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Abstract


In this Technical Report (TR) we describe a type of auction mechanism
where the auctioneer A wants to auction an item among a certain number
of bidders bi ∈ B (i = 1, . . . , n) that submit bids in the auction with the
aim of not getting that item ζ.
Owing to this feature we call this mechanism an inverse or negative


auction.


The main motivation of this mechanism is that both the bidders and the
auctioneer give a negative value to the auctioned item (and so they see it
as a bad rather than a good).
The mechanism is presented in its basic simple version and with some
possible extensions that account for the payment of a fee for not attending
the auction, the interactions among the bidders and the presence of other
supporting actors.
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1 Introduction


In this TR we describe a type of auction mechanism1 where the auctioneer
A wants to auction an item among a certain number of bidders2 bi ∈ B (i =
1, . . . , n) that submit bids in the auction with the aim of not getting that item
ζ.
Owing to this feature we call this mechanism an inverse or negative auction.
The main motivation of this mechanism is twofold:


- both the bidders and the auctioneer give a negative value to the auctioned
item (and so they see it as a bad rather than a good),


- the auctioneer has an imperfect knowledge of the bidders and so cannot
contact any of them directly.


The mechanism3, at least in its basic version, is simple and will be described in
detail in the initial sections of the TR. It is based on the following steps:


- A selects the bidders bi according to some private criteria that depend on
the nature of ζ;


- the bi submit their bids in a sealed bid auction;


- once they have been submitted the bids are revealed so that:


- the bidder who made the lowest bid is the losing bidder and gets4


ζ;


- the other bidders are termed winning bidders and get the gain of
having avoided the allocation of ζ;


- the losing bidder5 b1 gets ζ and, as a compensation, a sum equal to his
bid x1;


- each winning bidder bi pays to the losing bidder a properly defined fraction
of x1.


This simple mechanism will be described in some detail in the following sections
together with the possible strategies of the bidders and some possible extensions.
Such extensions include a pre auction phase, where some of the bidders pay a
fee for not attending the auction, and a post auction phase that can assume
three forms and that aims at a reallocation of ζ depending on criteria that are
different from those who drove the auction phase itself.


1In this TR we are going to use the term mechanism in a rather informal sense as a set of
rules, strategies and procedures. For a more formal use of the term we refer, for instance, to
[8, 10].


2In what follows we identify a bidder bj ∈ B also by the index j ∈ N = {1, . . . , n}.
3The proposed mechanism is inspired by the Contract Net Protocol ([5, 15]).
4Possible ties among two or more losing bidders are resolved through a properly designed


random device.
5We assume that after the bids have been revealed we renumber the bidders so that the


losing bidder is the bidder b1 whereas all the other bidder bi (with i 6= 1) are the winning
bidders.
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2 Structure of the TR


This TR is structured as follows.
In the next sections we define a general framework for the proposed mechanism
and make some analogies with both classical auctions and other mechanisms.
Then we describe in some detail the parameters that characterize both A and
the members of B.
Successively we present the structure of the proposed mechanism, in its basic
and simpler version, and the strategies for the bidders.
The following sections present some possible extensions to the basic mechanism
that can form either the pre auction phase or the post auction phase.
The TR closes with a section devoted to some concluding remarks and to the
description of future plans.


3 Pre auction and post auction phases


As a pre auction phase we examine the possibility to allow the bidders
to pay to A a fee f (that A fixed and made common knowledge among the
bidders) for not attending the auction. In this case, depending on the amount
of the fee, we can have that:


- m bidders prefer to pay the fee in order to not attend the auction;


- k = n−m bidders prefer to attend the auction.


In this case, at the end of the auction phase, A has collected an extra compen-
sation equal to ec = mf that is awarded to the losing bidder.
For such value we may have two possibilities (see also section 13):


- it may be a public knowledge among the bidders that therefore know k
and m before the auction phase;


- it may be a private knowledge of A to be revealed only after the execution
of the auction phase.


As to the last point we note how this feature may be guaranteed or at least
enforced through the design of the structure of the pre auction phase so to
make the communication among the bidders either too difficult or too costly.
The easiest solution is to have the bidders, at least in this phase, to be unaware
one of the others so to make any inter bidders communication impossible.
In the present TR we consider only the latter case so that the paid bids have no
influence on the behavior of the remaining attending bidders that do not have
such information when they submit their bids (see section 13).
We note indeed how even the m bidders who paid the fee can attend the possible
post auction phase.
As a post auction phase we introduce some mechanisms that try to correct a
simplifying assumption we have made in the basic mechanism.
The basic mechanism is, indeed, based on the assumption that the various bi
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are independent one from the others (in the sense that the allocation of ζ to one
of the bidders has effect only on that bidder) and, similarly, do not influence
any other actor6.
The mechanisms of the post auction phase aim, indeed, at accounting for the
following facts:


(pa1) the bidders bi are interdependent and so they may influence each other so
for any pair of bidders (bi, bj) we can define as di,j the damage caused to
bi from the allocation of ζ to bj ;


(pa2) the bidders bi may influence the actors of the set S so for any actor si ∈ S
we can define as Di,j the damage caused to si from the allocation of ζ to
bj


We may assume in general that di,j 6= dj,i so the cross damages between pairs
of bidders are not symmetrically distributed.
In the (pa1) case we assume that the bidders are interdependent but S = ∅. In
this case the bidders can try to negotiate an allocation to another bidder that
is more preferred by all the bidders depending on the values di,j (for i 6= j) and
not on the values mi = di,i that drive the auction phase. In this case we have
a compensation for the newly chosen bidder.
On the other hand, in the (pa2) case, we assume the bidders as independent but
S 6= ∅. In this case the members of S try to obtain a reallocation depending on
the values Di,j and through a compensation for the newly chosen bidder.
Last but not least the two cases (pa1) and (pa2) can be merged in a single case
where we have both interdependent bidders and S 6= ∅.
In all the post auction cases the starting point is the allocation of ζ to one of
the bidders on the basis of the outcome of the auction where we assume the
bidders are independent and each is guided only by his self damage mi = di,i.
At the end of the auction phase we can have two cases:


- the resulting allocation is satisfactory;


- the resulting allocation is unsatisfactory.


