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luccio@di.unipi.it pagli@di.unipi.it

December 1, 2010
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726





Compact DSOP Forms Derived from SOP
Expressions

Anna Bernasconi Valentina Ciriani
Dept. of Computer Science Dept. of Information Technology
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Abstract—We give a new heuristic for Disjoint Sum-of-
Products (DSOP) minimization of a Boolean function f , based
on a new criterion for product selection. Starting from a Sum-of-
Products (SOP) S of f , i.e., a set of cubes covering the minterms
of f , we assign a weight w(p) to each product (cube) p in S,
where w(p) depends on the intersection of p with the other cubes
of S. We assign higher weights to the cubes that, if selected in
a DSOP, would generate a higher fragmentation of the other
cubes. Disjoint cubes are then selected for increasing value of
w and decreasing size, recomputing the SOP on the residual
function at different possible stages as a trade-off between quality
of result and computational time. We also propose a heuristic
for computing partial DSOP forms, i.e., SOP forms whose cubes
cover exactly once a given subset of minterms of the function, and
more than once the remaining minterms. A set of experiments
conducted on major benchmark functions show that our method,
with all its variants, always generates better results than the
ones of previous heuristics, including the one based on a BDD
representation of f . These experiments have also outlined how
re-synthesizing the residual function in SOP form seems to be
crucial for obtaining compact DSOPs.

Keywords: Sum-of-Products, Disjoint Sum-of-Products, Cube selec-
tion, Cube fragmentation, Minimal form, ESPRESSO.

I. INTRODUCTION

Given a Boolean function f on n variables x1, x2, ..., xn

in Bn, a Disjoint Sum-of-Products (DSOP) of f is a set of
products (ANDs) of subsets of literals whose sum (OR) equals
f , such that no two products cover the same minterm of f .
As each product is the mathematical expression for a cube in
Bn, a DSOP also represents a set of non intersecting cubes
occupying the points of Bn in which f = 1. In fact we shall
indifferently refer to products or cubes, and apply algebraic
or set operations to them. We are interested in minimizing
|DSOP|, i.e., finding a DSOP with a minimal number of
products.

Besides its theoretical interest, DSOP minimization is rel-
evant in the area of digital circuits for determining various
properties of Boolean functions and for the synthesis of
asynchronous circuits, as discussed for example in [2], [9],
[10], [14]. DSOPs are indeed used as a starting point for the

synthesis of Exclusive-Or-Sum-Of-Products (EPSOP) forms,
and for calculating the spectra of Boolean functions.

For speeding an otherwise exceedingly cumbersome process
an absolute minimum in general is not sought for, rather
heuristic strategies for cube selection have been proposed,
working on explicit product expressions [3], [13], or on a BDD
representation of f [4]. Here we study a class of heuristic
algorithms for DSOP minimization based on the new concept
of “cube weight”, and show that our results compare favorably
with the ones of the other known heuristics. The starting set
of cubes is the one of a SOP, found with standard heuris-
tics. The SOP cubes may be eventually fragmented into non
overlapping sub-cubes, giving rise to a largely unpredictable
DSOP solution. The process may exhibit an exponential blow
up in the number of fragments even dealing with theoretically
minimal solutions, as for a function presented in [11] where
|SOP| = n/2 and |DSOP| = 2n/2 − 1.

Another new characteristic of our heuristic is the idea
of recomputing a SOP on the residual function at different
possible stages of the disjoint minimization process, as a trade-
off between quality of the result and computational time. We
have observed experimentally that this strategy is crucial for
obtaining compact DSOP forms.

Some applications may require to cover a subset of
minterms of a Boolean function exactly once, while other
minterms can be covered more than once. For example this
is the case where the points in the on set of a function must
be covered exactly once, while the points in the don’t care set
can be covered any number of times [9], [5]. We show how
our heuristic can be modified in order to efficiently compute
such partial DSOP forms.

A preliminary version of this paper has been presented
in IWSPB [1]. In the present journal version we extend the
study to different heuristic algorithms, discuss the synthesis of
incompletely specified functions, and generalize the approach
to the Partial DSOP synthesis. The experimental results have
been extended accordingly. The paper is organized as follows.
In the following Section II we define the weight of a product
p as a functions of the number of fragments possibly induced
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on other cubes by the selection of p. In Section III we show
how this weight can be exploited for building a class of
minimization heuristics. Section IV presents a strategy for
partial DSOP synthesis. In Section V we present and discuss
the computational results obtained by applying the proposed
heuristic to the standard ESPRESSO benchmark suite [16], and
comparing these results with other published data. The paper
is concluded in Section VI.

II. THE WEIGHT OF A CUBE

With usual terminology, a literal yi is a variable xi in
direct or complemented form. Products are ANDs of literals.
A product q = yi1yi2 ...yik , 1 ≤ k ≤ n, represents a cube of
dimension d(q) = n−k, i.e., a cube of 2n−k points in {0, 1}n.
The intersection p = p1 ∩ p2 of two cubes p1 = yi1 ...yik1

,
p2 = yj1 ...yik2

is obviously obtained as the AND of the two
corresponding products. The intersection p is empty if and
only if there is a literal in p1 that appears complemented
in p2. Otherwise p is a cube of dimension d(p) = r, with
r = n− (k1+k2−c), and c is the number of common literals
in p1 and p2.

