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Abstract


Real-time, indoor user localization, although limited to the current
user position, is of great practical importance in many Ambient Assisted
Living (AAL) applications. Moreover an accurate prediction of the user
next position (even with a short advice) may open a number of new AAL
applications that could timely provide the right services in the right place
even before the user request them. However, the problem of forecasting
the user position is complicated due to the intrinsic difficulty of localiza-
tion in indoor environments, and to the fact that different paths of the user
may intersect at a given point, but they may end in different places. We
tackle with this problem by modeling the localization information stream
obtained from a Wireless Sensor Network (WSN) using Recurrent Neural
Networks implemented as efficient Echo State Networks (ESNs), within
the Reservoir Computing paradigm. In particular, we have set up an ex-
perimental test-bed in which the WSN produces localization information
of a user that moves along a number of different paths, and in which the
ESN collects localization information to predict a future position of the
user at some given mark points. Our results show that, with an appropri-
ate configuration of the ESN, the system reaches a good accuracy of the
prediction also with a small WSN, and that the accuracy scales well with
the WSN size. Furthermore, the accuracy is also reasonably robust to
variations in the deployment of the sensors. For these reason our solution
can be configured to meet the desired trade-off between cost and accuracy.
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1 Introduction


Wireless Sensor Networks (WSN) [7] are a recent development for unattended
monitoring, which resulted particularly useful in many different application
fields. In a typical deployment, a WSN is composed by a number of wire-
less sensors: small micro-systems that embed a radio transceiver and a set of
transducers suitable to monitor different environmental parameters. In many
applications sensors are battery powered. One of the most promising appli-
cation is Ambient Assisted Living (AAL) [12], an innovation funding program
issued by the European Commission. AAL seeks for solutions integrating differ-
ent technologies suitable for the improvement of the quality of life of elders and
disabled in the environments where these people live (primarily in their houses)
and work. In AAL spaces WSN play an important role as they are generally the
primary source of context information about the user. For example WSN can
monitor physiological parameter of the user, the environmental conditions and
his/her movements and activities[34]. In most cases, raw data acquired by the
WSN is given in input to software components that refine this information and
that forecast the behavior or needs of the user in order to supply the user with
appropriate services. In this paper we consider a scenario related to forecasting
of user movements. In this scenario the user is localized in real time by a WSN
(composed by low cost, low power sensors such as those of mote class [1]), and
localization information is used to predict (with a short advance) whether the
user will enter in a room or not, in order to timely supply the user with some
services available in the room where the user is entering in. To this purpose
the user wears a sensor, whose position is computed by a number of static sen-
sors (also called anchors) deployed in the house. The sensor on the user and
the environmental sensors exchange packets in order to compute the Received
Signal Strength (RSS) for each packet, and use this information to evaluate the
position of the user in real time. Although simple, this approach faces two main
problems. The first is that indoor user localization is not sufficient by itself,
since the current user position is not sufficient to predict the future behavior
of the user. The second is that RSS measurements in indoor environments are
rather noisy and this fact makes localization information imprecise. This latter
problem is due both to multipath effects of indoor environments, and to the
fact that the body of the user affects the radio signal propagation with irregular
patterns, depending on the orientation of the user, orientation of the antenna
etc. Overall, the considered scenario requires an approach which is adaptive,
efficient and robust to the input noise. For this reasons, we take into consider-
ation Machine Learning models in general, and neural networks in particular.
More specifically, we exploit Recurrent Neural Networks (RNNs) [22], a class
of dynamical neural network models that can work directly on the streams of
RSS produced by the environmental sensors rather than on a localization infor-
mation. The RNN takes into account also past measurements that reflect the
history of previous movements, in order to overcome the fact that the current
user position does not provide enough information. In particular, we consider
the Reservoir Computing (RC) [37, 26] approach for modeling RNNs. Featured
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by extreme efficiency, RC models represent ideal candidates for approaching the
problem in the considered scenario. Efficiency of the learning model used is in
fact a critical factor, in particular in view of its deployment within the sensors
themselves. In this work we present the results of a set of experiments in a real
indoor environment aimed at producing a sufficiently large dataset to be used
for the learning and evaluation of the RC model, and we evaluate our solution
in terms of predictive classification accuracy and cost. In particular, we eval-
uate the cost in terms of the number of anchors that are necessary to achieve
the desired accuracy and in terms of independence from the actual deployment
of the anchors (that we evaluate by comparing the accuracy of the predictions
depending on the position of the anchors) which has a direct impact on deploy-
ment costs. In our experiments we show that our approach provides optimal
accuracy with 4 anchors, but it can already provide a good accuracy even with
a single anchor. Furthermore our approach scales with the number of anchors,
hence it can be easily tuned in order to attain the desired trade-off between
accuracy and cost of the solution.


