

UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-10-13

Information processing at work

Antonio Cisternino Paolo Ferragina

Davide Morelli Massimo Coppola

July 7, 2010

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700, FAX: +39 050 2212726

Information processing at work

On a theory for experimental algorithm complexity

Antonio Cisternino, Paolo Ferragina and

Davide Morelli

Dipartimento di Informatica

University of Pisa, Italy

Massimo Coppola

ISTI “A.Faedo”

CNR Pisa, Italy

Abstract—It is common experience to upgrade

firmware of mobile devices and obtain longer

battery life, living proof of how software affects

power consumption of a device. Despite this

empirical observation, there is a lack for models

and methodologies correlating computations with

power consumption [3-5]. In this paper we propose

an experimental approach to computational

complexity and a methodology for conducting

measures which result independent of the

underlying system running the algorithm/software

to be tested. Early experimental results are

presented and discussed, showing that our

methodology is robust and can be used in many

settings. We also introduce the foundations of a

theory for experimental algorithm complexity,

which mimics what is predicted by the classic

theory of computational complexity (big-O or

Theta notations), except for some notable

exceptions that we highlight and comment. This

theory is validated in many scenarios, by

considering several architectures and algorithms.

Because of the relation between time complexity

and energy consumption, we may suggest that our

work measures the “information work”: namely,

the energy required for performing information

processing.

Keywords- energy-profiling of algorithms, power

consumption models, RAM model, Energon, experimental

algorithm complexity, green computing.

I. INTRODUCTION

Programs are made of instructions that manipulate

system resources to achieve a goal. These

instructions are executed by a processor (CPU),

which uses electric signals to change bit

configurations according to their semantics.

Copying bits in a system also involves certain

amount of physical work. Therefore, for each

instruction of a specific processor, it is in

principle possible to give an estimate of its power

absorption that is roughly related to the micro

operations performed to fulfill the instruction

semantics. In these cases, researchers typically

consider embedded systems, where

computational-units are simpler than general

purpose processors, often based on a RISC and

missing many of the power hungry functionalities

(multimedia and floating point instructions, high

performance memory controllers) that are

commonplace in the world of full-fledged

computers. It is therefore not surprising that for

such simple devices authors come to the

conclusion that all instructions have the same

power cost, and derive regular behaviors as well

as detailed system models (see e.g. [21]).

However, modern CPUs are much more

sophisticated than that, in terms of complexity and

sheer number of transistors. They are intrinsically

parallel and concurrent at the micro-architecture

level, with the actual amount of energy required to

execute a single instruction being suitably

estimated on average at the best. The variance of

these costs may be large, and it worsens as we

move higher in the software stack. Take for

example virtual machines, such as the Java

Virtual Machine: here we want to associate an

average power consumption to complex entities

such as the intermediate language opcodes. These

can actually trigger quite (energy-)costly side

effects within both the virtual machine and the

hosting operating system.

It goes without saying that things get even more

complicated when we need to define power cost

models for programs, which thus involve a

compilation step. This is the reason why [4] asked

for “models to be developed at all abstraction

levels and granularities. […] These models will

provide a solid baseline for higher level models,

and many intermediate levels that can be of use to

various layers in the abstraction hierarchy.”

As a result, we can currently devise two main

approaches to power-consumption modeling:

1. Accurate analytic models based on the explicit

measurement of the energy consumption of a

set of tests at the hardware level (see e.g.

[13,15]). This approach is restricted to be used

onto a narrow class of simple processors

whose energy-consumptions features are well

known and defined, such as embedded

systems and/or micro controllers.

2. Modeling of power at the simulation level (see

e.g. [16,17]). Here power-consumption of the

underlying virtual machine [14] or of the

entire system is taken into account.

Unfortunately, this approach is limited to be

used on simple codes to be profiled.

However, a model to be useful must be complex

enough to capture the most important factors in

the application (whichever it is), while being

simple enough to allow abstract reasoning. The

purpose of a good abstract model is not to model

exactly all aspects of reality, but to be used as a

heuristic tool by an engineer when searching for

engineering solutions. The establishment of a

good model can be the difference between success

and failure of a science as a foundation of an

engineering discipline [4]. Historically the success

of algorithmics as a science underlying software

engineering relied on the deployment of the

Random Access Model (RAM) as a model for

designing and analyzing algorithms. While the

RAM model ignores issues such as memory

hierarchies, it captures enough reality to be an

extremely useful model for establishing the

efficiency of an algorithm or for comparing

algorithms based on their time performance. Here

the analysis of algorithmic performance concerns

with some computational resources and takes into

account only asymptotic trends by ignoring

constants, lower-order terms, as well as the fine

details of the underline physical machine

(architecture, compiler, language,…) on which the

algorithm is executed. Primary resources are

typically time and space.

Nowadays, PCs got more sophisticated, so that the

RAM model became inadequate to estimate

algorithm performance on large datasets. More

sophisticated models have then been introduced in

order to measure other (computational) resources

such as I/Os (external-memory model [6]),

parallelism and/or communication (logP, BSP,

etc. [7]), hierarchy of memory levels (cache-

oblivious model [8]), etc. etc.

Given that [5] “some eight orders of magnitude

separate the energy efficiency of conventional

computers from what is theoretically possible”,

energy-consumption became a primary resource

to be optimized in systems and algorithm design,

and thus many researchers as well as companies

asked for models and metrics for evaluating the

energy-profile of algorithms/architectures in

advance to allow comparisons and novel designs.

Yet, these issues are in their infancy although

some notable efforts have been pursued [3-5].