Take p1, p2 as above, and let p1, p2 partially overlap. The
set of points of p2 \ p1 can be covered in different ways by
a set of at least k1 − c disjoint cubes of dimensions r, r +
1, ..., n− k2− 1. For n = 6, letting k1 = 5, k2 = 3, c = 2 we
have r = 0 and d(p1) = 1, d(p2) = 3, i.e., the intersection
contains 1 point, and the two cubes contain 2 and 8 points,
respectively. Therefore, p2 \ p1 contains 7 points and can be
covered with 5 − 2 = 3 cubes of dimensions 0, 1, 2. For an
other example, consider cubes A and B in Figure 1(a). The
set A \ B contains the minterms 0000, 0001, and 0100. The
disjoint covers for these points are x1x2x3 + x1x2x3x4 and
x1x3x4 + x1x2x3x4, both containing two cubes.

Now, if p1 is selected into a DSOP, p2 must be discarded
and the points of p2 \ p1 must be covered with at least k1− c
disjoint cubes instead of one (the single p2). Then k1 − c− 1
is the number of extra cubes required by the DSOP. If the
function f can be represented by a SOP containing only p1
and p2, the selection of p1 into a DSOP requires a total of
k1− c+1 cubes. In particular if k1− c = 1 the intersection p
covers exactly one half of the points of p2 and p2 \ p1 is also
a cube. Clearly the general situation will not be that simple
as the starting SOP for f , to be transformed into a minimal
DSOP, will consist of a collection of cubes overlapping in
groups. Still we define a weight for each cube pi equal to the
minimum number of extra cubes that the selection of pi would
induce in all the cubes intersecting pi. Formally, let a SOP for
f consist of partially overlapping products p1, p2, ..., ps. We
pose:

Definition 1: Let a product pi of k literals intersect the
products pi1 , ..., pit , such that pi and pij have cj common
literals. Then w(pi/pij ) = k − cj − 1 is the weight of pi
relative to pij , and w(pi) =

∑t
j=1 w(pi/pij ) is the weight of

pi. If pi does not intersect any other product, set w(pi) = −1.
Thus, when pi intersects pij , the weight of pi relative to

pij is the minimum number of additional products that we
would have in the cover keeping pi and covering pi/pij with
non-overlapping products.
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Fig. 1. (a) A minimal SOP of four cubes of dimension 2 in B4, with weights
w(A) = 1, w(B) = 2, w(C) = 0, w(D) = 1. (b) A corresponding DSOP.

As an example, consider the function f of four variables,
represented in Figure 1(a). A minimal SOP of f contains four
cubes A = x1x3, B = x2x4, C = x1x2, D = x1x3, all of
dimension two. The weights are computed as follows. For A:
w(A/B) = 1 (in fact, selecting A in a DSOP would require
to covering the remaining three points of B with at least
two disjoint cubes); w(A/C) = 0 (the residual two points
of C can be covered with one cube); then w(A) = 1. For B:
w(B/A) = 1; w(B/C) = 0; w(B/D) = 1; then w(B) = 2.
For C: w(C/A) = 0; w(C/B) = 0; then w(C) = 0. For D:
w(D/B) = 1; then w(D) = 1. As we shall explain in the next
section, we start the construction of a DSOP by selecting the
cubes with low weight and high dimension, breaking on the fly
the ones that intersect a selected cube. In the present example,
start by selecting C and reduce A and B to two subcubes
A1, B1 of two points each. Then select D and further reduce
B1 to B2 of one point. Then select A1 and B2, as shown in
the DSOP of Figure 1(b). During the process the weights are
updated as explained below.

III. DSOP SYNTHESIS ALGORITHMS

Let us consider an incompletely defined Boolean function
f : {0, 1}n → {0, 1,−} represented with a set of cubes C =
(Con, Cdc), where Con covers the on set of f , i.e., the points
v in {0, 1}n such that f(v) = 1, and Cdc covers the don’t care
set of f , i.e., the points v in {0, 1}n such that f(v) = −.

The new heuristic for DSOP construction uses four basic
procedures working on an explicit representation of cubes. The
first procedure BUILD-SOP(C,P ) works on a set C of cubes
covering an arbitrary function as above, to build a minimal
(or quasi minimal) SOP P for that function. Note that, during
the process, BUILD-SOP may be called on different sets C
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algorithm DSOP(C,D)
INPUT: A set of cubes C covering a function f
OUTPUT: A set of disjoint cubes D covering the function f

D = ∅
while (C 6= ∅)

BUILD-SOP(C,P )
A = {d ∈ P | ∀c ∈ P \ {d} : d ∩ c = ∅}
D = D ∪A
P = P \A
WEIGHT(P )
SORT(P )
B = ∅
while (P 6= ∅)

let p be the first element of P
P = P \ {p}
D = D ∪ {p}
forall q ∈ P : p ∩ q 6= ∅

P = P \ {q}
BREAK(q, p,Q)
OPT(q,Q, P,B)

forall r ∈ B : p ∩ r 6= ∅
B = B \ {r}
BREAK(r, p,Q)
B = B ∪Q

C = B

Fig. 2. The general algorithm for DSOP synthesis.

emerging in the computation. As a limit the cubes of C may
be minterms, i.e., cubes of dimension 0. The second procedure
WEIGHT(P ) builds the weights for the cubes of a set P .

The third procedure SORT(P ) sorts a set P of weighted
cubes. This procedure comes in two versions: i) the cubes
are ordered for decreasing dimension and, if the dimension is
the same, for increasing weight; ii) the cubes are ordered for
increasing weight and, if the weight is the same, for decreasing
dimension. If two or more cubes have same weight and same
dimension, their order is chosen arbitrarily. The two versions
of SORT give rise to two different alternatives of the overall
algorithm.

The forth procedure BREAK(q, p,Q) works on the set
difference q \ p between two cubes, to build an arbitrary
minimal set Q of disjoint cubes covering q \ p. Note that this
operation is easy since q \ p can be obtained as q \ (p ∩ q),
where the latter is the set difference between two cubes, i.e.,
q and p ∩ q, in turn a cube because is the intersection of two
cubes.

