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Abstract—It is common experience to upgrade 


firmware of mobile devices and obtain longer 


battery life, living proof of how software affects 


power consumption of a device. Despite this 


empirical observation, there is a lack for models 


and methodologies correlating computations with 


power consumption [3-5]. In this paper we propose 


an experimental approach to computational 


complexity and a methodology for conducting 


measures which result independent of the 


underlying system running the algorithm/software 


to be tested. Early experimental results are 


presented and discussed, showing that our 


methodology is robust and can be used in many 


settings. We also introduce the foundations of a 


theory for experimental algorithm complexity, 


which mimics what is predicted by the classic 


theory of computational complexity (big-O or 


Theta notations), except for some notable 


exceptions that we highlight and comment. This 


theory is validated in many scenarios, by 


considering several architectures and algorithms.  


Because of the relation between time complexity 


and energy consumption, we may suggest that our 


work measures the “information work”: namely, 


the energy required for performing information 


processing. 


 
Keywords- energy-profiling of algorithms, power 


consumption models, RAM model, Energon, experimental 


algorithm complexity, green computing. 


I. INTRODUCTION 


Programs are made of instructions that manipulate 


system resources to achieve a goal. These 


instructions are executed by a processor (CPU), 


which uses electric signals to change bit 


configurations according to their semantics. 


Copying bits in a system also involves certain 


amount of physical work. Therefore, for each 


instruction of a specific processor, it is in 


principle possible to give an estimate of its power 


absorption that is roughly related to the micro 


operations performed to fulfill the instruction 


semantics. In these cases, researchers typically 


consider embedded systems, where 


computational-units are simpler than general 


purpose processors, often based on a RISC and 


missing many of the power hungry functionalities 


(multimedia and floating point instructions, high 


performance memory controllers) that are 


commonplace in the world of full-fledged 


computers. It is therefore not surprising that for 


such simple devices authors come to the 


conclusion that all instructions have the same 


power cost, and derive regular behaviors as well 


as detailed system models (see e.g. [21]).  


However, modern CPUs are much more 


sophisticated than that, in terms of complexity and 


sheer number of transistors. They are intrinsically 


parallel and concurrent at the micro-architecture 


level, with the actual amount of energy required to 


execute a single instruction being suitably 


estimated on average at the best. The variance of 


these costs may be large, and it worsens as we 


move higher in the software stack. Take for 


example virtual machines, such as the Java 


Virtual Machine: here we want to associate an 


average power consumption to complex entities 


such as the intermediate language opcodes. These 


can actually trigger quite (energy-)costly side 


effects within both the virtual machine and the 


hosting operating system.  







It goes without saying that things get even more 


complicated when we need to define power cost 


models for programs, which thus involve a 


compilation step. This is the reason why [4] asked 


for “models to be developed at all abstraction 


levels and granularities. […] These models will 


provide a solid baseline for higher level models, 


and many intermediate levels that can be of use to 


various layers in the abstraction hierarchy.” 


 


As a result, we can currently devise two main 


approaches to power-consumption modeling: 


 


1. Accurate analytic models based on the explicit 


measurement of the energy consumption of a 


set of tests at the hardware level (see e.g. 


[13,15]). This approach is restricted to be used 


onto a narrow class of simple processors 


whose energy-consumptions features are well 


known and defined, such as embedded 


systems and/or micro controllers. 


2. Modeling of power at the simulation level (see 


e.g. [16,17]). Here power-consumption of the 


underlying virtual machine [14] or of the 


entire system is taken into account. 


Unfortunately, this approach is limited to be 


used on simple codes to be profiled.  


 


However, a model to be useful must be complex 


enough to capture the most important factors in 


the application (whichever it is), while being 


simple enough to allow abstract reasoning. The 


purpose of a good abstract model is not to model 


exactly all aspects of reality, but to be used as a 


heuristic tool by an engineer when searching for 


engineering solutions. The establishment of a 


good model can be the difference between success 


and failure of a science as a foundation of an 


engineering discipline [4]. Historically the success 


of algorithmics as a science underlying software 


engineering relied on the deployment of the 


Random Access Model (RAM) as a model for 


designing and analyzing algorithms. While the 


RAM model ignores issues such as memory 


hierarchies, it captures enough reality to be an 


extremely useful model for establishing the 


efficiency of an algorithm or for comparing 


algorithms based on their time performance. Here 


the analysis of algorithmic performance concerns 


with some computational resources and takes into 


account only asymptotic trends by ignoring 


constants, lower-order terms, as well as the fine 


details of the underline  physical machine 


(architecture, compiler, language,…) on which the 


algorithm is executed. Primary resources are 


typically time and space.   


Nowadays, PCs got more sophisticated, so that the 


RAM model became inadequate to estimate 


algorithm performance on large datasets. More 


sophisticated models have then been introduced in 


order to measure other (computational) resources 


such as I/Os (external-memory model [6]), 


parallelism and/or communication (logP, BSP, 


etc. [7]), hierarchy of memory levels (cache-


oblivious model [8]), etc. etc.  
 


Given that [5] “some eight orders of magnitude 


separate the energy efficiency of conventional 


computers from what is theoretically possible”, 


energy-consumption became a primary resource 


to be optimized in systems and algorithm design, 


and thus many researchers as well as companies 


asked for models and metrics for evaluating the 


energy-profile of algorithms/architectures in 


advance to allow comparisons and novel designs. 