2 Related work


In the past years, many developed indoor positioning systems extract the location-
dependent parameters such as time of arrival, time difference of arrival and angle
of arrival [35] from the received radio signal transmitted by the mobile station.
Such a measurement needs to be estimated accurately and it requires line of
sight (LOS) between the transmitter and the receiver. Furthermore, it requires
specialized and expensive hardware integrated into the existing equipments.
Due to the high implementation cost, the indoor positioning system based on
the use of RSS thus gets more and more interests. Since the deployments of
WLAN infrastructures are widespread and the RSS sensor function is available
in every 802.11 interface, the RSS-based positioning system is obviously a more
cost-effective solution.


The model-based positioning approach is one of the most widely used tech-
nology seen in the literature since it expresses the radio frequency signal atten-
uation using a path loss model [9, 8]. From an observed RSS, these methods tri-
angulate the person based on a distance calculation from multiple access points.
However, the relationship between position and RSS relationship is highly com-
plex due to multipath, metal reflection, and interference noise. Thus, the RSS
propagation may not be adequately captured by a fixed invariant model. In con-
trast to model-based positioning, fingerprinting based RSS approaches are used
[6, 39, 23, 31]. Fingerprints are generated during an offline training phase, where
RSS data is collected at a set of marked training locations. The most challenging
aspect of the fingerprinting based method is to formulate a distance calculation
that can measure similarity between the observed RSS and the known RSS
fingerprints. Various Machine Learning techniques can be applied to the lo-
cation estimation problem [21]. Probabilistic method [28], k-nearest-neighbor
[6], neural networks [29], and Support Vector Machines [23] are exploited in
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popular positioning techniques based on the location fingerprinting. Euclidean
distance based calculation has been used in [20] to measure the minimum dis-
tance between the observed RSS and the mean of the fingerprints collected at
each training point. RADAR [6] uses a k-nearest-neighbors method in order
to find the closest match between fingerprints and RSS observation. Recently,
research efforts have concentrated on developing a better distance measure that
can take into account the variability of the RSS training vectors. These methods
estimate probability density for the training RSS and then compute likelihood/a
posteriori estimates during the tracking phase using the observed RSS and the
estimated densities [39]. User localization is then performed using a maximum-
likelihood (ML) or maximum a posteriori (MAP) estimate of position. All these
location determination methods do not solve the problem to forecast the user
behaviors leveraging on empirical RSS measures. The Machine Learning ap-
proach can take advantage of training RSS data to capture characteristics of
interest of their unknown underlying probability distribution. In this paper we
consider the Echo State Network (ESN) [18, 17] model within the RC paradigm
for modeling of RNNs. ESNs are dynamical neural networks used for sequence
processing tasks. One of the main characteristics of ESNs is the efficiency of
the approach. Learning is indeed restricted to a simple linear output tool, while
the dynamical part of the network (the reservoir) is left untrained after ini-
tialization. The contractive reservoir dynamics provides a fading memory of
past inputs, allowing the network to intrinsically discriminate among different
input histories [17] in a suffix-based fashion [36, 13, 14], even in the absence
of training. Despite the extreme efficiency of the approach, ESNs have been
successfully applied to many common tasks in the area of sequence processing,
often outperforming other state-of-the-art learning models for sequence domains
(e.g. [18, 17]). In particular, in the last years ESN models have shown good
potentialities in a range of tasks related to autonomous systems modeling. Ex-
amples of such tasks include event detection and localization in autonomous
robot navigation [5, 4], multiple robot behavior modeling and switching [3, 38],
robot behavior acquisition [16] and robot control [30]. However, such applica-
tions are mostly focused on modeling robot behaviors and often use artificial
data obtained by simulators (e.g. [5, 4, 3, 38]). In this paper we apply the
ESN approach to a real-world scenario for user indoor movements forecasting,
characterized by real and noisy RSS input data, paving the way for potential
applications in the field of AAL.