In practice, for BUILD-SOP one can use any minimiza-
tion procedure (in our experiments we have used procedure
ESPRESSO-NON-EXACT of the ESPRESSO suite [16]). Pro-
cedures WEIGHT and SORT (both versions) are obvious.
Procedure BREAK is the one suggested in [7] and [12] as
DISJOINT-SHARP.

In the overall process we consider four sets of cubes
C,P,B,D. At the beginning C contains the cubes defining f ,
while P,B,D are empty. During the process C contains the
cubes defining the part of f still to be covered with a DSOP; P
contains the cubes of a SOP under processing; B temporarily
contains cubes produced by BREAK as fragmentation of cubes
of P ; and D contains the cubes already assigned to the DSOP

solution and, at the end, the solution itself.
The algorithms of our family share the structure shown in

Figure 2 (its behaviour on incompletely specified functions
is discussed at the end of this section). As long as f has not
been completely covered with disjoint cubes, i.e., there are still
cubes in the set C, a minimal (or quasi-minimal) SOP P for
the part of f still to be covered is computed by the procedure
BUILD-SOP. All cubes that do not intersect any other cube
in P are removed from P and inserted in the DSOP D under
construction; the remaining cubes are weighted and sorted.
Then, the first cube p is extracted from P and inserted in the
solution D. Each cube q ∈ P that intersects p is removed from
P , and a SOP Q for the set difference q\p is computed by the
procedure BREAK. During this phase an optional optimization
procedure OPT is called to decide how to handle the fragments
in Q; depending on this optimization phase, different variants
of the heuristic can be defined. Note that, since the points of p
cannot be covered by any other cube, all fragments r already
inserted in B must be tested for intersection with p and, if
necessary, replaced with the SOP computed by BREAK for
the set difference r \ p.

When P becomes empty, the fragments in B are moved to
the set C and the algorithm iteratively builds a new SOP P
covering the points that are not yet covered by the DSOP D
under construction. The iterations terminate when C becomes
empty.

We have designed and tested five variants of our heuristic
based on five different versions of the optimization procedure
OPT, with different degrees of sophistication. The first variant,
DSOP-1, is the simplest, and computationally fastest, as OPT
simply inserts the cubes of Q into the set of fragments B:

in DSOP-1:
procedure OPT(q,Q, P,B)

B = B ∪Q

Example 1: For an example, Figure 1(b) shows a DSOP
form for the SOP form of Figure 1(a), computed by al-
gorithm DSOP-1. At the beginning D = ∅ and P =
{x1x2, x1x3, x1x3, x2x4}, sorted for decreasing dimensions
of cubes and then for increasing weighs (we recall that,
w(x1x2) = 0, w(x1x3) = 1, w(x1x3) = 1, and w(x2x4) =
2). The first cube considered is p = x1x2, which is removed
from P and inserted in D. Its intersecting cubes, x1x3 and
x2x4, are then broken generating the residuals cubes x1x2x3

and x1x2x4, respectively, which are inserted in B, while x1x3

and x2x4 are removed from P . The last cube in P to be
considered is then x1x3 that is inserted directly in D, since
there are not any other remaining cubes in P . Its intersecting
cube x1x2x4 in B is then reduced to x1x2x3x4. The second
while (P 6= ∅) iteration starts with P = {x1x2x3, x1x2x3x4}
and D = {x1x2, x1x3}, and terminates with the final DSOP
D = {x1x2, x1x3, x1x2x3, x1x2x3x4}.

In the second variant, DSOP-2, after a cube p has been
selected and moved to D, each cube q intersecting p is, as be-
fore, fragmented and moved to B. In addition the optimization
procedure updates the weight of all cubes r ∈ P that intersect
q, and then sorts the cubes in P again:
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in DSOP-2:
procedure OPT(q,Q, P,B)

B = B ∪Q
I = {r ∈ P | q ∩ r 6= ∅}
WEIGHT(I)
SORT(P )

A disadvantage of both versions is that whenever a cube p is
moved from P to D, all cubes q intersecting p are fragmented
and removed from the set P . Hence, the fragments, even the
big ones, are “out of the game” and cannot participate in the
construction of the DSOP D until P becomes empty and a
new SOP covering all fragments in the set B is computed.
Consequentially, small cubes in P could be selected first,
possibly damaging the quality of the final result, i.e., the size
of the final DSOP. To partially avoid this disadvantage, we
have implemented a third version of the heuristic, DSOP-3,
in which whenever a cube p ∈ P is moved to D, each cube q
intersecting p is, as before, fragmented and moved to B, and,
in addition, all cubes r ∈ P intersecting q are moved to B as
well:

in DSOP-3:
procedure OPT(q,Q, P,B)

I = {r ∈ P | q ∩ r 6= ∅}
B = B ∪Q ∪ I
P = P \ I

In this way, the cubes of P intersecting the fragments already
in B cannot be selected,while is avoided the possible frag-
mentation of big cubes in B. Moreover, we leave open the
possibility of selecting these big cubes in the next iterations of
the algorithm, This version of the heuristic is computationally
more expensive, since in the internal while loop less cubes
can be selected (P empties faster), and procedure BUILD-
SOP must be executed more frequently.