Yet, these issues are in their infancy although 


some notable efforts have been pursued [3-5]. 


Certainly a program’s energy consumption 


strongly depends on the number of instructions 


executed and the number of accesses to the 


memory hierarchy --- these are the same factors 


that determine a program’s completion time [3]. 


Also, an instruction that takes fewer clock cycles 


to execute generally also consumes less energy. 


However, as it was made obvious by the 


RISC/CISC debate a few years ago [22,23], 


simpler instructions lead on the one hand to a 


higher instruction count for the same algorithm, 


and on the other hand to systems whose clock 


cycle is possibly shorter. Beware: as power 


dissipation is related to the square of the clock 


frequency, the tradeoff between simplicity and 


power of the instructions, which has been 







thoroughly explored in recent years as the market 


strived for faster and faster CPUs, turns out not to 


be easily transferred to the energy consumption. 


As stated in [3], “the correspondence between 


completion time and energy consumption is not 


one-to-one. […] The average power consumption 


and computation rates are intricately tied 


together, making it difficult to speak of power 


complexity in isolation. […] This also indicates 


that models for the study of energy-computation 


tradeoffs would need to address more than just 


the CPU.” However, literature still misses an 


“abstract” model, akin to the RAM, and a 


methodology, akin to the asymptotic analysis of 


computational complexity, that accounts for 


energy issues.  


 


In this paper we try to contribute to these issues 


by presenting a theory for experimentally 


analyzing algorithms using power consumption as 


a measure of their behavior, and that results 


independent of the underlying system used to 


execute the algorithms/programs to be tested. We 


pursue our goal in four steps: 


 First, we introduce an experimental 


methodology to measure program behavior in 


a robust yet simple way, so that comparisons 


can be made across different architectures, 


system configurations and algorithms, and by 


anyone without any particular HW/SW skills. 


Our methodology consists of some easy-to-


build hardware tools and a public software to 


use them; they will be described in fine details 


in order to make our experiments reproducible 


(being this a key step of any scientific result!). 


Our HW is plugged between the power supply 


and the PC-case (on the alternating-current 


side), and still allows robust estimations 


without being invasive. 


 Second, unlike other papers that use code 


profiling and measure the absolute energy 


consumption (see above), we introduce the 


notion of Energon, which is a sort of “unit of 


power consumption” for the system in use. 


The Energon in some sense mimics the role of 


the “algorithmic step” of the RAM model 


(unit of computation), here adapted to take 


into account the energy-profile of an 


algorithm and being as much independent as 


possible of the HW-SW specialties of the 


underlying system (as for the RAM-step). 


Energon is computed as the energy consumed 


by the CPU when running at 100% peak 


performance (because of the execution of 


some simple registry-based code, see Section 


IV). The Energon is therefore a relative value, 


that should allow comparison of 


algorithms/programs in a way that is 


independent on the underlying system which 


runs them.  


 We validate the Energon by evaluating the 


energy-profile of some well-known algorithms 


(e.g. binary search, few sorting algorithms). 


We show that indeed our evaluation is robust 


and reflects what it is predicted by the RAM 


model, even if it concentrates only on the 


energy-profile of the algorithms and works on 


the alternating-current.  


 Given these experimental results we introduce 


the  notion of , the experimental algorithm 


complexity, inspired by the more popular -


notation of classic computational complexity. 


We use it to characterize the energy-


performance of some well-known algorithms. 


Interestingly,   is compositional and thus can 


be used, as it occurs for , to compare CPU-


bounded algorithms based on their energy-


profile in a system-independent way. 


 Finally, we extend our study to other 


processors and architectures thus concluding, 


as claimed in [3], that the relation between 


time- and energy-efficiency is much intricate 


and although  somehow mimics , they are 


much different  when measuring the execution 


of parallel algorithms on many-core systems 


and over a hierarchy of memory levels. We 


quantify these differences and thus draw some 


novel, preliminary, interesting conclusions 


that speculate onto possible applications of 


our theory and methodology to green 


computing. 


 







It goes without saying that our work is still in its 


infancy, but nonetheless we believe that our 


results are interesting in that they relate 


“information-space” properties to “physical-


space” properties by reasoning about algorithms 


and programs on the ground of whole real 


systems. Moreover, the theory we propose, 


although confined to CPU-bounded computations 


aims, with its simplicity, at addressing the issue 


drawn in [4] for “models to be developed at all 


abstraction levels and granularities. […]”.  


 


The paper is organized as follows: in section II we 


introduce our methodology and the goals of our 


work; section III describes the measurement setup 


for reproducing the experiments and discuss some 


early results; section IV introduces the notion of 


Energon, a meter we use to normalize 


measurements; section V discusses the analysis of 


few basic algorithms with the goal of correlating 


our experimental theory of algorithm complexity 


to the classic theory of computational complexity, 


and validate the Energon-based energy-profiling 


of those algorithms; section VI introduces some 


definitions and the notion of , our complexity 


measure, inspired by the more popular ; sections 


VII-VIII discuss how our measure adapts to 


different processors and architectures; section IX 


speculates possible applications of our theory with 


respect to benchmarking, black-box complexity, 


and green computing; section X draws some final 


conclusions and suggests future works. 


