (whichever it is), while being 

simple enough to allow abstract reasoning. The 

purpose of a good abstract model is not to model 

exactly all aspects of reality, but to be used as a 

heuristic tool by an engineer when searching for 

engineering solutions. The establishment of a 

good model can be the difference between success 

and failure of a science as a foundation of an 

engineering discipline [4]. Historically the success 

of algorithmics as a science underlying software 

engineering relied on the deployment of the 

Random Access Model (RAM) as a model for 

designing and analyzing algorithms. While the 

RAM model ignores issues such as memory 

hierarchies, it captures enough reality to be an 

extremely useful model for establishing the 

efficiency of an algorithm or for comparing 

algorithms based on their time performance. Here 

the analysis of algorithmic performance concerns 

with some computational resources and takes into 

account only asymptotic trends by ignoring 

constants, lower-order terms, as well as the fine 

details of the underline  physical machine 

(architecture, compiler, language,…) on which the 

algorithm is executed. Primary resources are 

typically time and space.   

Nowadays, PCs got more sophisticated, so that the 

RAM model became inadequate to estimate 

algorithm performance on large datasets. More 

sophisticated models have then been introduced in 

order to measure other (computational) resources 

such as I/Os (external-memory model [6]), 

parallelism and/or communication (logP, BSP, 

etc. [7]), hierarchy of memory levels (cache-

oblivious model [8]), etc. etc.  
 

Given that [5] “some eight orders of magnitude 

separate the energy efficiency of conventional 

computers from what is theoretically possible”, 

energy-consumption became a primary resource 

to be optimized in systems and algorithm design, 

and thus many researchers as well as companies 

asked for models and metrics for evaluating the 

energy-profile of algorithms/architectures in 

advance to allow comparisons and novel designs. 

Yet, these issues are in their infancy although 

some notable efforts have been pursued [3-5]. 

Certainly a program’s energy consumption 

strongly depends on the number of instructions 

executed and the number of accesses to the 

memory hierarchy --- these are the same factors 

that determine a program’s completion time [3]. 

Also, an instruction that takes fewer clock cycles 

to execute generally also consumes less energy. 

However, as it was made obvious by the 

RISC/CISC debate a few years ago [22,23], 

simpler instructions lead on the one hand to a 

higher instruction count for the same algorithm, 

and on the other hand to systems whose clock 

cycle is possibly shorter. Beware: as power 

dissipation is related to the square of the clock 

frequency, the tradeoff between simplicity and 

power of the instructions, which has been 



thoroughly explored in recent years as the market 

strived for faster and faster CPUs, turns out not to 

be easily transferred to the energy consumption. 

As stated in [3], “the correspondence between 

completion time and energy consumption is not 

one-to-one. […] The average power consumption 

and computation rates are intricately tied 

together, making it difficult to speak of power 

complexity in isolation. […] This also indicates 

that models for the study of energy-computation 

tradeoffs would need to address more than just 

the CPU.” However, literature still misses an 

“abstract” model, akin to the RAM, and a 

methodology, akin to the asymptotic analysis of 

computational complexity, that accounts for 

energy issues.  

 

In this paper we try to contribute to these issues 

by presenting a theory for experimentally 

analyzing algorithms using power consumption as 

a measure of their behavior, and that results 

independent of the underlying system used to 

execute the algorithms/programs to be tested. We 

pursue our goal in four steps: 

 First, we introduce an experimental 

methodology to measure program behavior in 

a robust yet simple way, so that comparisons 

can be made across different architectures, 

system configurations and algorithms, and by 

anyone without any particular HW/SW skills. 

Our methodology consists of some easy-to-

build hardware tools and a public software to 

use them; they will be described in fine details 

in order to make our experiments reproducible 

(being this a key step of any scientific result!). 

Our HW is plugged between the power supply 

and the PC-case (on the alternating-current 

side), and still allows robust estimations 

without being invasive. 

 Second, unlike other papers that use code 

profiling and measure the absolute energy 

consumption (see above), we introduce the 

notion of Energon, which is a sort of “unit of 

power consumption” for the system in use. 

The Energon in some sense mimics the role of 

the “algorithmic step” of the RAM model 

(unit of computation), here adapted to take 

into account the energy-profile of an 

algorithm and being as much independent as 

possible of the HW-SW specialties of the 

underlying system (as for the RAM-step). 

Energon is computed as the energy consumed 

by the CPU when running at 100% peak 

performance (because of the execution of 

some simple registry-based code, see Section 

IV). The Energon is therefore a relative value, 

that should allow comparison of 

algorithms/programs in a way that is 

independent on the underlying system which 

runs them.  

 We validate the Energon by evaluating the 

energy-profile of some well-known algorithms 

(e.g. binary search, few sorting algorithms). 

We show that indeed our evaluation is robust 

and reflects what it is predicted by the RAM 

model, even if it concentrates only on the 

energy-profile of the algorithms and works on 

the alternating-current.  

 Given these experimental results we introduce 

the  notion of , the experimental algorithm 

complexity, inspired by the more popular -

notation of classic computational complexity. 

We use it to characterize the energy-

performance of some well-known algorithms. 

Interestingly,   is compositional and thus can 

be used, as it occurs for , to compare CPU-

bounded algorithms based on their energy-

profile in a system-independent way. 