The fourth version of the heuristic, DSOP-4, checks
whether the set Q contains only one fragment, i.e., q \ p is
a cube. In this case, this only fragment is put back in P . The
cubes left in P are then weighted and sorted again:

in DSOP-4:
procedure OPT(q,Q, P,B)

if (|Q| = 1)
P = P ∪Q

else
B = B ∪Q

WEIGHT(P )
SORT(P )

Finally, in the last version of the heuristic that we have
tested, DSOP-5, the biggest fragment in the set Q is always
put back in P . The cubes left in P are then weighted and
sorted again. In this way, big fragments remain part of the
game in the present iteration of the algorithm:

in DSOP-5:
procedure OPT(q,Q, P,B)

let b be the biggest cube in Q
P = P ∪ {b}
B = B ∪Q \ {b}
WEIGHT(P )
SORT(P )

The performances of these five procedures are discussed
in Section V. We have observed experimentally that more
sophisticated optimization procedures do not always provide
better quality results. Experimental results have also outlined
how the BUILD-SOP procedure, i.e., fre-synthesizing the
remaining cubes, seems to be crucial for obtaining compact
DSOPs.

Let us now briefly consider the case of the DSOP synthesis
of incompletely specified Boolean functions. Our heuristic
does not consider explicitly the presence of don’t cares;
indeed, the first call of the BUILD-SOP procedure produces
a SOP P covering the whole on set of f and a subset of
its don’t care set. Then, the algorithm works on the SOP P ,
treating all points covered by its cubes as if they belonged
to the on set of f , i.e., there is no distinction between points
originally in the on set of f and points originally in the don’t
care set. In particular, the successive calls of BUILD-SOP
on the part of f still to be covered with a DSOP, treat the
function as if it were completely specified. Of course, each
cube in the SOP P computed by the first call of BUILD-SOP
covers at least one point in the on set of f , as cubes covering
only points in the don’t care set are discarded by the SOP
minimization algorithm. However, the final disjoint cover D
for f could contain cubes covering only points originally in
the don’t care set. In fact, cubes in D are either entire cubes
of the starting SOP P , or sub-cubes of cubes in P (besides
new cubes and sub-cubes originated by the successive calls of
BUILD-SOP) and some sub-cubes (or new cubes) could only
cover don’t care points. Thus, all versions of our heuristic
could be improved checking whether a cube p contains only
points in the don’t care set of the function f , before adding
it to the DSOP solution D under construction. Unfortunately,
such a check can be computationally expensive, and for this
reason we have not added it as a “default” procedure in our
algorithm.

We conclude with an observation concerning the complexity
of the DSOP minimization problem. First of all, note that the
complexity of the proposed heuristic is polynomial in the size
of the output, i.e., in the number of products of the computed
DSOP form. As the standard SOP minimization is as complex
as set covering [6], [15], DSOP minimization can be compared
to the set partitioning (or minimal exact cover) problem. The
minimal exact cover problem can be described as follows:
given a family of subset S of a set U and a positive integer
k, is there a subset family T ⊆ S such that the subsets in T
are k in number, are disjoint, and their union is the entire set
U? The minimal exact cover is NP-hard since it can be easily
reduced by the “exact cover problem” introduced by Karp in
1972 [8] setting k to the cardinality of U .
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algorithm PARTIAL-BREAK(q, p, sopD, sopS,Q,R)
INPUT: The chosen cube p, the cube q that can be broken,
the two SOPs sopD and sopS whose union represents f
OUTPUT: A minimal set Q of disjoint cubes covering q \ p and
a set R of the points of q \ p that can be covered more than once

R = ∅
pi = q ∩ p
if (pi ⊆ sopS) // all points of pi can be covered more than once

Q = ∅
else if (pi ⊆ sopD) // all points of pi must be covered once

Q = DISJOINT SHARP(q, pi)
else // pi intersects both sopD and sopS

Q = DISJOINT SHARP(q, pi)
R = pi ∩ sopS

Fig. 3. The procedure PARTIAL-BREAK to be used in partial DSOP
synthesis.

IV. PARTIAL DSOP SYNTHESIS

As mentioned in Section I, some applications require to
cover some minterms of a Boolean function exactly once while
other minterms can be covered more than once. A typical
example, is when the points in the on set of a function must
be covered exactly once, while the points in the don’t care
set can be covered more than once [9], [5]. In this section
we present a general heuristic to efficiently compute a partial
DSOP cover.

The heuristic makes use of two sums of products as input.
The first SOP, sopD, contains all points of the on and don’t
care set of the function f that must be covered only once
(DSOP part), while the second SOP, sopS, contains all the
points of f that can be covered more than once (SOP part).
These two SOPs are disjoint. The output of the heuristic is a
cover of the overall function f , represented by the union of
the two SOPs sopD and sopS that respects the specifications.
Note that when sopD is empty the problem is a classical SOP
minimization, while when sopS is empty the problem is a
classical DSOP minimization.

The algorithm uses four basic procedures as for the DSOP
synthesis of Section III. In particular BUILD-SOP, WEIGHT,
and SORT are the same. The forth procedure PARTIAL-
BREAK(q, p, sopD, sopS,Q,R) works on the set difference
q \ p between two cubes, to build an arbitrary minimal set
Q of disjoint cubes covering q \ p, if q ∩ p is not entirely
contained in sopS. If q∩p is contained in sopS, the cube q is
not broken and we can keep it in the set P which contains the
cubes to be considered in the current iteration. In this case we
then set Q = ∅. Moreover, the procedure PARTIAL-BREAK
builds a set R containing points of q \ p that can be covered
more than once and can therefore be added as don’t cares to
C. In this way, these points, that have been already covered,
could be used again in the minimization phase to get a smaller
cover. This procedure, different from the one used for DSOP
synthesis, is presented in Figure 3.

