
An executable formal specification of ECMAScript

Cristian Dittamo Vincenzo Gervasi Antonio Cisternino Egon Börger

February 8, 2011

1 Introduction

Web applications (i.e., applications whose interface is presented to the user via a web browser, whose state
is split between a server and a client, and where the only interaction between server and client is through
the HTTP protocol) are become more and more widespread, and integrated in most users’ everyday work
habits. The glue linking the desperate technologies involved, from dynamic HTML to XML RPC, is the
Javascript language. Yet, no formal definition of its semantics exists, which in turn makes it impossible to
formally prove correctness, liveness and security properties of Web applications. As a first step towards
improving this situation, we provide a formal semantics for ECMAScript [2], by means of an Abstract
State Machines (ASMs) specification [1]. We follow the path established by other specification efforts
for similar languages (e.g. Java and C#), but in addition we establish a formal trace between parts of
our specification and the ECMA standard, thus facilitating the proof of correctness of the specification.
More specifically, we define the dynamic semantics of ECMAScript by providing (in terms of ASMs) two
distinct interpreters, one (ESInterpret) traversing the ECMAScript abstract syntax tree (AST), the other
(AOInterpret) is step-wise equivalent to the ECMA standard, as shown in Figure 1.

Figure 1: Overview of our specification.

We use an algebra to represent (i) the state of the ECMAScript program, (ii) the state of the
Interpreter, (iii) the state of the host environment (typically, the browser). In our modeling we do
not over-specify; all the points left open in the standard are described through non-deterministic choose
statements. Moreover, we make our specification executable by implementing it in CoreASM, which
provides a concrete implementation of the ASM language.

2 Notation

We assume the necessary syntactic information (read: the Abstract Syntax Tree (AST) of the given
ECMAScript program) to be available, namely described by background functions. Using ASM we detail
a visit of the AST, whose effect is to simulate the execution of the program. We specify the Interpreter

as a collection of rules which traverse an AST while evaluating values and locations. The notation we will
use is inspired by the one first introduced in [3]. We state the following assumptions:

1



1. nodes in the tree are in the domain of the following (mostly partial) functions:

• three static functions implement tree navigation:

– first : Node → Node returns the first child of a given AST node.

– next : Node → Node returns the next child, if present, of a given AST node.

– parent : Node → Node returns the parent node of a given AST node.

by using these functions, the Interpreter can access all the children nodes of a given node, or
go back to its parent;

• class : Node → Class returns the syntactical class of a node (i.e., the name of the corresponding
grammar non-terminal class); for example Literal.

• a special variable pos : → Node holds at all times the current position in the AST, that is, the
root node of the subtree which is being evaluated at a given time instant;

• [[·]] : Node → Reference × Completion× Value holds the result of the interpretation of a node,
given by a tuple formed by a reference (that is, the l-value of an expression, when it is defined),
a completion status (indicating whether an expression or statement was evaluated normally, or
if some non-sequential transfer of control is in order), and a value (that is, the r-value of an
expression)1. We access elements and establish properties of such tuples through the following
derived functions:

– ref : Node → Reference returns the location (l-value) associated to the given node, i.e.
ref(n) ≡ [[n]] ↓ 1.

– compl : Node → Completion returns the completion status of the evaluation of a node, i.e.
compl(n) ≡ [[n]] ↓ 2.

– value : Node → Value returns the value (r-value) associated to the given node, i.e.
value(n) ≡ [[n]] ↓ 3.

– evaluated : Node → Boolean indicates if a node has been fully evaluated. We have,

evaluated(n) ≡ [[n]] ̸= undef

2. the behavior of ECMAScript constructs is operationally described in [2] using so-called abstract
operations (AO), coming as numbered lists of steps, upon which we assume the standard ordering
and nesting structure. Therefore, AOs are themselves organized as a tree, called Abstract Operation
Tree (AOT). Let AOT be the domain of trees of ASMs rules or instructions, we define the following
function:

aoprog : Class → AOT

that given the node’s syntactical class returns a tree of ASM rules indexed by an hierarchical enu-
meration conformant to the one used in the ECMA standard.

Let InstrRef be the domain of instructions references. Let i ∈ InstrRef and t ∈ AOT, i refers an
instance of an instruction in a node of t. We define the following functions:

• pc : Node× Integer → InstrRef returns the reference of the current instruction in the AOT (i.e.
ECMA AO) of a given AST node at a given level of calls stack. This level is held in a special
variable sp(pos), such that we can:

– define the scope of each variable used inside an AOT (i.e. ECMA AO) for each AST node.

– avoid to use a global stack for ECMA AOs call.

The use of sp(pos) will be more clearer in Section 3.3.

• root : AOT → InstrRef returns the root instruction reference of a given AOT .

• three static functions implement AOT navigation:

– aofirst : InstrRef → InstrRef returns the first child of a given AOT node.

– aonext : InstrRef → InstrRef returns the next child of a given AOT node.

1The structure of the tuple is intended to be mnemonic, with the l-value in the leftmost and the r-value in the rightmost
position in the tuple.

2



– aoparent : InstrRef → InstrRef returns the parent node of a given AOT node.

by using these functions, the AOInterpret can access all the children nodes of a given node,
or go back to its parent;

• ret : Node × Integer → Value returns the value obtained by an AO execution at a given: AST
node and level of calls stack.

3 Core Specification

When control is transferred to ECMAScript code the Interpreter is called upon, passing it the position
of the AST root node (corresponding to the Program production of [2](§A.5)). The current position pos
is thus initialized to the root node, the [[·]] function of all the nodes in the subtree is set to undef, and the
following rule is invoked.

3.1 The Interpreter

We define the semantics of ECMAScript by means of two distinct interpreters, one, called ESInterpret,
traversing an ECMAScript AST, the other, called AOInterpret, executing AOs as specified by the ECMA
standard for each ECMAScript construct. At each moment at most one Interpreter instance is called.
The main rule of our Interpreter is thus

Interpreter rules

Interpreter ≡
if pos ̸= undef then

if aomode(pos) = idle then
ESInterpret

else
AOInterpret

The Interpreter starts checking whether a given AST is already traversed (i.e. pos is undef) or not.
In the former case the Interpreter state will be not changed. In latter case, if the current AST node
must be evaluated (i.e. control state aomode is not idle) then the AOInterpret is executed. Otherwise
ESInterpret is performed.

3.2 ESInterpret interpreter

This interpreter determines whether the root node of the current AST subtree is already evaluated or
not. In the former case, the control state aomode is changed to initialize, such that in the next step the
AOInterpret sub-interpreter will execute. In the latter case, all nodes in the current AST subtree are
already evaluated thus the pos must be changed back to current node’s parent (recall Section 2). This
formalized as follows:

ESInterpret main rule

ESInterpret ≡
if ¬evaluated(pos) then

aomode(pos) := initialize
else

pos := parent(pos)

3.3 AOInterpret interpreter

AOInterpret determines which is the tree of ASM rules (i.e. AOT ) corresponding to the current AST
node class. Therefore, if a new AST subtree must be evaluated (i.e. aomode = initialize), AOInterpret

updates pos to that subtree first child, and aomode to running, such that in the next step the node
evaluation can be performed. The main rule of our AOInterpret is thus

3



AOInterpret main rule

AOInterpret ≡
let il = aoprog(class(pos)) in

if aomode(pos) = initialize then
pc(pos, sp(pos)) := root(aoprog(class(pos)))
aomode(pos) := running

if aomode(pos) = running then
let R = il(pc(pos, sp(pos))) in R(...)

where each R updates pc(pos,sp(pos)) and aomode(pos) as needed.