Certainly a program’s energy consumption

strongly depends on the number of instructions

executed and the number of accesses to the

memory hierarchy --- these are the same factors

that determine a program’s completion time [3].

Also, an instruction that takes fewer clock cycles

to execute generally also consumes less energy.

However, as it was made obvious by the

RISC/CISC debate a few years ago [22,23],

simpler instructions lead on the one hand to a

higher instruction count for the same algorithm,

and on the other hand to systems whose clock

cycle is possibly shorter. Beware: as power

dissipation is related to the square of the clock

frequency, the tradeoff between simplicity and

power of the instructions, which has been

thoroughly explored in recent years as the market

strived for faster and faster CPUs, turns out not to

be easily transferred to the energy consumption.

As stated in [3], “the correspondence between

completion time and energy consumption is not

one-to-one. […] The average power consumption

and computation rates are intricately tied

together, making it difficult to speak of power

complexity in isolation. […] This also indicates

that models for the study of energy-computation

tradeoffs would need to address more than just

the CPU.” However, literature still misses an

“abstract” model, akin to the RAM, and a

methodology, akin to the asymptotic analysis of

computational complexity, that accounts for

energy issues.

In this paper we try to contribute to these issues

by presenting a theory for experimentally

analyzing algorithms using power consumption as

a measure of their behavior, and that results

independent of the underlying system used to

execute the algorithms/programs to be tested. We

pursue our goal in four steps:

 First, we introduce an experimental

methodology to measure program behavior in

a robust yet simple way, so that comparisons

can be made across different architectures,

system configurations and algorithms, and by

anyone without any particular HW/SW skills.

Our methodology consists of some easy-to-

build hardware tools and a public software to

use them; they will be described in fine details

in order to make our experiments reproducible

(being this a key step of any scientific result!).

Our HW is plugged between the power supply

and the PC-case (on the alternating-current

side), and still allows robust estimations

without being invasive.

 Second, unlike other papers that use code

profiling and measure the absolute energy

consumption (see above), we introduce the

notion of Energon, which is a sort of “unit of

power consumption” for the system in use.

The Energon in some sense mimics the role of

the “algorithmic step” of the RAM model

(unit of computation), here adapted to take

into account the energy-profile of an

algorithm and being as much independent as

possible of the HW-SW specialties of the

underlying system (as for the RAM-step).

Energon is computed as the energy consumed

by the CPU when running at 100% peak

performance (because of the execution of

some simple registry-based code, see Section

IV). The Energon is therefore a relative value,

that should allow comparison of

algorithms/programs in a way that is

independent on the underlying system which

runs them.

 We validate the Energon by evaluating the

energy-profile of some well-known algorithms

(e.g. binary search, few sorting algorithms).

We show that indeed our evaluation is robust

and reflects what it is predicted by the RAM

model, even if it concentrates only on the

energy-profile of the algorithms and works on

the alternating-current.

 Given these experimental results we introduce

the notion of , the experimental algorithm

complexity, inspired by the more popular -

notation of classic computational complexity.

We use it to characterize the energy-

performance of some well-known algorithms.

Interestingly,  is compositional and thus can

be used, as it occurs for , to compare CPU-

bounded algorithms based on their energy-

profile in a system-independent way.

 Finally, we extend our study to other

processors and architectures thus concluding,

as claimed in [3], that the relation between

time- and energy-efficiency is much intricate

and although  somehow mimics , they are

much different when measuring the execution

of parallel algorithms on many-core systems

and over a hierarchy of memory levels. We

quantify these differences and thus draw some

novel, preliminary, interesting conclusions

that speculate onto possible applications of

our theory and methodology to green

computing.

It goes without saying that our work is still in its

infancy, but nonetheless we believe that our

results are interesting in that they relate

“information-space” properties to “physical-

space” properties by reasoning about algorithms

and programs on the ground of whole real

systems. Moreover, the theory we propose,

although confined to CPU-bounded computations

aims, with its simplicity, at addressing the issue

drawn in [4] for “models to be developed at all

abstraction levels and granularities. […]”.

The paper is organized as follows: in section II we

introduce our methodology and the goals of our

work; section III describes the measurement setup

for reproducing the experiments and discuss some

early results; section IV introduces the notion of

Energon, a meter we use to normalize

measurements; section V discusses the analysis of

few basic algorithms with the goal of correlating

our experimental theory of algorithm complexity

to the classic theory of computational complexity,

and validate the Energon-based energy-profiling

of those algorithms; section VI introduces some

definitions and the notion of , our complexity

measure, inspired by the more popular ; sections

VII-VIII discuss how our measure adapts to

different processors and architectures; section IX

speculates possible applications of our theory with

respect to benchmarking, black-box complexity,

and green computing; section X draws some final

conclusions and suggests future works.

II. A METHODOLOGY FOR EXPERIMENTAL

ALGORITHM COMPLEXITY

The way we write programs affects their power

consumption; so our primary goal is to build a

methodology for empirically measure this effect

in a way that is as much independent as possible

from the experimental setting, namely the system

running the experiment. Our further goal is not

only in reporting our own experimental results,

but also in clearly defining an experimental

framework that our community can use for its

own experiments or for validating ours.

Thus we are looking for an experimental setup

with the following characteristics:

Reproducibility, Robustness, and Universality.

As we commented in the introduction, most of the

existing power-modeling results are specific to a

particular architecture, so their setup is difficult to

be generalized to other HW-SW settings. We

instead aim at a universally applicable measure

that results agnostic of the underlying HW/SW

components. The first contribution of this paper is

therefore a robust and easy-to-implement

experimental methodology for forecasting

expected consumption and energy savings

deriving from architectural as well as software

choices. It will be based on an ammeter, and a

(public) software that reads the ammeter and

performs the measurements over the tested

algorithm. We verified that our methodology is

sufficiently sensible in comparing energy-

consumption of algorithms at a fine scale.