II. A METHODOLOGY FOR EXPERIMENTAL 


ALGORITHM COMPLEXITY 


The way we write programs affects their power 


consumption; so our primary goal is to build a 


methodology for empirically measure this effect 


in a way that is as much independent as possible 


from the experimental setting, namely the system 


running the experiment. Our further goal is not 


only in reporting our own experimental results, 


but also in clearly defining an experimental 


framework that our community can use for its 


own experiments or for validating ours.  


Thus we are looking for an experimental setup 


with the following characteristics: 


Reproducibility, Robustness, and Universality. 


As we commented in the introduction, most of the 


existing power-modeling results are specific to a 


particular architecture, so their setup is difficult to 


be generalized to other HW-SW settings. We 


instead aim at a universally applicable measure 


that results agnostic of the underlying HW/SW 


components. The first contribution of this paper is 


therefore a robust and easy-to-implement 


experimental methodology for forecasting 


expected consumption and energy savings 


deriving from architectural as well as software 


choices. It will be based on an ammeter, and a 


(public) software that reads the ammeter and 


performs the measurements over the tested 


algorithm. We verified that our methodology is 


sufficiently sensible in comparing energy-


consumption of algorithms at a fine scale. 


Moreover, it allowed measurements on standard 


PCs without any particular OS configuration, and 


indeed they successfully extend to other 


architectures and settings, as we will comment in 


Sect. VII-VIII.  


 


To validate our methodology, we tried to relate 


classic algorithmic complexity (based on the 


RAM model) to power consumption, as the input 


grows. As we discussed in the introduction, it is 


reasonable to assume that power consumption is 


related to the number of operations performed by 


an algorithm so, if our methodology is sound, then 


its energy-evaluations should resemble what is 


predicted by the asymptotic time-complexity on 


CPU-bounded computations (given the limits of 


the RAM model). And indeed this is the case for 


binary-search and various well-known sorting 


algorithms. However, in order to make a theory 


we cannot rely our algorithmic comparisons onto 


their absolute energy-consumptions, since this 


would be dependent on the specific PC on which 


the experiment is executed. Therefore, in order to 


mimic the role of “algorithmic step” in the classic 


time-complexity analysis on the RAM model, we 


introduce a normalization factor that allows us to 







obtain data-independent energy–consumption 


evaluations (rather than using absolute Watts 


and/or Joules). This is called the Energon and 


allows us to relate pretty well the complexity 


expected from algorithmic theory to our energy-


aware experimental complexity, independently on 


the executing system. In few words (for details 


see Sect. IV), the Energon relates the energy-


profile of the tested software with the one of a 


simple assembler-code that executes 1G register 


increments. As a result, the Energon does not 


measure energy-consumption but it provides 


system-independent measures for algorithm 


comparison (à la RAM, but now for the energy 


resource). 


 


A nice property of our theory will be that it is 


compositional: in fact, we will experimentally 


show that it allows to evaluate energy 


consumption of a program by summing up the 


costs of each one of its constituting algorithms, in 


an arithmetically predictable way. Moreover it is 


robust enough that we can use it to evaluate the 


power efficiency of whole programs on different 


processors and/or architectural settings (e.g. Atom 


vs. AMD CPU, single- vs multi-core 


computation). Surprisingly we will show that 


there are significant savings when an Atom CPU 


is in use, and also that exist a wasting of up-to 


10% for a quad core mostly idle (see Sect. VII for 


details). These, as well as other features (e.g. how 


the pattern of memory accesses impact onto the 


energy-profile of an algorithm), will help us in 


deriving some interesting invariants that could be 


deployed to design novel energy-efficient 


algorithms.  


III. TEST ENVIRONMENT 


The test environment has been redesigned several 


times because of many obvious choices do exist, 


each with its own pros/cons (e.g. think to the 


many positions an ammeter can take among the 


modules of a PC motherboard).  


Our first choice has been to choose an ammeter 


that is commercially available, cheap and that can 


be easily programmed, in order to automate the 


reading of experimental data and the 


transformation of the readings into Joules. We 


opted for the Phidgets [1] system, that features a 


plug-and-play approach to electronics: a 


microcontroller with a USB interface can be 


plugged with a number of sensors with a 


standardized interface. We used the Phidgets 


ammeter 1122 sensor [2] that has a range of 30A 


and 0.04A of resolution on AC. The typical error 


is between 1% and 2% with a maximum error of 


5%. The Phidgets system features several 


programming libraries targeting almost all 


operating systems and programming 


environments nowadays available. We used the 


.NET interface and developed the software using 


C#. Other ammeters could be used in place of the 


one we selected, provided that they offer a 


sampling frequency of at least 10Hz and a 


comparable error range. 


 


Given this HW, we proceeded to measure the 


current provided to the motherboard by 


instrumenting the power lines running inside the 


case from the power supply. We made this based 


on the belief that the circuitry of the switching 


power supply, which transforms alternating 


current into direct one, would reduce the ability of 


detecting current variations of our ammeter. 


Moreover, we thought (following [13]) to be able 


to test single contributions of different 


components fed by separate power lines, such as 


hard drive, CPU and memory. Although 


sophisticated and precise (potentially useful for 


digging into our results into the near future), we 


decided to drop this approach in favor of the 


simpler one that detects current variations on the 


alternating current side of the power supply. 


Several experiments showed that this was enough 


to obtain reliable measurements. Thus we decided 


to use a single ammeter connected to the AC line 


of the target computer, with increased ease of 


instrumentation.  


 


Like [13], we designed a two-parties software 


system (see Figure 1): one is responsible for 


collecting data from the ammeter; the other runs 


on the target machine and is responsible for 







starting the tested software (on that same 


machine) and signaling its start/end to the former 


(data-collecting) software.  