In the former case no reallocation is required whereas in the latter case both
the bidders of the set B and the supporters that form the set S may try to
renegotiate it, within the different framework we have listed, so to identify a
new bidder as the more preferred allocation.
We underline how such reallocation may require the raising of a further com-
pensation for the new bidder in order to have him accept the allocation of ζ.


4 The theoretical framework


Auctions represent mechanisms for the allocation of one or more items to
one or more bidders ([8, 9]). In the case of more items they can be either of


6With the term actor we denote a figure that is distinct from both A and the Bs but that
wants to attend the auction since he thinks to be damaged from the allocation of ζ to one of
the bidders. Such actors are termed supporters and form the set S.
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homogeneous or of heterogeneous types.
The elements of an auction include the participants (i. e. the auctioneer and
the bidders with their both private or common or interdependent values), the
rules of participation, the rules through which the winning bidders are identified
as well as the rules that define how much the single bidders have to pay.
In general we can have, indeed, that an action is used for the auctioning of a
set of k either homogeneous or heterogeneous items among a set of bidders that
compete for either at most one item or a subset of the items. For simplicity (and
for an analogy with the proposed negative auction) in this section we examine
only single item auctions in order to set up the framework for the understand-
ing of the current proposal and of the analogies we present in section 5. The
analogies will be used as an aid in the analysis of the proposed mechanism.
An auction is therefore characterized by an auctioneer (who auctions an item)
and a set of bidders who submit bids xi and are characterized by the evaluations
mi.
The bids may be ([8, 9]):


- open cry if they are publicly visible;


- sealed if they are made privately and are revealed all at the same time;


- one shot if they are submitted only once;


- repeated if they are repeatedly submitted until a termination condition
is satisfied;


- ascending if they start low and then rise;


- descending if they start high and then decrease.


Classical types of auctions include7:


- English auctions;


- Dutch auctions;


- First Price Sealed Bid (FPSB) auctions;


- Second Price Sealed Bid (SPSB) auctions.


In an English auction bids are open cry, repeated and ascending and the winner
is the highest bidding bidder who pays the sum he bid that is coincident with
the price at which the second last bidder dropped out.
In a Dutch auction bids are open cry and are offered by the auctioneer, are
repeated and descending and the winner is the bidder who accepts the current
value and that pays such a value.


7Other possible types of auctions are ([8]): all pay auctions, where all the bidders bid and
pay their own bids but only the highest bidding bidder wins the auction, and third price


auctions that are similar to a SPSB auction but for the fact that the paid price is the third
highest bid.


6







In an FPSB auction bids are sealed and one shot and the winner is the highest
bidding bidder who pays the sum he bid.
In an SPSB auction bids are sealed and one shot and the winner is the highest
bidding bidder who pays the the second highest bid.
The evaluations mi are the maximum sums each bidder is willing to pay to get
the auctioned item. Such evaluations may be ([8, 9]):


- private if they are independent one from the others so that a reciprocal
knowledge would not change the individual values;


- interdependent if a reciprocal knowledge may change the individual val-
ues;


- common if the evaluations are ex-post the same among the bidders.


On the basis of such definitions we note that8:


- Dutch auctions ≡ FPSB auctions;


- under private values, English auctions ≡ SPSB auctions.


Given such equivalences we note that, [8]:


- in a SPSB auction (and so in an English auction) it is a dominant strategy
for a bidder to bid his own evaluation of an item so that we have xi = mi


for each bidder;


- if we assume a symmetric model (see further on) in a FPSB auction (and
so in a Dutch auction) it is a dominant strategy for a bidder to bid a little
less than his evaluation and so to bid xi = mi − δ with δ > 0. Under
the assumption that the evaluations of the bidders are independent and
uniformly distributed over the same interval this δ tends to zero as the
number of the bidders increases.


5 The analogies


Classical auctions (see [8, 9] and also section 4) are characterized by the
following high level structure:


- A auctions one item ζ;


- the bidders of the set B bid, one of them (be it b1) wins the auction, gets
ζ and pays to A a certain sum s that depends on the rules of the auction;


- possibly the other bidders have to pay to A a certain sum.


8With ≡ we denote a strategic equivalence. Two games are strategically equivalent if
“they have the same normal form except for duplicate strategies. Roughly this means that for
every strategy in one game a player has a strategy in the other game with the same outcomes”,
[8], note at page 4.
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For the moment we disregard the last step (that characterizes for instance the
all pay auctions).
In this case A is the seller, the Bs are the possible buyers and the b1 who gets ζ
(the winning bidder) is the effective buyer. In this classical mechanism we have
a two way transfer:


- of the item ζ as a good9 from A to the winning bidder b1,


- of a sum s from b1 to A.


In an all pay auction we can extend the analogy by saying that the winning
bidder pays for getting ζ and all the others pay for having had the possibility to
attend the auction and so all of them are buyers of something (either the item
or that possibility).
In a procurement auction the auctioneer A pays the less requesting bidder
b1 a sum for acquiring from him either a good or a service10


Also in this case we have a two way transfer:


- of the item ζ as a good or a service from the winning bidder b1 to A,


- of a sum s from A to b1.


In both cases we have the transfer of an item with a positive or better a non
negative value (for all the involved players11) from A to b1 and of a correspond-
ing positively valued item from b1 to A. The difference is that in the former
case A tries to maximize his gain whereas in the latter he tries to minimize his
payment.
In our basic mechanism we have:


- the transfer of an bad ζ from A to b1;


- the transfer of a total compensation equal to x1 from the bidders bi (for
i 6= 1) to b1.


