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ABSTRACT
With the support of the legally-grounded methodology of
situation testing, we tackle the problems of discrimination
discovery and prevention from a dataset of historical deci-
sions by adopting a variant of k-NN classification. A tuple
is labeled as discriminated if we can observe a significant
difference of treatment among its neighbors belonging to
a protected-by-law group and its neighbors not belonging
to it. Discrimination discovery boils down to extracting a
classification model from the labeled tuples. Discrimina-
tion prevention is tackled by changing the decision value for
tuples labeled as discriminated before training a classifier.
The approach of this paper overcomes legal weaknesses and
technical limitations of existing proposals.
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1. INTRODUCTION
Decisions based on categorization or social sorting may


be discriminatory, in the socially negative sense of the un-
fair or unequal treatment of people based on membership
to a category, group or minority, without regard to individ-
ual characteristics. This problem is exacerbated by the fact
that increasingly sophisticated data analysis and data min-
ing techniques support knowledge discovery from human ac-
tivity data, enabling the extraction of models, patterns, pro-
files, and rules of human behavior in support of (automated)
decision making. Human right laws [2, 9, 23, 24] prohibit
discrimination against protected groups on the grounds of
race, color, religion, nationality, sex, marital status, age and
pregnancy; and in a number of settings, including credit and
insurance; sale, rental, and financing of housing; personnel
selection and wages; access to public accommodations, ed-
ucation, nursing homes, adoptions, and health care. Since
most of the decisions in the knowledge society era are taken
on the basis of historical data, there is the need of develop-
ing models, methods and technologies for modelling the pro-


.


cesses of discrimination analysis in order to discover and pre-
vent discrimination phenomena. Discrimination discovery
from data consists in the actual discovery of discriminatory
situations and practices hidden in a large amount of histori-
cal decision records. The process of data analysis must then
be supported by tools that exploit legally-grounded measures
and reasonings. Discrimination prevention in data mining
consists of extracting models (typically, classifiers) that do
not lead to discriminatory decisions even if trained from a
dataset containing them. In fact, mining from historical
data may mean to discover traditional prejudices that are
endemic in reality (taste-based discrimination [3]), or to dis-
cover patterns of lower performances, skills or capacities of
protected-by-law groups (statistical discrimination [10], also
called rational racism), and to assign to such practices the
status of general rules, maybe unconsciously, as these rules
can be deeply hidden within a data mining classifier.


Recent data mining proposals for discrimination discov-
ery [20, 21] and prevention [5] have followed the legal princi-
ple of under-representation. Unfortunately, they suffer both
from legal weaknesses, due to the use of aggregation mea-
sures over undifferentiated sets of people, and technical lim-
itations, such as the restriction to nominal attributes and
decisions and to local models of discrimination. In this pa-
per, we overcome both the legal and the technical draw-
backs. Our approach is inspired by the legal experimental
procedure of situation testing, which looks for pairs of peo-
ple with similar characteristics apart from membership to a
protected-by-law group. We approximate situation testing
by a variant of the k-nearest neighbor (k-NN) classification,
which labels each tuple in a dataset as discriminated or not.
Discrimination discovery then reduces to build a classifier
providing a global description of the conditions where dis-
crimination occurs. Discrimination prevention is tackled by
a pre-processing step, changing the historical decision for
tuples labeled as discriminated, before training a classifier.


This paper is organized as follows. In Sect. 2 we review
the legal grounds of discrimination analysis, highlighting de-
ficiencies of the existing data mining approaches. The legal
methodology of situation testing is also presented. In Sect. 3,
we recall the notion of distance functions and summarize
the experimental setup. The approach based on k-NN is
presented in Sect. 4, and applied in Sect. 5 to discrimina-
tion discovery, and in Sect. 6 to discrimination prevention.
Finally, Sect. 7 summarizes the contributions of the paper.


2. DISCRIMINATION ANALYSIS
Discrimination analysis from data should build over the


large body of existing legal and economic studies [7, 14, 18].
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Figure 1: Discrimination measures


In this section, we review the under-representation princi-
ple that has inspired previous data mining proposals, and
the situation testing methodology, which provides the legal
grounds for the approach proposed in this paper.