The overall minimization heuristic is presented in Figure 4.
As for the DSOP synthesis, the heuristic makes use of four
sets of cubes C,P,B,D. At the beginning C = sopD∪ sopS
contains the cubes defining f while P,B,D are empty. During

algorithm PARTIAL-DSOP(sopD, sopS,D)
INPUT: Two disjoint SOPs describing the points of f that
must be covered only once (sopD) and the points of f that
can be covered more than once (sopS)
OUTPUT: A partial DSOP D for the function f

Con = sopDon ∪ sopSon

Cdc = sopDdc ∪ sopSdc

while (Con 6= ∅)
BUILD-SOP(C,P )
A = {d ∈ P | ∀c ∈ P \ {d} : d ∩ c = ∅}
D = D ∪A
P = P \A
WEIGHT(P )
SORT(P )
B = ∅
while (P 6= ∅)

let p be the first element of P
P = P \ {p}
D = D ∪ {p}
forall q ∈ P : p ∩ q 6= ∅

PARTIAL-BREAK(q, p, sopD, sopS,Q,R)
if (Q 6= ∅) P = P \ {q}
OPT(q,Q, P,B)
Cdc = Cdc ∪R

forall r ∈ B : p ∩ r 6= ∅
PARTIAL-BREAK(r, p, sopD, sopS,Q,R)
if (Q 6= ∅) B = B \ {r}
B = B ∪Q
Cdc = Cdc ∪R

Con = B

Fig. 4. Algorithm for partial DSOP synthesis.
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Fig. 5. (a) sopS (cubes with solid lines) and sopD (cubes with dotted lines).
(b) A corresponding partial DSOP.

the processing C contains the cubes defining the part of f still
to be covered with a partial DSOP. P contains the cubes of a
SOP under processing. B temporarily contains cubes produced
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SORT VERSION: dimension/weight
SOP DSOP-1 DSOP-2 DSOP-3 DSOP-4 DSOP-5

Bench in out size size time size time size time size time size time
accpla 50 69 175 1457 11.68 1458 13.42 1190 10.55 1125 5.61 1528 21.60
addm4 9 8 200 218 0.26 221 0.31 214 0.40 222 0.19 224 0.19
alu4 14 8 575 923 1.51 921 2.00 881 2.32 1051 3.36 1044 2.87
apex3 54 50 280 345 0.62 345 0.65 350 0.68 366 2.04 400 2.11
apex4 9 19 436 506 0.34 506 0.36 503 0.31 502 0.52 501 0.59
b2 16 17 106 131 0.42 131 0.49 121 0.54 130 0.93 127 0.56
bc0 26 11 179 214 0.47 214 0.53 202 0.68 212 0.53 208 0.51
chkn 29 7 140 187 0.87 187 0.88 168 0.88 215 0.48 221 0.42
clip 9 5 120 151 0.28 150 0.29 140 0.39 153 0.20 157 0.16
cps 24 109 163 184 0.75 184 0.76 204 0.89 219 0.38 225 0.38
dist 8 5 123 135 0.22 135 0.23 130 0.38 128 0.15 129 0.16
ex5 8 63 74 126 0.79 126 0.44 122 0.80 137 0.39 141 0.48
gary 15 11 107 134 0.52 134 0.35 124 0.49 126 0.28 127 0.16
ibm 48 17 173 366 1.23 366 0.59 361 0.99 373 0.46 391 0.30
in4 32 20 212 312 1.36 312 0.84 280 1.33 303 0.54 304 0.56
intb 15 7 631 811 2.03 818 1.61 798 2.57 922 2.56 952 2.91
jbp 36 57 122 135 0.57 135 0.26 127 0.43 134 0.20 136 0.17
mainpla 27 54 172 296 4.67 296 3.00 293 3.23 288 5.37 260 5.20
max1024 10 6 274 332 0.32 334 0.33 334 0.54 347 0.35 345 0.32
misex3 14 14 690 1070 2.72 1073 1.49 1032 2.68 1159 2.57 1309 3.48
soar 83 94 353 447 1.93 447 1.30 434 1.58 442 0.59 456 0.58
sym10 10 1 210 232 0.43 231 0.51 232 1.11 235 1.01 245 0.85
table3 14 14 175 181 0.41 181 0.23 180 0.33 179 0.16 179 0.18
table5 17 15 158 167 0.39 167 0.36 161 0.38 161 0.24 161 0.25
tial 14 8 581 943 1.78 937 1.96 874 2.98 1071 2.84 1040 2.50
vtx1 27 6 110 204 0.45 204 0.49 204 0.64 208 0.34 213 0.31
x7dn 66 15 538 796 1.30 784 1.43 812 1.57 813 0.88 864 0.76

TABLE I
COMPARISON OF FIVE DIFFERENT VARIANTS OF THE DSOP MINIMIZATION HEURISTIC (SORT VERSION: dimension/weight.) THE SIZE OF THE BEST

DSOP REPRESENTATION COMPUTED FOR EACH BENCHMARK IS IN BOLDFACE.

by BREAK as fragmentation of cubes of P . D contains the
cubes already assigned to the partial DSOP solution and, at
the end, the solution itself. OPT(q,Q, P,B) is an optional
optimization procedure to decide how to handle the fragments
produced by the procedure BREAK. As before, depending on
this optimization phase, different variants of the heuristic can
be defined.