If(cond) ≡
if cond then aofirst(pc(pos, sp(pos)))
else aonext(pc(pos, sp(pos)))

Else ≡ aonext(pc(pos, sp(pos)))

For(list, element) ≡
if ¬list.Empty then

element := list.Dequeue()
aofirst(pc(pos, sp(pos)))

else
pc(pos, sp(pos)) := aoparent(pc(pos, sp(pos)))

EndFor ≡
pc(pos, sp(pos)) := aonext(aoparent(pc(pos, sp(pos)))

these allow to traverse an ASM rules tree using the same syntax of control flow instructions in AOs. In the
For macro we assume to have a queue of ASM rules as input and the next rule in that queue as output.
The For upper bound is given by the input queue length.

In ECMA standard there are calls to properties and methods. Properties will be discussed in Section
3.5. We define only one macro, called Call, to account all AOs’ calls. However, the ECMA standard
states that host objects may implement AOs in any manner unless specified otherwise. For this reason,
we define the oracle function

isHostObj : Object → Boolean

that determines whether a given object is an host object or not. In the former case, the ExecNativeCode

macro executes in an unspecified way the given AO. In the latter case, the current state is saved in a stack
before a given AO execution and restored immediately after.

Call(prog, obj, args) ≡
if isHostObj(obj) then

Return(ExecNativeCode(obj, prog)(args))
else

let sp(pos) = sp(pos) + 1 in
pc(pos, sp(pos)) := aofirst(prog)
arg(pos, sp(pos)) := args
aonext(pc(pos, sp(pos)))

Return(v) ≡
if sp(pos) > 0 then

sp(pos) := sp(pos)− 1
ret(pos, sp(pos)) := v

else
[[pos]] := (undef, normal, v)
aomode(pos) := idle

Throw(e) ≡
[[pos]] := (undef, throw, undef)
aomode(pos) := idle

3.4 Types and values

ECMAScript defines nine types, three of which are used only as types for intermediate values of expressions,
and cannot be stored in a property (see Section 3.5). The types who are visible in the language itself are
briefly discussed in the following:

• the Undefined type only contains a single value, that we will denote with undefined. Reading a
property to which no value has been assigned returns undefined. Notice that undefined should not
be confused with undef, which is the denotation for undefined values in the ASM state.

• the Null type only contains a single value, that we will denote with null.

• the Boolean type contains two values, true and false, with the obvious meaning. Notice that these
should not be confused with trueand false, which are the boolean values of the ASM signature.

4



• the String type contains strings, which we will consider as sequences of characters. We will abstract
here from the details of the encoding, assuming that the ASM operators and functions operating
on characters and character sequences will have the intuitively correct behaviour regardless of the
particular in-memory representation of Strings.

• the Number type contains floating-point numbers, plus the three special values NaN, +Infinity and
-Infinity, whose semantics is according to [?]. Again, for the purposes of this specification we will
abstract from the details of the in-memory representation of these values2, assuming instead that the
operations will be well-behaved according to [?]. For expository purposes, we will use real numbers
as an abstraction of floating-point numbers.

• the Object type contains collections of properties; values of this type are better described in Sec-
tion 3.5

in addition, the following types are defined for expository purposes (we will use different typograhic style
for them to denote their special nature):

• the Reference type (ECMAReference), is used to hold a reference to a property of a particular object;
it will be discussed more fully in Section 3.7, but for now it will suffice to say that its values are
triples ⟨b, p, s⟩ where b is either an Object, a Boolean, a Number or an Environment Record (EnvRec)
value, p is a String value (holding the name of the property), and s is the Boolean valued strict
reference flag.

• the List type (List) contains ordered sequences (lists) of values. Values ∈ List are used to hold the
results of evaluating arguments lists in function calls, in new expression, and in other algorithms
where a simple list of values is needed.

• the Completion type (Completion) contains references to program positions, used to alter the control
flow in an unstructured manner for those statements (break, continue, return and throw) which re-
quire a non-local transfer of control. Values ∈ Completion are triples of the form ⟨type, value, target⟩
where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty.

• the Property Descriptor type (PropDescr) is used to explain the manipulation and reification of
named property attributes. Values ∈ PropDescr are records composed of named fields where each
field’s name is an attribute name and its value is a corresponding attribute value as specified in
Section 3.5. Property Descriptor values may be further classified:

– Data property descriptor (DataDescr), that includes any fields named either [[Value]] or [[Writable]].

– Accessor property descriptor (AccessDescr), that includes any fields named either [[Get]] or
[[Set]].

– Generic property descriptor, that is neither a data not an accessor property descriptor.

A Property Descriptor value may not be both a data property and an accessor property descriptor;
however, it may be neither. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]].

A Data descriptor property can be assigned to (and created if non-existing) or written, according to
their attributes. Formally, this is modeled by the following rules.

2We also abstracts from the existance of two distinct values for zero, namely +0 and /0.

5



Descriptor types

Data property

dataDescAttrib = {[[V alue]], [[Writable]]}
dataDescValue : PropDescr × String → Boolean
dataDescAttrs : PropDescr × String → {Undefined,Null,Boolean,String,Number,Object }

hasValue : PropDescr → Boolean
hasValue(sr) = dataDescValue(sr, ”[[V alue]]”)

hasWritable : PropDescr → Boolean
hasWritable(sr) = dataDescValue(sr, ”[[Writable]]”)

isWritable : PropDescr → Boolean
isWritable(sr) = dataDescAttrs(sr, ”[[Writable]]”)

An Accessor descriptor properties can be called (for executable ones) according to their attributes.
Formally, this is modeled by the following rules.

Descriptor types

Accessor property

accessDescAttrib = {[[Get]], [[Set]]}
accessDescValue : PropDescr × String → Boolean

hasSet : PropDescr → Boolean
hasSet(sr) = accessDescValue(sr, ”[[Set]]”)

hasGet : PropDescr → Boolean
hasGet(sr) = accessDescValue(sr, ”[[Get]]”)

A Generic descriptor property can be enumerated or deleted according to their attributes. Formally,
this is modeled by the following rules.

Descriptor types

Generic Descriptor

genDescrAttrib = {[[Enumerable]], [[Configurable]]}
genDescAttrs : PropDescr × String → Boolean

isEnumerable : PropDescr → Boolean
isEnumerable(sr) = genDescAttrs(sr, ”[[Enumerable]]”)

isConfigurable : PropDescr → Boolean
isConfigurable(sr) = genDescAttrs(sr, ”[[Configurable]]”)

• the Property Identifier type (PropId) is used to associate a property name with a Property De-
scriptor. Values ∈ PropId are pairs of the form ⟨name, descriptor⟩, where name ∈ String and
descriptor ∈ PropDescr. A complete description will be done in Section 3.6.

• the Environment Record type (EnvRec) is used to record the identifier bindings created within the
scope of its associate Lexical Environment. There are two kind of Environment Record values:

– Declarative Environment record (DeclER) is used to define the effect of ECMAScript language
syntactic elements (e.g. FunctionDeclaration, VariableDeclaration and Catch clauses) that directly
associate identifier bindings with ECMAScript Language values.

– Object Environment record (ObjER) is used to define the effect of ECMAScript elements (e.g.
Program and WithStatement) that associate identifier bindings with the properties of some
objects.