 Finally, we extend our study to other 

processors and architectures thus concluding, 

as claimed in [3], that the relation between 

time- and energy-efficiency is much intricate 

and although  somehow mimics , they are 

much different  when measuring the execution 

of parallel algorithms on many-core systems 

and over a hierarchy of memory levels. We 

quantify these differences and thus draw some 

novel, preliminary, interesting conclusions 

that speculate onto possible applications of 

our theory and methodology to green 

computing. 

 



It goes without saying that our work is still in its 

infancy, but nonetheless we believe that our 

results are interesting in that they relate 

“information-space” properties to “physical-

space” properties by reasoning about algorithms 

and programs on the ground of whole real 

systems. Moreover, the theory we propose, 

although confined to CPU-bounded computations 

aims, with its simplicity, at addressing the issue 

drawn in [4] for “models to be developed at all 

abstraction levels and granularities. […]”.  

 

The paper is organized as follows: in section II we 

introduce our methodology and the goals of our 

work; section III describes the measurement setup 

for reproducing the experiments and discuss some 

early results; section IV introduces the notion of 

Energon, a meter we use to normalize 

measurements; section V discusses the analysis of 

few basic algorithms with the goal of correlating 

our experimental theory of algorithm complexity 

to the classic theory of computational complexity, 

and validate the Energon-based energy-profiling 

of those algorithms; section VI introduces some 

definitions and the notion of , our complexity 

measure, inspired by the more popular ; sections 

VII-VIII discuss how our measure adapts to 

different processors and architectures; section IX 

speculates possible applications of our theory with 

respect to benchmarking, black-box complexity, 

and green computing; section X draws some final 

conclusions and suggests future works. 

II. A METHODOLOGY FOR EXPERIMENTAL 

ALGORITHM COMPLEXITY 

The way we write programs affects their power 

consumption; so our primary goal is to build a 

methodology for empirically measure this effect 

in a way that is as much independent as possible 

from the experimental setting, namely the system 

running the experiment. Our further goal is not 

only in reporting our own experimental results, 

but also in clearly defining an experimental 

framework that our community can use for its 

own experiments or for validating ours.  

Thus we are looking for an experimental setup 

with the following characteristics: 

Reproducibility, Robustness, and Universality. 

As we commented in the introduction, most of the 

existing power-modeling results are specific to a 

particular architecture, so their setup is difficult to 

be generalized to other HW-SW settings. We 

instead aim at a universally applicable measure 

that results agnostic of the underlying HW/SW 

components. The first contribution of this paper is 

therefore a robust and easy-to-implement 

experimental methodology for forecasting 

expected consumption and energy savings 

deriving from architectural as well as software 

choices. It will be based on an ammeter, and a 

(public) software that reads the ammeter and 

performs the measurements over the tested 

algorithm. We verified that our methodology is 

sufficiently sensible in comparing energy-

consumption of algorithms at a fine scale. 

Moreover, it allowed measurements on standard 

PCs without any particular OS configuration, and 

indeed they successfully extend to other 

architectures and settings, as we will comment in 

Sect. VII-VIII.  

 

To validate our methodology, we tried to relate 

classic algorithmic complexity (based on the 

RAM model) to power consumption, as the input 

grows. As we discussed in the introduction, it is 

reasonable to assume that power consumption is 

related to the number of operations performed by 

an algorithm so, if our methodology is sound, then 

its energy-evaluations should resemble what is 

predicted by the asymptotic time-complexity on 

CPU-bounded computations (given the limits of 

the RAM model). And indeed this is the case for 

binary-search and various well-known sorting 

algorithms. However, in order to make a theory 

we cannot rely our algorithmic comparisons onto 

their absolute energy-consumptions, since this 

would be dependent on the specific PC on which 

the experiment is executed. Therefore, in order to 

mimic the role of “algorithmic step” in the classic 

time-complexity analysis on the RAM model, we 

introduce a normalization factor that allows us to 



obtain data-independent energy–consumption 

evaluations (rather than using absolute Watts 

and/or Joules). This is called the Energon and 

allows us to relate pretty well the complexity 

expected from algorithmic theory to our energy-

aware experimental complexity, independently on 

the executing system. In few words (for details 

see Sect. IV), the Energon relates the energy-

profile of the tested software with the one of a 

simple assembler-code that executes 1G register 

increments. As a result, the Energon does not 

measure energy-consumption but it provides 

system-independent measures for algorithm 

comparison (à la RAM, but now for the energy 

resource). 

 

A nice property of our theory will be that it is 

compositional: in fact, we will experimentally 

show that it allows to evaluate energy 

consumption of a program by summing up the 

costs of each one of its constituting algorithms, in 

an arithmetically predictable way. Moreover it is 

robust enough that we can use it to evaluate the 

power efficiency of whole programs on different 

processors and/or architectural settings (e.g. Atom 

vs. AMD CPU, single- vs multi-core 

computation). Surprisingly we will show that 

there are significant savings when an Atom CPU 

is in use, and also that exist a wasting of up-to 

10% for a quad core mostly idle (see Sect. VII for 

details). These, as well as other features (e.g. how 

the pattern of memory accesses impact onto the 

energy-profile of an algorithm), will help us in 

deriving some interesting invariants that could be 

deployed to design novel energy-efficient 

algorithms.  

III. TEST ENVIRONMENT 

The test environment has been redesigned several 

times because of many obvious choices do exist, 

each with its own pros/cons (e.g. think to the 

many positions an ammeter can take among the 

modules of a PC motherboard).  