Example 2: Consider the function shown in Figure 5(a).
Suppose that sopD = {x1x2x3, x1x2x3x4} (cubes with dotted
lines in the figure) and sopS = {x1x3, x1x3} (cubes with
solid lines). A partial DSOP for f is shown in Figure 5(b).
This expression is obtained with the partial DSOP algorithm
as described in the following. Let OPT(q,Q, P,B) be the
simple command B = B ∪Q (as in the DSOP-1 procedure).
At the beginning D = ∅ and, after the SOP minimization
phase, P = {x1x2, x1x3, x1x3, x2x4}, sorted for decreasing
dimensions of cubes and then for increasing weighs (note
that we have the same initial P of Example 1). The first
cube p = x1x2 is removed from P and inserted in D.
Its intersecting cubes are x1x3 and x2x4. In the procedure
PARTIAL-BREAK, the intersection between x2x4 and x1x2

is pi = x1x2x4. Note that pi intersects both sopD and sopS,
thus Q = {x1x2x4} and R = {x1x2x3x4} (i.e., x1x2x4 and
x1x2x3x4 will be inserted in B and in the don’t care set of
C, respectively). Moreover, we compute the intersection pi
between x1x3 and x1x2, obtaining x1x2x3 which is entirely
contained in sopS. Thus, in this case Q = R = ∅, then
x1x3 is not broken and it is not removed from P . Similar
operations are performed on x1x3, and on x1x2x4 contained

in B. The second while (P 6= ∅) iteration, which starts with
the P = {x1x2x4} and D = {x1x2, x1x3, x1x3}, terminates
with the partial DSOP shown in Figure 5(b).

V. EXPERIMENTAL RESULTS

In this section we present and discuss the results obtained
with the heuristics presented above to the standard ESPRESSO
benchmark suite [16]. All experiments were performed on a
1.8 GHz PowerPC with 1 GB of RAM.

A. DSOP synthesis

We have considered the five different variants of the heuris-
tic described in Section III, denoted as DSOP-1, DSOP-2,
DSOP-3, DSOP-4, DSOP-5. For each variant, we have run
both versions of the procedure SORT, to estimate the practi-
cal effectiveness of each version. Namely we have ordered
the cubes for decreasing dimension and, in case of equal
dimension, for increasing weight (version dimension/weight).
Then we have ordered the cubes for increasing weight and,
in case of equal weight, for decreasing dimension (version
weight/dimension).

Since the benchmarks are multi-output functions and the
algorithm is described for single output function, in the
experiments we have considered each output separately, but
the minimization phase with ESPRESSO is performed in a
multi-output way. Moreover, common disjoint cubes of several
output are counted only once.

Tables I and II report a significant subset of the experiments.
In particular, Table I reports the performances of the heuristics
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SORT VERSION: weight/dimension
SOP DSOP-1 DSOP-2 DSOP-3 DSOP-4 DSOP-5

Bench in out size size time size time size time size time size time
accpla 50 69 175 1779 24.57 1717 32.46 1317 16.80 1535 34.29 3078 97.73
addm4 9 8 200 220 0.26 222 0.27 217 0.29 222 0.20 223 0.13
alu4 14 8 575 1138 2.25 1065 2.12 1276 4.74 1269 5.23 1211 3.69
apex3 54 50 280 337 0.54 342 0.57 347 0.6 356 0.82 386 0.94
apex4 9 19 436 506 0.34 506 0.36 503 0.33 502 0.38 500 0.25
b2 16 17 106 131 0.41 131 0.44 120 0.62 126 0.36 125 0.36
bc0 26 11 179 230 0.60 218 0.53 210 1.18 218 0.44 211 0.40
chkn 29 7 140 598 3.67 448 3.55 216 2.86 386 2.21 426 1.70
clip 9 5 120 154 0.32 153 0.29 143 0.38 157 0.2 0 159 0.17
cps 24 109 163 184 0.75 184 0.88 204 1.19 217 0.36 223 0.36
dist 8 5 123 138 0.21 138 0.23 133 0.36 134 0.15 133 0.15
ex5 8 63 74 128 0.38 125 0.44 142 0.77 141 0.39 148 0.31
gary 15 11 107 139 0.28 131 0.27 132 0.43 124 0.15 125 0.15
ibm 48 17 173 431 0.69 393 0.64 416 1.24 415 0.56 478 0.47
in4 32 20 212 329 0.72 331 0.81 321 1.29 303 0.52 319 0.48
intb 15 7 631 955 1.79 932 1.83 1125 3.65 1130 4.99 1173 3.84
jbp 36 57 122 151 0.35 147 0.36 128 0.33 140 0.16 147 0.17
mainpla 27 54 172 459 2.86 405 2.47 387 3.33 366 2.76 338 2.23
max1024 10 6 274 334 0.30 330 0.36 324 0.50 339 0.34 338 0.29
misex3 14 14 690 1132 1.28 1155 1.75 1317 4.58 1234 3.67 1464 4.36
soar 83 94 353 451 1.16 449 1.25 430 1.41 440 0.61 464 0.60
sym10 10 1 210 233 0.42 234 0.48 248 1.37 239 1.19 258 1.38
table3 14 14 175 181 0.21 181 0.24 180 0.24 179 0.14 179 0.14
table5 17 15 158 167 0.31 167 0.32 161 0.28 161 0.20 161 0.17
tial 14 8 581 1121 2.22 1060 2.13 1371 6.68 1330 5.25 1322 3.65
vtx1 27 6 110 236 0.50 247 0.51 258 0.93 313 0.63 317 0.62
x7dn 66 15 538 1078 1.89 1010 2.23 919 2.80 1068 2.32 1043 1.30

TABLE II
COMPARISON OF FIVE DIFFERENT VARIANTS OF THE DSOP MINIMIZATION HEURISTIC (SORT VERSION: weight/dimension.) THE SIZE OF THE BEST

DSOP REPRESENTATION COMPUTED FOR EACH BENCHMARK IS IN BOLDFACE.

with respect to the first version of the SORT procedure,
while Table II is relative to the second SORT procedure. All
benchmarks in these tables are completely specified. In both
tables, the first column reports the name of the benchmark; the
following two columns give the number of inputs and outputs;
the column labeled SOP shows the number of products in a
SOP representation computed by ESPRESSO in the heuristic
mode; finally the remaining five pairs of columns report
the number of disjoint products in the DSOP expressions
computed by our heuristics and the corresponding synthesis
time.