3 Experimental setup


We carried out a measurement campaign on the first floor of the the ISTI insti-
tute of CNR in the Pisa Research Area, in Italy. The environment is composed
of 2 rooms (namely Room 1 and Room 2), which are typical office environments
with overall dimensions of approximately 12 m by 5 m divided by an hallway.
The rooms contain typical office furniture: desks, chairs, cabinets, monitors
that are asymmetrically arranged. This is a harsh environment for wireless
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communications because of multi-path reflections due to walls and interference
due to electronic devices. For the experiments we used a sensor network of 5
IRIS nodes [1] (4 sensors, in the following anchors, and one sensor placed on the
user, hereafter mobile), embedding a Chipcon AT86RF230 radio subsystem that
implements the IEEE 802.15.4 standard. The experiments consisted in a set of


Mobile position Anchor position


Anchor position Path 


Room 1 Room 2
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M M
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Figure 1: Test-bed environment where the measurements have been done. The
positions of the anchors, and the 6 user movements are shown.


measures between anchors and mobile. Figure 1 shows the anchors deployed
in the environment as well as the movements of the user. The height of the
anchors was 1.5 m from the ground and the mobile was worn on the chest. The
measurements were carried out in empty rooms to facilitate a constant speed
of the user of about 1 m/s. Each measure collected about 200 RSS samples
(integer values ranging from 0 to 100), where every sample was obtained by
sending a beacon packet from the anchors to the mobile at regular intervals,
10 times per second, using the full transmission power of the IRIS. During the
measures the user performs two types of movements: straight and curved, for
a total of 6 paths (2 of which straight) that are shown in Fig. 1 with arrows
numbered from 1 to 6. The straight movement runs from Room 1 to Room 2 or
viceversa (paths 1 and 5 in Fig. 1) for 50 times in total. The curved movement
is executed 25 times in Room 1 and 25 times in Room 2 (paths 2, 3, 4 and 6 in
Fig. 1). Each path produces a trace of RSS measurements that begins from the
corresponding arrow and that is marked when the user reaches a point (denoted
with M in Fig. 1) located at 60 cm from the door. Overall, the experiment
produced about 5000 RSS samples from each of the 4 anchors. The marker M
is the same for all the movements, therefore the different path can not be only
distinguished from the RSS values collected in M. The scenario and the collected
RSS measures described so far can naturally lead to the definition of a binary
classification task on time series for movements forecasting. The RSS samples
from the four anchors are organized in 100 input sequences, corresponding to
the conducted measures until the marker (M) is reached. The RSS traces can
be freely downloaded in [2]. Each single trace is stored in a separate file that
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contains one row for each RSS measurement. Each row has 4 columns corre-
sponding to: anchor ID, sequence number of the beacon packet, RSS value, and
the boolean marker (1 if that measurement is done in point M, 0 otherwise).
The resulting input sequences have length varying between 16 and 101. A tar-
get classification label is then associated to each input sequence, namely +1
for entering movements (paths 1 and 5 in Fig. 1) and −1 for non-entering ones
(paths 2, 3, 4 and 6 in Fig. 1). The constructed dataset is therefore balanced,
i.e. the number of sequences with positive classification is equal to the number
of sequences with negative classification.


