

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-10-15

Safer in the Clouds

Chiara Bodei1 Viet Dung Dinh1 Gian Luigi Ferrari1

September 10, 2010

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Safer in the Clouds ?

Chiara Bodei1, Viet Dung Dinh1, and Gian Luigi Ferrari1

Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127,
Pisa, Italy

{chiara,dinh,giangi}@di.unipi.it

Abstract. We outline the design of a framework for specifying and rea-
soning about cloud com- puting systems. The methodology is based on a
declarative programming model which takes the form of a λ-calculus en-
riched with suitable mechanisms to express and enforce application-level
security policies governing usages of resources available in the clouds. We
will focus on the server side of cloud systems, by adopting a pro-active

approach, where explicit security policies regolate server’s behaviour.

1 Introduction

In the old times, people used to exploit the bakery’s oven for their home-made
bread. Similarly, people utilised the public mill to obtain flour from their wheat.
In both cases, people did not own the physical infrastructure to process their
products, neither they invested on it. Instead, they rented usage from a third-
party provider. Under this regard, the idea of cloud computing is not completely
new, it just updates the above model and adapt it to the Internet world. Cloud
Computing customers do not invest on hardware, software or services, but they
just pay providers to use them, either on a utility or a subscription basis. They
rely on clouds for infrastructures, platforms, and software. Cloud services and
the resources they offer over the Internet are therefore used on demand and
with a certain degree of flexibility. Usually, these services are based on (a farm
of) servers, often virtual ones and are fully managed by their providers. As
a consequence, old and new security problems may arise, because if security
is related to trust, as Schneier [15] wrote “[cloud computing] moves the trust
boundary one step further ... You have to trust your outsourcer completely. You
not only have to trust the outsourcer’s security, but its reliability, its availability
and its business continuity”.

In this paper, we describe the design of a framework for specifying and reason-
ing about cloud computing systems. Our framework takes the form of a declar-
ative model, a dialect of concurrent λ-calculus, for describing and assembling
services, and for managing security properties. We also present a methodology
for securing the design of services available in the clouds and invoked by possibly
untrusted thin clients, such as Web browsers. Next, we informally present the
main features of our approach.

? Research supported by the Italian PRIN Project “SOFT”.

Services as functions with side effects We adopt the idea of Software as a
service: each service exposes over the network certain functional behaviour and it
is invoked via request/response communication protocols (e.g. SOAP). Services
are pluggable entities and composite services are obtained by combining existing
elementary or complex services. In our programming model cloud services are
viewed as functions. Following [8,9], the service is not a pure function as its
execution yields a side effect, thus reflecting changes of the service state. For
instance, let us consider a simple storage service, offered by a cloud, that gets a
string query from the user and accordingly queries the database. The following
functional interface can be used to describe the above service.

Table fun Q(Query q): Effect e

The invocation of the service Q with a query value will yield a table value as
result. The side effect e provides the abstract representation of the modifications
to the database such as updates of tables. In other words, the side effects repre-
sent the action of accessing service resources. By applying the typing techniques
developed in [8,9], we could describe the published interface of the service Q,

through an annotated functional type, of the form Query
e
−→ Table. When sup-

plied with an argument of type Query, the service evaluates to an object of type
Table. The annotation e is the side effect of service evaluation that abstractly
describes the possible run-time traces of service executions. Since service inter-
faces play a crucial role in our setting, they have to be certified by a trusted party,
which guarantees that the side effect abstraction is a sound over-approximation
of the actual service behaviour, when acting over service resources.

The main benefit of the service-as-function metaphor, with respect to al-
ternative approaches based on process calculi (see [10] for a survey), is that it
provides a high-level notion to model services, their composition and interac-
tions, by abstracting from low level networking details.

Security Policies In spite of its undeniable advantages and cost-savings, cloud
computing makes data processing inherently risky, as data reside not under
the user’s control, as effectively said by Diffie in an interview [11]: “... The
effect of the growing dependence on cloud computing is similar to that of our
dependence on public transportation ... which forces us to trust organizations
over which we have no control, ... and subjects us to rules and schedules that we
wouldn’t apply ... On the other hand, it is so much more economical that we don’t
realistically have any alternative. ... [Concerning safety] from the view of a broad
class of potential users it is very much like trusting the telephone company ...
to keep your communications private. ”Classical CIA (confidentiality, integrity,
and availability) concerns are therefore more crucial, and also assuming that the
underlying networking infrastructure manages the CIA factors, design flaws can
arise and make cloud services unsafe. Often security problems do not depend on
weird attacks, but simply on the application of careless policies or insufficient
policy enforcement. Consequently, it is crucial that safety is addressed when
designing a cloud.

2

Our programming model focuses on application-based security by consider-
ing security policies as first class programming constructs. We provide explicit
constructs to declare and enforce the security policies governing the behaviour
of applications, in the style of [5,6]. In our framework, a security policy regulates
how resources are granted to and used by services. For instance, let us consider
the database service example introduced above. The Q service may be unsafe
although the code normally runs in most of the cases. An attacker can indeed
taint the query string by injecting a command in front; consequently the service
would issue dangerous commands such as deleting a file before executing the safe
query. This is called an SQL injection bug.

Sequences of resource accesses in executions are called histories. A security
policy ϕ is a regular property of histories. Policies are expressed as languages
accepted by an extension of finite state automata, since automata recognize
those words that violate the desired property. We refer to the general case of
policies as arbitrary safety properties [7,9]. While evaluating a program fragment
e protected by a policy ϕ, written as ϕ[e], the histories must respect ϕ.

From a methodological perspective, the awareness of security issues from
the very beginning of the development process facilitates the design of secure
services: security is faced in advance, without sweeping it under the carpet (read
it as security patches added later). The database service example above can
be moved into a more secure land, by wrapping it inside a suitable security
policy ϕDB. For instance, the policy can impose that no update operations on
the database (i.e. system commands) can be issued during service executions,
i.e. the only operations allowed are those in which the database content can only
be read. Adding the specified policy to the query interface results in:

Table fun Q(Query q): Effect e ensuring ϕDB

meaning that each step of service execution must obey the security policy ϕDB .
Operationally, the run-time structures will enforce the security policy ϕDB by
monitoring service execution and by catching the occurrences of bad actions,
i.e. the actions that violate the policies. Actually, the run-time enforcement
mechanism depends on a suitable abstraction of the execution of all the pieces
of code (possibly partially) executed so far. This implies that the mechanism en-
forcing the security policies can make decisions, based on all previous changes of
shared resources affected by different user requests. This approach, known under
the name of history-based security, has been receiving major attention, at both
levels of foundations [3,13,16] and of language design/implementation [1,12].