6



• the Lexical Environment type (LexEnv) is used to define the association of Identifiers to specific
variables and functions based upon the lexical nesting structure of ECMAScript code. Values ∈
LexEnv type are pairs of the form ⟨envRec, refLexEnv⟩, where envRec ∈ EnvRec and refLexEnv ∈
LexEnv is a reference to an outer Lexical Environment. The latter is used to model the logical nesting
of Lexical Environment values. This will discussed more fully in Section 3.13.

3.5 Objects

An ECMAScript Object or Object for short, is a set of Properties, where each property is a triple
⟨name, value, attributes⟩. For our purposes, name can be considered a string, value is any legal EC-
MAScript value (see Section 3.4) or an ASM rule (specifying the actions to be taken for internal methods,
as per [2](§8.6.2)), whereas attributes is a set of values from a given set of predefined features ([2](§8.6.1))
that we will denote with names enclosed in double square brackets. Each property can be:

• A Named Data property, that associates a name with an ECMAScript language value [[Value]] and
a set of Boolean attributes, such as [[Writable]], [[Enumerable]] and [[Configurable]].

• A Named Accessor property, that associates a name with one or two accessor functions (i.e. [[Get]]
and [[Set]]) and a set of Boolean attributes, such as [[Enumerable]] and [[Configurable]]. The accessor
functions are used to store or retrieve an ECMAScript language value that is associated with the
property.

• An Internal property, that has no name and is not directly accessible via ECMAScript language
operators. Internal properties exist purely for specification purposes.

These properties can be assigned to (and created if non-existing), read from, deleted, called (for executable
ones) or enumerated, according to their attributes. Object can be either native objects (i.e., created by
ECMAScript code) or host objects (i.e., created by the environment in which the ECMAScript code is
running).

Formally, this is modeled by the following rules.

Object signature

Object
Attribute = {V alue,Writable, Enumerable, Configurable,Get, Set}

propValue : Object × String → Attribute
propAttrs : Object × String → {Undefined,Null,Boolean,String,Number,Object }

isWritable : ECMAReference → Boolean
isWritable(sr) = propAttrs(sr, ”[[Writable]]”)

isEnumerable : ECMAReference → Boolean
isEnumerable(sr) = propAttrs(sr, ”[[Enumerable]]”)

isConfigurable : ECMAReference → Boolean
isConfigurable(sr) = propAttrs(sr, ”[[Configurable]]”)

If the value of an attribute is not explicitly specified by the ECMA standard for a named property, the
default value is given in Table 1.

3.5.1 Internal Properties

All objects have a few internal properties which, following [2](§8.6.2), we will denote with names enclosed
in double square brackets.

Internal methods correspond to behaviour expected of a object. All objects must implement proper-
ties named [[Get]], [[GetOwnProperty]], [[GetProperty]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and
[[DefaultValue]]; for internal objects (with the exception of arrays, see ??), the corresponding behaviour
is given by the following functions and rules. As stated in the ECMAScript standard, host objects may

7



Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined

[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

Table 1: Default Attribute Values defined in Table 7 of [2](§8.6.1)

implement these internal methods in any manner unless specified otherwise. However, if any specified ma-
nipulation of a host objects’ internal properties is not supported by an implementation, that manipulation
must throw a TypeError exception when attempted.

In the following ASM rules, we assume o is a native ECMScript Object, p is a String, desc is ∈
PropDescr, and throw is a Boolean flag.

The [[GetOwnProperty]] property provides the method for retrieving the value of a Property Descriptor
of the named (own) property of a given object:

Internal Methods - GetOwnPropertyNoStr

GetOwnPropertyNoStr(o, p) ≡
1. if propValue(o, p) = undefined then Return(undefined)
2. D(pos, sp(pos)) := new (PropDescr)
3. X(pos, sp(pos)) := propV alue(o, p)
4. Call(IsDataDescriptor, this, D(pos, sp(pos)))
5. If(ret(pos, sp(pos)))
5.a. propAttrs(D(pos, sp(pos)), “[[Value]]”) := propAttrs(X(pos, sp(pos)), “[[Value]]”)
5.b. propAttrs(D(pos, sp(pos)), “[[Writable]]”) := propAttrs(X(pos, sp(pos)), “[[Writable]]”)
6. Else
6.a. propAttrs(D(pos, sp(pos)), “[[Get]]”) := propAttrs(X(pos, sp(pos)), “[[Get]]”)
6.b. propAttrs(D(pos, sp(pos)), “[[Set]]”) := propAttrs(X(pos, sp(pos)), “[[Set]]”)
7. propAttrs(D(pos, sp(pos)), “[[Enumerable]]”) := propAttrs(X(pos, sp(pos)), “[[Enumerable]]”)
8. propAttrs(D(pos, sp(pos)), “[[Configurable]]”) := propAttrs(X(pos, sp(pos)), “[[Configurable]]”)
9. Return(D(pos, sp(pos)))

At row 2, new (PropDescr) creates a new empty property descriptor with no fields.
The [[GetProperty]] property provides the method for retrieving the fully populated Property Descrip-

tor of a named property of a given object:

Internal Methods - GetProperty

GetProperty(o, p) ≡
1. Call(propValue(o, “[[GetOwnProperty]]”), o, p)
2. prop(pos, sp(pos)) := ret(pos, sp(pos))
3. if prop(pos, sp(pos)) ̸= undefined then Return(prop(pos, sp(pos)))
4. proto(pos, sp(pos)) := propValue(o, “[[Property]]”)
5. if proto(pos, sp(pos)) = null then Return(undefined)
6. Call(propValue(proto(pos, sp(pos)), “[[GetProperty]]”), proto(pos, sp(pos)), p)
7. Return(ret(pos, sp(pos)))

The [[Get]] property provides the method for retrieving the value of a property of an object, possibly
looking up through the prototype chain if needed:

8



Internal Methods - Get

Get(o, p) ≡
1. Call(propValue(o, “[[GetProperty]]”), o, p)
2. desc(pos, sp(pos)) := ret(pos, sp(pos))
3. if desc(= undefined then Return(undefined)
4. Call(IsDataDescriptor, this, desc(pos, sp(pos)))
5. if ret(pos, sp(pos)) then Return(propAttrs(desc(pos, sp(pos)), “[[Value]]”))
6. getter(pos, sp(pos)) := propAttrs(desc(pos, sp(pos)), “[[Get]]”)
7. if getter(pos, sp(pos)) = undefined then Return(undefined)
8. Call(propValue(getter(pos, sp(pos)), “[[Call]]”), getter(pos, sp(pos)), o)
9. Return(ret(pos, sp(pos)))

Conversely, the [[Put]] property provides the method for setting the value of a property of an object;
it should be noted that whether a property is read-only or not is not determined directly by looking at its
attributes, but rather by executing the [[CanPut]] method (which by default will honour the ReadOnly
attribute, but could be implement differently in host objects). Differently from [[Get]], [[Put]] never
accesses properties of its prototype. The behaviour of [[Put]] is thus:

Internal Methods - Put

Put(o, p, v, throw) ≡
1. Call(propValue(o, “[[CanPut]]”), o, p)
2. If(¬ret(pos, sp(pos)))
2.a. If(throw)
2.a.i. Throw(TypeError)
2.b. Else
2.b.i. return
3. Call(propValue(o, “[[GetOwnProperty]]”), o, p)
4. ownDesc(pos, sp(pos)) := ret(pos, sp(pos))
5. Call(IsDataDescriptor, this, ownDesc(pos, sp(pos)))
6. If(ret(pos, sp(pos)))
6.a. valueDesc(pos, sp(pos)) := new (PropDescr)
6.b. propAttrs(valueDesc(pos, sp(pos)), “[[Value]]”) := v
6.c. Call(propValue(o, “[[DefineOwnProperty]]”), o, p, valueDesc(pos, sp(pos)), throw)
6.d. Return(ret(pos, sp(pos)))
7. Call(propValue(o, “[[GetProperty]]”), o, p)
8. desc(pos, sp(pos)) := ret(pos, sp(pos))
9. Call(IsAccessorDescriptor, this, desc(pos, sp(pos)))
10. If(ret(pos, sp(pos)))
10.a. setter(pos, sp(pos)) := propAttrs(desc(pos, sp(pos)), “[[Set]]”)
10.b. Call(propValue(setter(pos, sp(pos)), “[[Call]]”), setter(pos, sp(pos)), o, v)
11. Else
11.a. Call(CreatePropDescriptor, this, v, true, true, true)
11.b. newDesc(pos, sp(pos)) := ret(pos, sp(pos))
11.c. Call(propValue(o, “[[DefineOwnProperty]]”), o, p, newDesc(pos, sp(pos)), throw)
12. Return(ret(pos, sp(pos)))

where CreatePropDescriptor creates a new Property Descriptor as defined in Section 3.6. At row 3.a,
new (PropDescr) creates a new empty property descriptor with no fields.

As already mentioned, [[CanPut]] is used to determine if a given property can be assigned a new value
or not. Its definition for internal objects is the following:

9



Internal Methods - CanPut

CanPut(o, p) ≡
1. Call(propValue(o, “[[GetOwnProperty]]”), o, p)
2. desc(pos, sp(pos)) := ret(pos, sp(pos))
3. If(desc(pos, sp(pos)) ̸= undefined)
3.a. Call(IsAccessorDescriptor, this, desc(pos, sp(pos)))
3.b. If(ret(pos, sp(pos)))
3.b.i. if propAttrs(desc(pos, sp(pos)), “[[Set]]”) ̸= undefined) then Return(false)
3.c. Else
3.c.i. Return(propAttrs(desc(pos, sp(pos)), “[[Writable]]”))
4. proto(pos, sp(pos)) := propValue(o, “[[Prototype]]”)
5. if proto(pos, sp(pos)) = null then Return(propValue(o, “[[Extensible]]”))
6. Call(propValue(proto(pos, sp(pos)), “[[GetProperty]]”), proto(pos, sp(pos)), p)
7. inherited(pos, sp(pos)) := ret(pos, sp(pos))
8. if inherited(pos, sp(pos)) = undefined then Return(propValue(o, “[[Extensible]]”))
9. Call(IsAccessorDescriptor, this, inherited(pos, sp(pos)))
10. If(ret(pos, sp(pos)))
10.a. Return(propAttrs(inherited(pos, sp(pos)), “[[Set]]”) = undefined)
11. Else
11.a. If(¬propValue(o, “[[Extensible]]”))
11.a.i. Return(false)
11.b. Else
11.b.i. Return(propAttrs(inherited(pos, sp(pos)), “[[Writable]]”))

The property [[HasProperty]] is used to determine if an object holds a value for a given property.

Internal Methods - HasProperty

HasProperty(o, p) ≡
1. Call(propValue(o, “[[GetProperty]]”), o, p)
2. desc(pos, sp(pos)) := ret(pos, sp(pos))
3. Return(desc(pos, sp(pos)) ̸= undefined)

The property [[Delete]] holds the behaviour needed to remove a property from an object. Notice that
after deletion of a property, [[HasProperty]] can still return true, and [[Get]] can still return a value — for
example, because the prototype has the same property.

Internal Methods - Delete

Delete(o, p, throw) ≡
1. Call(propValue(o, “[[GetOwnProperty]]”), o, p)
2. desc(pos, sp(pos)) := ret(pos, sp(pos))
3. if desc(pos, sp(pos)) = undefined) then Return(true)
4. If(propAttrs(desc(pos, sp(pos)), “[[Configurable]]”))
4.a. propValue(o, p) := undef
4.b. Return(true)
5. Else
5.a. if throw then Throw(TypeError)
6. Return(false)

Finally, the [[DefaultValue]] property returns the default value for an object, which is always a primitive
type of the language.

3.6 The Property Descriptor and Property Identifier Specification Type

The Property Descriptor type is used to explain the manipulation and reification of named property at-
tributes. Values ∈ PropDescr are records composed of named fields where each field’s name is an attribute
name and its value is a corresponding attribute value as specified in the ECMA standard [2](§8.6.1). In
addition, any field may be present or absent.

The following ASM rules provide a formal description of AOs that operate upon Property Descriptor
values.

10



Property Descriptor - ECMAScript [2](§8.10)
IsAccessDescriptor(desc) ≡

1. if desc = undefined then Return(false)
2. Return(hasGet(desc) or hasSet(desc))

IsDataDescriptor(desc) ≡
1. if desc = undefined then Return(false)
2. Return(hasValue(desc) or hasWritable(desc))

IsGenericDescriptor(desc) ≡
1. if desc = undefined then Return(false)
2. Call(IsAccessorDescriptor, null, desc) in
3. isAccDesc(pos, sp(pos)) = ret(pos, sp(pos))
4. Call(IsDataDescriptor, null, desc)
5. isDataDesc(pos, sp(pos)) = ret(pos, sp(pos))
6. Return(¬(isAccDesc(pos, sp(pos)) or isDataDesc(pos, sp(pos))))

In order to make easier the following ASM rules definition we introduce a new ASM macro to create
a Property Descriptor that takes a Stringv, three Boolean w, e and c as input.

CreatePropDescriptor(v, w, e, c) ≡
1. desc(pos, sp(pos)) := new (PropDescr)
2. propAttrs(desc(pos, sp(pos)), “[[Value]]”) := v
3. propAttrs(desc(pos, sp(pos)), “[[Writable]]”) := w
4. propAttrs(desc(pos, sp(pos)), “[[Enumerable]]”) := e
5. propAttrs(desc(pos, sp(pos)), “[[Configurable]]”) := c
6. return desc(pos, sp(pos))

3.7 The Reference Specification Type

A Reference Specification type is used to explain the behaviour of such operation as delete, typeof, and
the assignment operators. Let ECMAReference be the domain of resolved name binding, its values are
triples of the form:

ECMAReference = (Base × String× Boolean)

where Base = {undefined, Object, Boolean, String, Number, EnvRec }. The ECMA standard defines
Boolean, String and Number as primitive types. Therefore, we define PrimitiveBase = {Boolean, String,
Number } as the set of primitive types.

We access elements and establish properties of those triples through the following derived functions:

• GetBase : ECMAReference → Base returns the base value component of a reference, i.e. GetBase(v) ≡
v ↓ 1.

• GetReferencedName : ECMAReference → String returns the referenced name component of a refer-
ence, i.e. GetReferenceName(v) ≡ v ↓ 2.

• IsStrictReference : ECMAReference → Boolean returns the strict reference component of a reference,
i.e. IsStrictReference(v) ≡ v ↓ 3.

• HasPrimitiveBase : ECMAReference → Boolean returns true if the base value is ∈ PrimitiveBase, i.e.

HasPrimitiveBase(v) =

{
true if GetBase(v) ∈ PrimitiveBase

false otherwise

• IsPropertyReference : ECMAReference → Boolean returns if either the base value is an Object or
HasPrimitiveBase is true, i.e.

IsPropertyReference(v) =

{
true if GetBase(v) = Object or HasPrimitiveBase(v)

false otherwise

11



• IsUnresolvableReference : ECMAReference → Boolean returns true if the base value is undefined and
false otherwise, i.e.