Moreover, it allowed measurements on standard

PCs without any particular OS configuration, and

indeed they successfully extend to other

architectures and settings, as we will comment in

Sect. VII-VIII.

To validate our methodology, we tried to relate

classic algorithmic complexity (based on the

RAM model) to power consumption, as the input

grows. As we discussed in the introduction, it is

reasonable to assume that power consumption is

related to the number of operations performed by

an algorithm so, if our methodology is sound, then

its energy-evaluations should resemble what is

predicted by the asymptotic time-complexity on

CPU-bounded computations (given the limits of

the RAM model). And indeed this is the case for

binary-search and various well-known sorting

algorithms. However, in order to make a theory

we cannot rely our algorithmic comparisons onto

their absolute energy-consumptions, since this

would be dependent on the specific PC on which

the experiment is executed. Therefore, in order to

mimic the role of “algorithmic step” in the classic

time-complexity analysis on the RAM model, we

introduce a normalization factor that allows us to

obtain data-independent energy–consumption

evaluations (rather than using absolute Watts

and/or Joules). This is called the Energon and

allows us to relate pretty well the complexity

expected from algorithmic theory to our energy-

aware experimental complexity, independently on

the executing system. In few words (for details

see Sect. IV), the Energon relates the energy-

profile of the tested software with the one of a

simple assembler-code that executes 1G register

increments. As a result, the Energon does not

measure energy-consumption but it provides

system-independent measures for algorithm

comparison (à la RAM, but now for the energy

resource).

A nice property of our theory will be that it is

compositional: in fact, we will experimentally

show that it allows to evaluate energy

consumption of a program by summing up the

costs of each one of its constituting algorithms, in

an arithmetically predictable way. Moreover it is

robust enough that we can use it to evaluate the

power efficiency of whole programs on different

processors and/or architectural settings (e.g. Atom

vs. AMD CPU, single- vs multi-core

computation). Surprisingly we will show that

there are significant savings when an Atom CPU

is in use, and also that exist a wasting of up-to

10% for a quad core mostly idle (see Sect. VII for

details). These, as well as other features (e.g. how

the pattern of memory accesses impact onto the

energy-profile of an algorithm), will help us in

deriving some interesting invariants that could be

deployed to design novel energy-efficient

algorithms.

III. TEST ENVIRONMENT

The test environment has been redesigned several

times because of many obvious choices do exist,

each with its own pros/cons (e.g. think to the

many positions an ammeter can take among the

modules of a PC motherboard).

Our first choice has been to choose an ammeter

that is commercially available, cheap and that can

be easily programmed, in order to automate the

reading of experimental data and the

transformation of the readings into Joules. We

opted for the Phidgets [1] system, that features a

plug-and-play approach to electronics: a

microcontroller with a USB interface can be

plugged with a number of sensors with a

standardized interface. We used the Phidgets

ammeter 1122 sensor [2] that has a range of 30A

and 0.04A of resolution on AC. The typical error

is between 1% and 2% with a maximum error of

5%. The Phidgets system features several

programming libraries targeting almost all

operating systems and programming

environments nowadays available. We used the

.NET interface and developed the software using

C#. Other ammeters could be used in place of the

one we selected, provided that they offer a

sampling frequency of at least 10Hz and a

comparable error range.

Given this HW, we proceeded to measure the

current provided to the motherboard by

instrumenting the power lines running inside the

case from the power supply. We made this based

on the belief that the circuitry of the switching

power supply, which transforms alternating

current into direct one, would reduce the ability of

detecting current variations of our ammeter.

Moreover, we thought (following [13]) to be able

to test single contributions of different

components fed by separate power lines, such as

hard drive, CPU and memory. Although

sophisticated and precise (potentially useful for

digging into our results into the near future), we

decided to drop this approach in favor of the

simpler one that detects current variations on the

alternating current side of the power supply.

Several experiments showed that this was enough

to obtain reliable measurements. Thus we decided

to use a single ammeter connected to the AC line

of the target computer, with increased ease of

instrumentation.

Like [13], we designed a two-parties software

system (see Figure 1): one is responsible for

collecting data from the ammeter; the other runs

on the target machine and is responsible for

starting the tested software (on that same

machine) and signaling its start/end to the former

(data-collecting) software.

Figure 1. The structure of the experimental setup

One may wonder whether the use of a network

affects the measures. We verified with several

experiments that such an approach is indeed

robust enough to ignore micro variations due to

the operating eco-system, provided that

experiments are conducted when the system is

idle and no significant programs are running (i.e.

CPU is essentially idle). We will discuss further

this analogy with eco-systems in the next section.

Figure 2 shows the power consumption (in Watts)

on an 8-core system, which was first idle and then

executing a program that performs a linear scan of

a huge array (marked by green and red lines). The

OS exhibits a stable behavior when idle, but it is

also interesting to notice that the spike due to a

full use of the 8-cores accounts only for around

40% an increase in power consumption. Idle

computers consume a lot of energy! (see also [9])

Figure 2. Idle operating system, and with a program running.

The two programs used for performing

measurements are open source and available on

the CodePlex online site [12] (remember one of

our main requirements--- reproducibility).

The testing software performs a sub-sampling of

the data received from the ammeter sensor by

computing the average of the samples received

each tenth of a second, thus reducing jittering

effects due to the environment and possible errors

in the readings. The rest of the system relies on a

10Hz measurement rate. This simple strategy will

be subject to improvements and refinements over

time, though so far it has been able to effectively

show an appropriate amount of details in the data.