Our first choice has been to choose an ammeter 

that is commercially available, cheap and that can 

be easily programmed, in order to automate the 

reading of experimental data and the 

transformation of the readings into Joules. We 

opted for the Phidgets [1] system, that features a 

plug-and-play approach to electronics: a 

microcontroller with a USB interface can be 

plugged with a number of sensors with a 

standardized interface. We used the Phidgets 

ammeter 1122 sensor [2] that has a range of 30A 

and 0.04A of resolution on AC. The typical error 

is between 1% and 2% with a maximum error of 

5%. The Phidgets system features several 

programming libraries targeting almost all 

operating systems and programming 

environments nowadays available. We used the 

.NET interface and developed the software using 

C#. Other ammeters could be used in place of the 

one we selected, provided that they offer a 

sampling frequency of at least 10Hz and a 

comparable error range. 

 

Given this HW, we proceeded to measure the 

current provided to the motherboard by 

instrumenting the power lines running inside the 

case from the power supply. We made this based 

on the belief that the circuitry of the switching 

power supply, which transforms alternating 

current into direct one, would reduce the ability of 

detecting current variations of our ammeter. 

Moreover, we thought (following [13]) to be able 

to test single contributions of different 

components fed by separate power lines, such as 

hard drive, CPU and memory. Although 

sophisticated and precise (potentially useful for 

digging into our results into the near future), we 

decided to drop this approach in favor of the 

simpler one that detects current variations on the 

alternating current side of the power supply. 

Several experiments showed that this was enough 

to obtain reliable measurements. Thus we decided 

to use a single ammeter connected to the AC line 

of the target computer, with increased ease of 

instrumentation.  

 

Like [13], we designed a two-parties software 

system (see Figure 1): one is responsible for 

collecting data from the ammeter; the other runs 

on the target machine and is responsible for 



starting the tested software (on that same 

machine) and signaling its start/end to the former 

(data-collecting) software.  

 

 
 

Figure 1.  The structure of the experimental setup 

One may wonder whether the use of a network 

affects the measures. We verified with several 

experiments that such an approach is indeed 

robust enough to ignore micro variations due to 

the operating eco-system, provided that 

experiments are conducted when the system is 

idle and no significant programs are running (i.e. 

CPU is essentially idle). We will discuss further 

this analogy with eco-systems in the next section. 

 

Figure 2 shows the power consumption (in Watts) 

on an 8-core system, which was first idle and then 

executing a program that performs a linear scan of 

a huge array (marked by green and red lines). The 

OS exhibits a stable behavior when idle, but it is 

also interesting to notice that the spike due to a 

full use of the 8-cores accounts only for around 

40% an increase in power consumption. Idle 

computers consume a lot of energy! (see also [9])  

 

 
Figure 2.  Idle operating system, and with a program running. 

The two programs used for performing 

measurements are open source and available on 

the CodePlex online site [12] (remember one of 

our main requirements--- reproducibility). 

The testing software performs a sub-sampling of 

the data received from the ammeter sensor by 

computing the average of the samples received 

each tenth of a second, thus reducing jittering 

effects due to the environment and possible errors 

in the readings. The rest of the system relies on a 

10Hz measurement rate. This simple strategy will 

be subject to improvements and refinements over 

time, though so far it has been able to effectively 

show an appropriate amount of details in the data. 

We computed several values from the raw current 

readings taken from the sensor. We are able to 

estimate the power consumption (in Watts and 

Joules) by using well known relations among the 

quantities involved. Namely, power is obtained by 

multiplying the current and the voltage together 

(220v AC in Italy). We disregard the power factor 

cos() in the conversion, which leads us to 

slightly over-estimating the power (by a constant 

factor that can be easily reinserted). The energy 

expressed in Joule is then obtained by discrete 

integration (multiplying power and time together 

for each time slot and then summing up the 

results). 

 

 
Figure 3.  Energy consumption of a (log n)-time algorithm. 

As an example, Figure above shows the energy 

used to perform a binary search on an array of 

increasing size. In order to obtain measurable 

durations we iterated each search 2
20

 times, which 

on the particular machine we used to perform the 

experiment took between 0.4 and 0.75 seconds to 



complete. The whole test has been iterated 30 

times and the results averaged. We actually 

employed an iteration factor of 30 for all tests 

described in this paper, with the only exception of 

those reported in section VIII where a factor of 3 

has been used. 

 

We find amazing that the behavior of an 

algorithm with computational complexity (log 

n) can be measured through the power line, and 

thus our simple methodology and HW-tools. The 

logarithm function fits the energy-consumption 

plot, as expected. In the subsequent sections, we 

will present energy-plots of more intensive 

computations, showing even more precise trends 

that match the curves predicted by the classic 

(asymptotic) computational complexity, and thus 

regarding so called CPU-bounded computations.  

However, as observed before, Joule is an energy 

measure useful for speculating about power 

consumption of a particular system, but it cannot 

be used to compare measurements across different 

systems, as any “reasonable” model should allow 

to. We need a more robust measure which is 

invariant wrt the underlying system running the 

experiment, thus playing the role of the RAM 

model but in the energy-profiling setting. This is 

what we introduce in the next section. 

 

IV. THE ENERGON 

It is well known that often measurements taken in 

clean environments differ from those ones 

obtained in the real world. For this reason, or 

because a “clean” environment is sometimes 

impossible to define, industrial benchmarks like 

SysMark 2007 [18] perform system testing 

empirically by starting several times a set of 

productivity programs installed on a “clean” 

system, trying to reproduce typical usage patterns. 