Cloud server Abstractly a cloud server can be seen as a pool of services and
computational resources running over a variety of virtual machines. In our pro-
gramming model, a cloud server is a triple consisting of (i) the history repre-
senting the global cloud state (that represents the dependencies among services
and resources, as well as virtual machine configurations), (ii) the set of active
processes, and (iii) a service store that associates each service name with the
script required to load the virtual machine and the resources needed to run the
service.

3

For example, let us consider a cloud server, whose service store provides
facilities to convert files to one format to other formats. The initial configuration
of the cloud server only includes the service scripts. Notice that these scripts are
idle: they are activated by service invocation. We do not model here how clients
operate. Clients interactions are asynchronously observed, by means of the server
operations required to activate VM as well as the resource needed to operate.
For instance, in our running example, the initial configuration includes an empty
history ε, an empty set of active processes 0 and a service store with two possible
services F2F1, F2F2 available to convert files having a certain source format:

(ε,0, {F2F1 → p1, F2F2 → p2})

These two scripts could be characterized by the following types that declare both
information about the virtual machines attached to the services and about the
costs of service invocations.
Format1 fun F2F1(Format file): Effect ActivateVM1; c1
Format2 fun F2F2(Format file): Effect ActivateVM2; c2

Our cloud server may activate a translation service by the transition:

(ε,0, {F2F1 → p1, F2F2 → p2})
invoke F2F1−−−−−−−−→ (invoke F2F1, p1, {FI2F1 → p1, F2F2 → p2})

This rule spawns the service code in an asynchronous manner. Moreover the
server state records the operation that activates the service. Finally, the service
scripts are persistent.
Contribution We do not focus here on typing issues. We are concentrated in-
stead on the definition of a semantics-based framework to model cloud servers,
and associated reasoning techniques, with a special concern for security proper-
ties. We advocate the usage of a declarative model based on functions with side
effect to abstractly represent services acting over resources and service assem-
blies. In particular, the main contributions of the paper are the following.
• The formal semantics of cloud servers as functions, expressed in a suitable
dialect of the λ-calculus.
• The modelling of clients interactions is via asynchronous invocation.
• The introduction of a notion of bisimulation equivalence for cloud servers. This
bisimulation for cloud servers is proved to be a congruence.
• The presentation of a formal methodology capable of performing semantics-
based reconfiguration of service clouds.

All the proofs and auxiliary statements presented can be found in the Ap-
pendix.

2 The Calculus

We consider a concurrent call-by-value λ-calculus, called λ{} (lambda clouds),
enriched with primitives for accessing resources, for declaring and enforcing se-
curity policies, and for installing services and managing their invocation.

4

For simplicity, we assume that resources are objects that are already available
in the cloud environment (i.e. resources cannot be dynamically created). We use
R (ranged over by r, ri) to denote the finite set of resources available in the cloud.
Resources can be accessed via a given finite set of actions α1, . . . , αn. Each action
α is characterised by an arity, | α |, that corresponds to the number of resources
the action operates upon. An event α(r1, . . . , rk) describes the application of the
action α on the target resources r1, . . . , rk. Traces (ranged over by η, η′, . . .) are
finite sequences of events.

Following the approach of [5,6], a security policy is a set of traces that describe
the sequences of events satisfying the policy. Security policies are specified via
usage automata [4]. Usage automata are an extension of Finite State Automata
(FSA), where the labels on the edges may contain variables which represents a
universally quantified resources, and whose final states denote a violation of the
policy.

Usage automata have been proved expressive enough to model security re-
quirements of real-world applications [4]. A usage automaton φ gives rise to a
finite state automaton when the formal parameters are instantiated with actual
resources. Hereafter, we will use the shorthand x to indicate that any possible
resource different from x and the notation η |= φ to indicate that η drives the
automaton φ into a state that does not violate the policy, i.e. η respects the
policy. Similarly, a sequence of events violates the policy whenever it drives the
automaton into a final offending state.

We will simply illustrate some of the features of usage automata with an
example and we refer to [4] for more technical details.

Example 1. Let us consider a simple storage service that allows users to store
their data. To avoid data being revealed by a third party, it requires that data
is encrypted before storing and is logically isolated from other user data. To
protect the storage service from external attacks, the storage service runs within
the scope of a policy that does not allow to access other user data. To simplify
the policy design, we assume to have only two users (u1, s1) and that each
user ui has the full control of its own data repository si. This policy can be
easily extended to deal with k users acting over a pool of storage resources. The
corresponding automaton, depicted in Fig. 1, describes the policy that regulates
the usage of the store resource s1 by user u1. Intuitively, the policy constraints the
storage service to behave as follows. Firstly, the storage service makes a resource
request to actually connect to the storage system. This is done by issuing the
event connectStore(u1,s1). The event encrypt is used for encrypting user data,
while events store(si) is used to represent the activity storing the data on the
resource si. Notice that the policy abstracts from the actual values of data and
focusses only on the resources (here users and storages). Automaton transitions
are labelled by events. There is a single offending final state (marked by a double
circle). To make the description of the automaton more compact we used the
notation L to indicate any event different from L. We also avoid to report the self
loops on the final state (given for every event). Clearly, the sequence of events,

5

connectStore(u1,s1) encrypt; store(s1) satisfies the policy, while the sequence
connectStore(u1,s1) encrypt; store(s2) does not.

q0 q1 q2 q3
connectStore(u1, s1) encrypt store(s2)

store(s1)

connectStore(u1, s1)

encrypt

Fig. 1. Usage automaton of the storage service

2.1 Lambda Clouds

We introduce the syntax of λ{} (see Fig. 2). We assume the existence of a finite
repository Π of public service names ranged over by π. A service name can be
intuitively thought of as the URI of the service. Finally, we use ξ to indicate
either a variable or a resource.

e, e′ ::= expressions

| 0 empty value
| x variable
| r resource
| α(ξ1, . . . , ξk) access event
| λx. e abstraction
| e1 e2 application
| e1 ‖ e2 parallel composition
| link e link component (service constructor)
| ϕ[e] policy framing

Fig. 2. Syntax of λ{}

We assume all standard notions and definitions of lambda calculus. Free and
bound variables are defined in the standard way. An expression is closed if it
contains no free variable. We denote the set of closed expressions as T0 and the
set of all expressions as T .

The empty value is denoted by 0. An event α ∈ Ω represents a system-
and security-relevant operation. Security policies ϕ ∈ Φ are modelled as regular
properties of event histories, i.e. properties that are recognizable by a usage
automaton, as discussed above. A policy framing ϕ[e] enforces regular property
of history during execution of e. The parallel composition ‖ allows us to handle
concurrency. The constructor link e is a new construct, introduced here in order
to model the dynamic publication of a service whose code is e.