We computed several values from the raw current

readings taken from the sensor. We are able to

estimate the power consumption (in Watts and

Joules) by using well known relations among the

quantities involved. Namely, power is obtained by

multiplying the current and the voltage together

(220v AC in Italy). We disregard the power factor

cos() in the conversion, which leads us to

slightly over-estimating the power (by a constant

factor that can be easily reinserted). The energy

expressed in Joule is then obtained by discrete

integration (multiplying power and time together

for each time slot and then summing up the

results).

Figure 3. Energy consumption of a (log n)-time algorithm.

As an example, Figure above shows the energy

used to perform a binary search on an array of

increasing size. In order to obtain measurable

durations we iterated each search 2
20

 times, which

on the particular machine we used to perform the

experiment took between 0.4 and 0.75 seconds to

complete. The whole test has been iterated 30

times and the results averaged. We actually

employed an iteration factor of 30 for all tests

described in this paper, with the only exception of

those reported in section VIII where a factor of 3

has been used.

We find amazing that the behavior of an

algorithm with computational complexity (log

n) can be measured through the power line, and

thus our simple methodology and HW-tools. The

logarithm function fits the energy-consumption

plot, as expected. In the subsequent sections, we

will present energy-plots of more intensive

computations, showing even more precise trends

that match the curves predicted by the classic

(asymptotic) computational complexity, and thus

regarding so called CPU-bounded computations.

However, as observed before, Joule is an energy

measure useful for speculating about power

consumption of a particular system, but it cannot

be used to compare measurements across different

systems, as any “reasonable” model should allow

to. We need a more robust measure which is

invariant wrt the underlying system running the

experiment, thus playing the role of the RAM

model but in the energy-profiling setting. This is

what we introduce in the next section.

IV. THE ENERGON

It is well known that often measurements taken in

clean environments differ from those ones

obtained in the real world. For this reason, or

because a “clean” environment is sometimes

impossible to define, industrial benchmarks like

SysMark 2007 [18] perform system testing

empirically by starting several times a set of

productivity programs installed on a “clean”

system, trying to reproduce typical usage patterns.

From our perspective the system we observe is a

sort of eco-system, including OS processes and

services triggered by external events and

interacting with other applications. We want to

measure changes that happen when we alter the

situation by running our program, distinguishing

them from the overall picture and from the noise

caused by the mentioned eco-system. Two

different runs of the same program may well lead

to different results, so we need a method that

distinguishes the contribution of the program we

want to observe from the contribution due to the

underlying system.

The first attempt has been the obvious one:

measure the energy absorption of the idle system

in Joules or Watts for a given amount of time, and

then subtract this “milieu” from the measure

acquired when our tested-program runs. This

approach is ill-conditioned because the power

consumption of the idle system is usually several

times bigger than both the signal we want to

measure and the additional noise, and moreover

there occur sometimes spikes that are clearly

related to some service running that jeopardize the

interpretation of the measurements.

To circumvent these drawbacks, we have drawn

inspiration from approaches taken by biomedical

engineers for measuring cell eco-systems [19].

When biologists measure cells activity on a

terrain, for instance for drug testing, they first take

measurements in a reference system, and then,

after performing the change they want to observe,

they take additional data. Results are then

normalized with respect to the first reference that

acts as a meter. There are two aspects in this

approach worth of notice: reference measurements

are made because it is virtually impossible to

reproduce exact environmental parameters (such

as temperature, humidity, etc.); and the reference

system includes cells, and not just the terrain,

because cells that interact with their environment

may alter the terrain parameters even before the

desired stimulation is performed.

We found strong analogies between our

framework and the cell eco-system. In particular

the fact that an idle OS may change the execution

patterns of its services (the eco-system) when a

new program runs and asks for resources. We thus

introduce a reference program in our

experimental methodology that is run in the same

environment where the experiment should be

executed. Then the energy-cost of this reference-

program is used as a meter for normalizing the

results of our experiments. There are several

choices for such a meter, taking for instance into

account different architectural features and

environment services, and we expect over time to

study several other meter definitions. In this paper

we propose the Energon program, which is

designed to use the CPU (or a single core of it) at

full speed for a certain amount of cycles (namely

1G), and before the real experiment is run.

Figure 4. The energon definition in C++.

Figure above shows the simple C++ source code

of the Energon. It consists of assembler code

explicitly inserted in a loop to ensure that no

compiler could change it and thus render the

measurement compiler-dependent. The

surrounding C++ code is used to communicate

with the testing software and signals when to start

and stop the measurement. In this way more

complex algorithms can exclude their setup phase

from the measurement.

The code can be easily adapted to different

architectures. We deliberately avoided at this

stage a (Energon) program involving memory,

since communications between CPU and memory

are asynchronous and may introduce unwanted

idle cycles in the CPU which heavily depend on

the hierarchy of memory levels. We will discuss

further this issue in section VII, and defer the

study of the impact of the pattern of memory-

accesses onto algorithmic energy-consumption to

the final version of this paper.

While the Energon test can be still thought as an

idle power consumption plus a “100%

computation overhead”, it is nevertheless

measured as a whole. When we test the real

algorithm, its measure in Energon (we use the 

Greek letter to denote 1 Energon) is computed as

the ratio between its overall power consumption

and the overall power consumption of the

Energon program. This makes the measurement

more stable and robust, because it includes the

“constant” consumption incurred by the PC

during the test.