 


 
 


Figure 1.  The structure of the experimental setup 


One may wonder whether the use of a network 


affects the measures. We verified with several 


experiments that such an approach is indeed 


robust enough to ignore micro variations due to 


the operating eco-system, provided that 


experiments are conducted when the system is 


idle and no significant programs are running (i.e. 


CPU is essentially idle). We will discuss further 


this analogy with eco-systems in the next section. 


 


Figure 2 shows the power consumption (in Watts) 


on an 8-core system, which was first idle and then 


executing a program that performs a linear scan of 


a huge array (marked by green and red lines). The 


OS exhibits a stable behavior when idle, but it is 


also interesting to notice that the spike due to a 


full use of the 8-cores accounts only for around 


40% an increase in power consumption. Idle 


computers consume a lot of energy! (see also [9])  


 


 
Figure 2.  Idle operating system, and with a program running. 


The two programs used for performing 


measurements are open source and available on 


the CodePlex online site [12] (remember one of 


our main requirements--- reproducibility). 


The testing software performs a sub-sampling of 


the data received from the ammeter sensor by 


computing the average of the samples received 


each tenth of a second, thus reducing jittering 


effects due to the environment and possible errors 


in the readings. The rest of the system relies on a 


10Hz measurement rate. This simple strategy will 


be subject to improvements and refinements over 


time, though so far it has been able to effectively 


show an appropriate amount of details in the data. 


We computed several values from the raw current 


readings taken from the sensor. We are able to 


estimate the power consumption (in Watts and 


Joules) by using well known relations among the 


quantities involved. Namely, power is obtained by 


multiplying the current and the voltage together 


(220v AC in Italy). We disregard the power factor 


cos() in the conversion, which leads us to 


slightly over-estimating the power (by a constant 


factor that can be easily reinserted). The energy 


expressed in Joule is then obtained by discrete 


integration (multiplying power and time together 


for each time slot and then summing up the 


results). 


 


 
Figure 3.  Energy consumption of a (log n)-time algorithm. 


As an example, Figure above shows the energy 


used to perform a binary search on an array of 


increasing size. In order to obtain measurable 


durations we iterated each search 2
20


 times, which 


on the particular machine we used to perform the 


experiment took between 0.4 and 0.75 seconds to 







complete. The whole test has been iterated 30 


times and the results averaged. We actually 


employed an iteration factor of 30 for all tests 


described in this paper, with the only exception of 


those reported in section VIII where a factor of 3 


has been used. 


 


We find amazing that the behavior of an 


algorithm with computational complexity (log 


n) can be measured through the power line, and 


thus our simple methodology and HW-tools. The 


logarithm function fits the energy-consumption 


plot, as expected. In the subsequent sections, we 


will present energy-plots of more intensive 


computations, showing even more precise trends 


that match the curves predicted by the classic 


(asymptotic) computational complexity, and thus 


regarding so called CPU-bounded computations.  


However, as observed before, Joule is an energy 


measure useful for speculating about power 


consumption of a particular system, but it cannot 


be used to compare measurements across different 


systems, as any “reasonable” model should allow 


to. We need a more robust measure which is 


invariant wrt the underlying system running the 


experiment, thus playing the role of the RAM 


model but in the energy-profiling setting. This is 


what we introduce in the next section. 


 


IV. THE ENERGON 


It is well known that often measurements taken in 


clean environments differ from those ones 


obtained in the real world. For this reason, or 


because a “clean” environment is sometimes 


impossible to define, industrial benchmarks like 


SysMark 2007 [18] perform system testing 


empirically by starting several times a set of 


productivity programs installed on a “clean” 


system, trying to reproduce typical usage patterns. 


From our perspective the system we observe is a 


sort of eco-system, including OS processes and 


services triggered by external events and 


interacting with other applications. We want to 


measure changes that happen when we alter the 


situation by running our program, distinguishing 


them from the overall picture and from the noise 


caused by the mentioned eco-system. Two 


different runs of the same program may well lead 


to different results, so we need a method that 


distinguishes the contribution of the program we 


want to observe from the contribution due to the 


underlying system. 


 


The first attempt has been the obvious one: 


measure the energy absorption of the idle system 


in Joules or Watts for a given amount of time, and 


then subtract this “milieu” from the measure 


acquired when our tested-program runs. This 


approach is ill-conditioned because the power 


consumption of the idle system is usually several 


times bigger than both the signal we want to 


measure and the additional noise, and moreover 


there occur sometimes spikes that are clearly 


related to some service running that jeopardize the 


interpretation of the measurements. 


To circumvent these drawbacks, we have drawn 


inspiration from approaches taken by biomedical 


engineers for measuring cell eco-systems [19]. 


When biologists measure cells activity on a 


terrain, for instance for drug testing, they first take 


measurements in a reference system, and then, 


after  performing the change they want to observe, 


they take additional data. Results are then 


normalized with respect to the first reference that 


acts as a meter. There are two aspects in this 


approach worth of notice: reference measurements 


are made because it is virtually impossible to 


reproduce exact environmental parameters (such 


as temperature, humidity, etc.); and the reference 


system includes cells, and not just the terrain, 


because cells that interact with their environment 


may alter the terrain parameters even before the 


desired stimulation is performed. 