DSOP-3 (a) DSOP-3 (b)
Bench in out size time size time
b10 15 11 115 0.49 115 17.04
b3 32 20 279 1.21 279 47.34
bca 26 46 189 0.29 189 49.54
bcb 26 39 162 0.26 162 42.33
bench1 9 9 250 0.32 210 14.92
ex1010 10 10 876 1.34 665 73.00
exam 10 10 145 0.33 107 62.26
exep 30 63 130 0.53 120 8.33
exps 8 38 151 0.31 151 37.91
pdc 16 40 381 0.98 277 37.14
spla 16 46 347 0.64 347 37.06
test2 11 35 2322 2.40 2054 324.84
test3 10 35 1462 1.81 1204 159.60

TABLE III
DSOP SYNTHESIS OF INCOMPLETELY SPECIFIED BENCHMARKS, WITHOUT
(DSOP-3 (a)) AND WITH (DSOP-3 (b)) ELIMINATION OF CUBES COVERING

ONLY DON’T CARES. THE SIZE OF THE BEST DSOP IS IN BOLDFACE.

As Table I and Table II clearly show, the third variant of
the heuristic, together with the first version of procedure SORT
(version dimension/weight), gives the best results regarding
the size of the resulting DSOP forms, and its running times
are comparable to those of the other variants, and sometimes
even lower.

We have then tested the performances of the best variant of
our heuristic on incompletely specified benchmarks. Table III
reports a subset of our experiments. We have run the heuristic
without the elimination of cubes covering only don’t cares
points from the solution under construction (DSOP-3 (a)),
and with such elimination (DSOP-3 (b)). As the table clearly
shows, the elimination of these cubes naturally produces better
solutions in terms of size, but the computational time is much
higher.

In another series of experiments we compared our heuris-
tic (with the third version of the optimization phase, and
without elimination of cubes of don’t cares only) with other
DSOP minimization methods. We considered two techniques
working, as ours, on explicit representation of cubes, and
one method based on binary decision diagrams. The first
algorithm [3] sorts cubes in a minimal SOP according to their
size, and compares the largest cube with all the others, starting
from the smallest ones. In the next step, the second largest
cube is selected and compared to all smaller ones, etc. As a
last step, the cubes are merged wherever possible. The second
algorithm, presented in [13], exploits the property of the most
binate variable in a set of cubes to compute a DSOP form.
Finally, the third approach, presented in [4], makes use of
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Bench in out PLA SOP DSOP
ESPR.

DSOP
[3]

DSOP
[13]

DSOP
[4] DSOP-3

5xp1 7 10 75 65 99 70 – 82 70
9sym 9 1 87 86 209 166 148 148 134
alu4 14 8 1028 575 3551 – – 1545 881
b12 15 9 431 43 691 57 – 60 51
clip 9 5 167 120 359 162 – 262 140
co14 14 1 47 14 14 – 14 14 14
max1024 10 6 1024 274 775 – – 444 334
misex1 8 7 32 12 18 15 – 34 15
misex2 25 18 29 28 29 28 – 30 28
mlp4 8 8 256 128 206 – – 203 143
rd53 5 3 32 31 31 31 – 35 31
rd73 7 3 141 127 127 127 – 147 127
rd84 8 4 256 255 255 – – 294 255
sym10 10 1 837 210 367 – 240 240 232
t481 16 1 481 481 2139 – 2139 1009 841
x7dn 66 15 622 538 1697 – – 1091 812
xor5 5 1 16 16 16 – 16 16 16

TABLE IV
COMPARISON WITH OTHER TECHNIQUES

BDDs, exploiting the efficiency resulting from the implicit
representation of the products. Observe in fact that a DSOP
form can be extracted in a straightforward way from a BDD,
as different one-paths correspond to disjoint cubes.

Table IV reports a cost-oriented comparison among the
different methods. The first three columns are as before.
Columns four and five report the number of products in the
PLA realization and in the SOP form heuristically minimized
by ESPRESSO in the heuristic mode. The column labeled
DSOP ESPR. shows the size of the DSOP computed running
ESPRESSO with the option “-Ddisjoint” on the previously
computed SOP form. The next three columns report the
sizes, when available, of the DSOP forms computed with the
methods discussed in [3], [13], and [4], respectively. Finally,
the last column shows the size of the DSOPs computed with
our heuristic (third variant).

As the table clearly shows, our method always generates
smaller DSOP representations, and the gain in size can be
quite striking, as for instance for the benchmarks alu4, clip,
and t481. Note that, even considering the other variants of
the heuristic, and the different sorting criterion, our technique
almost always compares favorably. A time comparisons among
all these different methods was not possible due to the partial
absence of CPU times specification in the literature.

B. Partial DSOP synthesis

In order to test our partial DSOP synthesis algorithm,
we have applied the heuristic to the classical ESPRESSO
benchmark suite [16] with the following meaning. We have
considered only benchmarks with don’t cares, where the on
set of the benchmark is the on set of sopD, and the don’t care
set of the benchmark is the don’t care set of sopS.