As already mentioned, measures are repeated

several times (in our tests 30 times) to compute

the average energy used by the Energon program

and the program tested. We obtained a standard

deviation of 2.8% of the average energy required

by the Energon
1
. It is worth noticing once again

that the Energon does not depend on time: it

simply measures the energy required for

incrementing a register one billion of times. Of

course it will take more or less time depending on

the particular processor used, but in some sense it

captures the notion of “computational power per

electrical power” of the processor. And in this

sense, it is mimicking the notion of “algorithmic

step in a RAM model” that represents the

computational unit independent on the HW-SW

features of the PC that will run the algorithm; here

the Energon plays the same role but with respect

to the energy-profile of an algorithm.

The first question we faced after defining the

Energon was: what about its stability and

composability? We expect that if we iterate the

Energon program h times, we observe a

corresponding increase in its energy consumption.

We call this new program ENERGON(h) (and the

1
 We avoid referring to specific architectures because we

expect that these numbers will change as the method will be

used on different systems. In this particular case we tested

the energon on an AMD Athlon 64 X2 Dual Core 4200+,

2.20GHz 2 GB RAM, running Windows Vista H.P. We

obtained an average of 177,2516j of energy used with

3,464587j of standard deviation.

original is Energon(1)). Experiments show that

the ratio ENERGON(h)/h* is correctly close to 1

(0.97 in average with 0.01 of standard deviation).

Given the Energon, we can evaluate the energy-

profile of the binary search, now scaling the

energy-consumption by the Energon measure. The

obtained plot (not shown for the lack of space) is

smoother, still retaining its logarithmic shape.

V. SORTING ALGORITHMS

In this section we validate the robustness of our

measurements by investigating the energy trends

of few sorting algorithms over increasing input

sizes. This shows that our methodology is able to

predict algorithm trends in energy consumption

quite carefully. In the next section we will

elaborate on these results by introducing a theory

of experimental algorithm complexity, useful to

compare algorithms based only on such observed

energy-trends. Finally, in section VIII we will

show that energy consumption is not always

related to completion time, especially when

considering thread-parallel computations.

We considered three well-known sorting

algorithms: merge-sort, heap-sort, and quick-sort

[20]. They vary either in their worst-case running

time, or in the amount of working space, or in the

pattern of their memory accesses. In all cases we

measured only the sorting phase, ignoring the

setup of the input array with random data. We

repeated the test 30 times in order to get

empirically sound input distributions. All the

algorithms have been implemented and tested

using C++. Tests using C# were also performed,

obtaining similar results, but showing less clear

trends due to C# virtual machine services (such as

the garbage collector) coming into play and

creating irregularities and spikes in the data.

While the situation is in the scope of our work, in

this early stage of our validation process we

preferred to use real measurements which are

more predictable and easily handable.

Merge sort is an optimal comparison-based

sorting algorithm that requires (n log n) time in

the worst and average case. As shown in Figure 5

below, the energy consumed by the algorithm as a

function of its input size follows exactly that

prediction obtained with the asymptotic time-

analysis in the RAM model.

Figure 5. Merge-sort energy consumption in Energon

Heap sort is another optimal sorting algorithm

which works in-place, and thus uses no additional

working space, unlike Mergesort; however it

induces a random-pattern of memory accesses.

Figure 6 below shows an asymptotic energy-

consumption trend towards the expected (n log

n), though at small input sizes there is a deviation

with respect to the curve expected from theory.

Figure 6. Heapsort energy consumption in Energon.

0
2
4
6
8

10
12
14

1
0
4
8
5
7
6

7
3
4
0
0
3
2

1
3
6
3
1
4
8
8

1
9
9
2
2
9
4
4

2
6
2
1
4
4
0
0

3
2
5
0
5
8
5
6

3
8
7
9
7
3
1
2

En
e

rg
o

n

n

Mergesort

k1*n*logn

k2*n*logn

Overall heap-sort is less efficient than merge-sort,

even if the asymptotic behavior is the same. Using

heap-sort requires more than twice the energy of

merge-sort. This is probably due to the pattern of

memory-accesses that makes merge-sort cache-

friendly: time-efficiency implies less waiting time

by CPU, hence less power consumption. Given

these results, in the final version of this paper we

will deeply present our investigations about the

non-negligible impact of the pattern of memory-

accesses onto the energy-profile of an algorithm,

and thus onto its green-design.

Quick sort is well known to be (n
2
) in the worst

case and (n log n) in the average case, with

lower constants than the other sorting algorithms.

We were curious to see how our experimental

results would have recorded this non-trivial trend.

Figure 7 shows the energy-profile of Quicksort

expressed in Energons. The curve is plainly

different of the ones shown before. We tried to fit

data against different functions using the least

square method. Both n
2
 and n log n functions

fitted nicely, though the best fit was obtained by:

f(n) = n log n +
n

2

a

with a constant value (the best fit has been found

for a value of a=512). It is in our opinion very

interesting that the overall cost includes both

terms predicted by the worst- and average-case

asymptotic analysis.

Figure 7. Quick sort energy consumption in Energon.

VI. EXPERIMENTAL COMPUTATIONAL

COMPLEXITY

Even if at first sight the correlation between time

and energy may suggest that an experimental

theory of program complexity can be based just

on time-performance, we will find that this is not

the case when we consider other processors, the

hierarchy of memory levels and parallel CPUs.

However we cannot neglect such correlation,

which comes out because obviously the longer an

algorithm executes, the highest will be the power

demand of the CPUs. This correlation is useful

when considering CPU-bounded computations

because of our simple methodology to measure

the energy-profile of a sequential algorithm.

We introduce a notation for our experimental

complexity theory inspired by the traditional -

notation. In our case, however, we cannot rely on

asymptotic behavior since by definition our

measurement system is finite.