2.1 The Under-Representation Principle
Accordingly to laws, discrimination occurs when a group


is treated “less favorably” [9, 23] than others, or such that
“a higher proportion of people not in the group is able to
comply” [2] to a qualifying criterium. A general principle
is then to consider group under-representation in obtaining
a benefit [7, 14] as a quantitative measure of discrimination
against a protected-by-law group (briefly, a protected group).
Consider a dataset of historical decisions about granting or
not a benefit (e.g., a loan, a job, a wage increase). Let p1
(resp., p2) be the proportion of people in the protected group
(resp., not in the protected group) that were not granted
the benefit, and let p be the proportion of all people (both
protected and not) that were not granted the benefit. Group
under-representation can be measured as the difference p1−
p2, adopted in the U.K. legislation [23]; or as the ratio p1/p2,
called the selection lift and adopted in the U.S. legislation
[24] (d); or as one of the measures defined in Fig. 1 over a
four-fold contingency table. Higher values of those measures
denote higher under-representation of the protected group.


The under-representation principle has inspired the ex-
isting approaches for discrimination discovery and preven-
tion. [20] proposes to extract classification rules of the form
A,B→C to unveil subsets B of the dataset where the pro-
tected group A suffered from under-representation with re-
spect to the decision C. The approach is parametric to one
of the measures in Fig. 1, and it is implemented on top of an
Oracle database [21]. [5] investigates three approaches for
preventing discriminatory predictions in a Näıve Bayes clas-
sifier. Discrimination is measured as the difference p1 − p2
calculated on the whole set of predictions over a test set.


Unfortunately, these approaches suffer from both legal
weaknesses and technical limitations. On the legal side,
measuring group under-representation by aggregated values
over undifferentiated groups is opposable in a court of law.
As an example, assume a high value for p1−p2 in a dataset of
historical decisions, with women as the protected group and
job hiring as the benefit. Since p1 and p2 are aggregated val-
ues, they mix decisions for people that may be very different
as per skills required for the job. A typical legal argument is
that of genuine occupational requirement. For the example
at hand, if the job requires a special driving licence, which
most of the male applicants have and most of the female
applicants do not have, then the non-hiring rates p1 and
p2 cannot be adopted for comparing people with different,
legally admissible, attributes.


On the technical side, the discrimination discovery ap-
proach [20] has two limitations. First, since it relies on fre-
quent itemset mining, it deals with nominal attributes and
nominal decisions only. Interval-scaled attributes (age, in-
come) and decisions (loan rate, wage) must be discretized as
a pre-processing step. Second, the result of the knowledge
discovery process is a (possibly large) set of classification
rules, which provide local niches of possible discrimination:
a global description of who is discriminated and who is not is
lacking. The discrimination prevention approach [5] shares
the same limitation on nominal attributes. In addition, it
considers discrimination at top level, i.e., p1−p2 is controlled
only for the whole set of decisions. However, discrimination
may still occur in some subset, e.g., as when discrimination
of a bank branch manager against a minority group remains
hidden in the large set of decisions of the whole bank.


2.2 Situation Testing
In the legal field, situation testing is a systematic research


procedure for creating controlled experiments analyzing de-
cision maker’s candid responses to applicant’s personal char-
acteristics. In situation testing, pairs of research assistants
undergo the same kind of selection, for example they apply
for the same job, they present themselves at the same night
club, and so on. Within each pair, applicant characteristics
likely to be related to the situation (characteristics related
to a worker’s productivity on the job in the first case, look,
age and the like in the second case) are made equal by se-
lecting, training, and credentialing testers to appear equally
qualified for the activity. Simultaneously, membership to a
protected group is experimentally manipulated by pairing
testers who differ in membership – for example, a black and
a white, a male and a female, and so on. Situation testing
is being experimented worldwide as one of the tools that
can assist victims to establish that discrimination may have
occurred [4, 19].


In this paper, we intend to exploit the idea of situation
testing just inverting the point of view: given past records
of decisions taken in some context, for each member of the
protected group with a negative decision outcome (someone
who may claim to be a victim of discrimination) we look for
testers with similar, legally admissible, characteristics, apart
from being or not in the protected group. If we can observe
significantly different decision outcomes between the testers
of the protected group and the testers of the unprotected
group, we can ascribe the negative decision to a bias against
the protected group. Similarity is modelled via a distance
function. Testers are searched among the k-nearest neigh-
bors. And difference is measured by one of the functions
from Fig. 1 calculated over the two sets of testers.