3.1 Slow Fading Analysis


The wireless channel is affected by multipath fading that causes fluctuations
in the receiver signals amplitude and phase. The sum of the signals can be
constructive or destructive. This phenomenon, together with the shadowing ef-
fect, may strongly limit the performance of wireless communication systems and
makes the RSS values unstable. Most of the recent research works in wireless
sensor networks, modeled wireless channel with Rayleigh fading channel model
[11, 25], which is suitable channel model for wireless communications in urban
areas where dense and large buildings act as rich scatterers. In indoor environ-
ments Nakagami or Ricean fading channel model works well, because it contains
both non-LOS and LOS components. But Nakagami-m distribution function,
proposed by Nakagami [27], is a more versatile statistical representation that
can model a variety of fading scenarios including those modeled by Rayleigh
and one-sided Gaussian distributions. Furthermore, in [33] the authors demon-
strated that Nakagami-m distribution is more flexible and fits more accurately
with experimental data for many propagation channels than the other distri-
butions. We observe that the received signal envelope is modulated by a slow
fading process that produce an oscillation of RSS with respect its mean. This is
due to multipath effects caused by scattering of the radio waves on office furni-
ture. In order to verify this hypothesis, we look for the signature of multipath
fading, by considering the distribution of the received power. The fading dis-
tribution approximates a Nakagami-m distribution around the mean received
power. The Nakagami-m distribution has two parameters: a shape parameter
m and a controlling spread ω. ω and m, lie in the range from 17 to 50 and from
0.5 to 0.8 for most of the measurements, respectively. The distribution observed
on measured data (Fig. 2 shows an example for the same measurement as above
and for the anchor A4) are consistent with what is observed in [33]. As far as the
dependence of the fading statistics on measurement parameters is concerned, we
observe that the power spectrum is similar for all the measurements. In fact,
m and ω are similar for all the measurements. For the arc movements, the
Nakagami parameters are more widely spread, as shown in Fig. 3 with respect
to the straight ones. As highlighted in Fig. 3 all the paths produce similar
RSS traces, making it hard to forecasting the user behavior. Despite the similar
RSS distributions, in Section 5 we will show that the proposed system is able to
forecast the user behavior. It is also interesting to note that the traces collected
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Figure 2: Distribution of received power level from the anchor A4 and Nakagami-
m distribution with µ = 0.58 and ω = 17.22.


in Room 1 can be modeled with m parameter values more close together with
respect to the traces collected in Room 2. Consequently, we expect that the
proposed system will mis-classify these paths more frequently.


4 Model


An ESN is a RNN with an input layer ofNU units, a large and sparsely connected
hidden reservoir layer of NR recurrent non-linear units and a readout layer of
NY feed-forward linear units (see Fig. 4). The untrained reservoir acts as a fixed
non-linear temporal expansion function, implementing an encoding process of
the input sequence into a state space where the trained linear readout is applied.
More formally, given an input sequence s = [u(1), . . . ,u(n)] over the input space
R


NU , at each time step t = 1, . . . , n the reservoir computes the following state
transition function:


x(t) = f(Winu(t) + Ŵx(t− 1)) (1)


where x(t) ∈ R
NR denotes the reservoir state (i.e. the output of the reservoir


units) at time step t, Win ∈ R
NR×NU is the input-to-reservoir weight ma-


trix (possibly including a bias term), Ŵ ∈ R
NR×NR is the (sparse) recurrent


reservoir weight matrix and f is the component-wise applied activation func-
tion of the reservoir units (we use f ≡ tanh). A null initial state is used, i.e.
x(0) = 0 ∈ R


NR . For the case of sequence binary classification tasks, which is
of interest for this paper, the linear readout is applied only after the encoding
process computed by the reservoir is terminated, according to the equation:


y(s) = sgn(Woutx(n)) (2)
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Figure 4: The architecture of an ESN.


where sgn is a sign threshold function returning +1 for non-negative arguments
and −1 otherwise, y(s) ∈ {−1,+1} is the output classification computed for the
input sequence s and Wout ∈ R


NY ×NR is the reservoir-to-output weight matrix
(possibly including a bias term).