From our perspective the system we observe is a 

sort of eco-system, including OS processes and 

services triggered by external events and 

interacting with other applications. We want to 

measure changes that happen when we alter the 

situation by running our program, distinguishing 

them from the overall picture and from the noise 

caused by the mentioned eco-system. Two 

different runs of the same program may well lead 

to different results, so we need a method that 

distinguishes the contribution of the program we 

want to observe from the contribution due to the 

underlying system. 

 

The first attempt has been the obvious one: 

measure the energy absorption of the idle system 

in Joules or Watts for a given amount of time, and 

then subtract this “milieu” from the measure 

acquired when our tested-program runs. This 

approach is ill-conditioned because the power 

consumption of the idle system is usually several 

times bigger than both the signal we want to 

measure and the additional noise, and moreover 

there occur sometimes spikes that are clearly 

related to some service running that jeopardize the 

interpretation of the measurements. 

To circumvent these drawbacks, we have drawn 

inspiration from approaches taken by biomedical 

engineers for measuring cell eco-systems [19]. 

When biologists measure cells activity on a 

terrain, for instance for drug testing, they first take 

measurements in a reference system, and then, 

after  performing the change they want to observe, 

they take additional data. Results are then 

normalized with respect to the first reference that 

acts as a meter. There are two aspects in this 

approach worth of notice: reference measurements 

are made because it is virtually impossible to 

reproduce exact environmental parameters (such 

as temperature, humidity, etc.); and the reference 

system includes cells, and not just the terrain, 

because cells that interact with their environment 

may alter the terrain parameters even before the 

desired stimulation is performed. 

 

We found strong analogies between our 

framework and the cell eco-system. In particular 

the fact that an idle OS may change the execution 

patterns of its services (the eco-system) when a 

new program runs and asks for resources. We thus 

introduce a reference program in our 

experimental methodology that is run in the same 

environment where the experiment should be 



executed. Then the energy-cost of this reference-

program is used as a meter for normalizing the 

results of our experiments. There are several 

choices for such a meter, taking for instance into 

account different architectural features and 

environment services, and we expect over time to 

study several other meter definitions. In this paper 

we propose the Energon program,  which is 

designed to use the CPU (or a single core of it) at 

full speed for a certain amount of cycles (namely 

1G), and before the real experiment is run. 

 

 
Figure 4.  The energon definition in C++. 

Figure above shows the simple C++ source code 

of the Energon. It consists of assembler code 

explicitly inserted in a loop to ensure that no 

compiler could change it and thus render the 

measurement compiler-dependent. The 

surrounding C++ code is used to communicate 

with the testing software and signals when to start 

and stop the measurement. In this way more 

complex algorithms can exclude their setup phase 

from the measurement. 

 

The code can be easily adapted to different 

architectures. We deliberately avoided at this 

stage a (Energon) program involving memory, 

since communications between CPU and memory 

are asynchronous and may introduce unwanted 

idle cycles in the CPU which heavily depend on 

the hierarchy of memory levels. We will discuss 

further this issue in section VII, and defer the 

study of the impact of the pattern of memory-

accesses onto algorithmic energy-consumption to 

the final version of this paper. 

While the Energon test can be still thought as an 

idle power consumption plus a “100% 

computation overhead”, it is nevertheless 

measured as a whole. When we test the real 

algorithm, its measure in Energon (we use the  

Greek letter to denote 1 Energon) is computed as 

the ratio between its overall power consumption 

and the overall power consumption of the 

Energon program. This makes the measurement 

more stable and robust, because it includes the 

“constant” consumption incurred by the PC 

during the test.  

As already mentioned, measures are repeated 

several times (in our tests 30 times) to compute 

the average energy used by the Energon program 

and the program tested. We obtained a standard 

deviation of 2.8% of the average energy required 

by the Energon
1
. It is worth noticing once again 

that the Energon does not depend on time: it 

simply measures the energy required for 

incrementing a register one billion of times. Of 

course it will take more or less time depending on 

the particular processor used, but in some sense it 

captures the notion of “computational power per 

electrical power” of the processor. And in this 

sense, it is mimicking the notion of “algorithmic 

step in a RAM model” that represents the 

computational unit independent on the HW-SW 

features of the PC that will run the algorithm; here 

the Energon plays the same role but with respect 

to the energy-profile of an algorithm. 

 

The first question we faced after defining the 

Energon was: what about its stability and 

composability? We expect that if we iterate the 

Energon program h times, we observe a 

corresponding increase in its energy consumption. 

We call this new program ENERGON(h) (and the 

                                                 
1
 We avoid referring to specific architectures because we 

expect that these numbers will change as the method will be 

used on different systems. In this particular case we tested 

the energon on an AMD Athlon 64 X2 Dual Core 4200+, 

2.20GHz 2 GB RAM, running Windows Vista H.P. We 

obtained an average of 177,2516j of energy used with 

3,464587j of standard deviation. 



original is Energon(1)). Experiments show that 

the ratio ENERGON(h)/h* is correctly close to 1 

(0.97 in average with 0.01 of standard deviation). 

 

Given the Energon, we can evaluate the energy-

profile of the binary search, now scaling the 

energy-consumption by the Energon measure. The 

obtained plot (not shown for the lack of space) is 

smoother, still retaining its logarithmic shape. 