3. EXPERIMENTAL SETTING


3.1 Distance Functions
Let r and s be two tuples of n attributes. A distance func-


tion d() measures the dissimilarity between r and s. In gen-
eral, d(r, s) is a non-negative real number, close to 0 when
r and s are highly similar or “near” each others, and be-
coming larger the more they differ. We admit the unknown
value in domains, syntactically represented by “?”, to model
missing tuple elements. In the following, we present the dis-
tance functions adopted in experiments for interval-scaled,
nominal and ordinal domains. Notice that the theoretical
foundations of our approach are parametric to the actual







No. of attributes
dataset size interval nominal ordinal
credit 1,000 6 12 3


credit-d 1,000 0 12 9
crimes 1,994 24 0 0
adult 48,842 5 8 1


census-income 299,285 7 32 1


Table 1: Datasets: size and attribute type


distance function adopted. Let i be an attribute index, and
x, y two values in the domain of the ith attribute.


Interval-scaled values are first standardized using the z-
score zi(x) = (x − mi)/si, where mi is the mean value,
and si is the mean absolute deviation. Distance between
x, y is measured by the absolute difference of their z-scores:
di(x, y) = |zi(x) − zi(y)|. We deal with unknown values by
setting |zi(x)− zi(y)| = 3 if x =? or y =?.


For nominal domains, distance is a binary function testing
equality: di(x, y) = 0 if x = y, and di(x, y) = 1 otherwise.
For unknown values, we set di(x, y) = 1 if x =? or y =?.


Ordinal domains with ranked values v1, . . . , vM are first
mapped into interval-scaled values mi(vj) = (j − 1)/(M −
1). Distance is then computed by resorting to the absolute
difference di(x, y) = |mi(x)−mi(y)|. We deal with unknown
values by setting di(x, y) = max{mi(x), 1−mi(x)} if x =?
and y 6= ?, and vice-versa; and di(x, y) = 1 if x = y =?.


Finally, distance between tuples is defined as:


d(r, s) =
Σni=1di(ri, si)


n


For tuples of interval-scaled attributes only, it boils down to
the Manhattan distance of z-scores (modulo division by a
constant); and for tuples of nominal attributes only, it boils
down to the percentage of mismatching attribute values.


3.2 Datasets
As a running example, we use the German credit dataset,


which consists of 1000 records over bank account holders.
It includes attributes on personal properties, past/current
credits, employment status, and on personal status. The
class attribute represents the good/bad creditor decision
assigned to the bank account holder. Attributes classified
by their types are the following.


Interval-scaled: duration, credit amount, installment com-
mitment, age, existing credits, num dependents.


Nominal: credit history, purpose, personal status, other -
parties, residence since, property magnitude, housing, job,
other payment plans, own telephone, foreign worker, class.


Ordinal: checking status, savings status, employment.
We consider two versions of the dataset: credit, the orig-


inal dataset, with interval-scaled attributes; and credit-d,
where interval-scaled attributes are discretized into 5 bins
of equal width, and the resulting attributes are assigned the
ordinal type. In addition to the German credit, the larger
datasets shown in Fig. 1 will be considered. Strictly speak-
ing, they are not concerned with decisions, but rather with
census information related to people income (adult, census-
income) or to communities & crimes (crimes). Therefore,
the objective of discrimination analysis on these datasets
is to discover or prevent forms of statistical discrimination.
All datasets are publicly available from [12]. Notice that the
decision attribute is binary for all of them, apart for crimes
where it is interval-scaled being the “total number of violent
crimes per 100K population”.


4. K-NN AS SITUATION TESTING


4.1 k-NN
k-nearest neighbor (k-NN) is a lazy instance-based classi-


fication method. The classification model simply consists of
storing the training set. Given a tuple r to be classified, k-
NN: (1) first searches the k tuples in the training set closest
to r w.r.t. a distance measure d(), i.e., its k-nearest neigh-
bors; (2) then assignes as class value to r the most frequent
class value among its k-nearest neighbors.