In this case ζ has a negative value for A so, by giving it away to b1, A is better
off. It is, therefore, as if A received a sum of money from b1 (in exchange of a
fictitious good that represents the allocation of ζ) that, in his turn, receives a
sum of money, subdivided in various percentages, from the other bidders bi (for
i 6= 1).
In this way it is as if we had, in sequence12, the following two stages:


- a reverse FPSB auction where the less offering bidder b1 wins and gets
ζ;


9With this we mean the fact that both A and the Bs assign to ζ a positive value or a
worth that can be null.


10A service may be defined as the non-material equivalent of a good characterized by the fact
of being intangible, insubstantial and of being represented as a set of singular and perishable
benefits.


11We use the term player to denote both the auctioneer and the bidders.
12For a similar composite approach we refer to [6] and to [7].
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- an all pay auction where all the other bidders pay b1 for having him to
accept the bad ζ.


The analogy is, however, imperfect since the sums paid in the second stage are
effectively defined in the first stage so that the leading analogy we can use in
the analysis is with a FPSB auction. In such type of auctions we know (see
section 4) that, under some rather general assumptions, the best strategy for
each bidder is to bid a little bit less than his own evaluation of the item and
that such reduction tends to 0 as the number of the bidders increases. In our
case we expect that each bidder bids a little bit more than his own evaluation
of the item and that, under similar assumptions, such increase tends to 0 as the
number of the bidders increases.
From the foregoing description of the two fictitious stages we have that in the
first stage A is better off and the stage is efficient (see section 6) since ζ is
allocated to the bidder who values it the less.
In the second stage the losing bidder b1 is compensated and the winning bidders
bi are better off since each of them pays to b1 a sum that is lower than bi’s
evaluation of ζ. In this way every bi has an utility that can be evaluated as
the difference between the bi’s evaluation of the bad and the fraction of the
compensation to b1. Such utility can be expressed as mi − ci where ci depends
on xi, on x1 and on the bids of all the other winning bidders. We note that the
utility of b1 can be similarly expressed as x1 −m1˙
All these statements will be made clear in section 9.


6 The performance measuring criteria


In the literature ([15, 8, 9]) we can find a certain number of criteria that have
been devised for the evaluation of the quality of the outcomes of a mechanism
and that guide its design. Such criteria can be used also for the evaluation of
the various types of auctions we have briefly examined in section 4 and are:


(c1) guaranteed success,


(c2) maximization of social welfare,


(c3) [Pareto] efficiency,


(c4) individual rationality,


(c5) stability,


(c6) simplicity.


We are going to use such criteria for the evaluation of the negative auction,
without pre and post auction phases, that we propose in this TR. In this
section we briefly recall the definition of each of such criteria.
We say that a mechanism (or a protocol) and so an auction13 satisfies (c1) if we


13We recall that an auction is a particular type of mechanism even if we use the proper and
formal meaning of the term, see [8], so in the following criteria we refer directly to auctions.
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are sure that the auction cannot be void so that the auctioned item is surely
allocated to one of the bidders.
We say that an auction satisfies (c2) if the outcome maximizes the total utility
(as the sum of the utilities) of the participants and so, in our case, of both the
auctioneer and the bidders. If we want to avoid any summation of utilities so to
avoid both any form of compensations and any form of inter utilities comparison
we can define a vector U of n + 1 elements where U(0) is the utility of A and
each U(i) is the utility of a bi. We can then define such a vector before the
auction (as U ′) and after the auction (as U ′′). In this way we say that U ′′


maximizes the social welfare if the following conditions hold:


- U ′′(i) ≥ U ′(i) ∀i ∈ [0, n] with at least one strict inequality,


- none of the elements of U ′′ can attain a strictly higher value.


We say that an auction satisfies (c3) if, given an allocation, there is not any
other allocation where one bidder or the auctioneer is better off without none
of the others being worse off.
We note that (c2) implies (c3) but the converse is not necessarily true.
We say that an auction satisfies (c4) if it is in the best interest for the bidders
to attend the auction or if by attending the auction they cannot derive a loss
or a negative utility.
We say that an auction satisfies (c5) if the bidders have a bidding strategy that
defines an equilibrium so that none of them has any interest of performing an
individual deviation. In this way we define a Nash Equilibrium (NE) of the
auction ([11, 10, 1, 2]).
We say that an auction satisfies (c6) if the foregoing strategy is easily under-
standable and implementable by even bidders with a bounded rationality ([3]).
We are going to use such criteria for the evaluation of the basic mechanism to
see whether they are satisfied or not. In this way we can state if such proposal
can be judged as rational or not ([3]).


7 The defining parameters


Both the auctioneer A and the bidders of the set B are characterized by
some parameters that depend heavily on the nature of the item ζ but also on
their individual characteristics.
For what concerns A we have only one parameter: the value mA that A assigns
to ζ as a measure of his utility since the only gain A receives from the auction
is the allocation of ζ.
With mA we denote:


- the damage or the negative utility that A will receive from ζ if the auction
is void so the allocation fails;


- the benefit or the positive utility that A receives from the allocation of ζ
to one of the bi ∈ B.
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In the former casemA has a negative value whereas in the latter it has a positive
value.
Every bi ∈ B is characterized by the following parameters (see also [8, 9]):


- a value mi that he assigns to ζ;


- the amount xi he is willing to bid;


- the random variables Xj that describe the bids of the other bidders;


- the interval of the values [0,Mi] to which mi belongs;


- the intervals of the values [0,Mj] to which the Xj belong;


- the differentiable cumulative distributions Fj of the values Xj ;


- the corresponding density functions fj = F ′
j of such values.