In this paper we also consider leaky integrator ESNs (LI-ESNs) [19], in
which leaky integrator reservoir units are used. In this case, the state transition
function of equation 1 is replaced by the following:


x(t) = (1− a)x(t− 1) + af(Winu(t) + Ŵx(t− 1)) (3)


where a ∈ [0, 1] is a leaking rate parameter, which is used to control the speed
of the reservoir dynamics, with small values of a resulting in reservoirs that
react slowly to the input [19, 26]. Compared to the standard ESN model, LI-
ESN applies an exponential moving average to the state values produced by
the reservoir units (i.e. x(t)), resulting in a low-pass filter of the reservoir
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activations that allows the network to better handle input signals that change
slowly with respect to the sampling frequency [26, 5]. LI-ESN state dynamics
are therefore more suitable for representing the history of input signals. Note
that for a = 1 equation 3 reduces to equation 1 and standard ESNs are obtained.
In the following, we thereby use equation 3 to refer the reservoir computation
for both LI-ESN and ESN (with a = 1).


The reservoir is initialized to satisfy the so called Echo State Property (ESP)[17].
The ESP simply states that the reservoir state of an ESN driven by a long input
sequence does only depend on the input sequence itself. Dependencies on the
initial states are progressively forgotten after an initial transient (the reservoir
provides an echo of the input signal). A sufficient and a necessary condition
for the reservoir initialization are given in [17]. Usually, only the necessary
condition is used for reservoir initialization, whereas the sufficient condition is
often too restrictive [17, 10]. The necessary condition for the ESP is that the
system governing the reservoir dynamics of equation 3 is locally asymptotically
stable around the zero state 0 ∈ R


NR . Setting W̃ = (1 − a)I + aŴ, where a


is the leaking rate parameter of equation 3, the necessary condition is satisfied
whenever the following constraint holds:


ρ(W̃) < 1 (4)


where ρ(W̃) is the spectral radius of W̃. In the following, for the ease of nota-
tion, we simply use ρ to refer the spectral radius of matrix W̃. Matrices Win


and Ŵ are therefore randomly initialized from a uniform distribution, and then
Ŵ is scaled such that equation 4 holds. Values of ρ close to 1 are commonly
used in practice, leading to reservoir dynamics close to the edge of chaos [24],
often resulting in the best performance in applications (e.g. [17]).


For sequence classification tasks, each training sequence is presented to the
reservoir a number of Ntransient consecutive times, to account for the initial
transient. The final reservoir states corresponding to the training sequences
are collected in the columns of matrix X, while the vector ytarget contains the
corresponding target classifications. The linear readout is therefore trained to
solve the least squares linear regression problem


min ‖WoutX− ytarget‖
2


2 (5)


Usually, Moore-Penrose pseudo-inversion of matrix X or ridge regression are
used to train the readout [26].


The most striking feature of ESNs is efficiency. Indeed, training is restricted
only to a linear output part and is very efficient, whereas the dynamic part of
the network is fixed and the cost of its encoding procedure scales linearly with
the length of the input for both training and test. In this regard, the ESN
approach compares extremely well with competitive state-of-the-art learning
models for sequence domains, including RNNs (in which the dynamic recurrent
part is trained, e.g. [22]), Hidden Markov Models (with the additional cost for
the inference also at test time, e.g. [32]) and Kernel Methods for sequences
(whose cost can scale quadratically or more with the length of the input, e.g.
[15]).
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5 Computational Experiments


5.1 Experimental Settings


Accordingly to the classification task defined in Section 3, the t-th element u(t)
of an input sequence s consists in the t-th set of RSS samples from the different
anchors considered in the corresponding measure, rescaled into the real interval
[−1, 1]. Each input sequence was presented Ntransient = 3 times to account
for the initial transient. For our purposes, we considered different experimental
settings in which the RSS from one or more of the four anchors is non-available.
Therefore, the dimension of each u(t) can vary from 1 to 4 depending on the
setting considered, i.e. on the number Nanchors of anchors used.