 


We found strong analogies between our 


framework and the cell eco-system. In particular 


the fact that an idle OS may change the execution 


patterns of its services (the eco-system) when a 


new program runs and asks for resources. We thus 


introduce a reference program in our 


experimental methodology that is run in the same 


environment where the experiment should be 







executed. Then the energy-cost of this reference-


program is used as a meter for normalizing the 


results of our experiments. There are several 


choices for such a meter, taking for instance into 


account different architectural features and 


environment services, and we expect over time to 


study several other meter definitions. In this paper 


we propose the Energon program,  which is 


designed to use the CPU (or a single core of it) at 


full speed for a certain amount of cycles (namely 


1G), and before the real experiment is run. 


 


 
Figure 4.  The energon definition in C++. 


Figure above shows the simple C++ source code 


of the Energon. It consists of assembler code 


explicitly inserted in a loop to ensure that no 


compiler could change it and thus render the 


measurement compiler-dependent. The 


surrounding C++ code is used to communicate 


with the testing software and signals when to start 


and stop the measurement. In this way more 


complex algorithms can exclude their setup phase 


from the measurement. 


 


The code can be easily adapted to different 


architectures. We deliberately avoided at this 


stage a (Energon) program involving memory, 


since communications between CPU and memory 


are asynchronous and may introduce unwanted 


idle cycles in the CPU which heavily depend on 


the hierarchy of memory levels. We will discuss 


further this issue in section VII, and defer the 


study of the impact of the pattern of memory-


accesses onto algorithmic energy-consumption to 


the final version of this paper. 


While the Energon test can be still thought as an 


idle power consumption plus a “100% 


computation overhead”, it is nevertheless 


measured as a whole. When we test the real 


algorithm, its measure in Energon (we use the  


Greek letter to denote 1 Energon) is computed as 


the ratio between its overall power consumption 


and the overall power consumption of the 


Energon program. This makes the measurement 


more stable and robust, because it includes the 


“constant” consumption incurred by the PC 


during the test.  


As already mentioned, measures are repeated 


several times (in our tests 30 times) to compute 


the average energy used by the Energon program 


and the program tested. We obtained a standard 


deviation of 2.8% of the average energy required 


by the Energon
1
. It is worth noticing once again 


that the Energon does not depend on time: it 


simply measures the energy required for 


incrementing a register one billion of times. Of 


course it will take more or less time depending on 


the particular processor used, but in some sense it 


captures the notion of “computational power per 


electrical power” of the processor. And in this 


sense, it is mimicking the notion of “algorithmic 


step in a RAM model” that represents the 


computational unit independent on the HW-SW 


features of the PC that will run the algorithm; here 


the Energon plays the same role but with respect 


to the energy-profile of an algorithm. 


 


The first question we faced after defining the 


Energon was: what about its stability and 


composability? We expect that if we iterate the 


Energon program h times, we observe a 


corresponding increase in its energy consumption. 


We call this new program ENERGON(h) (and the 


                                                 
1
 We avoid referring to specific architectures because we 


expect that these numbers will change as the method will be 


used on different systems. In this particular case we tested 


the energon on an AMD Athlon 64 X2 Dual Core 4200+, 


2.20GHz 2 GB RAM, running Windows Vista H.P. We 


obtained an average of 177,2516j of energy used with 


3,464587j of standard deviation. 







original is Energon(1)). Experiments show that 


the ratio ENERGON(h)/h* is correctly close to 1 


(0.97 in average with 0.01 of standard deviation). 


 


Given the Energon, we can evaluate the energy-


profile of the binary search, now scaling the 


energy-consumption by the Energon measure. The 


obtained plot (not shown for the lack of space) is 


smoother, still retaining its logarithmic shape. 


V. SORTING ALGORITHMS 


In this section we validate the robustness of our 


measurements by investigating the energy trends 


of few sorting algorithms over increasing input 


sizes. This shows that our methodology is able to 


predict algorithm trends in energy consumption 


quite carefully. In the next section we will 


elaborate on these results by introducing a theory 


of experimental algorithm complexity, useful to 


compare algorithms based only on such observed 


energy-trends. Finally, in section VIII we will 


show that energy consumption is not always 


related to completion time, especially when 


considering thread-parallel computations.  


 


We considered three well-known sorting 


algorithms: merge-sort, heap-sort, and quick-sort 


[20]. They vary either in their worst-case running 


time, or in the amount of working space, or in the 


pattern of their memory accesses. In all cases we 


measured only the sorting phase, ignoring the 


setup of the input array with random data. We 


repeated the test 30 times in order to get 


empirically sound input distributions. All the 


algorithms have been implemented and tested 


using C++. Tests using C# were also performed, 


obtaining similar results, but showing less clear 


trends due to C# virtual machine services (such as 


the garbage collector) coming into play and 


creating irregularities and spikes in the data. 


While the situation is in the scope of our work, in 


this early stage of our validation process we 


preferred to use real measurements which are 


more predictable and easily handable. 


 


Merge sort is an optimal comparison-based 


sorting algorithm that requires (n log n) time in 


the worst and average case. As shown in Figure 5 


below, the energy consumed by the algorithm as a 


function of its input size follows exactly that 


prediction obtained with the asymptotic time-


analysis in the RAM model.  


 


 
 


Figure 5.  Merge-sort energy consumption in Energon 


Heap sort is another optimal sorting algorithm 


which works in-place, and thus uses no additional 


working space, unlike Mergesort; however it 


induces a random-pattern of memory accesses. 