6

The values of the calculus are the empty value, variables, resources and
lambda abstractions. Hereafter, we used the following abbreviations:

– λze = λzx.e if x 6∈ fv(e); • λxe = λzx.e if z 6∈ fv(e); • e; e′ = (λ.e′)e

We model a cloud server as a pool of services and computational resources
running over a variety of virtual machines. Formally, a cloud server is a structure
of the form

(η, e, σ) where

• η is the history representing the global cloud state, that details the dependen-
cies among services and resources, as well as virtual machine configurations,
• e is the expression that describes the set of active processes, and
• σ is the service store that associates each service name pi with the expression
(script) used to load the virtual machine and the resources required to run the
service.

2.2 Operational Semantics

For simplicity, we first define an operational semantics without considering the
third component, i.e. the service store. Intuitively, the two-level semantics allows
us to reason both on the behavior of individual services and on the behavior
of the whole cloud. The behaviour of λ{}-expressions, described in Fig. 3, is
defined through a small step operational semantics, called service semantics.
Configurations are pairs (η, e) consisting of a history η and an expression e. A

transition (η, e)
(µ)
→ (η′, e′), indicates that, starting from a state described by

the history η, the expression e evolves to e′, issuing an event µ, and possibly
extending the history to η′. Initial configurations have the form (∅, e), where ∅
denotes the empty history.

We now comment on the operational rules. Rule [EVENT] describes the
evaluation of an event α(r1, . . . , rk) that consists in extending the current history
with the event, and producing the empty value 0. Rules [APP0],[APP1] and
[APP2] are standard rules of the call-by-value semantics of lambda calculus.
Notice that the whole function body λzx.e replaces the self variable z after the
parameter substitution, so giving an explicit copy-rule semantics for recursive
functions. The rule does not change the history component. The rules for the
evaluation of parallel expressions are standard. Rules [POL0], [POL1] describe
the enforcement of policy. The policy framing ϕ[e] enforces the policy ϕ on the
expression e, i.e. the history must respect ϕ at each step of the evaluation of
e and each event issued within e must be checked against ϕ. When e is just
a value, the security policy is simply removed as in [POL1]. The rule [LINK]
asks the repository for having a free service name π to bind to the code e.
The result of the evaluation of this transition is the empty value. Moreover, the
event linkπ is issued and appended to the current history η, thus modelling the
binding of the service. Notice that the side condition on the service repository
Π ensures the uniqueness of the binding: the same service name cannot bind

7

[EVENT] (η, α(r1, . . . , rk))
α(r1,...,rk)−−−−−−−→ (η.α(r1, . . . , rk),0)

[APP0] (η, λzx.e v)
τ
−→ (η, e[λzx.e/z, v/x])

[APP1]
(η, e1)

z
−→ (η′, e′1)

(η, e1 e2)
z
−→ (η′, e′1 e2)

[APP2]
(η, e2)

z
−→ (η′, e′2)

(η, v e2)
z
−→ (η′, v e′2)

[PAR1]
(η, e1)

z
−→ (η′, e′1)

(η, e1 ‖ e2)
z
−→ (η′, e′1 ‖ e2)

[PAR2]
(η, e2)

z
−→ (η′, e′2)

(η, e1 ‖ e2)
z
−→ (η′, e1 ‖ e′2)

[POL0]
(η, e)

z
−→ (η′, e′) ∧ η, η′ |= ϕ

(η, ϕ[e])
z
−→ (η′, ϕ[e′])

[POL1]
η |= ϕ

(η, ϕ[v]) → (η, v)

[LINK]
π ∈ Π,π available

(η, link e)
linkπ−−−→ (η.linkπ ,0)

Fig. 3. Service Semantics

different service codes. Alternatively, one could define a notion of well-formed
expressions requiring constraints on semantic of expressions in order to avoid
captures of names. Also note that our binding construct does not require the
introduction of alpha-conversion.

The whole semantics of a cloud server, called cloud semantics, is described
in Fig. 4. The inclusion of service store allows us to deal with asynchronous
interactions of clients through the rule [INV]. This rule describes the evaluation
of service requests. To manage a service invocation through the service name
π, the cloud server spawns the code e associated with π. Notice that the event
invokeπ is appended to the current history η. In our framework, rule [INV] allows
us to indirectly model client invocation, through the occurrences of asynchronous
events on the server side. Our treatment of service invocation, that is an original
feature of our approach, has the consequent benefit to manage a variety of clients,
by abstracting from the specific interaction protocols established with the cloud.
Our semantic framework handles services as persistent entities. Services are not
consumed by an invocation: they remain in the service store. Alternatively, one
could have introduced a volatile variant, in which the service is removed from
service store, after service invocation. However, it is easy to encode volatile
services by constraining their unique invocation event. The rule [LINK] adds a
new service {π → e} into the service store as an additional side effect. Back to
the service for converting formats, where the conversion service is activated by
the transition:

(ε,0, {F2F1 → p1, F2F2 → p2})
invoke F2F1−−−−−−−−→ (invoke F2F1, p1, {FI2F1 → p1, F2F2 → p2})

8

[EVENT] (η, α(r1, . . . , rk), σ)
α(r1,...,rk)−−−−−−−→ (η.α(r1, . . . , rk),0, σ)

[APP0] (η, λzx.e v, σ)
τ
−→ (η, e[λzx.e/z, v/x], σ)

[APP1]
(η, e1, σ)

z
−→ (η′, e′1, σ

′)

(η, e1 e2, σ)
z
−→ (η′, e′1 e2, σ′)

[APP2]
(η, e2, σ)

z
−→ (η′, e′2, σ

′)

(η, v e2, σ)
z
−→ (η′, v e′2, σ

′)

[PAR1]
(η, e0, σ)

z
−→ (η′, e′0, σ

′)

(η, e0 ‖ e1, σ)
z
−→ (η′, e′0 ‖ e1, σ′)

[PAR2]
(η, e1, σ)

z
−→ (η′, e′1, σ

′)

(η, e0 ‖ e1, σ)
z
−→ (η′, e0 ‖ e′1, σ

′)

[POL0]
(η, e, σ)

z
−→ (η′, e′, σ′) ∧ η, η′ |= ϕ

(η, ϕ[e], σ)
z
−→ (η′, ϕ[e′], σ′)

[POL1]
η |= ϕ

(η, ϕ[v], σ) → (η, v, σ)

[LINK]
π ∈ Π,π available

(η, link e, σ)
linkπ−−−→ (η.linkπ , 0, σ[π → e])

[INV] (η, e, σ[π → e′])
invokeπ−−−−−→ (η.invokeπ , e ‖ e′, σ[π → e′])

Fig. 4. Cloud Semantics

note that the initial empty process 0 indicates that the system waits for the
user calling the service. After the call, the system performs an invocation action
invoke F2F1 and the conversion starts.