Definition (-notation). Let us given a set of

energy-measurements A expressed in Energon

(i.e. ) and representing the energy-profile of an

algorithm with respect to a set of inputs whose

size is in the range [a, b]. The data set is said to

belong to (f(n)) over that interval, if there exist

two constants k1 and k2 such that:

 x[a, b].data(x)A  k1 f(x) ≤ data(x) ≤
k2 f(x)

 m1,m2A,x1,x2[a, b] s.t. k1f(x1)=m1 and
k2(x2) = m2

and we will write that A(f(n)) with respect to 

and [a,b].

The definition tries to capture the idea that data

can be enclosed by a function, with the additional

requirement that the weighted function must pass

through two data samples in order to take the

tightest among many possible functions.

As an example, Figure 11 shows another run of

binary search with f(n) = log n.

0
0,5
1

1,5
2

2,5
3

3,5

5
2
4
2
8
8

2
0
9
7
1
5
2

3
6
7
0
0
1
6

5
2
4
2
8
8
0

6
8
1
5
7
4
4

8
3
8
8
6
0
8

9
9
6
1
4
7
2

En
e

rg
o

n

n

quicksort

k1*f

k2*f

Figure 8. Binary search is (log n)

Since the interval is finite it is possible to create

several functions f that state an experiment to be

(f). To avoid these ambiguities, we introduce

notions that characterize relevant behaviors of .

Definition (-preferred). Given a set of data A

over an input size interval [a, b] and two functions

f and g. We say that f is -preferred with respect

to g if A(f) and A(g) but f is a better least-

square approximation than g on A’s data.

Definition ( coherence). A function f is said to

be  coherent with respect to an algorithm if for

each interval [a,b] of input sizes the resulting data

set A(f).

These definitions attempt to capture common

patterns we found in the data. For instance we

found that merge-sort is (n log n) coherent. We

quickly find useful to have a precise meaning to

speak about experimental data, but these

definitions do not only address description needs.

Actually, consider the following law:

Law of composition. If two algorithms are

respectively (f) coherent and (g) coherent, then

the algorithm obtained by executing them in

sequence (i.e. one after the other) is (f + g)

coherent.

This law has been verified in all our tests, and we

are currently working onto verifying functional

composition of algorithms: for instance if a

sorting algorithm receives a comparison function

that is not constant what happens to its

experimental complexity and ?

It is important to notice that even if we mimicked

the definition of , in our case there is no way to

simplify composition. If you combine a quadratic

algorithm with a linear algorithm, then you obtain

a quadratic algorithm in . With  we can only

say that the algorithm is made of the sum of

quadratic and linear energy consumption. This is

again due to the lack of asymptotic reasoning.

Overall we have verified the following relation: if

an algorithm has (f) time-complexity then it is

(f) coherent, and thus our methodology is robust

for CPU-bounded computations. The converse in

not necessarily true, as we will show in the next

section.

VII. EXPERIMENTING DIFFERENT ARCHITECTURES

We tested two architectures: an AMD Athlon 64

X2 Dual Core 4200+ 2.20GHz based system with

2Gb of RAM, and an Atom N230 based system

with 2Gb of RAM. The two architectures have

been chosen because they are radically different.

We have executed all algorithms of the previous

sections (i.e. binary-search and sorting) with the

twofold goal of verifying that Energon results are

confirmed across different architectures, and thus

that Energon normalization allows for data

comparison between different systems.

First of all we compared the two Energon

computed by the two architectures, in order to get

an idea of the overall efficiency of the two

platforms. Results confirm the power efficiency of

Intel Atom: it absorbs about half the energy taken

by AMD. Of course this measurement includes

not only the CPU-cost but also the energy-cost of

the whole system.

Then we applied our experimental methodology

to binary search and the three sorting algorithms

above. Because of lack of space Figures below

refer only to the Energon-plots for binary search

(results on the sorting are even better). It can be

noted that data follow the same trend on the two

architectures (i.e. they belong to the same class of

) but their plot do not overlap.

A possible explanation is that Energon measures

only the CPU, not taking into account the energy-

efficiency of the whole architecture which

therefore introduces some “energy-gaps” which

are not negligible especially with the increase of

the input size. (In the final version of this paper,

we will account on these issues.)

We tried then to correlate the measurements of the

two architectures, and found that the two plots

overlap perfectly if multiplied by a constant k (see

pictures below). For binary search, we found

k=2.8; for quick-sort k=3; for merge-sort k=6.

This fact is a further confirmation of the

robustness of our experimental method: we can

still predict the energy-profile of algorithms on

different architectures, and show that they have

the same behavior when energy consumption is

scaled using the Energon.

A natural question now is why the constant factor

changes? We would have expected the same

constant for all the experiments, thus depending

only on the two architectures and not on the tested

algorithm. This would have allowed us to model

 the energy efficiency of the algorithm (and

in perspective, of complex applications)

expressed by  relations of complexity

functions,

 the relative characteristics of two or more

system architectures (these would be

classified in terms of a constant factor

expressing their energy efficiency).

Instead, we found that the constant k varies with

each test. We thus started investigating if there

were constant contributions of the architecture

which were not properly normalized by the

Energon, and thus we first took into account the

overall running time of the tested algorithm.

It turns out that Quicksort and Binary Search need

similar values for the multiplicative k across the

two different CPUs (2.8 versus 3) in spite of

having quite a different running time (the largest

instance of Binary Search test is about 12 times

faster to complete than the largest one of

Quicksort), different algorithmic complexity and

different  class. They do share, however, an

random-pattern of memory accesses.