Throughout the paper, we represent a dataset as a col-
lection R of tuples with a superscript, e.g., as in ri where
i ∈ [1, |R|] is the tuple id. For a tuple r, we assign to every
ri ∈ R a rank (as a neighbor of r) on the basis of its distance
from r (or, for equal distances, on the tuple id). Formally,
we define:


rankR(r, ri) = |{j | d(r, rj) < d(r, ri) ∨
(d(r, rj) = d(r, ri) ∧ j ≤ i}|


The k-NN set for a given tuple is the set of top k tuples
w.r.t. ranking. A refined version may include an additional
constraint on the maximum allowable distance.


Definition 4.1. For a dataset R, we define:


ksetR(r, k) = {ri ∈ R | rankR(r, ri) ≤ k}
ksetR(r, k, d) = {ri ∈ R | rankR(r, ri) ≤ k ∧ d(r, ri) ≤ d}


In k-NN classification, r is the tuple to be classified, and
R is the training set. In our discrimination analysis context,
we take a different approach – which is closer to the situation
testing methodology. First, we need fixing some inputs.


4.2 Inputs of the Discrimination Analysis
In addition to a dataset R, our analysis of discrimination,


either for discovery or for prevention, will require the fol-
lowing inputs: the group under analysis, a distance function
over a set of attributes, and the decision attribute.


Protected-by-law groups. Civil rights laws explicitly
identify the groups to be protected against discrimination,
e.g., women or black people. We assume that a protected-by-
law group is specified as input of the discrimination analysis,
and call it the protected group. Also, we assume that the
dataset under analysis includes attributes to decide whether
a tuple refers to a member of the group. Syntactically, we
model this by a predicate protected . In the previous exam-
ple, we require then that sex (resp., race) is an attribute
of data, and set protected(r) iff r[sex] = female (resp.,
r[race] = black).


We do not impose any syntactic restriction on the defini-
tion of protected : for instance, in our prototype implemen-
tation, it can be any boolean expression over comparison
operators <,≤,=, 6=,≥, > for interval-scaled and ordinal at-
tributes; and over =, 6= for nominal attributes.


Using protected , we can separate tuples of people in the
protected group from those of people not in the protected
group – which we call the unprotected group.


Definition 4.2. We define P(R) = {ri ∈ R | protec-
ted(ri)}, and U (R) = {ri ∈ R | ¬protected(ri)}.


Notice that R = P (R) ∪ U(R) does not necessarily hold,
since tuples with unknown values to be tested by protected
are not included in P (R) nor in U(R), e.g., as for r[sex] =?
in the previous example.







Legally-grounded attributes for distance measure-
ment. We assume a distance function d() between tuples.
As in k-NN classification, distance will be used to search
for neighbors of a given tuple. As in situation testing, such
neighbors are searched with reference to attributes that are
legally-grounded for being adopted in taking the decision.
Therefore, we assume that d() is defined on a subset of the
attributes of the dataset, e.g., those that are legally admissi-
ble in a discrimination litigation. Additional attributes may
be present in the dataset for other purposes, e.g., as shown in
Sect. 5, for extracting a description of cases where discrim-
ination occurs. Let G ⊆ {1, . . . , n} be the set of attribute
indexes (or, equivalently, attribute names) that are legally-
grounded. We write πG(r) to denote the projection of tuple
r over attribute indexes in G, e.g., π{1,3}(〈3, 5, 4〉) = 〈3, 4〉.
We make the following syntactic assumption, which helps in
taking notation simple.


Remark 4.3. Distance is computed with reference to at-
tributes indexes in G. In symbols, when writing d(r, s) we
actually restrict to consider d(πG(r), πG(s)).


In particular, when writing ksetR(r, k) we now intend the
k-NN set w.r.t. distance over attribute indexes in G.


Decision attribute. Obviously, the dataset R includes
an attribute recording the historical decision. We write
dec(r) to denote the value for r of the decision attribute.
Such an attribute is sometimes called the class attribute,
because classifiers built on the dataset try and learn it as
the class. As such, the decision attribute does not include
unknown values. We admit nominal, interval-scaled and
ordinal decision attributes. For nominal (typically binary,
i.e., two-valued) decision attributes, we denote by 	 the
negative decision (deny of benefit), and by ⊕ the positive
decision (grant of benefit). Examples of interval-scaled de-
cision attributes include wage in a dataset of personnel,
and interest rate in a dataset of loans. In the rest of the
paper, we will first state definitions and results for nomi-
nal decision attributes, and then describe what differs for
interval-scaled ones. For lack of space, ordinal decision at-
tributes are not explicitly commented. Basically, they are
treated as interval-scaled attributes once ordinal values are
mapped into interval-scaled ones using the standard map-
ping recalled in Sect. 3.1.