3 Abstract Semantics for Clouds

In this section, we introduce the notion of abstract semantics for our framework,
by resorting to the notion of bisimilarity.

Applicative bisimulation [2] provides the suitable abstract machinery for se-
mantic reasoning, but not sufficient to deal with the peculiar features of our
framework. Basically, the idea behind applicative bisimulation is that in order
to reason the equivalence of two functions, we need to know whether their be-
haviors are the same with all possible closed values. As consequently, applicative
bisimulation relies on the output generated by functions, hence it does not cap-
ture the events issued by our functions. To clarify this point with an example,
let us consider the following cloud servers.

(η, α;λx.x, σ)

(η, λx.x, σ)

It is easy to see that the two services in the clouds yield the same output.
However, the former service during its execution issues an event α and changes
its history, while the latter does not.

9

The management of events is crucial in our framework. By definition, service
behaviour is indeed history-dependent, i.e. an expression may be executed differ-
ently when plugged within different cloud state. For instance, let us consider the
cloud servers: (η, β;α;ϕ[γ], σ) and (η, α;β;ϕ[γ], σ), where η contains neither α
or β, and the policy ϕ states that never α;β is allowed. After two transitions, the
first configuration can make a transition that issues γ, while the second cannot,
as illustrated below:

(η, β;α;ϕ[γ], σ)
β
−→ (η.β;α;ϕ[γ], σ)

α
−→ (η.β.α;ϕ[γ], σ)

γ
−→ (η.β.α.γ;ϕ[0], σ)

(η, α;β;ϕ[γ], σ)
α
−→ (η.α;β;ϕ[γ], σ)

β
−→ (η.αβ;ϕ[γ], σ) 9

It leads to the following definition which suitably extends the applicative
bisimulation notion. In the following, for the sake of simplicity, we will write

α
−→,

instead of
α(r1,...,rk)
−−−−−−−→. We denote by η ↑= {η.η′|η′ - any history} the upward-

closure of the history η.

Definition 1 (Server Simulation). A binary relation RH over T0 is a server
simulation w.r.t. a set of histories H = ηo ↑ for some ηo, if whenever eRHd then
for every history η ∈ H:

– (1) if e = 0 then (η, d)
τ
−→

∗
(η,0),

– (2) if e = r then (η, d)
τ
−→

∗
(η, r).

– (3) if e = λzx.e
′, then (η, d)

τ
−→

∗
(η, λzx.d

′) s.t. λzx.e
′RHλzx.d

′ and for any
closed value v ∈ T0, e

′[λzx.e/z, v/x] RH d′[λzx.d
′/z, v/x],

– (4) if (η, e)
τ
−→ (η, e′) then e′RHd,

– (5) if (η, e)
α
−→ (η′, e′) then there exists d′ s.t. (η, d)

τ
−→

∗ α
−→ (η′, d′) and

e′ RH′ d′, where H ′ = η′ ↑.

where
τ
−→

∗
means zero or more τ transitions. We write ≺H for the union of all

server simulations with respect to a set of initial histories H. If H is the set of
all histories, then we call it server similarity and simply write ≺ for it.

The first and second clauses ensure that if e can produce a resource r or
an empty value, then d can do the same, while the third clause is a variant
of applicative simulation. In the forth clause, e evolves to e′ by performing an
internal transition τ , which does not change the history and after that e′ remains
equivalent to d. Finally, the fifth clause states that d can generate whatever e
can, i.e. if e performs an action α that possibly changes the history into η′, then
d can perform the same action α after zero or more internal transitions τ∗ and
generate the same history η′.

It is easy to prove that the relation with respect to a set of history H is
included in the one obtained with respect to one of its subsets H ′.

Lemma 1. Let e, d ∈ T0. If H
′ ⊆ H and eRHd, then eRH′d.

Definition 2. Let e, d ∈ T0. We say that d server-simulates e (or e is server-
simulated by e) with respect to a set of histories H = ηo ↑ for some ηo if there
exists a server simulation RH s.t. eRHd.

10

Definition 3 (Server Bisimulation). A binary relation RH over T0, where
H = ηo ↑ for some ηo, is a server bisimulation if both RH and its converse
R−1

H (i.e. xRHy implies yR−1
H x) are server simulation with respect to a set of

histories H. We write ∼H for the union of all server bisimulations with respect
to a set of histories H. If H is the set of all histories, then we call it server
bisimilarity and simply write ∼ for it.

Now we show that bisimulation is a congruence relation using Howe’s method
[14]. The idea is based on the construction of an auxiliary relation called the
precongruence candidate R̂ in terms of the preorder R which we need to prove a
preconguence. It is possible to prove indeed that the preorder is a precongruence
if and only if it coincides with the precongruence candidate. The precongru-
ence candidate R̂ is a precongruence that contains R, and that is preserved by
language constructors. Its definition can be found in the Appendix.

A key property of R̂ is that if R is a bisimulation then R̂ is a bisimulation, as
well. Consequently, if we can show that the precongruence candidate of bisim-
ilarity (union of all bisimulations) is a bisimulation, then bisimilarity and its
precongruence candidate coincide, and due to the congruence of the precongru-
ence candidate, bisimilarity is a congruence.
In our setting, we need to show that the precongruence candidate of server
bisimulation is also a bisimulation. To prove that ∼̂ is indeed a bisimulation,
we need to show that ∼̂ is preserved by computation, i.e. it is preserved under
substitution and by tau actions, event actions and abstractions.

Here, we only state the congruence theorem with the main auxiliary lemmata,
all the proofs and the auxiliary statements and all the proofs can be found in
the Appendix.

Lemma 2 (Substitution). Let e1, e
′
1, e2, e

′
2 ∈ T . For every history η ∈ H, if

e1∼̂He′1 and e2∼̂He′2 then e2[e1/x] ∼̂H e′2[e
′
1/x].

Lemma 3 (Tau Actions). Let e, d ∈ T0 and e∼̂Hd. For every history η ∈ H,

if (η, e)
τ
−→ (η, e′), then e′∼̂Hd.

Lemma 4 (Event Actions). Let e, d ∈ T0 and e∼̂Hd. For every history η ∈ H

if (η, e)
α
−→ (η′, e′), then there exists d′ s.t. (η, d)

α
−→ (η′, d′) and e′∼̂H′d′, where

H ′ = η′ ↑.

Lemma 5 (Applicative Lemma). Let λzx.e, d ∈ T0. If λzx.e∼̂Hd, then there

exists d′ s.t. for any η ∈ H, (η, d)
τ
−→

∗
(η, λzx.d

′), λzx.e∼̂Hλzx.d
′ and for any

value v, e[λzx.d/z, v/x]∼̂Hd′[λzx.d
′/z, v/x].