IsUnresolvableReference(v) =

{
true if GetBase(v) = undefined

false otherwise

There are several AOs that operate on references.

AO on references - ECMA standard [2](§8.7.1)
GetValue(V ) ≡

1. if Type(V ) ̸= ECMAReference then Return(V )
2. base(pos, sp(pos)) := GetBase(V )
3. if IsUnresolvableReference(V ) then Throw(ReferenceError)
4. If(IsPropertyReference(V ))
4.a. If(¬HasPrimitiveBase(V ))
4.a.i. get(pos, sp(pos)) := propAttrs(base(pos, sp(pos)), “[[Get]]”)
4.b. Else
4.b.i. get(pos, sp(pos)) := SpecGet
4.c. Call(GetReferencedName, null, false, V )
4.d. Call(get(pos, sp(pos)), base(pos, sp(pos)), ret(pos, sp(pos)))
4.e. Return(ret(pos, sp(pos)))
5. Else
5.a. Call(IsStrictReference, null, V )
5.b. strictRef(pos, sp(pos)) := ret(pos, sp(pos))
5.c. Call(GetReferencedName, null, V )
5.d. refName(pos, sp(pos)) := ret(pos, sp(pos))
5.e. Call(GetBindingV alue, base(pos, sp(pos)), refName(pos, sp(pos)), strictRef(pos, sp(pos)))
5.f. Return(ret(pos, sp(pos)))

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive
base value. It is called using base as its this value and with property p as its argument.

AO on references - ECMA standard [2](§8.7.1)
SpecGet(base, p) ≡

1. Call(ToObject, this, base)
2. o(pos, sp(pos)) := ret(pos, sp(pos))
3. Call(propValue(o(pos, sp(pos)), “[[GetProperty]]”), o(pos, sp(pos)), p)
4. desc(pos, sp(pos)) := ret(pos, sp(pos))
5. if desc(pos, sp(pos)) = undefined then Return(undefined)
6. Call(IsDataDescriptor, this, desc(pos, sp(pos))) then Return(undefined)
7. if ret(pos, sp(pos)) then Return(undefined)
8. getter(pos, sp(pos)) := propAttrs(desc(pos, sp(pos)), “[[Get]]”)
9. if getter(pos, sp(pos)) = undefined then Return(undefined)
10. Call(propValue(getter(pos, sp(pos)), “[[Call]]”), getter(pos, sp(pos)), base)
11. Return(ret(pos, sp(pos)))

The following [[Put]] internal method, called SpecPut, is used by PutValue when v is a property reference
with a primitive base value. It is called using base as its this value and with property p, value w, and a
Boolean flag throw as arguments.

12



AO on references - ECMA standard [2](§8.7.2)
SpecPut(base, p, w, throw) ≡

1. Call(ToObject, this, base)
2. o(pos, sp(pos)) := ret(pos, sp(pos))
3. Call(propValue(o(pos, sp(pos)), “[[CanPut]]”), o(pos, sp(pos)), p)
4. If(¬ret(pos, sp(pos)))
4.a if throw then Throw(TypeError)
4.b. return
5. Call(propValue(o(pos, sp(pos)), “[[GetOwnProperty]]”), o(pos, sp(pos)), p)
6. ownDesc(pos, sp(pos)) := ret(pos, sp(pos))
7. Call(IsDataDescriptor, this, ownDesc(pos, sp(pos)))
8. If(ret(pos, sp(pos)))
8.a. if throw then Throw(TypeError)
8.b. return
9. Call(propValue(o(pos, sp(pos)), “[[GetProperty]]”), o(pos, sp(pos)), p)
10. desc(pos, sp(pos)) := ret(pos, sp(pos))
11. Call(IsAccessorDescriptor, this, desc(pos, sp(pos)))
12. If(ret(pos, sp(pos)))
12.a. setter(pos, sp(pos)) := propAttrs(desc(pos, sp(pos)), “[[Set]]”)
12.b. Call(propValue(setter(pos, sp(pos)), “[[Call]]”), setter(pos, sp(pos)), base, w)
13. Else
13.a. if throw then Throw(TypeError)
14. return

3.8 Lexical Environment

A Lexical Environment (LexEnv) associates an identifier to a specific variable and function based upon the
lexical nesting structure of ECMAScript code. A Lexical Environment value is a pair ⟨env, refLexEnv⟩
where env ∈ EnvRec and refLexEnv ∈ LexEnv is a reference to an outer Lexical Environment. We access
elements and establish properties of such pairs through the following derived functions:

• envRecord : LexEnv → EnvRec returns the environment record related to a given lexical environment.

• outerLexEnv : LexEnv → LexEnv returns the outer Lexical Environment of a given lexical environ-
ment.

The following abstract operations are used in this specification to operate upon lexical environments.
The following GetIdentifierReference AO is called with a Lexical Environment lex, an identifier String
name, and a Boolean flag strict. The value of lex may be null.

AO on Lexical Environment - ECMA standard [2](§10.2.2)
GetIdentifierReference(lex, name, strict) ≡

1. if lex = null then Return(new (ECMAReference)(undefined, name, strict))
2. envRec(pos, sp(pos)) := envRecord(lex)
3. Call(HasBinding, envRec(pos, sp(pos)), name)
4. exists(pos, sp(pos)) := ret(pos, sp(pos))
5. If(exists(pos, sp(pos)))
5.a. Return(new (ECMAReference)(envRec(pos, sp(pos)), name, strict))
6. Else
6.a. outer(pos, sp(pos)) := outerLexEnv(lex)
6.b. Call(GetIdentifierReference, null, outer(pos, sp(pos)), name, strict)
6.c. Return(ret(pos, sp(pos)))

The following NewDeclarativeEnvironment AO is called with either a Lexical Environment or null as
argument E.

13



AO on Lexical Environment - ECMA standard [2](§10.2.2)
NewDeclarativeEnvironment(E) ≡

1. let env(pos, sp(pos)) := new (LexEnv) with
2. envRecord(env(pos, sp(pos))) := new (DeclER)
3. bindObj(envRecord(env(pos, sp(pos)))) := null
4. outerLexEnv(env(pos, sp(pos))) := E
5. Return(env(pos, sp(pos)))

where bindObj function is defined in Section 3.11.
The following NewObjectEnvironment AO is called with an Object O, a Lexical Environment E (or

null) and a Boolean B as arguments. The last parameter is introduced to make the formal definition of
the WithStatement (see Section ??) easier.

AO on Lexical Environment - ECMA standard [2](§10.2.2)
NewObjectEnvironment(O,E,B) ≡

1. let env(pos, sp(pos)) := new (LexEnv) with
2. envRecord(env(pos, sp(pos))) := new (ObjER)
3. outerLexEnv(env(pos, sp(pos))) := E
4. bindObj(envRecord(env(pos, sp(pos)))) := O
5. provideThis(envRecord(env(pos, sp(pos))) := B
6. Return(env(pos, sp(pos)))

where provideThis function is defined in Section 3.11.

3.8.1 The Global Environment

The global environment, called GlobalEnv, is a unique Lexical Environment which is created before any
ECMAScript code is executed. The global environment’s Environment Record is an object environment
record whose binding object is the global object [2](§15.1) and such that outerLexEnv(GlobalEnv) is null.