Figure 6 below shows an asymptotic energy-


consumption trend towards the expected (n log 


n), though at small input sizes there is a deviation 


with respect to the curve expected from theory. 


 


 
Figure 6.  Heapsort energy consumption in Energon. 
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Overall heap-sort is less efficient than merge-sort, 


even if the asymptotic behavior is the same. Using 


heap-sort requires more than twice the energy of 


merge-sort. This is probably due to the pattern of 


memory-accesses that makes merge-sort cache-


friendly: time-efficiency implies less waiting time 


by CPU, hence less power consumption. Given 


these results, in the final version of this paper we 


will deeply present our investigations about the 


non-negligible impact of the pattern of memory-


accesses onto the energy-profile of an algorithm, 


and thus onto its green-design. 


 


Quick sort is well known to be (n
2
) in the worst 


case and (n log n) in the average case, with 


lower constants than the other sorting algorithms. 


We were curious to see how our experimental 


results would have recorded this non-trivial trend. 


Figure 7 shows the energy-profile of Quicksort 


expressed in Energons. The curve is plainly 


different of the ones shown before. We tried to fit 


data against different functions using the least 


square method. Both n
2
 and n log n functions 


fitted nicely, though the best fit was obtained by: 


f(n) = n log n + 
n


2


a
  


with a constant value (the best fit has been found 


for a value of a=512). It is in our opinion very 


interesting that the overall cost includes both 


terms predicted by the worst- and average-case 


asymptotic analysis.  


 


 
Figure 7.  Quick sort energy consumption in Energon. 


VI. EXPERIMENTAL COMPUTATIONAL 


COMPLEXITY 


Even if at first sight the correlation between time 


and energy may suggest that an experimental 


theory of program complexity can be based just 


on time-performance, we will find that this is not 


the case when we consider other processors, the 


hierarchy of memory levels and parallel CPUs.  


However we cannot neglect such correlation, 


which comes out because obviously the longer an 


algorithm executes, the highest will be the power 


demand of the CPUs. This correlation is useful 


when considering CPU-bounded computations 


because of our simple methodology to measure 


the energy-profile of a sequential algorithm.  


 


We introduce a notation for our experimental 


complexity theory inspired by the traditional -


notation. In our case, however, we cannot rely on 


asymptotic behavior since by definition our 


measurement system is finite. 


 


Definition (-notation). Let us given a set of 


energy-measurements A expressed in Energon 


(i.e. ) and representing the energy-profile of an 


algorithm with respect to a set of inputs whose 


size is in the range [a, b]. The data set is said to 


belong to (f(n)) over that interval,  if there exist 


two constants k1 and k2 such that: 


 


 x[a, b].data(x)A  k1 f(x) ≤ data(x)  ≤ 
k2 f(x) 


 m1,m2A,x1,x2[a, b] s.t. k1f(x1)=m1 and 
k2(x2) = m2  


 


and we will write that A(f(n)) with respect to  


and [a,b].  


 


The definition tries to capture the idea that data 


can be enclosed by a function, with the additional 


requirement that the weighted function must pass 


through two data samples in order to take the 


tightest among many possible functions. 


As an example, Figure 11 shows another run of 


binary search with f(n) =  log n. 
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Figure 8.  Binary search is (log n) 


Since the interval is finite it is possible to create 


several functions f that state an experiment to be 


(f). To avoid these ambiguities, we introduce 


notions that characterize relevant behaviors of . 


 


Definition (-preferred). Given a set of data A 


over an input size interval [a, b] and two functions 


f and g. We say that f is -preferred with respect 


to g if A(f) and A(g) but f  is a better least-


square approximation than g on A’s data. 


 


Definition ( coherence).  A function f is said to 


be  coherent with respect to an algorithm if for 


each interval [a,b] of input sizes the resulting data 


set A(f). 


 


These definitions attempt to capture common 


patterns we found in the data. For instance we 


found that merge-sort is (n log n) coherent. We 


quickly find useful to have a precise meaning to 


speak about experimental data, but these 


definitions do not only address description needs. 


Actually, consider the following law: 


 


Law of composition. If two algorithms are 


respectively (f) coherent and (g) coherent, then 


the algorithm obtained by executing them in 


sequence (i.e. one after the other) is (f + g) 


coherent. 


 


This law has been verified in all our tests, and we 


are currently working onto verifying functional 


composition of algorithms: for instance if a 


sorting algorithm receives a comparison function 


that is not constant what happens to its 


experimental complexity and  ?   


 


It is important to notice that even if we mimicked 


the definition of , in our case there is no way to 


simplify composition. If you combine a quadratic 


algorithm with a linear algorithm, then you obtain 


a quadratic algorithm in . With  we can only 


say that the algorithm is made of the sum of 


quadratic and linear energy consumption. This is 


again due to the lack of asymptotic reasoning. 


Overall we have verified the following relation: if 


an algorithm has (f)  time-complexity then it is 


(f) coherent, and thus our methodology is robust 


for CPU-bounded computations. The converse in 


not necessarily true, as we will show in the next 


section. 


VII. EXPERIMENTING DIFFERENT ARCHITECTURES 


We tested two architectures: an AMD Athlon 64 


X2 Dual Core 4200+ 2.20GHz based system with 


2Gb of RAM, and an Atom N230 based system 


with 2Gb of RAM. The two architectures have 


been chosen because they are radically different. 