We note that:


- the parameter mi has a dual meaning in the sense that:


- it represents the damage the bi receives from the allocation of ζ;


- it represents the benefit that bi gets from the fact that ζ is allocated
to some other bidder;


- the parameter xi has a dual meaning in the sense that:


- it represents the sum that bi asks as a compensation for the allocation
of ζ;


- it defines the fraction ci of the compensation that bi has to pay to
the losing bidder.


We can also define the following probabilities:


- the probability pi for bi of losing the auction;


- the dual probability qi = 1− pi for bi of winning the auction.


We recall that the losing bidder is the bidder who gets ζ and is compensated
for this fact by the other bidders, the so called winning bidders.


8 The basic assumptions


In this section we introduce the basic assumptions that we make on the pa-
rameters that characterize both the auctioneer and the bidders and that will be
maintained through the rest of the TR. At the end of this section we comment
a little on the possible relaxations of these assumptions.
The only assumption we can make on A is that his value mA is a private infor-
mation of the auctioneer so that it is not known to the bidders.
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If we relax this assumption so that mA becomes a common knowledge of the
bidders nothing changes since that knowledge has no effect on the bidding strat-
egy of the bidders.
On the other hand, some other basic assumptions involve the characteristic
parameters of the bidders and may be summarized as follows14:


- the bidders are assumed to be risk neutral so that their utility is linearly
separable ([8]) and can be expressed as the difference between a benefit
and a damage and so as xi−mi if the bidder loses the auction or as mi−ci
if he wins it;


- the random variables Xj of the bidders distinct form bi are assumed to
belong to a common interval [0,M ] for a suitable M > 0;


- the random variables Xj of such bidders are assumed to be independent
random variables;


- the valuations are assumed to be private values of the single bidders;


- the bidders bj are assumed to be symmetric so they are characterized by
the same F and by the same f ;


- the random variables Xj are assumed to be uniformly distributed on the
interval [0,M ] so that we have, for x ∈ [0.M ]:


P (Xj ≤ x) = F (x) =
x


M
(1)


and, correspondingly:


f(x) =
1


M
(2)


From the foregoing assumptions we derive that the probability for each bidder
of losing the auction pi is the same for all the bidders so we can denote it as p
and use q = 1− p to denote the dual probability of winning the auction.
Possible relaxations of the foregoing assumptions involve:


- the possibility that the bidders are risk adverse15 so that his utility is no
more linearly separable but it is a convex function of xi;


- the possibility that the evaluations are either common or interdependent
among the bidders;


- the possibility that the bidders are asymmetric so that we can have:


14See also sections 4 and 7 and [8, 9]
15We recall that, in classical terms, a player is risk neutral ([4]) if he is indifferent between


attending a lottery and receiving a sum equal to its expected monetary value whereas he is
risk averse if he prefers the expected value to attending the lottery. We can also say that
a player is risk neutral if his utility function is linearly separable in gain and loss whereas, if
he is risk averse, it can be seen as a concave function. In our context we have to consider the
opposite perspective and so we consider the utility function of risk averse bidders as a convex
function of its parameters.
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· different intervals [0,Mj] for each bidder bj,


· different functions Fj and fj for each bidder bj;


- the possibility to have different distributions such as a Gaussian or a tri-
angular distribution also under the symmetry assumption.


Such relaxations can be introduced either one at a time or in combinations.
Their treatment, that makes the analysis more complex, is out of the scope of
the present TR and is the subject of further research efforts (see section 13 for
further details).


9 The basic mechanism and its strategies


The basic mechanism is composed only by the auction phase among in-
dependent bidders. We can describe it as follows16:


(ph1) A auctions ζ;


(ph2) the bi make their bids xi in a sealed bid one shot auction;


(ph3) the bids are revealed;


(ph4) the lowest bidding bidder b1 gets ζ and x1 as a compensation for this
allocation;


(ph5) each of the other bidders bi pays a fraction ci such that:


∑


i6=1


ci = x1 (3)


For what concerns the values ci we assume a proportional repartition among
the bidders so we have:


ci = x1


xi


X
(4)


where X =
∑


j 6=1
xj . In this way we account for the fact that the bidders who


receive a bigger advantage from the allocation of ζ to b1 pay the higher fractions
of the compensation.
At this point we state and prove the following proposition.


Proposition 9.1 (Weakly dominant strategy) From the assumptions
made so far it is a weakly dominant strategy for each bidder to submit a bid
equal to his evaluation of the auctioned item.
Proof and some remarks


From what we have stated in sections 7 and 8 we derive easily that the expected


16In this section we assume that, when the phase (ph3) is over we can renumber the bidders
so that b1 is the losing bidder whereas the bi (with i 6= 1) are the winning bidders. Possible
ties are resolved with the random selection of one of the tied bidders.
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utility from the auction for every bidder when he faces phase (ph2) can be
expressed as:


E(bi) = p(xi −mi) + (1− p)(mi − x1


xi


X
) (5)


as the sum of the utility if he loses the auction multiplied with the probability of
losing and the utility if he wins it multiplied with the probability of winning.
It is obvious that at phase (ph3) each bi knows if he is the loser or one of the
winners.
In the former case he has a utility:


x1 −m1 (6)


whereas in the latter he has a utility:


mi − x1


xi


X
(7)


Relation (5) can be rewritten as:


E(bi) = (1 −
xi


M
)n−1(xi −mi) + (1− (1−


xi


M
)n−1)(mi − x1


xi


X
) (8)


by using the following relations:


p = (1 −
xi


M
)n−1 (9)


q = 1− p = 1− (1−
xi


M
)n−1 (10)


that have been derived by using the hypotheses of independence and identical and
uniform distribution of the Xj and by imposing that the xi is lower than the Xj


for j 6= i.
Since in relations (5) and (8) we want to impose that in any case each bidder
bi has a non negative utility we get the following constraints:


- y1 = xi −mi ≥ 0


- y2 = mi − x1
xi


X
= mi − x1


xi


xi+X′
≥ 0


where17 y1 is the utility for bi if he loses and y2 is his utility if he wins.
From the former constraint we derive:


xi ≥ mi (11)


For what concerns the latter constraint, from the definition of y2 and by per-
forming the derivations with respect to xi, we easily derive that:


- y′2 < 0


17We note how we can write X = xi + X′ where X′ accounts for the bids of the bidders
distinct from b1 and bi.
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- y′′2 > 0


so y2 is concave decreasing with:


- a maximum value equal to mi for xi = 0,


- a minimum value for xi = M equal to :


mi − x1


M


M +X ′
(12)


From the foregoing observations we derive that:


- if we impose y1 = y2 we derive a value x̂;


- for xi < x̂ we have y1 < y2 so by winning bi is better off than by losing;


- for xi > x̂ we have y1 > y2 so by losing bi is better off than by wining.


On the other hand, from relations (9) and (10) we can easily see how:


- p has a maximum value of 1 for xi = 0, decreases for xi increasing and
attains a null value for xi = M ;


- q has dual behavior since it has a minimum value of 0 for xi = 0, increases
for xi increasing and attains the maximum value of 1 for xi = M ;


We note that the rates of both decrease and increase are higher the higher is the
number n of the bidders.
At this point we want to find the value x̄i where we have


p = q (13)


so that for xi < x̄i we have that p dominates q whereas we have the opposite for
xi > x̄i. From relation (13) and relations (9) and (10) we get:


(1−
xi


M
)n−1 = 1− (1−


xi


M
)n−1 (14)


From relation (14), with some easy algebra, we derive:


x̄i = (1− (
1


2
)


1


n−1 )M (15)


We note that x̄i → 0 as n → ∞ so that q tends to dominate p for any xi.
According to all this we have that bi should maximize y2 so to bid no less than
mi (given the constraint we have imposed on y1) and so he should bid a sum
equal to mi.


Remark 9.1 We have in this way verified how the truthful bidding is a weakly
dominant strategy for each bidder in the basic mechanism of the negative auc-
tion.
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In practical terms and owing the approximations and simplifications we have
made (and that are really verified only for high values of n) bi should tend to
bid a little more than his evaluation of ζ (with this quantity tending to 0 as the
number of the bidders increases) so confirming what we have derived from the
analogy with a FPSB auction (see section 5). This argumentation is enforced
also by the considerations we have made about the behaviors of both y1 and y2
as well by those we made about the behaviors of both p and q.


10 The basic mechanism and the performance


measuring criteria


We now want to verify if the proposed mechanism satisfies the criteria we
have introduced in section 6. In this case we can assess what follows.


(c1) Guaranteed success is satisfied since the auction cannot be void so ζ is
allocated to one of the bi.


(c2) Maximization of social welfare, according to our vector based definition, is
not satisfied since b1 would be better off from not being the losing bidder.
If we exclude b1 (that is anyway compensated according to his claim) the
criterion is satisfied since A is better off and the other bidders bi cannot
attain a higher utility since b1 is the less offering bidder.


(c3) [Pareto] efficiency is satisfied since ζ is allocated to the less evaluat-
ing/offering bidder (who is compensated) and all the winning bidders have
a non negative maximum utility.


(c4) Individual rationality is satisfied since any bidder has a non negative utility
both if he wins and if he loses.


(c5) Stability is satisfied since all the bidders have an equilibrium strategy that
they can follow and such a strategy is simple both to understand and to
implement so that also (c6) (or simplicity) is satisfied.


As to (c4) we remark how U ′ defines the status quo ante where the auctioneer,
if we consider only the allocation of ζ, has a negative utility whereas the bidders
have a null utility so that U ′′ represents an improvement for both the auctioneer
and the bidders.


11 The use of the fee


In this section we present the pre auction phase where:


- m bidders pay the fee f in order to not attend the auction;


- k = n−m bidders prefer to attend the auction.
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We make the hypothesis that the sum mf is a private information of A so it is
unknown to the other k bidders that neither know n. For the attending bidders
(those who do not pay the fee) we can repeat what we have said in sections 9
and 10.
In this case the losing bidder, at the end of the auction phase, gets the following
final compensation fc:


fc = x1 +mf (16)


If the mechanism has a post auction phase all the n bidders can attend to it, as
we will show in the following sections.
At this point we define the following profiles:


(ne1) all the n bidders pay the fee f ,


(ne2) none of the n bidders pays the fee f .


We want to see if such profiles are NE or not.
In the case (ne1) we have that if the bidders collude among themselves and
decide that they all pay the fee f they collect ec = nf . In this case, every bidder
would have a utility equal to18 mi − f . If a bidder bj individually violates the
collusive agreement he gets a utility equal to:


(n− 1)f −mj (17)


since no further compensation from the auction phase is possible. The individual
deviation is profitable (so that (ne1) is not a NE) if we have:


(n− 1)f −mj > mj − f (18)


or if:
mj < f


n


2
(19)


So if the fee f is such that the constraint (19) is satisfied for at least one bj the
collusive agreement is not a NE and the auction cannot be void since A is able
to find a bidder to which to allocate ζ with a compensation paid by the other
bidders.
We note that if A fixes f such that we have:


f >
2M


n
(20)


we have:
n


2
f > M ≥ mi ∀bi (21)


and so relation (19) is surely verified.
In the case (ne2) the individual deviation depends on the possible policies of
the single bidders since we have that ec = 0 so from this condition we cannot
derive any incentive for the bidders to deviate.