V. SORTING ALGORITHMS 

In this section we validate the robustness of our 

measurements by investigating the energy trends 

of few sorting algorithms over increasing input 

sizes. This shows that our methodology is able to 

predict algorithm trends in energy consumption 

quite carefully. In the next section we will 

elaborate on these results by introducing a theory 

of experimental algorithm complexity, useful to 

compare algorithms based only on such observed 

energy-trends. Finally, in section VIII we will 

show that energy consumption is not always 

related to completion time, especially when 

considering thread-parallel computations.  

 

We considered three well-known sorting 

algorithms: merge-sort, heap-sort, and quick-sort 

[20]. They vary either in their worst-case running 

time, or in the amount of working space, or in the 

pattern of their memory accesses. In all cases we 

measured only the sorting phase, ignoring the 

setup of the input array with random data. We 

repeated the test 30 times in order to get 

empirically sound input distributions. All the 

algorithms have been implemented and tested 

using C++. Tests using C# were also performed, 

obtaining similar results, but showing less clear 

trends due to C# virtual machine services (such as 

the garbage collector) coming into play and 

creating irregularities and spikes in the data. 

While the situation is in the scope of our work, in 

this early stage of our validation process we 

preferred to use real measurements which are 

more predictable and easily handable. 

 

Merge sort is an optimal comparison-based 

sorting algorithm that requires (n log n) time in 

the worst and average case. As shown in Figure 5 

below, the energy consumed by the algorithm as a 

function of its input size follows exactly that 

prediction obtained with the asymptotic time-

analysis in the RAM model.  

 

 
 

Figure 5.  Merge-sort energy consumption in Energon 

Heap sort is another optimal sorting algorithm 

which works in-place, and thus uses no additional 

working space, unlike Mergesort; however it 

induces a random-pattern of memory accesses. 

Figure 6 below shows an asymptotic energy-

consumption trend towards the expected (n log 

n), though at small input sizes there is a deviation 

with respect to the curve expected from theory. 

 

 
Figure 6.  Heapsort energy consumption in Energon. 
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Overall heap-sort is less efficient than merge-sort, 

even if the asymptotic behavior is the same. Using 

heap-sort requires more than twice the energy of 

merge-sort. This is probably due to the pattern of 

memory-accesses that makes merge-sort cache-

friendly: time-efficiency implies less waiting time 

by CPU, hence less power consumption. Given 

these results, in the final version of this paper we 

will deeply present our investigations about the 

non-negligible impact of the pattern of memory-

accesses onto the energy-profile of an algorithm, 

and thus onto its green-design. 

 

Quick sort is well known to be (n
2
) in the worst 

case and (n log n) in the average case, with 

lower constants than the other sorting algorithms. 

We were curious to see how our experimental 

results would have recorded this non-trivial trend. 

Figure 7 shows the energy-profile of Quicksort 

expressed in Energons. The curve is plainly 

different of the ones shown before. We tried to fit 

data against different functions using the least 

square method. Both n
2
 and n log n functions 

fitted nicely, though the best fit was obtained by: 

f(n) = n log n + 
n

2

a
  

with a constant value (the best fit has been found 

for a value of a=512). It is in our opinion very 

interesting that the overall cost includes both 

terms predicted by the worst- and average-case 

asymptotic analysis.  

 

 
Figure 7.  Quick sort energy consumption in Energon. 

VI. EXPERIMENTAL COMPUTATIONAL 

COMPLEXITY 

Even if at first sight the correlation between time 

and energy may suggest that an experimental 

theory of program complexity can be based just 

on time-performance, we will find that this is not 

the case when we consider other processors, the 

hierarchy of memory levels and parallel CPUs.  

However we cannot neglect such correlation, 

which comes out because obviously the longer an 

algorithm executes, the highest will be the power 

demand of the CPUs. This correlation is useful 

when considering CPU-bounded computations 

because of our simple methodology to measure 

the energy-profile of a sequential algorithm.  

 

We introduce a notation for our experimental 

complexity theory inspired by the traditional -

notation. In our case, however, we cannot rely on 

asymptotic behavior since by definition our 

measurement system is finite. 

 

Definition (-notation). Let us given a set of 

energy-measurements A expressed in Energon 

(i.e. ) and representing the energy-profile of an 

algorithm with respect to a set of inputs whose 

size is in the range [a, b]. The data set is said to 

belong to (f(n)) over that interval,  if there exist 

two constants k1 and k2 such that: 

 

 x[a, b].data(x)A  k1 f(x) ≤ data(x)  ≤ 
k2 f(x) 

 m1,m2A,x1,x2[a, b] s.t. k1f(x1)=m1 and 
k2(x2) = m2  

 

and we will write that A(f(n)) with respect to  

and [a,b].  

 

The definition tries to capture the idea that data 

can be enclosed by a function, with the additional 

requirement that the weighted function must pass 

through two data samples in order to take the 

tightest among many possible functions. 

As an example, Figure 11 shows another run of 

binary search with f(n) =  log n. 
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Figure 8.  Binary search is (log n) 

Since the interval is finite it is possible to create 

several functions f that state an experiment to be 

(f). To avoid these ambiguities, we introduce 

notions that characterize relevant behaviors of . 

 

Definition (-preferred). Given a set of data A 

over an input size interval [a, b] and two functions 

f and g. We say that f is -preferred with respect 

to g if A(f) and A(g) but f  is a better least-

square approximation than g on A’s data. 