We have executed all algorithms of the previous 


sections (i.e. binary-search and sorting) with the 


twofold goal of verifying that Energon results are 


confirmed across different architectures, and thus 


that Energon normalization allows for data 


comparison between different systems. 


 


First of all we compared the two Energon 


computed by the two architectures, in order to get 


an idea of the overall efficiency of the two 


platforms. Results confirm the power efficiency of 


Intel Atom: it absorbs about half the energy taken 


by AMD. Of course this measurement includes 


not only the CPU-cost but also the energy-cost of 


the whole system. 


Then we applied our experimental methodology 


to binary search and the three sorting algorithms 


above. Because of lack of space Figures below 







refer only to the Energon-plots for binary search 


(results on the sorting are even better). It can be 


noted that data follow the same trend on the two 


architectures (i.e. they belong to the same class of 


) but their plot do not overlap.  


 


 
  


A possible explanation is that Energon measures 


only the CPU, not taking into account the energy-


efficiency of the whole architecture which 


therefore introduces some “energy-gaps” which 


are not negligible especially with the increase of 


the input size. (In the final version of this paper, 


we will account on these issues.) 


 


 
 


We tried then to correlate the measurements of the 


two architectures, and found that the two plots 


overlap perfectly if multiplied by a constant k (see 


pictures below). For binary search, we found 


k=2.8; for quick-sort k=3; for merge-sort k=6. 


This fact is a further confirmation of the 


robustness of our experimental method: we can 


still predict the energy-profile of algorithms on 


different architectures, and show that they have 


the same behavior when energy consumption is 


scaled using the Energon.  


 


A natural question now is why the constant factor 


changes? We would have expected the same 


constant for all the experiments, thus depending 


only on the two architectures and not on the tested 


algorithm. This would have allowed us to model  


 the energy efficiency of the algorithm (and 


in perspective, of complex applications) 


expressed by  relations of complexity 


functions, 


 the relative characteristics of two or more 


system architectures (these would be 


classified in terms of a constant factor  


expressing their energy efficiency).  


 


Instead, we found that the constant k varies with 


each test. We thus started investigating if there 


were constant contributions of the architecture 


which were not properly normalized by the 


Energon, and thus we first took into account the 


overall running time of the tested algorithm.  


 


It turns out that Quicksort and Binary Search need 


similar values for the multiplicative k across the 


two different CPUs (2.8 versus 3) in spite of 


having quite a different running time (the largest 


instance of Binary Search test is about 12 times 


faster to complete than the largest one of 


Quicksort), different algorithmic complexity and 


different  class. They do share, however, an 


random-pattern of memory accesses.  


Conversely, if we compare Quicksort and 


Mergesort, we notice that they have very close 


completion time and share the same asymptotic 


time-complexity on average, but do generate a 


completely different pattern of memory accesses, 


and indeed they need a significantly different 


value for k (3 versus 6).  


The Mergesort algorithm produces the sorted 


output with 1/6 of the Energon amount on the 


Atom architecture wrt AMD one, while the same 


architecture only saves 1/3 in the Quicksort case.  


We argue that this is due to the fact that 







Mergesort triggers a cache-friendly pattern of 


memory accesses, and this seems to better exploit 


the energy-efficiency design choices of the Atom 


processor. 


 


Given these preliminary results, we are now 


starting an in-depth study of the effects of 


memory-access patterns on our Energon–based 


methodology, to refine its definition and allow 


more robust comparison of results across 


architectures. We plan to include these results in 


the final version of this paper. 


VIII. MANY-CORE COMPUTATIONS 


So far we have discussed measurements of 


sequential algorithms, mainly to validate our 


results against time complexity theory (and thus 


CPU-bounded computations), relying on the 


strong correlation of energy consumption and 


completion time. 


In this section we are interested in studying how 


energy consumption of algorithms is affected by 


parallel execution, and in particular what can we 


expect from many-core architectures that are 


becoming ubiquitous in nowadays computing. 


To understand this we measured the energy-


profile of a simple linear-scan over a long array 


on a quad-core system with hyper-threading (a 


total of eight cores for the operating system). We 


compared the sequential version of the linear scan 


against several parallel versions using two, four, 


and eight cores. Parallel scanning has been 


implemented by partitioning the input array in p 


segments with p the number of cores used. 


 


Theoretically this algorithm scales optimally since 


there is no access to shared data and each thread 


can run at its full speed. Ideally we expect that the 


energy consumed stays the same no matter how 


many cores are used, since the same total number 


of bits should be processed/accessed. But 


surprisingly, this is not the case. 


Figure 9 shows the average power consumption 


(W) for the executions of linear scan using 


different number of cores. If, however, we 


measure the same linear-scan in Energon (plot not 


shown), it turns out that the most efficient way to 


use the CPU is by deploying all cores together, 


with sequential execution requiring three times 


more the Energons of 8-cores execution.  


 


 
Figure 9.  Average power used in the four experiments. 


To understand this phenomenon we assumed that 


an idle core would consume a certain amount of 


energy that we set to be constant during the 


execution. Under this assumption we have been 


able to estimate the energy used by an idle core 


solving a simple system of equations. Waste due 


to idle cores has proven to be quite significant 


with respect to the overall computation as shown 


in Figure 10, and it is up to the 10% of the overall 


computation in the single core execution case.  