3.9 Environment Record

An Environment Record records the identifier bindings ∈ Binding that are created within the scope of its
associated Lexical Environment. For specification purposes Environment Record values can be thought of
as existing in a simple object-oriented hierarchy where Environment Record is an abstract class with two
concrete sub-classes, declarative and object environment records. An identifier binding has the following
attributes and functions on them:

Identifier Binding attributes

Attributes = {Mutable,Deletable, Initialize}
bindAttrs : Binding → Attributes

isMutable : Binding → Boolean
isMutable(b) = (Mutable ∈ bindAttrs(b))
isDeletable : Binding → Boolean
isDeletable(b) = (Deletable ∈ bindAttrs(b))
isInitialized : Binding → Boolean
isInitialized(b) = (Initialize ∈ bindAttrs(b))

3.10 Declarative Environment Record

Each declarative environment record is associated with an ECMAScript program scope containing variable
and/or function declarations. A declarative environment record binds the set of identifiers defined by the
declarations contained within its scope. Therefore, we define the following function:

bindValue : EnvRec × String → Binding

that returns a binding for the name that is given as input, if present, undef otherwise.

14



In addition to the mutable bindings supported by all Environment Records, declarative environment
records also provide immutable bindings. An immutable binding is one where the association between an
identifier and a value may not be modified once it has been established.
The following ASM rules provide a formal description of AOs for this type of record.

The concrete environment record method HasBinding for declarative environment records simply
determines if the argument identifier is one of the identifiers bound by the record.

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
HasBinding(lex, n) ≡

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Return(bindValue(envRec(pos, sp(pos)), n) ̸= undef)

The concrete Environment Record method CreateMutableBinding for declarative environment records
creates a new mutable binding for the name n that is initialized to the value undefined. A binding must
not already exist in this Environment Record for n. If Boolean argument d is provided and has the value
true the new binding is marked as being subject to deletion. This is formalized as follows:

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
CreateMutableBinding(lex, n, d) ≡

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Call(HasBinding, this, lex, n)
3. if ret(pos, sp(pos)) then Throw(ReferenceError)
4. bindValue(envRec(pos, sp(pos)), n) := undefined
5. if d then Call(DeleteBinding, this, bindValue(envRec(pos, sp(pos)), n))

The concrete Environment Record method SetMutableBinding for declarative environment records
attempts to change the bound value of the current binding of the identifier whose name is the value of
the argument n to the value of argument v. A binding for n must already exist. If the binding is an
immutable binding, a TypeError is always thrown. The s argument is ignored because strict mode does
not change the meaning of setting bindings in declarative environment records.

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
SetMutableBinding(lex, n, v, s)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Call(HasBinding, this, lex, n)
3. if ret(pos, sp(pos)) then Throw(ReferenceError)
4. If(isMutable(bindValue(envRec(pos, sp(pos)), n)))
4.a. bindValue(envRec(pos, sp(pos)), n)) := v
5. Else
5.a. Throw(TypeError)

The concrete Environment Record method GetBindingV alue for declarative environment records sim-
ply returns the value of its bound identifier whose name is the value of the argument N . The binding must
already exist. If S is true and the binding is an uninitialized immutable binding throw a ReferenceError
exception.

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
GetBindingValue(lex, n, s)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Call(HasBinding, this, lex, n)
3. if ret(pos, sp(pos)) then Throw(ReferenceError)
4. If(bindValue(envRec(pos, sp(pos)), n) = undefined)
4.a. If(¬s)
4.a.i. Return(undefined)
4.b. Else
4.b.i. Throw(ReferenceError)
5. Else
5.a. Return(bindValue(envRec(pos, sp(pos)), n))

15



The concrete Environment Record method DeleteBinding for declarative environment records can
only delete bindings that have been explicitly designated as being subject to deletion.

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
DeleteBinding(lex, n)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Call(HasBinding, this, lex, n)
3. if ¬ret(pos, sp(pos)) then Return(true)
4. Call(isDeletable, bindValue(envRec(pos, sp(pos)), n))
5. if ¬ret(pos, sp(pos)) then Return(false)
6. bindValue(envRec(pos, sp(pos)), n)) := undef
7. Return(true)

Declarative Environment Records always return undefined as their ImplicitThisV alue.

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
ImplicitThisValue()

1. Return(undefined)

The concrete Environment Record method CreateImmutableBinding for declarative environment
records creates a new immutable binding for the name N that is initialized to the value undefined. A
binding must not already exist in this environment record for N .

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
CreateImmutableBinding(n)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Call(HasBinding, this, lex, n)
3. if ret(pos, sp(pos)) then Throw(ReferenceError)
4. bindValue(envRec(pos, sp(pos)), n)) := new (Binding)
5. isMutable(bindValue(envRec(pos, sp(pos)), n)) := false
6. isInitialized(bindValue(envRec(pos, sp(pos)), n)) := false

The concrete Environment Record method InitializeImmutableBinding for declarative environment
records is used to set the bound value of the current binding of the identifier whose name is the value
of the argument N to the value of argument V . An uninitialized immutable binding for N must already
exist.

Declarative Environment Record - ECMAScript [2](§10.2.1.1)
InitializeImmutableBinding(n, v)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. Call(HasBinding, this, lex, n)
3. if ret(pos, sp(pos)) then Throw(ReferenceError)
4. bindValue(envRec(pos, sp(pos)), n)) := v
5. isMutable(bindValue(envRec(pos, sp(pos)), n)) := false
6. isInitialized(bindValue(envRec(pos, sp(pos)), n)) := true

3.11 Object Environment Record

An Object Environment record binds the set of identifier names that directly correspond to the property
names of its binding object. Each Object Environment record is associated with an object called its
binding object. We define the following

bindObj : EnvRec → Object

as the function that returns the object binds to a given environment record. In order to make the formal
definition of the WithStatement (see Section ??) easier we define the following

provideThis : EnvRec → Boolean

as the function that returns whether for a given Environment Record the this reference is provided or not.

16



The following ASM rules provide a formal description of AOs for this record.
The concrete Environment Record method HasBinding for object environment records determines if

its associated binding object has a property whose name is the value of the argument n.

Object Environment Record - ECMAScript [2](§10.2.1.2)
HasBinding(lex, n) ≡

1. envRec(pos, sp(pos)) := envRecord(lex)
2. bindings(pos, sp(pos)) := bindObj(envRec(pos, sp(pos)))
3. Call(propValue(bindings(pos, sp(pos)), “[[HasProperty]]”), bindings(pos, sp(pos)), n)
4. Return(ret(pos, sp(pos)))

The concrete Environment Record method CreateMutableBinding for object environment records creates
in an environment record’s associated binding object a property whose name is the String value and
initializes it to the valueundefined. A property named n must not already exist in the binding object. If
Boolean argument d is provided and has the value true the new property’s [[Configurable]] attribute is set
to true, otherwise it is set to false.

Object Environment Record - ECMAScript [2](§10.2.1.2)
CreateMutableBinding(lex, n, d) ≡

1. envRec(pos, sp(pos)) := envRecord(lex)
2. bindings(pos, sp(pos)) := bindObj(envRec(pos, sp(pos)))
3. Call(propValue(bindings(pos, sp(pos)), “[[HasProperty]]”), bindings(pos, sp(pos)), n)
4. if ret(pos, sp(pos)) then Throw(...)
5. configV alue(pos, sp(pos)) := d
6. Call(CreatePropDescriptor, undefined, true, true, configV alue(pos, sp(pos)))
7. newDesc(pos, sp(pos)) := ret(pos, sp(pos))
8. Call(propValue(bindings(pos, sp(pos)), “[[DefineOwnProperty]]”), bindings(pos, sp(pos)), n,

newDesc(pos, sp(pos)), false)

The concrete Environment Record method SetMutableBinding for object environment records attempts
to set the value of the environment record’s associated binding object’s property whose name is the value
of the argument n to the value of argument v. A property named n should already exist but if it does not
or is not currently writable, error handling is determined by the value of the Boolean argument s.