In our experiments, we used reservoirs with NR = 500 units and 10% of
connectivity, spectral radius ρ = 0.99 and input weights scaled in the interval
[−1, 1]. For LI-ESNs, we used the leaking rate a = 0.1. A number of 10 indepen-
dent (random guessed) reservoirs was considered for each experiment (and the
results presented are averaged over the 10 guesses). The performances of ESNs
and LI-ESNs were evaluated by 5-fold cross validation, with stratification on the
movement types, resulting in a test set of 20 sequences for each fold. For model
selection, in each fold the training sequences were split into a training and a
(33%) validation set. To train the readout, we considered both pseudo-inversion
and ridge regression with regularization parameter λ ∈ {10−3, 10−5, 10−7}. The
readout regularization was chosen by model selection on the validation set.


5.2 Experimental Results


5.2.1 Number of Anchors


In this subsection we present the performance results obtained by ESNs and
LI-ESNs corresponding to the different experimental settings considered, with
a number of anchors Nanchors varying from 1 to 4. For every value of Nanchors,
the results are averaged (and standard deviations are computed) over the pos-
sible configurations of the anchors. The accuracies on the test set achieved
by ESNs and LI-ESNs are graphically shown in Fig. 5. It is evident that the
performances of both ESNs and LI-ESNs scale gracefully (and almost linearly)
with the number of anchors used, i.e. with the cost of the WSN. The accu-
racy of ESNs varies from 0.53 (for Nanchors = 1) to 0.66 (for Nanchors = 4),
whereas the accuracy of LI-ESNs varies from 0.81 (for Nanchors = 1) to 0.96
(for Nanchors = 4). Thus, the performance of the LI-ESN model is excellent for
Nanchors = 4, scaling to acceptable values even for Nanchors = 1. In this regard
it is also interesting that ESNs are consistently outperformed by LI-ESNs for
every value of Nanchors. This result enlightens the better suitability of LI-ESNs
for appropriately emphasizing the overall input history of the RSS signals con-
sidered with respect to the noise. The ROC plot in Fig. 6 provides a further
graphical comparison of the test performances of ESNs and LI-ESNs.


Tables 1, 2, 3 and 4 detail the mean accuracy, sensitivity and specificity
of ESNs and LI-ESNs, respectively, on the training and test sets, for increas-
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Figure 5: Mean accuracy of ESNs and LI-ESNs on the test set, varying the
number of anchors considered.


ing Nanchors. For both ESNs and LI-ESNs, sensitivity is slightly higher than
specificity on the test set.


Nanchors Accuracy Sensitivity Specificity
1 0.96(±0.01) 0.96(±0.02) 0.97(±0.01)
2 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)
3 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)
4 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)


Table 1: Mean training accuracy, sensitivity and specificity of ESNs, varying
the number of anchors considered.


The nice scaling behavior of the performance with the decreasing number of
anchors used, thus with the decreasing cost of the WSN, is also apparent from
Tables 5 and 6, which provide the confusion matrices for ESNs and LI-ESNs,
respectively, averaged over all the test set folds, with 20 sequences each (10 with
positive target, 10 with negative target).


The distribution of LI-ESN classification errors occurring in correspondence
of each of the path types (see Fig. 1) is provided in Table 7, for the case of
Nanchors = 4. Interestingly, the classification errors mainly occur for input
sequences which correspond to movements in the Room 1, i.e. paths 1, 2 and
3 in Fig. 1. This actually confirms the coherence of the LI-ESN model with
respect to the RSS input signals. Indeed (see Section 3), the movement paths
in Room 1 are very similar and more hardly distinguishable among each other
(in particular paths 1 and 2, see Fig. 1) than the path types in Room 2.
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Nanchors Accuracy Sensitivity Specificity
1 0.53(±0.05) 0.53(±0.05) 0.53(±0.06)
2 0.55(±0.04) 0.55(±0.06) 0.56(±0.02)
3 0.59(±0.03) 0.59(±0.04) 0.58(±0.02)
4 0.66(±0.00) 0.69(±0.00) 0.63(±0.00)


Table 2: Mean test accuracy, sensitivity and specificity of ESNs, varying the
number of anchors considered.