 


 
Figure 10.  Percentage of energy wasted by idle cores 


An important fact is that completion time and 


energy consumption are not so strictly related as 


it was in the sequential case. This is witnessed by 


the change in the average power absorbed by the 


processor depending on the number of idle cores. 


In particular we found that if Ck and Tk are the 


energy consumed and the completion time of 
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linear scan using k cores, the following relations 


holds: 


 


T2 = 0,53 T1           C2 = 0,58 C1     [ideal is 0.50] 


T4 = 0.35 T1         C4 = 0.43 C1     [ideal is 0.25] 


T8 = 0.28 T1          C8 = 0.36 C1     [ideal is 0.12] 


 


These formula are NOT surprising because they 


show that, although intrinsically parallel, the 


linear-scan does not achieve ideal-parallelism (the 


best speed-up is 3.81 due to resource contention 


among the threads competing for the memory 


bus); nonetheless, these formula are interesting 


because the energy consumption of 1 core (i.e. 


C1), expressed in Energon, is larger than the other 


Ci which decrease as the number i of cores 


increases. This is counterintuitive because few 


active cores consume more than many active 


ones; the reason is that Ci is energy-consumption 


(properly normalized) and we recall that Joule = 


W*T. So by increasing the number of cores the 


completion time decreases but the total consumed 


watts increase, with the balance being in favor of 


time reduction.  


 


Further investigation is still required to improve 


our model and dig into the specialties for the 


many-core case. These experiments indicate that 


underuse of computational resources can be very 


expensive from an energy efficiency standpoint. 


We expect that our simple methodology of 


energy-profiling can be used to evaluate the 


efficiency of a system with respect to core-usage 


leading to a more savvy strategy in computing 


resources acquisition than simply “let’s have as 


many cores as possible”. 


IX. PROGRAM ENERGONOMY 


Even if we decoupled the notion of completion 


time from that of energy consumption, at least in 


the many-core case, the two quantities are still 


related. Writing efficient programs usually leads 


to energy efficient systems; this is well known, of 


course, but now we have a simple methodology to 


quantify it or compare programs according to their 


energy-efficiency under several architectures. 


This is important also because completion time is 


becoming less critical for ordinary applications, as 


witnessed by the increasing number of codes 


written via  interpreted languages such as Python. 


From a user standpoint a tenth of a second or half 


second does not really matters, and this explains 


the popularity of these coding approaches. 


However it is also well known that Python is more 


than fifty times slower than C in the average (see 


Debian shootout [11]). Thus we expect that 


Python programs will consume more energy than 


their C/C++ equivalent. Of course scripting is 


easier and more flexible, but it must be clear that 


even if performance is acceptable there is a 


hidden energy-price to pay. Same arguments hold 


for virtual machines, such as Java or Mono (.NET 


implementation for Linux). They are flexible, but 


their average performance is twice slower than C, 


and thus we expect such wasting of energy when 


using that programming framework. We will 


perform more precise evaluations in the near 


future to further quantify these hypotheses, even if 


they are clearly suggested by the results found in 


this paper. 


 


In summary, a greener computing infrastructure is 


achieved not only by optimizing the IT 


infrastructure, but also by writing better (i.e. more 


efficient) software. And, as witnessed by our 


work, the impact can be as significant as much as 


hardware improvements (or even more!). Our 


experimental methodology and protocol offers a 


clean and simple way to measure software 


improvements and benchmarking. In particular we 


have three dimensions: input size, algorithm, and 


architecture. We can perform energy efficiency 


benchmark by fixing two out of three dimensions 


and observe the variations. If we fix the input size 


and the algorithm, we can benchmark 


architectures as we did in section VIII. When 


input size and architecture are fixed, we can 


benchmark the algorithm efficiency as we did in 


section V for sorting. If architecture and algorithm 


are fixed, we can see how well an algorithm 


scales with respect to its input, as we did in many 


examples thorough the paper. 


 







The ability of practically measuring the energy-


profile of an algorithm, or even an entire software, 


is likely be the basis for what we call 


energonomy: the attempt to write energy efficient 


programs.This will be a key issue in the next 


years because, as observed in [3] “Algorithmics 


offers benefits that extend far beyond TCS into the 


design of systems.” The simple methodology for 


energy-profiling of algorithms, described in this 


paper, can be adopted to quantify these benefits is 


a robust yet simple way.  In particular, in the final 


version of this paper we will address the energy-


issues concerned with the pattern of memory-


accesses deployed by an algorithm in its 


execution; some of our preliminary results (to be 


included in the final version) already show that 


the impact of these accesses cannot be neglected 


and may even be of order of magnitudes. So any 


programmer should take them into account when 


designing a software. 


X. CONCLUSIONS AND FUTURE WORK   


In this paper we introduced an experimental 


methodology for measuring energy consumption  


of programs in a robust way, largely independent 


of the particular environment used to perm the 


experiments. Energon, our unit for energy-


profiling of algorithms, has proved to be a useful 


meter for our investigations.  


Philosophically, our theory follows naturally by 


the consideration that at the very core of 


computation there is the notion of physical work 


required for moving electric charges from one 


register to another, or changing a circuit state. So 


we may suggest that we are measuring the 


“information work”: the energy required for 


performing information processing. 


We hope that this preliminary work may 


contribute to set a community of researchers that 


use our methodology to investigate other 


combinations of algorithms/architectures. We 


published our testing software on the Web [12] 


and we will start a web site where researchers and 


practitioners may upload the results of their 


experiments.  
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