Object Environment Record - ECMAScript [2](§10.2.1.2)
SetMutableBinding(lex, n, v, s)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. bindings(pos, sp(pos)) := bindObj(envRec(pos, sp(pos)))
3. Call(propValue(bindings(pos, sp(pos)), “[[HasProperty]]”), bindings(pos, sp(pos)), n, v, s)

The concrete Environment Record method GetBindingValue for object environment records returns the
value of its associated binding object’s property whose name is the String value of the argument identifier
n. The property should already exist but if it does not the result depends upon the value of the s argument

Object Environment Record - ECMAScript [2](§10.2.1.2)
GetBindingValue(lex, n, s)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. bindings(pos, sp(pos)) := bindObj(envRec(pos, sp(pos)))
3. Call(propValue(bindings(pos, sp(pos)), “[[HasProperty]]”), bindings(pos, sp(pos)), n)
4. value(pos, sp(pos)) := ret(pos, sp(pos))
5. If(¬value)
5.a. If(¬s)
5.a.i Return(undefined)
5.b. Else
5.b.i. Throw(ReferenceError)
6. Call(propValue(bindings(pos, sp(pos)), “[[Get]]”), bindings(pos, sp(pos)), n)
7. Return(ret(pos, sp(pos)))

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have

17



the value true.

Object Environment Record - ECMAScript [2](§10.2.1.2)
DeleteBinding(lex, n)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. bindings(pos, sp(pos)) := bindObj(envRec(pos, sp(pos)))
3. Call(propValue(bindings(pos, sp(pos)), “[[Delete]]”), bindings(pos, sp(pos)), n)
4. Return(ret(pos, sp(pos)))

Object Environment Records return undefined as their ImplicitThisValue unless their provideThis flag is
true.

Object Environment Record - ECMAScript [2](§10.2.1.2)
ImplicitThisValue(lex)

1. envRec(pos, sp(pos)) := envRecord(lex)
2. If(provideThis(envRecord(lex)))
2.a. Return(bindObj(envRecord(lex)))
3. Else
3.a. Return(undefined)

3.12 Executable Code

There are three types of ECMAScript executable code that differ based on the part of a ECMAScript
code they belong to.

• Global, it is the source text of an ECMAScript Program. It does not include any source text that is
parsed as part of a FunctionBody.

• Eval, it is the source text supplied to the built-in eval function.

• Function, it is the source text of a FunctionBody. The function code of a particular FunctionBody
does not include any source text that is parsed as part of a nested FunctionBody. Function code
also denotes the source text supplied when using the built-in Function object as a constructor.

An ECMAScript executable code may be processed using either unrestricted or strict mode syntax
and semantics. When processed using strict mode the three types of ECMAScript code are referred to as
strict global code, strict eval code, and strict function code.
This is formalized by the following oracle functions:

isFunCode : code → Boolean

that determines whether a given ECMAScript code is a function code or not.
Let FuncDecl be the domain of function declarations in a function code

getFunDeclaration : code → FuncDecl

returns a list of function declarations in a given ECMAScript code.

Let FunIdentifier be the domain of identifiers in a function declaration

getFuncIdentifier : FuncDecl → FunIdentifier

returns an identifier in a given function declaration.

getFuncDeclInstance : FuncDecl → Object

that returns an instance of a given function declaration.

isEvalCode : code → Boolean

that determines whether a given ECMAScript code is a eval code or not.

18



isStrictCode : code → Boolean

that determines whether a given ECMAScript code is a strict mode code or not.

Let VarDecl be the domain of variable declarations in a function code

getVarDeclaration : code → VarDecl

returns a list of variable declarations in a given ECMAScript code.

Let VarIdentifier be the domain of identifiers in a variable declaration

getVarIdentifier : VarDecl → VarIdentifier

returns an identifier in a given variable declaration.

3.13 Execution context

When control is transferred to an ECMAScript executable program it enters an execution context. Multiple
execution contexts may be active while the program is running, and they are organized in a logical stack
whose top element is the running execution context.

Execution contexts are created either when control is transferred to ECMASCript executable code or
when a function or a constructor get called. Their purpose is to store the local state of the invocation
(i.e. arguments and local variables), and all the information needed to resolve scopes and access to the
program state.

An execution context contains:

• A LexicalEnvironment ∈ LexEnv that identifies the Lexical Environment used to resolve identifier
references made by code within this execution context. We define the following function

lexEnvEC : ExeCtx → LexEnv

to access this execution context’s component.

• A V ariableEnvironment ∈ LexEnv that identifies the Lexical Environment whose environment
record holds bindings created by VariableStatements and FunctionDeclarations within this execution
context. We define the following function

varEnvEC : ExeCtx → LexEnv

to access this execution context’s component.

• A reference, called ThisBinding, to an object called this. We define the following function

thisBindingEC : ExeCtx → ECMAReference

to access this execution context’s component.

The value of the V ariableEnvironment component never changes while the value of the LexicalEnvironment
component may change during execution of code within an execution context.

3.13.1 Establishing an Execution Context

Evaluation of global code or code using the eval function establishes and enters a new execution context.
Every invocation of an ECMAScript code function also establishes and enters a new execution context,
even if a function is calling itself recursively. Every return exits an execution context. A thrown exception
may also exit one or more execution contexts.

When control enters an execution context, the execution context’s ThisBinding is set, its VariableEn-
vironment and initial LexicalEnvironment are defined, and declaration binding instantiation is performed.

19



The following ASM rules provide a formal description of AOs for establishing an execution context having
a code C as input.

Establishing an Execution Context - ECMAScript [2](§10.4)
InitGlobalExeCtx(C) ≡

1. varEnvEC(codeExCtx(C)) := GlobalEnv
2. lexEnvEC(codeExCtx(C)) := GlobalEnv
3. thisBindingEC(codeExCtx(C)) := bindObj(GlobalEnv)

Establishing an Execution Context - ECMAScript [2](§10.4)
EnteringGlobalCode(C) ≡

1. Call(InitGlobalExeCtx, null, C)
2. Call(BindInst, this, bindObj(GlobalEnv), C, null)

The following steps are performed when control enters the execution context for function code contained
in function object F , a caller provided thisArg and an argumentsList:

Establishing an Execution Context - ECMAScript [2](§10.4)
EnteringFuncCode(F, code, thisArg, argumentsList) ≡

1. If(codeMode(code) = “strict”)
1.a. thisBindingEC(codeExCtx(code)) := thisArg
2. Else
2.a. If(thisArg = null or thisArg = undefined)
2.a.i. thisBindingEC(codeExCtx(code)) := bindObj(GlobalEnv)
2.b. Else
2.b.i. If(Type(thisArg) ̸= Object)
2.b.i.1. Call(ToObject, this, thisArg)
2.b.i.2. thisBindingEC(codeExCtx(code)) := ret(pos, sp(pos))
2.b.ii. Else
2.b.ii.1. thisBindingEC(codeExCtx(code)) := thisArg
3. Call(NewDeclarativeEnvironment, F, propValue(F, “[[Scope]]”))
4. localEnv(pos, sp(pos)) := ret(pos, sp(pos))
5. lexEnvEC(codeExCtx(code)) := localEnv(pos, sp(pos))
6. varEnvEC(codeExCtx(code)) := localEnv(pos, sp(pos))
7. cod := propValue(F, “[[Code]]”)
8. Call(BindInst, F, cod, argumentsList)

3.14 Declarations

We define the following functions:

• varDeclId : VariableDeclaration → String that returns the identifier of a given variable declaration.