18This requires f < mi for every bi. We comment on this assumption shortly.
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In order to understand under which conditions the case (ne2) can occur we
therefore examine a more general case and so under which conditions a bidder
is better off if he pays the fee than if he attends the auction.
A bidder bi has indeed the following possibilities19:


(1) he pays the fee f and has an utility20 up
i = mi − f ;


(2) he does not pay and attend the auction and so:


(2a) he has an utility ul
i = xi −mi if he loses the auction,


(2b) he has an utility uw
i = mi − x1


xi


xi+X′
if he wins the auction.


From the case (1) we derive the first constraint since we have that if up
i < 0


then bi does not pay the fee and attends the auction. This requires that:


up
i = mi − f ≥ 0 (22)


or:
f ≤ mi (23)


If condition (23) is violated for every bi so that we have:


f > mi (24)


for every bi we have that no bidder pays the fee. In this way we have that if
f > max{mi} or if f is very high no bidder pays the fee and so they all attend
the auction phase.
Once we have established that relation (22) is satisfied we want to make a
comparison with the cases (2a) and (2b) so that we can make the following
comparisons:


mi − f ≥ xi −mi (25)


and:
mi − f ≥ mi − x1


xi


xi +X ′
(26)


If such relations are satisfied then bi is better off by paying the fee and so by
not attending the auction.
From relation (25) we derive:


f ≤ 2mi − xi ≤ mi (27)


(since we have assumed xi ≥ mi) and so not really a new constraint since it is
the same as relation (23).
On the other hand from relation (26) we get:


f ≤ x1


xi


xi +X ′
≤ x1


xi


(n− 1)x1


≤
M


n− 1
(28)


19We use the decorations p, l and w as exponents to denote, in the order, a payment, a loss
and a win.


20In this case we evaluate the utility as the difference between the benefit, as represented
by the missed allocation of ζ, and the payment as represented by the fee f .
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since, by the definition of x1, we get X = xi+X ′ ≥ (n−1)x1 and, by definition,
x1 ≤ xi ≤ M for every bi. From relation (28) we derive that if f is small enough
then the bidders have incentive to pay it otherwise they have incentives to attend
the auction. From this we may derive that if A fixes f high enough (for instance
f = M/2) he can be sure to have a non void auction even if some bidders may
prefer to pay the fee f .


12 The post auction phase


12.1 Introductory remarks


In the simplest mechanism when the auction phase is over the allocation is
performed by the bidders on the basis of the values mi = di,i only. This way of
proceeding is based on the assumption that the bidders are independent so that
the allocation damages only the individual bidders and neither other bidders
nor other actors that form the set S of the supporters.
In section 12.2 we see how we can account for the interdependence of the bidders
and so for the damages among the bidders. We therefore present an algorithm
based on a succession of push operations by which a bidder can push ζ towards
another more preferred bidder (according to the values attributed to the cross
damages di,j). In this case we have no supporters so that S = ∅.
In section 12.3 we assume that the bidders are independent but S 6= ∅ and we
examine if the supporters can push ζ towards another more preferred bidder
(according to the values attributed to the cross damages Di,j of the si ∈ S).
Last but not least in section 12.4 we present an attempt to merge the two
approaches and so we assume to have both interdependent bidders and S 6= ∅.


12.2 The interaction among the bidders


In addition to the parameters we have seen in section 7 and the assumptions
we have made in section 8 we introduce the following parameters, for every
bidder bi:


- di,j ≥ 0 is the damage that bi receives if ζ is allocated to bj ;


- ci,j ≥ 0 is the contribution that bi is willing to pay to bj to have him
accept the allocation of ζ.


It is obvious that mi = di,i and ci,i = 0.
Before going on we recall that the auction phase ends with the allocation of ζ
to b1 who receives a compensation equal to x1. For every bidder bi 6= b1 we can
write the due payment as:


σi,1 = x1


xi


X
(29)


(with X =
∑


j 6=1
xj) so that we have:


Σ1 =
∑


i6=1


σi,1 = x1 (30)
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We can also define:
Σj = Σ1 − σj,1 (31)


to be used shortly.
In this case the mechanism has the following structure:


- possible pre auction phase,


- auction phase,


- allocation and compensation phase,


- reallocation phase.


In the allocation phase b1 gets, from the members of N−1 = N \ {1}, the
commitments of payment σi,1 that form the compensatory sum Σ1 whereas the
reallocation phase depends on the values di,j .
When the allocation phase is over, b1 orders the d1,j ∀j 6= 1 with regard to
d1,1 = m1. We can have two cases:


- d1,1 < d1,j ∀j 6= 1 so b1 is satisfied and no reallocation is required;


- ∃J1 ⊂ N−1 such that ∀j ∈ J1 d1,j < d1,1.


In the former case the mechanism ends and b1 receives the commitments at
payment as effective compensations from the other bidders.
In the latter case b1 may negotiate a reallocation with the members of J1 that
he orders in increasing order of received damage. We note that for any bj with
j ∈ J1 we define as c̄1,j = d1,1 − d1,j the maximum contribution that b1 is
willing to pay, in a way to be specified, to bj to have him accept ζ, whereas with
c1,j < c̄1,j we denote the current value of the contribution.
The attempt of reallocation may proceed along the following steps:


(1) b1 defines J1;


(2) we have two cases:


(2a) J1 = ∅ so go to (5);


(2b) J1 6= ∅ so go to (3);


(3) b1 contacts (in the order) a bj with j ∈ J1 and offers him a further com-
pensation c1,j < c̄1,j so that bj would get Σ = Σj + c1,j ;


(4) at this point we have two cases:


(4a) bj accepts and so becomes the new b1 with Σ1 = Σj ; go to (1);


(4b) bj refuses so we have two cases:


(4b1) there is one more bj that can be contacted so b1 chooses him; go
to (3);