 

Definition ( coherence).  A function f is said to 

be  coherent with respect to an algorithm if for 

each interval [a,b] of input sizes the resulting data 

set A(f). 

 

These definitions attempt to capture common 

patterns we found in the data. For instance we 

found that merge-sort is (n log n) coherent. We 

quickly find useful to have a precise meaning to 

speak about experimental data, but these 

definitions do not only address description needs. 

Actually, consider the following law: 

 

Law of composition. If two algorithms are 

respectively (f) coherent and (g) coherent, then 

the algorithm obtained by executing them in 

sequence (i.e. one after the other) is (f + g) 

coherent. 

 

This law has been verified in all our tests, and we 

are currently working onto verifying functional 

composition of algorithms: for instance if a 

sorting algorithm receives a comparison function 

that is not constant what happens to its 

experimental complexity and  ?   

 

It is important to notice that even if we mimicked 

the definition of , in our case there is no way to 

simplify composition. If you combine a quadratic 

algorithm with a linear algorithm, then you obtain 

a quadratic algorithm in . With  we can only 

say that the algorithm is made of the sum of 

quadratic and linear energy consumption. This is 

again due to the lack of asymptotic reasoning. 

Overall we have verified the following relation: if 

an algorithm has (f)  time-complexity then it is 

(f) coherent, and thus our methodology is robust 

for CPU-bounded computations. The converse in 

not necessarily true, as we will show in the next 

section. 

VII. EXPERIMENTING DIFFERENT ARCHITECTURES 

We tested two architectures: an AMD Athlon 64 

X2 Dual Core 4200+ 2.20GHz based system with 

2Gb of RAM, and an Atom N230 based system 

with 2Gb of RAM. The two architectures have 

been chosen because they are radically different. 

We have executed all algorithms of the previous 

sections (i.e. binary-search and sorting) with the 

twofold goal of verifying that Energon results are 

confirmed across different architectures, and thus 

that Energon normalization allows for data 

comparison between different systems. 

 

First of all we compared the two Energon 

computed by the two architectures, in order to get 

an idea of the overall efficiency of the two 

platforms. Results confirm the power efficiency of 

Intel Atom: it absorbs about half the energy taken 

by AMD. Of course this measurement includes 

not only the CPU-cost but also the energy-cost of 

the whole system. 

Then we applied our experimental methodology 

to binary search and the three sorting algorithms 

above. Because of lack of space Figures below 



refer only to the Energon-plots for binary search 

(results on the sorting are even better). It can be 

noted that data follow the same trend on the two 

architectures (i.e. they belong to the same class of 

) but their plot do not overlap.  

 

 
  

A possible explanation is that Energon measures 

only the CPU, not taking into account the energy-

efficiency of the whole architecture which 

therefore introduces some “energy-gaps” which 

are not negligible especially with the increase of 

the input size. (In the final version of this paper, 

we will account on these issues.) 

 

 
 

We tried then to correlate the measurements of the 

two architectures, and found that the two plots 

overlap perfectly if multiplied by a constant k (see 

pictures below). For binary search, we found 

k=2.8; for quick-sort k=3; for merge-sort k=6. 

This fact is a further confirmation of the 

robustness of our experimental method: we can 

still predict the energy-profile of algorithms on 

different architectures, and show that they have 

the same behavior when energy consumption is 

scaled using the Energon.  

 

A natural question now is why the constant factor 

changes? We would have expected the same 

constant for all the experiments, thus depending 

only on the two architectures and not on the tested 

algorithm. This would have allowed us to model  

 the energy efficiency of the algorithm (and 

in perspective, of complex applications) 

expressed by  relations of complexity 

functions, 

 the relative characteristics of two or more 

system architectures (these would be 

classified in terms of a constant factor  

expressing their energy efficiency).  

 

Instead, we found that the constant k varies with 

each test. We thus started investigating if there 

were constant contributions of the architecture 

which were not properly normalized by the 

Energon, and thus we first took into account the 

overall running time of the tested algorithm.  

 

It turns out that Quicksort and Binary Search need 

similar values for the multiplicative k across the 

two different CPUs (2.8 versus 3) in spite of 

having quite a different running time (the largest 

instance of Binary Search test is about 12 times 

faster to complete than the largest one of 

Quicksort), different algorithmic complexity and 

different  class. They do share, however, an 

random-pattern of memory accesses.  

Conversely, if we compare Quicksort and 

Mergesort, we notice that they have very close 

completion time and share the same asymptotic 

time-complexity on average, but do generate a 

completely different pattern of memory accesses, 

and indeed they need a significantly different 

value for k (3 versus 6).  

The Mergesort algorithm produces the sorted 

output with 1/6 of the Energon amount on the 

Atom architecture wrt AMD one, while the same 

architecture only saves 1/3 in the Quicksort case.  

We argue that this is due to the fact that 



Mergesort triggers a cache-friendly pattern of 

memory accesses, and this seems to better exploit 

the energy-efficiency design choices of the Atom 

processor. 

 

Given these preliminary results, we are now 

starting an in-depth study of the effects of 

memory-access patterns on our Energon–based 

methodology, to refine its definition and allow 

more robust comparison of results across 

architectures. We plan to include these results in 

the final version of this paper. 

VIII. MANY-CORE COMPUTATIONS 

So far we have discussed measurements of 

sequential algorithms, mainly to validate our 

results against time complexity theory (and thus 

CPU-bounded computations), relying on the 

strong correlation of energy consumption and 

completion time. 