Nanchors Accuracy Sensitivity Specificity
1 0.92(±0.02) 0.97(±0.01) 0.87(±0.04)
2 0.99(±0.01) 1.00(±0.00) 0.98(±0.02)
3 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)
4 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)


Table 3: Mean training accuracy, sensitivity and specificity of LI-ESNs, varying
the number of anchors considered.


5.2.2 Actual Deployment of the Anchors


In this sub-section, we detail the performance results of ESNs and LI-ESNs for
each possible configuration of the set of anchors used, with Nanchors varying
from 1 to 4. For each configuration considered, the results are averaged (and
the standard deviations are computed) over the 10 reservoir guesses. Tables 8
and 9 show the mean test accuracy, sensitivity and specificity for ESNs and
LI-ESNs, respectively, in correspondence of every configuration of the anchors.
Although the performances achieved in correspondence of the different choices
for the same value of Nanchors are quite similar, Tables 8 and 9 indicate that
specific configurations can result in better performances. Despite the fact that
different combination of anchors could give different performance was expected
(since the disturbance and quality of signal is clearly affected by the position of
the anchors in the environment), we observe from the tables that the accuracy
of the prediction is reasonably robust to the position of the available anchors,
which means that the deployment of the anchors does not need to be extremely
accurate (thus reducing deployment costs). On the other hand, the results
show clearly that it is better to distribute the anchors as much as possible,
e.g. in Table 9 the worse results are obtained when the available anchors are in


Nanchors Accuracy Sensitivity Specificity
1 0.81(±0.02) 0.86(±0.04) 0.76(±0.02)
2 0.86(±0.04) 0.88(±0.05) 0.85(±0.04)
3 0.92(±0.04) 0.93(±0.04) 0.90(±0.04)
4 0.96(±0.00) 0.98(±0.00) 0.93(±0.00)


Table 4: Mean test accuracy, sensitivity and specificity of LI-ESNs, varying the
number of anchors considered.
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Nanchors True Positives True Negatives False Positives False Negatives
1 5.29(±0.52) 5.28(±0.57) 4.73(±0.57) 4.71(±0.52)
2 5.46(±0.59) 5.60(±0.24) 4.40(±0.24) 4.54(±0.59)
3 5.90(±0.42) 5.84(±0.22) 4.17(±0.22) 4.10(±0.42)
4 6.90(±0.00) 6.30(±0.00) 3.70(±0.00) 3.10(±0.00)


Table 5: Averaged confusion matrix on the test set (with 10 positive samples
and 10 negative samples for each fold) for ESNs, varying the number of anchors
considered.


Nanchors True Positives True Negatives False Positives False Negatives
1 8.57(±0.40) 7.60(±0.15) 2.40(±0.15) 1.43(±0.40)
2 8.80(±0.52) 8.47(±0.43) 1.53(±0.43) 1.20(±0.52)
3 9.31(±0.45) 9.01(±0.40) 0.99(±0.40) 0.69(±0.45)
4 9.84(±0.00) 9.26(±0.00) 0.74(±0.00) 0.16(±0.00)


Table 6: Averaged confusion matrix on the test set (with 10 positive samples and
10 negative samples for each fold) for LI-ESNs, varying the number of anchors
considered.


the same room, while with two anchors displaced in different rooms the system
already achieves accuracy in the range 87% - 93%.