It is straightforward to prove also the following.

Lemma 6 (Resources and Empty-value). Let r, d ∈ T0.

– If r∼̂Hd, then for any η ∈ H, (η, d)
τ
−→

∗
(η, r).

– If 0∼̂Hd, for any η ∈ H, (η, d)
τ
−→

∗
(η,0).

11

We are now ready to state our main result.

Theorem 1 (Congruence). Server bisimilarity ∼ is a congruence.

Lemma 7. ∀e, ∀ϕ, ϕ[e] ≺ e.

This lemma is particularly useful because it ensures that by instrumenting a
program with a policy framing does not add new behavior of the program. As a
consequence, behaviour that violates the policy on demand is prevented to occur.
This gives rise to a semantics-based methodology of safety refinement process in
cycle of software development.

Corollary 1. ∀e, ∀ϕ, λzx.ϕ[e] ≺ λzx.e.

Example 2. Back to the storage service Q presented in the Introduction, we can
specify Q as follows:

eform = λx. eprocess x
eprocess = λy. open(db); (query db y); close(db),

where eform is the cloud service interface wrapping inside the database. The
service gets a query string 〈strquery〉 from a user, then feeds it to eprocess. In
turn, the function eprocess takes the query y as a parameter, connects to the
database db, makes a query to db, by exploiting an auxiliary function query
with the database and the query string as parameters, then closes the database
connection. We abstract from the details of the code of the query function here,
we just assume that it may perform some internal activities and then issues the
database command dbcmd and returns a value v. The evolution of the service in
the initial state η is as follows:

(η, eform 〈strquery〉)
τ
−→ (η, eprocess 〈strquery〉)
τ
−→ (η, open(db); ((query db strquery); close(db))
open(db)
−−−−−→ (η.open(db), (query db strquery); close(db))
τ
−→

∗ dbcmd
−−−−→

τ
−→

∗
(η.open(db).dbcmd, v; close(db))

τ
−→

∗ close(db)
−−−−−−→ (η.open(db).dbcmd.close(db),0))

As previously discussed, the service above is unsafe because it may contain a SQL
injection bug: an attacker can try to inject a command in front of query string,
e.g. 〈syscmd; strquery〉, and therefore can execute any dangerous command such
as deleting a file, as illustrated by the following trace:

(η, eform 〈syscmd; strquery〉)
τ
−→ (η, eprocess 〈syscmd; strquery〉)
τ
−→ (η, open(db); (query db (syscmd; strquery)); close(db))
open(db)
−−−−−→ (η.open(db), (query db (syscmd; strquery)); close(db))
syscmd
−−−−−→ (η.open(db).syscmd, (query db (strquery)); close(db))

12

To prevent system commands from being executed, we can instrument eform
by framing it with a security policy ϕDB, which does not allow execution of
any system command. The corresponding usage automaton is depicted in Fig. 5,
where syscmd denotes the generic system command. Applying our technical
results, we can state that λx.ϕDB [eprocess x] ≺ λx.eprocess x. The presence of
ϕDB in λx.ϕDB [eprocess x] excludes all generated sequences that contains system
commands.

q0 q1 q1

open(db)

close(db)

dbcmd

syscmd

Fig. 5. Usage automaton of the service Q

.

3.1 Cloud Bisimulation

Since the introduction of service store adds new transitions and side effects on
the server configuration, we need to adapt the notion of equivalence of programs
previously used. Let us consider two configurations. A naive approach would
be that two configurations contain the same service store. However, with this
approach we would not be able to reason about processes of updating and main-
tenance of services, which is a key property making web-like environment such
as cloud environment so popular. Now, observe that if upon a client request one
server activates a service code in its service store and makes a transition, the
other server should make the same transition, producing the same side effect.
Furthermore, the two new processes must be equivalent. This means that two
service stores must contain equivalent service codes. Additionally, to make sure
that two configurations can make the same transition, the two service store must
agree on service names. This leads to the following definitions.

Definition 4. Two service stores σ, ς are compatible (σ ≡ ς) if dom(σ) =
dom(ς).

We are now ready for defining cloud bisimulation.

Definition 5 (Cloud Simulation). A relation on R over T0 is a cloud simu-
lation w.r.t. a set of histories H = ηo ↑ for some ηo if whenever eRHd then for
every service store σ, and for every history η ∈ H:

– (1) if e = 0 then there exists service store ς s.t. σ ≡ ς and (η, d, ς)
τ
−→

∗

(η,0, ς),

– (2) if e = r then there exists service store ς s.t. σ ≡ ς and (η, d, ς)
τ
−→

∗

(η, r, ς),

13

– (3) if e = λzx.e
′, then there exists service store ς s.t. σ ≡ ς and (η, d, ς)

τ
−→

∗

(η, λzx.d
′, ς) s.t. λzx.e

′RHλzx.d
′

and for any value v, e′[λzx.e/z, v/x]RHd′[λzx.d
′/z, v/x],

– (4) if e = link e′ (η, e, σ)
linkπ−−−→ (η′,0, σ[π → e′]), then there exist d′, d′′ and

service store ς s.t. σ ≡ ς and (η, d, ς)
τ
−→

∗ linkπ−−−→ (η′, d′′, ς [π → d′]), 0RH′d′′

and e′RH′d′, where H ′ = η′ ↑,
– (5) if (η, e, σ)

τ
−→ (η, e′, σ) then e′RHd,

– (6) if (η, e, σ)
α
−→ (η′, e′, σ), where α 6∈ {linkπ ∪ invokeπ|π ∈ Π}, then there

exist d′ and service store ς s.t. σ ≡ ς and (η, d, ς)
τ
−→

∗ α
−→ (η′, d′, ς) and

e′RH′d′, where H ′ = η′ ↑,

– (7) if (η, e, σ)
invokeπ−−−−−→ (η.invokeπ, e ‖ σ(π), σ) then there exists service store

ς s.t. σ ≡ ς and

(η, d, ς)
invokeπ−−−−−→ (η.invokeπ, d ‖ ς(π), ς) and (e ‖ ς(π))RH′ (d ‖ ς(π)),

where H ′ = (η.invokeπ) ↑,

where
τ
−→

∗
means zero or more τ transitions. We write .H for the union of

all cloud simulations with respect to a set of histories H. If H is the set of all
histories, then we call it cloud similarity and simply write . for it.

All clauses are the same as in server simulation, except the sixth and seventh
clauses for creating and invoking a service. Basically, they guarantee equivalence
of two service stores during runtime of the system.

Definition 6. Let e, d ∈ T0. We say that d cloud-simulates e with respect to a
set of histories H = ηo ↑ for some ηo (or e is cloud-simulated by e) if there exists
a cloud simulation RH s.t. eRHd.