In this section we are interested in studying how 

energy consumption of algorithms is affected by 

parallel execution, and in particular what can we 

expect from many-core architectures that are 

becoming ubiquitous in nowadays computing. 

To understand this we measured the energy-

profile of a simple linear-scan over a long array 

on a quad-core system with hyper-threading (a 

total of eight cores for the operating system). We 

compared the sequential version of the linear scan 

against several parallel versions using two, four, 

and eight cores. Parallel scanning has been 

implemented by partitioning the input array in p 

segments with p the number of cores used. 

 

Theoretically this algorithm scales optimally since 

there is no access to shared data and each thread 

can run at its full speed. Ideally we expect that the 

energy consumed stays the same no matter how 

many cores are used, since the same total number 

of bits should be processed/accessed. But 

surprisingly, this is not the case. 

Figure 9 shows the average power consumption 

(W) for the executions of linear scan using 

different number of cores. If, however, we 

measure the same linear-scan in Energon (plot not 

shown), it turns out that the most efficient way to 

use the CPU is by deploying all cores together, 

with sequential execution requiring three times 

more the Energons of 8-cores execution.  

 

 
Figure 9.  Average power used in the four experiments. 

To understand this phenomenon we assumed that 

an idle core would consume a certain amount of 

energy that we set to be constant during the 

execution. Under this assumption we have been 

able to estimate the energy used by an idle core 

solving a simple system of equations. Waste due 

to idle cores has proven to be quite significant 

with respect to the overall computation as shown 

in Figure 10, and it is up to the 10% of the overall 

computation in the single core execution case.  

 

 
Figure 10.  Percentage of energy wasted by idle cores 

An important fact is that completion time and 

energy consumption are not so strictly related as 

it was in the sequential case. This is witnessed by 

the change in the average power absorbed by the 

processor depending on the number of idle cores. 

In particular we found that if Ck and Tk are the 

energy consumed and the completion time of 
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linear scan using k cores, the following relations 

holds: 

 

T2 = 0,53 T1           C2 = 0,58 C1     [ideal is 0.50] 

T4 = 0.35 T1         C4 = 0.43 C1     [ideal is 0.25] 

T8 = 0.28 T1          C8 = 0.36 C1     [ideal is 0.12] 

 

These formula are NOT surprising because they 

show that, although intrinsically parallel, the 

linear-scan does not achieve ideal-parallelism (the 

best speed-up is 3.81 due to resource contention 

among the threads competing for the memory 

bus); nonetheless, these formula are interesting 

because the energy consumption of 1 core (i.e. 

C1), expressed in Energon, is larger than the other 

Ci which decrease as the number i of cores 

increases. This is counterintuitive because few 

active cores consume more than many active 

ones; the reason is that Ci is energy-consumption 

(properly normalized) and we recall that Joule = 

W*T. So by increasing the number of cores the 

completion time decreases but the total consumed 

watts increase, with the balance being in favor of 

time reduction.  

 

Further investigation is still required to improve 

our model and dig into the specialties for the 

many-core case. These experiments indicate that 

underuse of computational resources can be very 

expensive from an energy efficiency standpoint. 

We expect that our simple methodology of 

energy-profiling can be used to evaluate the 

efficiency of a system with respect to core-usage 

leading to a more savvy strategy in computing 

resources acquisition than simply “let’s have as 

many cores as possible”. 

IX. PROGRAM ENERGONOMY 

Even if we decoupled the notion of completion 

time from that of energy consumption, at least in 

the many-core case, the two quantities are still 

related. Writing efficient programs usually leads 

to energy efficient systems; this is well known, of 

course, but now we have a simple methodology to 

quantify it or compare programs according to their 

energy-efficiency under several architectures. 

This is important also because completion time is 

becoming less critical for ordinary applications, as 

witnessed by the increasing number of codes 

written via  interpreted languages such as Python. 

From a user standpoint a tenth of a second or half 

second does not really matters, and this explains 

the popularity of these coding approaches. 

However it is also well known that Python is more 

than fifty times slower than C in the average (see 

Debian shootout [11]). Thus we expect that 

Python programs will consume more energy than 

their C/C++ equivalent. Of course scripting is 

easier and more flexible, but it must be clear that 

even if performance is acceptable there is a 

hidden energy-price to pay. Same arguments hold 

for virtual machines, such as Java or Mono (.NET 

implementation for Linux). They are flexible, but 

their average performance is twice slower than C, 

and thus we expect such wasting of energy when 

using that programming framework. We will 

perform more precise evaluations in the near 

future to further quantify these hypotheses, even if 

they are clearly suggested by the results found in 

this paper. 

 

In summary, a greener computing infrastructure is 

achieved not only by optimizing the IT 

infrastructure, but also by writing better (i.e. more 

efficient) software. And, as witnessed by our 

work, the impact can be as significant as much as 

hardware improvements (or even more!). Our 

experimental methodology and protocol offers a 

clean and simple way to measure software 

improvements and benchmarking. In particular we 

have three dimensions: input size, algorithm, and 

architecture. We can perform energy efficiency 

benchmark by fixing two out of three dimensions 

and observe the variations. If we fix the input size 

and the algorithm, we can benchmark 

architectures as we did in section VIII. When 

input size and architecture are fixed, we can 

benchmark the algorithm efficiency as we did in 

section V for sorting. If architecture and algorithm 

are fixed, we can see how well an algorithm 

scales with respect to its input, as we did in many 

examples thorough the paper. 