Conversely, if we compare Quicksort and

Mergesort, we notice that they have very close

completion time and share the same asymptotic

time-complexity on average, but do generate a

completely different pattern of memory accesses,

and indeed they need a significantly different

value for k (3 versus 6).

The Mergesort algorithm produces the sorted

output with 1/6 of the Energon amount on the

Atom architecture wrt AMD one, while the same

architecture only saves 1/3 in the Quicksort case.

We argue that this is due to the fact that

Mergesort triggers a cache-friendly pattern of

memory accesses, and this seems to better exploit

the energy-efficiency design choices of the Atom

processor.

Given these preliminary results, we are now

starting an in-depth study of the effects of

memory-access patterns on our Energon–based

methodology, to refine its definition and allow

more robust comparison of results across

architectures. We plan to include these results in

the final version of this paper.

VIII. MANY-CORE COMPUTATIONS

So far we have discussed measurements of

sequential algorithms, mainly to validate our

results against time complexity theory (and thus

CPU-bounded computations), relying on the

strong correlation of energy consumption and

completion time.

In this section we are interested in studying how

energy consumption of algorithms is affected by

parallel execution, and in particular what can we

expect from many-core architectures that are

becoming ubiquitous in nowadays computing.

To understand this we measured the energy-

profile of a simple linear-scan over a long array

on a quad-core system with hyper-threading (a

total of eight cores for the operating system). We

compared the sequential version of the linear scan

against several parallel versions using two, four,

and eight cores. Parallel scanning has been

implemented by partitioning the input array in p

segments with p the number of cores used.

Theoretically this algorithm scales optimally since

there is no access to shared data and each thread

can run at its full speed. Ideally we expect that the

energy consumed stays the same no matter how

many cores are used, since the same total number

of bits should be processed/accessed. But

surprisingly, this is not the case.

Figure 9 shows the average power consumption

(W) for the executions of linear scan using

different number of cores. If, however, we

measure the same linear-scan in Energon (plot not

shown), it turns out that the most efficient way to

use the CPU is by deploying all cores together,

with sequential execution requiring three times

more the Energons of 8-cores execution.

Figure 9. Average power used in the four experiments.

To understand this phenomenon we assumed that

an idle core would consume a certain amount of

energy that we set to be constant during the

execution. Under this assumption we have been

able to estimate the energy used by an idle core

solving a simple system of equations. Waste due

to idle cores has proven to be quite significant

with respect to the overall computation as shown

in Figure 10, and it is up to the 10% of the overall

computation in the single core execution case.

Figure 10. Percentage of energy wasted by idle cores

An important fact is that completion time and

energy consumption are not so strictly related as

it was in the sequential case. This is witnessed by

the change in the average power absorbed by the

processor depending on the number of idle cores.

In particular we found that if Ck and Tk are the

energy consumed and the completion time of

0

50

100

150

200

W

n

k=1

k=2

k=4

k=8

0

2

4

6

8

10

12

k=1 k=2 k=4 k=8

linear scan using k cores, the following relations

holds:

T2 = 0,53 T1 C2 = 0,58 C1 [ideal is 0.50]

T4 = 0.35 T1 C4 = 0.43 C1 [ideal is 0.25]

T8 = 0.28 T1 C8 = 0.36 C1 [ideal is 0.12]

These formula are NOT surprising because they

show that, although intrinsically parallel, the

linear-scan does not achieve ideal-parallelism (the

best speed-up is 3.81 due to resource contention

among the threads competing for the memory

bus); nonetheless, these formula are interesting

because the energy consumption of 1 core (i.e.

C1), expressed in Energon, is larger than the other

Ci which decrease as the number i of cores

increases. This is counterintuitive because few

active cores consume more than many active

ones; the reason is that Ci is energy-consumption

(properly normalized) and we recall that Joule =

W*T. So by increasing the number of cores the

completion time decreases but the total consumed

watts increase, with the balance being in favor of

time reduction.

Further investigation is still required to improve

our model and dig into the specialties for the

many-core case. These experiments indicate that

underuse of computational resources can be very

expensive from an energy efficiency standpoint.

We expect that our simple methodology of

energy-profiling can be used to evaluate the

efficiency of a system with respect to core-usage

leading to a more savvy strategy in computing

resources acquisition than simply “let’s have as

many cores as possible”.

IX. PROGRAM ENERGONOMY

Even if we decoupled the notion of completion

time from that of energy consumption, at least in

the many-core case, the two quantities are still

related. Writing efficient programs usually leads

to energy efficient systems; this is well known, of

course, but now we have a simple methodology to

quantify it or compare programs according to their

energy-efficiency under several architectures.

This is important also because completion time is

becoming less critical for ordinary applications, as

witnessed by the increasing number of codes

written via interpreted languages such as Python.

From a user standpoint a tenth of a second or half

second does not really matters, and this explains

the popularity of these coding approaches.

However it is also well known that Python is more

than fifty times slower than C in the average (see

Debian shootout [11]). Thus we expect that

Python programs will consume more energy than

their C/C++ equivalent. Of course scripting is

easier and more flexible, but it must be clear that

even if performance is acceptable there is a

hidden energy-price to pay. Same arguments hold

for virtual machines, such as Java or Mono (.NET

implementation for Linux). They are flexible, but

their average performance is twice slower than C,

and thus we expect such wasting of energy when

using that programming framework. We will

perform more precise evaluations in the near

future to further quantify these hypotheses, even if

they are clearly suggested by the results found in

this paper.