Definition 7 (Cloud Bisimulation). A binary relation RH on closed terms
in T0, where H = ηo ↑ for some ηo, is cloud bisimulation if both RH and its
converse R−1 are cloud simulation with respect to a set of histories H. We write
'H for the union of all cloud bisimulations with respect to a set of histories H.
If H is the set of all histories, then we call it cloud bisimilarity and simply write
' for it.

The congruence property of cloud bisimulation is proved similarly to server
bisimulation. We use the same candidate precongruence as before, but this time
we apply it to cloud bisimulation. The structure of proof is the same. Here, we
only state important lemmata, the main results and the relationship between
the two kinds of bisimulation.

Lemma 8 (Service Creation). Let link e, d ∈ T0. Assume that for every

history η ∈ H and service stores σ, it holds link e'̂Hd and (η, link e, σ)
linkπ−−−→

(η.linkπ,0, σ[π → e]), then there exist d′, d′′ and ς s.t. σ ≡ ς and (η, d, ς)
τ
−→

∗ linkπ−−−→
(η′, d′′, ς [π → d′]), 0RH′d′′ and e′RH′d′, where H ′ = η′ ↑.

Lemma 9 (Invocation). Let e, d ∈ T0 and e'̂H . Assume that for every history

η ∈ H and service stores σ it holds (η, e, σ)
invokeπ−−−−−→ (η.invokeπ, e ‖ σ(π), σ)

14

then there exists ς s.t. σ ≡ ς, (η, d, ς)
invokeπ−−−−−→ (η.invokeπ, d ‖ ς(π), ς) and

(e ‖ ς(π))RH′ (d ‖ ς(π)), where H ′ = (η.invokeπ) ↑.

Theorem 2 (Congruence). Cloud bisimulation ' is a congruence.

Lemma 10. ∀e, ∀ϕ, ϕ[e] . e.

Corollary 2. ∀e, ∀ϕ, λzx.ϕ[e] . λzx.e.

Service store in configuration makes cloud bisimulation more difficult to be es-
tablished than server bisimulation. In the service semantics, expressions of form
link e seemly behave in the same way regardless expressions e (of course with
the same set of available service names π), while in the cloud semantics these
expressions must ensure consistency of service store, i.e. expressions e cannot
be arbitrary, instead these expressions should be bisimilar. In general, server
bisimulation is not included by a cloud bisimulation, as shown by the following
counter-example.

Example 3. ∀e, d ∈ T0, link e ∼ link d, but link e 6' link d.

Lemma 11. '⊂∼.

The methodology outlined in Example 2 can be easily adapted to deal with
service store component, thus allowing for securing cloud servers.

4 Concluding Remarks

We have introduced a novel declarative model for cloud computing. The model
takes the form of a concurrent λ-calculus enriched with primitive constructs to
manage the assembling of services in the cloud, (asynchronous) service invoca-
tion, security policies and their enforcement mechanism. Abstract bisimulation
semantics provides the formal basis for compositional reasoning of the behaviour
of cloud systems. The present work can be seen as first step towards the intro-
duction of formal machineries in the field of cloud computing.

References

1. M. Abadi & C. Fournet (2003): Access Control Based on Execution History. In:
NDSS.

2. S. Abramsky & C.-H. L. Ong (1993): Full Abstraction in the Lazy Lambda Calculus.
Inf. Comput. 105(2), pp. 159–267.

3. A. Banerjee & D. A. Naumann (2005): History-Based Access Control and Secure

Information Flow. In: CASSIS, LNCS 3362. Springer.
4. M. Bartoletti (2009): Usage Automata. In: ARSPA-WITS, LNCS 4423. Springer,

pp. 32–47.
5. M. Bartoletti, P. Degano & G. Ferrari (2005): History-Based Access Control with

Local Policies. In: FoSSaCS, LNCS 3441. Springer, pp. 316–332.

15

6. M. Bartoletti, P. Degano, G. Ferrari & R. Zunino (2007): Secure Service Orches-

tration. In: FOSAD, LNCS 4667. Springer.
7. M. Bartoletti, P. Degano, G. Ferrari & R. Zunino (2007): Types and Effects for

Resource Usage Analysis. In: FoSSaCS, LNCS 4423. Springer, pp. 32–47.
8. M. Bartoletti, P. Degano, G. Ferrari & R. Zunino (2008): Semantics-Based Design

for Secure Web Services. IEEE Trans. Software Eng. 34(1), pp. 33–49.
9. M. Bartoletti, P. Degano, G. Ferrari & R. Zunino (2009): Local policies for resource

usage analysis. ACM Trans. Program. Lang. Syst. 31(6).
10. R. Bruni (2009): Calculi for Service Oriented Computing. In: SFM 2009, LNCS

5569. Springer.
11. D.Talbot (Nov 2009). How Secure Is Cloud Computing? Technology Review.

http://www.technologyreview.com/computing/23951/.
12. G. Edjlali, An. Acharya & V. Chaudhary (1999): History-Based Access Control for

Mobile Code. In: Secure Internet Programming, LNCS 1603. Springer, pp. 413–431.
13. Philip W. L. Fong (2004): Access Control By Tracking Shallow Execution History.

In: IEEE Symposium on Security and Privacy. IEEE Computer Society Press, pp.
43–55.

14. D. J. Howe (1996): Proving Congruence of Bisimulation in Functional Program-

ming Languages. Inf. Comput. 124(2), pp. 103–112.
15. B. Schneier (2009). Be Careful When You Come to Put Your Trust in the Clouds.

http://www.schneier.com/essay-274.html.
16. C. Skalka & S. F. Smith (2004): History Effects and Verification. In: APLAS,

LNCS 3302. Springer, pp. 107–128.

5 Appendix

A Server Bisimulation

We extend relations on closed terms to open terms, by substituting closed terms for variables.

Definition 8. Let R be a binary relation over T0. The binary relation Ro over T is the exten-
sion of R to open expressions in T , is defined as follows: eRoe′ if σ(e)Rσ(e′) for every closing

substitution σ.

Definition 9 (Precongruence Candidate). Given a preorder R over T0, we define the precon-

gruence candidate R̂ over T , denoted by eR̂e′, for e, e′ ∈ T , by induction on the size of e.

– for each variable x, if xRoe then xR̂e;

– for each resource r, if rRoe then rR̂e;

– for each event α, if αRoe then αR̂e;

– for the empty value 0, if 0Roe then 0R̂e;

– for f(s̄), f(s̄′) ∈ T , if s̄R̂s̄′ and f(s̄′)Roe then f(s̄)R̂e, where s̄ = (s1, ..., sarity(f)) and
s̄′ = (s′1, ..., s

′

arity(f)) for short.