 



The ability of practically measuring the energy-

profile of an algorithm, or even an entire software, 

is likely be the basis for what we call 

energonomy: the attempt to write energy efficient 

programs.This will be a key issue in the next 

years because, as observed in [3] “Algorithmics 

offers benefits that extend far beyond TCS into the 

design of systems.” The simple methodology for 

energy-profiling of algorithms, described in this 

paper, can be adopted to quantify these benefits is 

a robust yet simple way.  In particular, in the final 

version of this paper we will address the energy-

issues concerned with the pattern of memory-

accesses deployed by an algorithm in its 

execution; some of our preliminary results (to be 

included in the final version) already show that 

the impact of these accesses cannot be neglected 

and may even be of order of magnitudes. So any 

programmer should take them into account when 

designing a software. 

X. CONCLUSIONS AND FUTURE WORK   

In this paper we introduced an experimental 

methodology for measuring energy consumption  

of programs in a robust way, largely independent 

of the particular environment used to perm the 

experiments. Energon, our unit for energy-

profiling of algorithms, has proved to be a useful 

meter for our investigations.  

Philosophically, our theory follows naturally by 

the consideration that at the very core of 

computation there is the notion of physical work 

required for moving electric charges from one 

register to another, or changing a circuit state. So 

we may suggest that we are measuring the 

“information work”: the energy required for 

performing information processing. 

We hope that this preliminary work may 

contribute to set a community of researchers that 

use our methodology to investigate other 

combinations of algorithms/architectures. We 

published our testing software on the Web [12] 

and we will start a web site where researchers and 

practitioners may upload the results of their 

experiments.  

REFERENCES 

[1] Phidgets system Web site, available at  http://www.phidgets.com/, 
last access: April 5, 2010. 

[2] Ammeter sensor data sheet, available at 
http://www.phidgets.com/documentation/Phidgets/1122.pdf, last 
access: April 5, 2010. 

[3] K. Kant, Toward a science of power management, IEEE Computer, 
42(9): 2009. 

[4] Workshop on the Science of Power Management, NSF, April 2009. 

[5] Disruptive solutions for energy efficient ICT, EU Expert Consultation 
Workshop, Brussels, February 2010. 

[6] J.S. Vitter, Algorithms and Data Structures for External 
Memory, Series on Foundations  and Trends in TCS, now Publishers, 
2008. 

[7] T.H. Cormen, and M.T. Goodrich. A bridging model for parallel 
computation, communication, and I/O. ACM Comput. Surv. 28, 1996. 

[8] R. Fagerberg: Cache-Oblivious Model. Encyclopedia of Algorithms, 
Springer, 2009. 

[9] L.A. Barroso, U. Hölzle. The Case for Energy-Proportional 
Computing. IEEE Computer 40(12): 33-37 (2007). 

[10] Computational Intelligence in Scheduling (SCIS 07), IEEE Press, 
Dec. 2007, pp. 57-64, doi:10.1109/SCIS.2007.357670. 

[11] Debian language shootout, available at 
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=a
ll. 

[12] Energon software web site, available at http://energon.codeplex.com/, 
last access April 5, 2010. 

[13] D. Economou, S. Rivoire, et al. Full-system power analysis and 
modeling for server environments. Workshop on Modeling, 
Benchmarking, and Simulation (MoBS), 2006.  

[14] S. Lafond, J. Lilius. An Energy Consumption Model for Java Virtual 
Machine. TR 597, Turku Centre for Computer Science, 2004. 

[15] C. Seo, G. Edwards, D. Popescu, S. Malek, N. Medvidovic. A 
framework for estimating the energy consumption induced by a 
distributed system's architectural style. ACM International workshop 
on Specification and verification of component-based systems, 2009. 

[16] D. Brooks, V. Tiwari, M. Martonosi, M. Wattch: A framework for 
architectural-level power analysis and optimizations. Annual 
International Symposium on Computer Architecture (ISCA), 2000. 

[17] S. Gurumurthi, A. Sivasubramaniam, M.J.  Irwin, N. Vijaykrishnan, 
M. Kandemir. Using Complete Machine  
Simulation for Software Power Estimation: The SoftWatt  
Approach. International Symposium on High  
Performance Computer Architecture (HPCA-8),  2002. 

[18] The Sysmark 2007 benchmark. 
http://www.bapco.com/products/sysmark2007preview/index.php 

[19] J.V. Castell, M.J. Gmez-Lechn . In vitro methods in pharmaceutical 
research. Academic Press, 1997. 

[20] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to 
Algorithms. MIT Press, Third edition, 2009. 

[21] J.T. Russell, M.F. Jacome. Software Power Estimation and 
Optimization for High Performance, 32-bit Embedded Processors, 
IEEE  ICCD 1998. 

[22] D.A. Patterson, and D.R. Ditzel, The case for the reduced instruction 
set computer. SIGARCH Comput. Archit. News 8(6), 25-33, 1980. 

[23] J.L. Hennessy, and D.A. Patterson. Computer Architecture, Fourth 
Edition: a Quantitative Approach. Morgan Kaufmann Publishers Inc, 
2006. 

 

http://www.phidgets.com/
http://www.phidgets.com/documentation/Phidgets/1122.pdf
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=all
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=all
http://energon.codeplex.com/
http://www.bapco.com/products/sysmark2007preview/index.php