20







(4b2) there is no bj to contact so the procedure ends with a failure; go
to (5);


(5) end;


The operation at step (3) is a push operation through which the current b1 tries
to allocate ζ to some other bidder bj by having a gain. Such procedure may
either succeed or fail. For it to succeed the current bj must accept the proposal
of b1. It is easy to see that bj accepts if the following conditions are verified:


(ac1) Σ ≥ mj


(ac2) dj,1 ≥ dj,j


If condition (ac1) is violated bj surely refuses the push proposal whereas if the
condition (ac2) is violated bj can accept, with a risky decision, ζ if he is sure he
can push it to some other bidder bh such that dj,h < dj,1 < dj,j .
The procedure has the following termination conditions:


- when no bider accepts a push proposal from the current b1;


- when for a bidder b1 we have J1 = ∅ so the current item holder is satisfied
of the allocation;


- when there would be a cycle.


The last case deserves some more comments. If we have, avoiding to rename
the successive losing bidders:


b1 → bj → bh → · · · → bk → b1 (32)


we have a cycle that could even give rise to a money pump for the initial b1.
To prevent this from occurring we impose a cut on the cycle so that the final
accepting bidder must be bk. This fact requires the recording of the various
passages so to detect any cycle and to apply the halt condition.


12.3 The presence of the supporters


In this case we make the following assumptions:


- the bidders are independent so we have di,j = 0 ∀i 6= j;


- we have s supporters si ∈ S so that for every supporter si we have the
damages Di,j that he receives from the allocation of ζ to each bidder bj .


Also in this case the mechanism has the following structure:


- possible pre auction phase,


- auction phase,


- allocation and compensation phase,
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- reallocation phase.


The reallocation is driven, in this case, by the members of S.
We can consider S as partitioned21:


S = A ∪D (33)


where:


- A is the set of the si that agree with the allocation of ζ to b1 so that
si ∈ A if and only if Di,1 < Di,j for every bj 6= b1;


- D is the set of the si that disagree with the allocation of ζ to b1 so that
si ∈ D if and only if22 exists at least a ji 6= 1 such that Di,ji < Di,1.


We can have the following cases:


(1) A = S and D = ∅ so no reallocation is required;


(2) A = ∅ and D = S so every si has at least a preferred allocation;


(3) A 6= ∅ and D 6= ∅.


In the case (1) the procedure is over.
In the case (2) for every si ∈ D we can partition N as N = Li∪{b1}∪Ui where:


- Li identifies the bidders that cause to si a lower damage than b1 or the
more preferred bidders;


- Ui identifies the bidders that cause to si a greater damage than b1 or the
less preferred bidders.


We can have two cases:


- ∩siLi = ∅,


- ∩siLi 6= ∅


In the former case no compromise is possible among the members of D so the
allocation at b1 of ζ is unchanged.
In the latter case we can have two sub cases.
In the former sub case we have ∩siLi = bj so the members of D offer to bj both
Σj(see section 12.2) and γj = xj − Σj to be shared proportionally among the
members of D as:


γj
Di,1 −Di,j∑
si
(Di,1 −Di,j)


(34)


If bj accepts we have a new allocation otherwise the procedure ends with a
failure and the allocation is unchanged. For the conditions of acceptance for bj
we refer to section 12.2. In this case bj accepts if the offered compensation is


21In a classic way we have S = A ∪D and A ∩D = ∅.
22We note that every si ∈ D may have his own ji.
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enough to cover the damage mj from the allocation of ζ since the bidders are
assumed to be independent.
In the latter sub case we have ∩siLi ⊂ N so we identify a set of k elements.
In this case the members of D can use the Borda method23 ([13, 14]) on such
elements so to define the Borda winner and apply to it what we have seen for the
previous sub case. In the case of a tie on the Borda winners one of such winners
can be selected at random since they can be seen as equivalent alternatives.
If the Borda winner accepts the procedure is over otherwise the members of D
discard him and repeat the procedure until one of the bidders accepts (so the
procedure ends with success) or there is no more Borda winners to be contacted
so that the procedure ends with a failure.
In the case (3) we have:


- ∀si ∈ A b1 is the best choice;


- ∀si ∈ D there are preferred choices to b1.


If, for each si ∈ D, we define the set Li = {j ∈ N |Di,j < Di,1} we can define
the set L = ∩si∈DLi so that we have three cases:


(a) |L| = 0,


(b) |L| = 1,


(c) |L| > 1.


In the case (a) no reallocation is possible since there is no possible compromise
among the members of D that are not able to agree on a feasible alternative to
b1.
In the case (b) we have a bj (with j ∈ N) that is better than b1. The members
of D can proceed as follows:


- each si ∈ D evaluates the individual gain Di,1 −Di,j ;


- they evaluate the collective gain Γi =
∑


si∈D(Di,1 −Di,j);


- they ask to the member of A how much they want to be paid to switch
from b1 to bj, be it ρ1,j .


If the total of ρ1,j and the sum that the D have to pay to bj (that accounts also
of the payments of the other bidders but b1) to have him to accept ζ is lower
than Γi the reallocation is feasible and the procedure may end with success
otherwise it surely ends with a failure.
We note that:


23Given n alternatives the method is based on the fact that each voter assigns n− 1 points
to the top ranked alternative, n− 2 to the second top ranked alternative up to 0 point to the
lowest ranked alternative. The points are added together and the alternatives ordered in a
weakly descending order (ties are therefore possible) so that the alternative that receives the
highest number of points, in absence of ties, is the Borda winner. If we have ties on the top
ranked alternatives we can choose one of them at random as the Borda winner.
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- the reallocation actually succeeds if bj accepts so if the proposed compen-
sation cannot be lower than mj ;


- the sum ρ1,j is defined by the members of the set A through a negotiation
and is shared among the members of A so that each can compensate the
major damages deriving from the new allocation.