Now we prove some properties of the candidate precongruence, needed for proving, in turn, that it
is a bisimulation.

Lemma 12. Let R be a preorder over T0, then the following hold:

1. R̂ is reflexive.

2. R̂ is constructor respecting, i.e. if ∀f, ēR̂ē′ then f(ē)R̂f(ē′).

3. Ro ⊆ R̂.

4. If we have eR̂e′ and e′Roe′′, then eR̂e′′.

Proof. 1. By induction on term size, by definition of R̂ and reflexivity of R.

16

2. we have ēR̂ē′ and, by reflexivity of R,f(ē′)Rof(ē′). Then by definition of R̂, the property follows
immediately.

3. We show that if eRoe′, then eR̂e′, by induction on term e,

Case: e is a variable: it holds by definition of R̂.
Case: e is an event, resource or empty process: similarly

Case: e is a term of form f(s̄): by (1) we have s̄R̂s̄. By definition of R̂, f(s̄)R̂e′.
Case: e is a term of form ϕ[s]: similarly

4. by induction on term e and transitivity of R:

Case: e is a variable x: by definition of R̂, xRoe′. By transitivity of R, we have xRoe′′. The
result follows immediately .
Case: e is an event, resource or empty process: similarly.

Case: e is a term f(s̄): there exists s̄′ s.t s̄R̂s̄′ and f(s̄′)Roe′. By transitivity of R, f(s̄′)Roe′′.

The result follows by definition of R̂.

Lemma 13. Let e, d ∈ T0. If H′ ⊆ H and eRHd, then eRH′d.

Proof. Straightforward.

Lemma 14 (Substitution). Let e1, e
′

1, e2, e
′

2 ∈ T . For every history η ∈ H, if e1∼̂He′1 and

e2 ∼̂H e′2 then e2[e1/x] ∼̂H e′2[e
′

1/x].

Proof. By induction on the size of term e2
Case: e2 is a variable x: x∼̂He′2 implies xRe′2, so e′1 ∼o e′2[e

′

1/x] by definition of ∼o. By property
(4) (i.e. e1∼̂He′1 and e′1 ∼o e′2[e

′

1/x]), x[e
′

1/x] = e′1∼̂He′2[e
′

1/x].
Case: e2 is a variable y 6= x: similarly
Case: e2 is an event or empty process: similarly
Case: e2 is a term f(s̄): since f(s̄)∼̂He′2, there exist s′ s.t s̄∼̂H s̄′ and f(s̄′)Roe′2. By induction
hypothesis, s̄[e1/x]∼̂H s̄′[e′1/x] and f(s̄′)[e′1/x] ∼

o e′2[e
′

1/x], so f(s̄)[e1/x] ∼ e′2[e
′

1/x].
Case: e is a term of form ϕ[s]: similarly.

Lemma 15 (Tau Actions). Let e, d ∈ T0 and e∼̂Hd. For every history η ∈ H, if (η, e)
τ
−→ (η, e′),

then e′∼̂Hd.

Proof. By induction on derivation of (η, e)
τ
−→ (η, e′):

Case of [APP0] rule: e = (λzx.e1)e2 : (η, (λzx.e1)e2)
τ
−→ (η, e1[λzx.e1/z, e2/x]), where e2 is a value.

We need to show that e1[λzx.e1/z, e2/x]∼̂Hd.
Since e∼̂Hd, w.l.o.g. there exist d1, d2, e

′

1 ∈ T0 s.t. λzx.e1∼̂Hd1, e2∼̂Hd2, e1∼̂He′1, λx.e
′

1 ∼H

d1, d1 d2 ∼H d and d2 is a value. Otherwise, by choosing a closing substitution for d1, d2 and e′1
and definition of e2∼̂Hd2, we can obtain the desired result.
By Lemma 14, we have e1[λzx.e1/z, e2/x]∼̂He′1[λzx.e

′

1/z, d2/x] (1).

By definition of∼, we have (η, d1)
τ
−→

∗

(η, λzx.d
′

1) such that λzx.e
′

1 ∼H λzx.d
′

1 and e′1[λzx.e
′

1/z, d2/x] ∼H

d′

1[λzx.d
′

1/z, d2/x]. Since d1 d2 ∼H d, d′

1[λzx.d
′

1/z, d2/x] ∼H d (2).
(1) and (2) implies that e1[λzx.e1/z, e2/x]∼̂Hd.
Other cases: we will consider [APP1] rule. The proofs of the other rules are similar.

We have e = e1 e2 and (η, e1)
τ
−→ (η, e′1). Since e∼̂Hd, w.l.o.g. there exist d1, d2 ∈ T0 s.t. e1∼̂Hd1, e2∼̂Hd2

and d1d2 ∼H d. By induction hypothesis, e′1∼̂Hd1. Since ∼̂H is operator respecting, e′1e2∼̂Hd1d2.
This implies that e′1e2∼̂Hd.

Lemma 16 (Event Actions). Let e, d ∈ T0 and e∼̂Hd. For every history η ∈ H if (η, e)
α
−→

(η′, e′), then there exists d′ s.t. (η, d)
α
−→ (η′, d′) and e′∼̂H′d′, where H′ = suff(η′).

Proof. Obviously, we have H′ ⊆ H. By induction on derivation of (η, e)
α
−→ (η′, e′):

Case of [EVENT] rule: e = α and (η, α)
α
−→ (η, 0)

Since α∼̂Hd, we have α ∼H d. So by definition of ∼H if (η, α)
α
−→ (η.α, 0), then there exists d′ ∈ T0

s.t (η, d)
α
−→ (η.α, d′) and 0 ∼H′ d′, where H′ = η.α) ↑. This implies that 0∼̂H′d′.

Other cases: we will consider [APP1] rule. The proofs of the other rules are similar.

We have e = e1 e2 and (η, e1)
α
−→ (η′, e′1). Since e∼̂Hd, w.l.o.g. there exist d1, d2 ∈ T0 s.t. e1∼̂Hd1, e2∼̂Hd2

and d1d2 ∼H d. By induction hypothesis, there exists d′

1 s.t (η, d1)
α
−→ (η′, d′

1), e
′

1∼̂H′d′

1, where H′ =
suff(η′). Because ∼̂H′ is operator respecting and e2∼̂Hd2 implying e2∼̂H′d2, so e′1e2∼̂H′d′

1d2.

Since (η, d1d2)
α
−→ (η′, d′

1d2), so there exists d′ s.t (η, d)
α
−→ (η′, d′), d′

1d2 ∼H′ d′. It implies that
e′1e2∼̂H′d.