6 Conclusions


We have discussed the problem of forecasting the user movements in indoor
environments. This problem cannot be tackled with by using mere user local-
ization, since the information about the current position of the user does not
necessary provide an indication about his future position. In our approach we
have combined localization information obtained by a wireless sensor network
of MicaZ sensors with a RNN (implemented as an ESN) that takes in input a
stream of RSS data produced by the sensors and signals when the user is about
to enter in/exit from a given room. The problem is also made complex due to
the intrinsic difficulty of localization in indoor environments, since presence of
walls and objects disturb the radio propagation and makes RSS data imprecise.
We have considered a scenario in which a user enters in and exits from two rooms
according to different paths, which intersect in a marker point at the time in
which the ESN is requested to make the prediction. We also have considered
different numbers and combinations of anchors in order to investigate the trade-
off between the cost of the WSN, the cost of deployment (that is dependent on
the sensibility of the solution to the position of the anchors) and accuracy of
prediction. The results confirmed the potentiality of our appproach. In particu-
lar we have observed that our solution obtains good precisions also with a single
anchor, and it scales gracefully with the number of anchors (with 4 anchors it
reaches a test accuracy of 96%). Furthermore it is reasonably robust to the
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Test Error (%)
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6
10.76% 51.86% 32.52% 1.43% 3.43% 0%


Table 7: Distribution of test errors for LI-ESNs in the case Nanchors = 4 (with
a total test error of 4%) occurring for each of the path types in Fig. 1.
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Figure 6: ROC plot of ESNs and LI-ESNs on the test set, varying the number
of anchors considered (indicated beside each point in the graph).


position of the anchors, although the experiments gave a clear indication that
the anchors should be placed as distant from each other as possible, in order to
guarantee a better coverage. Concerning the ESN models considered, results in
Section 5.2 have shown that LI-ESNs consistently lead to better performances
than standard ESNs for every experimental setting (i.e. for varying the number
and the deployment of the used anchors). The bias of in the LI-ESN model,
acting as a low-pass filter of the reservoir states, has therefore revealed to be
suitable for approaching the characteristics of the problem considered. LI-ESNs
have indeed shown a good ability to appropriately represent the history of the
noisy RSS input signals used in experiments. Standard ESNs, on the other
hand, would need a larger dataset and less noise in the input signals in order to
achieve better generalization performances. Moreover, the experimental results
have enlightened the coherence of the learning models used with respect to the
known difficulties of the problem. In fact, the great part of the classification
errors of LI-ESNs (for the 4 anchors setting) has occurred in correspondence of
movements in Room 1, where the possible path types are much more similar
among each other than the corresponding paths in Room 2. Finally, we observe
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Anchors Accuracy Sensitivity Specificity
A1 0.49(±0.06) 0.51(±0.10) 0.47(±0.09)
A2 0.47(±0.05) 0.45(±0.08) 0.48(±0.08)
A3 0.59(±0.06) 0.58(±0.10) 0.61(±0.07)
A4 0.57(±0.06) 0.57(±0.08) 0.56(±0.10)


A1, A2 0.52(±0.06) 0.47(±0.10) 0.56(±0.08)
A1, A3 0.51(±0.07) 0.50(±0.11) 0.52(±0.08)
A1, A4 0.58(±0.07) 0.60(±0.08) 0.57(±0.09)
A2, A3 0.61(±0.07) 0.62(±0.09) 0.60(±0.08)
A2, A4 0.53(±0.06) 0.50(±0.11) 0.55(±0.08)
A3, A4 0.58(±0.06) 0.60(±0.08) 0.56(±0.10)


A1, A2, A3 0.57(±0.07) 0.57(±0.10) 0.56(±0.10)
A1, A2, A4 0.58(±0.06) 0.57(±0.08) 0.59(±0.08)
A1, A3, A4 0.57(±0.06) 0.56(±0.09) 0.57(±0.08)
A2, A3, A4 0.64(±0.06) 0.66(±0.08) 0.62(±0.08)


A1, A2, A3, A4 0.66(±0.07) 0.69(±0.10) 0.63(±0.09)


Table 8: Mean test accuracy, sensitivity and specificity of ESNs for the possible
configurations of the considered anchors.


that the ESN-based solution is potentially suitable for its embedding in wireless
sensors of the mote class, due to its efficiency and low requirements of memory
and processing. This embedding is matter of ongoing work. Future work also
include the investigation of trade-off between accuracy and energy spent by the
sensors to produce localization information, and the extension of our approach
to environments of different nature (e.g. public buildings, building with differ-
ent composition of walls, room size etc.). As final remark, we stress that the
dataset used in our experiments is openly available for download in our website
[2].
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