• funcDeclId : FunctionDeclaration → String that returns the identifier of a given function declara-
tion.

3.14.1 Binding Instantiation

Which Environment Record is used to bind a declaration and its kind depends upon the type of EC-
MAScript code executed by the execution context. On entering an execution context, bindings are created
in the VariableEnvironment as follows using the caller provided code and, if it is function code, argument
List args.

20



Execution Contexts - Declaration Binding

BindInst(obj, code, args) ≡
1. env(pos, sp(pos)) := varEnvEC(codeExCtx(code))
2. configurableBindings(pos, sp(pos)) := (codeType(code) = “eval”)
3. strict(pos, sp(pos)) := (codeMode(code) = “strict”)
4. Call(isFunCode, code)
5. If(ret(pos, sp(pos)) = “function”)
5.a. Call(FunCodeBind, obj, args)
5.b. Call(getFunDeclaration, code)
5.c. For(ret(pos, sp(pos)), f(pos, sp(pos)))
5.c.i. Call(getFuncIdentifier, f(pos, sp(pos)))
5.c.ii. fn(pos, sp(pos)) := ret(pos, sp(pos))
5.c.iii. Call(getFuncDeclInstance, f(pos, sp(pos)))
5.c.iv. fo(pos, sp(pos)) := ret(pos, sp(pos))
5.c.v. Call(HasBinding, fn(pos, sp(pos)))
5.c.vi. funcAlreadyDeclared(pos, sp(pos)) := ret(pos, sp(pos))
5.c.vii. if ¬funcAlreadyDeclared(pos, sp(pos)) then Call(CreateMutableBinding, fn(pos, sp(pos)),

configurableBindings(pos, sp(pos)))
5.c.viii. Call(SetMutableBinding, env(pos, sp(pos)), fn(pos, sp(pos)), fo(pos, sp(pos)), strict(pos, sp(pos)))
5.d. EndFor
6. Call(HasBinding, env(pos, sp(pos)), “arguments”)
7. argumentsAlreadyDeclared(pos, sp(pos)) := ret(pos, sp(pos))
8. Call(isFunCode, code)
9. If(ret(pos, sp(pos)) == “function” and ¬argumentsAlreadyDeclared(pos, sp(pos)))
9.a. Call(CreateArgumentsObject, this, func(pos, sp(pos)), names(pos, sp(pos)), args(pos, sp(pos)),

env(pos, sp(pos)), strict(pos, sp(pos)))
9.b. argsObj(pos, sp(pos)) := ret(pos, sp(pos))
9.c. If(strict(pos, sp(pos)))
9.c.i. Call(CreateImmutableBinding, env(pos, sp(pos)), “arguments”)
9.c.ii. Call(InitializeImmutableBinding, env(pos, sp(pos)), “arguments”, argsObj(pos, sp(pos)))
9.d. Else
9.d.i. Call(CreateMutableBinding, env(pos, sp(pos)), “arguments”)
9.d.ii. Call(SetMutableBinding, env(pos, sp(pos)), “arguments”, argsObj(pos, sp(pos)), false)
10. Call(V arCodeBin, code)
11. Return

Execution Contexts - Declaration Binding

FunCodeBind(obj, args) ≡
1. func(pos, sp(pos)) := obj
2. Call(propValue(func(pos, sp(pos)), “[[FormalParameters]]”)
3. names(pos, sp(pos)) := ret(pos, sp(pos))) 4. v(pos, sp(pos)) := Undefined
5. For(names(pos, sp(pos)), argName(pos, sp(pos)))
5.a. v(pos, sp(pos)) := args(n)
5.b. Call(HasBinding, env(pos, sp(pos)), argName(pos, sp(pos)))
5.c. argAlreadyDeclared(pos, sp(pos)) := ret(pos, sp(pos))
5.d. if ¬argAlreadyDeclared(pos, sp(pos)) then Call(CreateMutableBinding, env(pos, sp(pos)),

argName(pos, sp(pos)))
5.e. Call(SetMutableBinding, env(pos, sp(pos)), argName(pos, sp(pos)), strict(pos, sp(pos)))
6. EndFor

where args is a oracle function that returns a list of argument if a given code is a function code.

21



Execution Contexts - Declaration Binding

VarCodeBind(code) ≡
1. Call(getV arDeclaration, code)
2. For(ret(pos, sp(pos)), d)
2.a. Call(getV arIdentifier, d)
2.a. dn(pos, sp(pos)) := ret(pos, sp(pos))
2.b. Call(HasBinding, env(pos, sp(pos)), dn(pos, sp(pos)))
2.c. varAlreadyDeclared(pos, sp(pos)) := ret(pos, sp(pos))
2.d. If(¬varAlreadyDeclared(pos, sp(pos)))
2.d.i Call(CreateMutableBinding, env(pos, sp(pos)), dn(pos, sp(pos)), configurableBindings(pos, sp(pos)))
2.d.ii. Call(SetMutableBinding, env(pos, sp(pos)), dn(pos, sp(pos)), undefined, strict(pos, sp(pos)))
3. EndFor

4 Conclusions

Web applications (i.e., applications whose interface is presented to the user via a web browser, whose state
is split between a server and a client, and where the only interaction between server and client is through
the HTTP protocol) are become more and more widespread, and integrated in most users’ everyday work
habits. The glue linking the desperate technologies involved, from dynamic HTML to XML RPC, is the
Javascript language. Yet, no formal definition of its semantics exists, which in turn makes it impossible to
formally prove correctness, liveness and security properties of Web applications. As a first step towards
improving this situation, we provide a formal semantics for ECMAScript (standard ECMA-262), by means
of an Abstract State Machines (ASMs) specification. We follow the path established by other specification
efforts for similar languages (e.g. Java and C#), but in addition we establish a formal trace between parts
of our specification and the ECMA standard, thus facilitating the proof of correctness of the specifica-
tion. More specifically, we define the dynamic semantics of ECMAScript by providing (in terms of ASMs)
an interpreter which executes ECMAScript programs. We use an algebra to represent the state of the
ECMAScript program, the state of the ECMAScript interpreter, and the state of the host environment
(typically, the browser). We assume the necessary syntactic information (namely, the annotated Abstract
Syntax Tree (AST) of the given program) to be available. Using ASM we detail a visit of the AST, whose
effect is to simulate the execution of the program. In the ECMA standard the behavior of ECMAScript
constructs is operationally described using so-called abstract operations (AO), coming as numbered lists
of steps. Therefore our interpreter is composed out of two submachines: ECMA-Script and ECMA-AO
interpreters. The former invokes the ECMA-AO one to evaluate nodes, simulating AOs used in ECMA
standard to describe the production’s semantics. We organize the ECMA-AO interpreter rules in such a
way that each rule application corresponds to an AO instruction in the ECMA standard. This helps to
check the correctness of the ASM model wrt the ECMA standard as well as the correctness of implemen-
tations wrt ASM model. Therefore, the state of our interpreter can be mapped via abstraction/refinement
functions onto the concrete state of any comformant implementation.

References

[1] E. Börger and R. Stärk. Abstract State Machines A Method for High-Level System Design and
Analysis. Springer-Verlag, 2003.

[2] ECMA. Standard ECMA-262, ECMAScript Language Definition. ECMA, fifth edition, 2009.

[3] R. Farahbod, V. Gervasi, and U. Glaesser. CoreASM: An extensible ASM execution engine. Funda-
menta Informaticae, 77:71–103, Mar./Apr. 2007.

22