17

Lemma 17 (Applicative Lemma). Let λzx.e, d ∈ T0. If λzx.e∼̂Hd, then there exists d′ s.t. for

any η ∈ H, (η, d)
τ
−→

∗

(η, λzx.d
′), λzx.e∼̂Hλzx.d

′ and for any value v, e[λzx.d/z, v/x]∼̂Hd′[λzx.d
′/z, v/x].

Proof. Let η ∈ H. By definition of ∼̂H , w.l.o.g. there exists c ∈ T0 s.t. e∼̂Hc and λzx.c ∼H d. By
Lemma 14, we have e[λzx.e/z, v/x] ∼̂Hc[λzx.c/z, v/x] (1).

By definition of∼H , there exist d′ such that (η, d)
τ
−→

∗

(η, λzx.d
′) and for any value v, c[λzx.c/z, v/x] ∼H

d′[λzx.d
′/z, v/x] (2).

By property 4, (1),(2) imply that e[λzx.d/z, v/x] ∼̂Hd′[λzx.d
′/z, v/x].

Lemma 18 (Resources and Empty-value). Let r, d ∈ T0.

– If r∼̂Hd, then for any η ∈ H, (η, d)
τ
−→

∗

(η, r).

– If 0∼̂Hd, for any η ∈ H, (η, d)
τ
−→

∗

(η, 0).

Proof. Straightforward.

Theorem 3 (Congruence). Server bisimilarity ∼ is a congruence.

Proof. Immediate from the above lemmata.

Lemma 19. ∀e, ∀ϕ,∀H, ϕ[e] ≺H e.

Proof. Consider a relation S:

S = {(ϕ[e], e)|∀e ∈ T0 ∧ ∀ϕ} ∪ IT ,

where IT is an identity relation on T0. We need to show that S is a simulation. Induction on
evaluation derivation of e.

Corollary 3. ∀e, ∀ϕ, ϕ[e] ≺ e.

Corollary 4. ∀e, ∀ϕ, λzx.ϕ[e] ≺ λzx.e.

B Cloud Bisimulation

The congruence property proof of cloud bisimulation is similar to that of service bisimulation. Sim-
ilarly we use the notion of precongruence candidate. Here, we omit the details and only emphasize
differences.

Definition 10. Let e, d ∈ T0. We say that d are cloud bisimilar if there exists a cloud bisimulation
R such that eRd.

Lemma 20 (Tau actions). Let e, d ∈ T0 and e'̂Hd. For every history η and service store σ if

(η, e, σ)
τ
−→ (η, e′, σ), then e′'̂Hd.

Proof. Similar to the proof of tau lemma for server bisimulation.

Lemma 21 (Event action). Let e, d ∈ T0 and e'̂Hd. For every history η ∈ H and service stores

σ ∼ ς if (η, e, σ)
α
−→ (η′, e′, σ′), where α is not linkπ or invokeπ for some π, then there exists d′

such that (η, d, ς)
α
−→ (η′, d′, ς′), e′'̂H′d′ and l′ ∼ k′.

Proof. Similar to the proof of tau lemma for server bisimulation.

Lemma 22 (Applicative lemma). Let λzx.e, d ∈ T0. For every history η ∈ H and service stores

σ ∼ ς If λzx.e'̂Hd, then there exists d′ such that (η, d, ς)
τ
−→

∗

(η, λzx.d
′, ς) ,λzx.e'̂Hλzx.d

′ and
for any value v, e[λzx.d/z, v/x]'̂Hd′[λzx.d

′/z, v/x].

Proof. Similar to the proof of applicative lemma for server bisimulation.

Lemma 23 (Service Creation). Let link e, d ∈ T0. Assume that for every history η ∈ H and

service stores σ, it holds link e'̂Hd and (η, link e, σ)
linkπ−−−−→ (η.linkπ , 0, σ[π → e]), then there

exist d′, d′′ and ς s.t. σ ≡ ς and (η, d, ς)
τ
−→

∗ linkπ−−−−→ (η′, d′′, ς[π → d′]), 0RH′d′′ and e′RH′d′,
where H′ = η′ ↑.

18

Proof. We have (η, link e, σ)
linkπ−−−−→ (η.linkπ , 0, σ[π → e]).

Since link e'̂Hd, so, w.l.o.g. there exists e′ ∈ T0 s.t e'̂He′ and link e′ 'H d.

We have that (η, link e′, σ)
linkπ
−−−−→ (η.linkπ , 0, σ[π → e′]).

By definition of 'H there exist d′, d′′ and ς s.t. σ ≡ ς

(η, d, ς)
τ
−→

∗ linkπ−−−−→ (η.linkπ , d
′′, ς[π → d′]),

0'H′d′′, e′'H′d′, where H′ = (η.linkπ) ↑, and H′ ⊆ H. This implies 0'̂H′d′′ and e'̂H′d′.

Lemma 24 (Invocation). Let e, d ∈ T0 and e'̂H . Assume that for every history η ∈ H and ser-

vice stores σ it holds (η, e, σ)
invokeπ−−−−−−→ (η.invokeπ , e ‖ σ(π), σ) then there exists ς s.t. σ ≡

ς, (η, d, ς)
invokeπ−−−−−−→ (η.invokeπ , d ‖ ς(π), ς) and (e ‖ ς(π))RH′(d ‖ ς(π)), where H′ =

(η.invokeπ) ↑.

Proof. We have (η, e, σ)
invokeπ−−−−−−→ (η.invokeπ , e ‖ σ(π), σ) and (η, d, σ)

invokeπ−−−−−−→ (η.invokeπ , d ‖
σ(π), σ). Obviously, e ‖ σ(π)'̂H′d ‖ σ(π), where H′ = (η.invokeπ) ↑ (1).

Since d'Hd, there exists ς such that σ ≡ ς and (η, d, ς)
invokeπ−−−−−−→ (η.invokeπ , d ‖ ς(π), ς) s.t. d ‖

σ(π)'H′d ‖ ς(π) (2).
(1),(2) implies (e ‖ σ(π))'̂H′ (d ‖ ς(π)).

Lemma 25 (Resources and Empty-value). Let r, d ∈ T0.

– If r'̂Hd, then for any η ∈ H, (η, d)
τ
−→

∗

(η, r).

– If 0'̂Hd, for any η ∈ H, (η, d)
τ
−→

∗

(η, 0).

Proof. Straightforward.

Theorem 4 (Congruence). Cloud bisimulation ' is a congruence.

Proof. immediately from the above lemmata.

Lemma 26. ∀e, ∀ϕ, ϕ[e] . e.

Proof. Consider a relation S:

S = {(ϕ[e], e)|∀e ∈ T0 ∧ ∀ϕ} ∪ IT ,

where IT is an identity relation on T0. We need to show that S is a simulation. Induction on
evaluation derivation of e.

Corollary 5. ∀e, ∀ϕ, λzx.ϕ[e] . λzx.e.

19