In the case (c) we have that ∃L ⊂ N such that bj is a better choice than b1 for
j ∈ L. In this case the members of D can use the Borda method to select the
best choice and use it as in the case (b) . If they succeed the procedure is over
otherwise they discard that bidder, choose another bidder from L (if there is
at least one bidder available) and repeat the procedure. If all the attempts fail
the procedure of reallocation ends with a failure.


12.4 Interaction and support


In this section we sketch a possible algorithm that can be used in the case
where:


- the bidders are interdependent so that we have, in general, di,j ≥ 0 for
any i 6= j ∈ N ;


- S 6= ∅ so that we have, in general, Di,j 6= 0 for any si ∈ S and j ∈ N .


Also in this case (see section 12.2) the mechanism has the following structure:


- possible pre auction phase,


- auction phase,


- allocation and compensation phase,


- reallocation phase.


The reallocation depends on both the values di,j (where i and j identify the
bidders) and the values Di,j (where i identify the supporters and j identify the
bidders).
In the current version of the proposed algorithm we assume that the sets B and
S can act independently from each other.
In this case they can adopt a procedure based on the following steps:


(0) if there is any suitable bidder then go to (1) else go to (6);


(1) the Bs can define a new bj as we have seen in section 12.2;


(2) the Ss can define a new bh as we have seen in section 12.3;


(3) we can have two cases:


(3a) bj = bh so there is an agreement on the bidder to be contacted; we
call it bj , go to (5);
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(3b) bj 6= bh so there is a selection between bj and bh; let us suppose that
the selection is bh go to (4);


(4) bh is contacted and he is offered a compensation; bh can either accept and
go to (6) or can refuse and go to (5);


(5) bj is contacted and he is offered a compensation; bj can either accept and
go to (6) or can refuse and so go to (0);


(6) end;


The steps (1) and (2) are simultaneous moves in the sense of Game Theory
([11, 10, 12]). The step (0) defines a termination condition with failure when
none of the contacted bidders has accepted and there is no more a suitable
bidder to be contacted.
In the cases (4) and (5) it is necessary to collect a sum equal to Σ (to be defined
shortly) so that the members of B must collect a sum cB and the members of
S must collect a sum cS such that:


- the offer Σ to bj is such to compensate bj for the allocation of ζ and so
together with what the bidders already committed to pay to b1 is not lower
than xj or Σ ≥ xjΣj ;


- the sum Σ is subdivided between the two sets B and S as, respectively:


cB =
|B|


|B|+ |S|
Σ (35)


and:


cS =
|S|


|B|+ |S|
Σ (36)


- the sum cB is to be shared among the members of B proportionally ac-
cording to ratios:


di,1 − di,j∑
i6=j(di,1 − di,j)


(37)


- the sum cS is to be shared among the members of S proportionally ac-
cording to ratios:


Di,1 −Di,j∑
i6=j(Di,1 −Di,j)


(38)


We note that the preliminary selection between bj (proposed by the Bs) and
bh (proposed by the Ss) is not neutral since it may involve different payments
from both the members of B and the members of S
Such a selection may be performed through a sealed bid one shot auction where
the Bs and the Ss submit respectively two bids γB (as the sum that the B ask
for accepting bh) and γS (as the sum that the S ask for accepting bj).
We have the following cases:
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- γS = γB so there is a random selection between the two bidders bh and
bj2;


- γS < γB so the starting bidder is bj;


- γB > γS so the starting bidder is bh.


In this way the less offering party loses since the selected bidder is the one
proposed by the other party.


13 Concluding remarks and future plans


In this TR we presented the structure of a negative auction mechanism un-
der the form of a basic mechanism together with some possible extensions.
The extensions include both a pre auction phase and a post auction phase: the
first aims at reinforcing the requirement of individual rationality whereas the
latter aims at introducing possible interactions among the bidders and some
other actors (the supporters).
The proposed extensions are still under development so that the full formal char-
acterization is under way. One of the refinement we are planning to introduce,
in the post auction phase, in the case of the interactions among the bidders
without supporters (see section 12.2) is the use of pull operations (in addition
to the push operations) through which a set of bidders distinct from the current
losing bidder can try to pull the allocation of ζ towards other more preferred
bidders by sharing among themselves the cost of this switching between bidders.
A push operation can, indeed, be executed only by the currently losing bidder
so that, if he is satisfied with the allocation, no reallocation is possible though
some other bidders may wish to pay him to have the item to be pulled to an-
other and more preferred bidder.
Other future plans include the relaxations we have listed in section 8 so that we
plan to argue what happens if we assume that:


- the bidders are risk adverse so that they prefer either to pay the fee or to
pay a fixed amount for not getting ζ for sure than attending the auction
with the risk of getting ζ though together with a compensatory sum;


- the evaluations are either common or interdependent among the bidders
and in any way may vary either after the pre auction phase (if the asso-
ciated values are common knowledge, see further on) or after the auction
phase itself if a post auction phase is present;


- the bidders are asymmetric so we can have different intervals [0,Mi] and
different functions Fi and fi for each bidder bi.


Last but not least we are planning to see what changes we may have in the
auction phase if the fees that are paid in the pre auction phase are a common
knowledge among the bidders.
As a first approximation we can say that if the k attending bidders know the
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value of m (and so the number of bidders who paid the fee) they may be willing
to bid less thanmi since each of them may consider to have a fixed compensation
equal to mf , in case of loss, and so he may wish to increase the probability of
losing the auction and such an increase may be obtained by simply bidding less
than mi.
Beyond all this, after the proposed extensions have been fully formalized, we
have to apply them the performance measuring criteria to verify whether they
are satisfied or not and so whether the proposed extensions may be classified as
rational or not.
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