In summary, a greener computing infrastructure is

achieved not only by optimizing the IT

infrastructure, but also by writing better (i.e. more

efficient) software. And, as witnessed by our

work, the impact can be as significant as much as

hardware improvements (or even more!). Our

experimental methodology and protocol offers a

clean and simple way to measure software

improvements and benchmarking. In particular we

have three dimensions: input size, algorithm, and

architecture. We can perform energy efficiency

benchmark by fixing two out of three dimensions

and observe the variations. If we fix the input size

and the algorithm, we can benchmark

architectures as we did in section VIII. When

input size and architecture are fixed, we can

benchmark the algorithm efficiency as we did in

section V for sorting. If architecture and algorithm

are fixed, we can see how well an algorithm

scales with respect to its input, as we did in many

examples thorough the paper.

The ability of practically measuring the energy-

profile of an algorithm, or even an entire software,

is likely be the basis for what we call

energonomy: the attempt to write energy efficient

programs.This will be a key issue in the next

years because, as observed in [3] “Algorithmics

offers benefits that extend far beyond TCS into the

design of systems.” The simple methodology for

energy-profiling of algorithms, described in this

paper, can be adopted to quantify these benefits is

a robust yet simple way. In particular, in the final

version of this paper we will address the energy-

issues concerned with the pattern of memory-

accesses deployed by an algorithm in its

execution; some of our preliminary results (to be

included in the final version) already show that

the impact of these accesses cannot be neglected

and may even be of order of magnitudes. So any

programmer should take them into account when

designing a software.

X. CONCLUSIONS AND FUTURE WORK

In this paper we introduced an experimental

methodology for measuring energy consumption

of programs in a robust way, largely independent

of the particular environment used to perm the

experiments. Energon, our unit for energy-

profiling of algorithms, has proved to be a useful

meter for our investigations.

Philosophically, our theory follows naturally by

the consideration that at the very core of

computation there is the notion of physical work

required for moving electric charges from one

register to another, or changing a circuit state. So

we may suggest that we are measuring the

“information work”: the energy required for

performing information processing.

We hope that this preliminary work may

contribute to set a community of researchers that

use our methodology to investigate other

combinations of algorithms/architectures. We

published our testing software on the Web [12]

and we will start a web site where researchers and

practitioners may upload the results of their

experiments.

REFERENCES

[1] Phidgets system Web site, available at http://www.phidgets.com/,
last access: April 5, 2010.

[2] Ammeter sensor data sheet, available at
http://www.phidgets.com/documentation/Phidgets/1122.pdf, last
access: April 5, 2010.

[3] K. Kant, Toward a science of power management, IEEE Computer,
42(9): 2009.

[4] Workshop on the Science of Power Management, NSF, April 2009.

[5] Disruptive solutions for energy efficient ICT, EU Expert Consultation
Workshop, Brussels, February 2010.

[6] J.S. Vitter, Algorithms and Data Structures for External
Memory, Series on Foundations and Trends in TCS, now Publishers,
2008.

[7] T.H. Cormen, and M.T. Goodrich. A bridging model for parallel
computation, communication, and I/O. ACM Comput. Surv. 28, 1996.

[8] R. Fagerberg: Cache-Oblivious Model. Encyclopedia of Algorithms,
Springer, 2009.

[9] L.A. Barroso, U. Hölzle. The Case for Energy-Proportional
Computing. IEEE Computer 40(12): 33-37 (2007).

[10] Computational Intelligence in Scheduling (SCIS 07), IEEE Press,
Dec. 2007, pp. 57-64, doi:10.1109/SCIS.2007.357670.

[11] Debian language shootout, available at
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=a
ll.

[12] Energon software web site, available at http://energon.codeplex.com/,
last access April 5, 2010.

[13] D. Economou, S. Rivoire, et al. Full-system power analysis and
modeling for server environments. Workshop on Modeling,
Benchmarking, and Simulation (MoBS), 2006.

[14] S. Lafond, J. Lilius. An Energy Consumption Model for Java Virtual
Machine. TR 597, Turku Centre for Computer Science, 2004.

[15] C. Seo, G. Edwards, D. Popescu, S. Malek, N. Medvidovic. A
framework for estimating the energy consumption induced by a
distributed system's architectural style. ACM International workshop
on Specification and verification of component-based systems, 2009.

[16] D. Brooks, V. Tiwari, M. Martonosi, M. Wattch: A framework for
architectural-level power analysis and optimizations. Annual
International Symposium on Computer Architecture (ISCA), 2000.

[17] S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N. Vijaykrishnan,
M. Kandemir. Using Complete Machine
Simulation for Software Power Estimation: The SoftWatt
Approach. International Symposium on High
Performance Computer Architecture (HPCA-8), 2002.

[18] The Sysmark 2007 benchmark.
http://www.bapco.com/products/sysmark2007preview/index.php

[19] J.V. Castell, M.J. Gmez-Lechn . In vitro methods in pharmaceutical
research. Academic Press, 1997.

[20] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to
Algorithms. MIT Press, Third edition, 2009.

[21] J.T. Russell, M.F. Jacome. Software Power Estimation and
Optimization for High Performance, 32-bit Embedded Processors,
IEEE ICCD 1998.

[22] D.A. Patterson, and D.R. Ditzel, The case for the reduced instruction
set computer. SIGARCH Comput. Archit. News 8(6), 25-33, 1980.

[23] J.L. Hennessy, and D.A. Patterson. Computer Architecture, Fourth
Edition: a Quantitative Approach. Morgan Kaufmann Publishers Inc,
2006.

http://www.phidgets.com/
http://www.phidgets.com/documentation/Phidgets/1122.pdf
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=all
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=all
http://energon.codeplex.com/
http://www.bapco.com/products/sysmark2007preview/index.php