Table V reports a subset of our experimental results. The
column labeled SOP shows the number of products in a
SOP representation computed by ESPRESSO in the heuristic
mode. The remaining three pairs of columns report the number
of products and the corresponding synthesis time for the

following three forms (all computed with the third version
of the optimization phase, the dimension/weight sort version,
and with the elimination of cubes covering don’t cares only):

1) DSOP: a DSOP for the original function, with the choice
of don’t cares performed by ESPRESSO in the heuristic
mode. Each don’t care point is covered at most once.

2) P-DSOP (a): a partial DSOP for the original function,
with the choice of don’t cares performed by ESPRESSO
in the heuristic mode. Don’t care points are either
eliminated or covered at least once.

3) P-DSOP (b): a partial DSOP for the original function,
where all the don’t cares of the function are in play (they
have all been covered during the first SOP minimiza-
tion). Don’t care points are either eliminated or covered
at least once in the final form.

Note that the results in the column SOP are better than ours
because the resulting form is not disjoint.

The table suggests that the best solution is the one relative
to the choice of don’t cares made by ESPRESSO. Moreover, it
appears clearly from these results that the option of covering
more than once the don’t care points of the function (DSOP-3
(a)) gives better results, especially for big benchmarks.

VI. CONCLUSIONS AND FUTURE WORK

Although deriving an optimal DSOP representation of a
Boolean function is a hard problem, we have described a
heuristic that has been implemented and tested.

From the experimental results we conclude that exploiting
SOP minimization for DSOP synthesis is a crucial idea. In
fact, comparing our results with the ones in the literature we
always obtain equal or smaller forms. We observe that the fact
that SOP and DSOP problems are so close is not intuitive. In
fact, we would have expected that efficient strategies to solve
the two problems would be different since DSOP minimization
appears to be much harder then SOP synthesis. Nevertheless,
the experiments show that, starting from minimal or quasi-
minimal SOP expressions, we can heuristically derive very
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SOP DSOP P-DSOP (a) P-DSOP (b)
Bench in out size size time size time size time
alu3 10 8 66 67 4.65 67 10.83 67 13.06
apla 10 12 25 33 4.11 25 2.49 25 13.204
b10 15 11 100 115 17.04 115 15.96 117 18.22
b3 32 20 211 279 47.34 279 51.39 279 54.80
b4 33 23 54 62 10.06 62 5.99 62 7.74
bca 26 46 180 189 49.54 189 33.63 190 53.11
bcb 26 39 155 162 42.33 162 29.08 162 42.18
bcc 26 45 137 145 26.08 145 31.19 145 43.24
bcd 26 38 117 121 17.30 121 20.51 121 29.14
bench1 9 9 139 210 14.92 164 18.30 246 86.90
dk17 10 11 18 22 1.32 19 1.50 19 15.57
dk27 9 9 10 12 1.04 10 0.73 10 10.15
dk48 15 17 22 24 1.17 22 1.40 22 69.59
duke2 22 29 12 26 3.06 24 4.10 23 26.16
ex1010 10 10 284 665 73.00 481 87.24 739 282.44
exam 10 10 67 107 62.26 89 66.78 168 115.78
exp 8 18 59 72 7.11 70 7.28 63 16.25
exps 8 38 136 151 37.91 151 41.37 152 5.61
inc 7 9 30 37 2.52 38 3.298 41 4.87
mark1 20 31 19 29 2.71 23 5.26 25 136.14
p1 8 18 55 90 7.51 67 12.26 79 32.37
p3 8 14 39 71 4.77 47 10.29 52 18.27
pdc 16 40 145 277 37.14 203 68.65 191 291.51
sao2 10 4 9 24 1.09 20 4.01 19 6.86
spla 16 46 260 347 37.06 347 50.05 347 53.21
t2 17 16 53 58 3.34 59 5.36 59 8.48
t4 12 8 16 18 1.31 17 1.79 21 10.49
test1 8 10 121 169 10.52 141 12.92 197 45.38
test2 11 35 1103 2054 324.84 1354 361.73 1996 2921.75
test3 10 35 541 1204 159.60 746 179.11 1001 1405.99
test4 8 30 120 466 65.34 335 82.44 278 253.03
x1dn 27 6 70 148 12.51 98 26.31 106 48.30

TABLE V
PARTIAL DSOP SYNTHESIS, USING THE SUBSET OF DON’T CARES SELECTED BY ESPRESSO-NON-EXACT (P-DSOP (a)) OR ALL DON’T CARES OF THE

ORIGINAL FUNCTION (P-DSOP (b)).

compact DSOP forms. Moreover, from Table V we also infer
that the choice of the don’t cares, which are used as ones of
the function, performed for the SOP minimization is nearly
always the best choice also for DSOP synthesis. Therefore,
as a future work, it would be interesting to further study the
closeness of SOP and DSOP minimal forms both in theoretical
and experimental way.

Cubes are currently explicitly represented; it would be
interesting to use implicit data structures (e.g., BDDs) and
symbolically perform all the operations in the heuristic. In
this way, we should speed up the computation, and perform
operations like the elimination of cubes of don’t cares in a
more efficient way.

From a more theoretic perspective, it could be an inter-
esting development to study more deeply the approximability
properties of DSOP minimization, with the aim of designing
approximation algorithms, instead of heuristics. Recall that a
p-approximation algorithm for a minimization problem always
yields solutions whose cost C is ≤ pC∗, where C∗ is the cost
of an optimal solution [6]. Thus, both heuristics and approx-
imation algorithms do not guarantee the minimality of their
solutions, but an approximation algorithm guarantees near-
optimum solutions, whereas we cannot perform any prediction
on the result of a heuristic. As a first step in this direction we
should understand when our heuristic returns a DSOP whose
cost is much higher then the cost of an optimal DSOP.
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