4.3 k-NN as Situation Testing
Consider a tuple r in the protected group P(R). In the


words of situation testing, a person feels discriminated if she
observes significantly different decision outcomes for people
who are similar to her apart from belonging or not to the
protected group. Let us formalize this as follows. Let K1 be
the set of k-nearest neighbors of r in P(R)\{r}, where r has
been removed in order not to be included in K1. Also, let K2


be the set of k-nearest neighbors of r in U (R). K1 and K2


represent persons with attributes close to the ones of r apart
for being in the protected group or in the unprotected group
respectively. Notice that the distance function is defined on
attributes that are legally-grounded, i.e., legally admissible
for being adopted in taking the decision of granting or not
a benefit. For a nominal decision attribute, the probabil-
ity of the decision outcome for r can be estimated from K1


(resp., K2) as the proportion p1 (resp., p2) of tuples whose
decision value is the same of r. The difference between the
observed values p1 and p2 represents then the bias of the de-
cision for r due to membership to the protected group. We


measure such a difference as p1− p2, although any discrimi-
nation measure from Fig. 1 can be adopted. Let us provide
a formal definition.


Definition 4.4. For r∈P(R), we define diff (r) = p1−p2,
where: p1 = |{r′ ∈ ksetP(R)\{r}(r, k) | dec(r′) = dec(r)}|/k
and p2 = |{r′ ∈ ksetU (R)(r, k) | dec(r′) = dec(r)}|/k.


Assume that a negative decision is assigned to r, namely
dec(r) = 	. A value diff (r) = t ≥ 0 means that the deci-
sion is more frequent in the neighbors of the protected group
with respect to the neighbors of the unprotected group by
a percentage difference of t. This implies that the nega-
tive decision for r is not explainable on the basis of the
legally-grounded attributes used for distance measurement,
but rather it is biased by group membership. Whether the
bias was intentional or not is irrelevant: laws also sanction
unintentional discrimination. t is a measure of the strength
of the discrimination bias. A value t lower than 0 means
that the negative decision for r is not explainable by a worse
treatment of the neighbors in the protected group. Hence,
no discrimination conclusion can be drawn.


Conversely, assume a positive decision dec(r) = ⊕. By
reasoning as above, diff (r) ≥ 0 means a bias towards the
positive decision due to group membership. This could be
the result of affirmative actions, also called positive actions
or reverse discrimination, consisting in a range of policies or
quotas to overcome and to compensate for past and present
discrimination [22]. Dually, diff (r) < 0 means that the posi-
tive decision is not explainable by a general better treatment
of the neighbors in the protected group.


Example 4.5. Consider the credit dataset. We fix the
protected group to non-single women by setting protected(r)
to r[personal_status] = female div/sep/mar. Also, we
set the decision attribute to class, namely to the credit clas-
sification, with 	 = bad and ⊕ = good. All the remaining
attributes are included, for the moment, in G, i.e., they are
used in distance measurement. Fig. 2 (a) shows the cumula-
tive distribution of diff () for people in the protected group
that have received the bad credit classification, namely for
tuples r such that protected(r) and r[class] = bad. The
plot shows the distributions for different values of k.


It is immediate to see that the distributions are shifted
towards the positive half of the spectrum. More than 60%
of the people have diff (r) ≥ 0.1, which means that bad-
debtors are at least 10% more frequent among the k-most
similar persons in the protected group than among the k-
most similar persons in the unprotected group. Hence, the
decision of classifying r as bad-debtor appears to be biased
by her membership to the protected group.


The discrimination scenario becomes clearer if we consider
the same distributions for people in the protected group hav-
ing received the good-debtor decision, namely for tuples r
such that protected(r) and r[class] = good. They are shown
in Fig. 2 (b). Now the distributions are shifted towards the
negative half of the spectrum. For k = 16, it turns out that
diff (r) ≥ 0.1 in less than 7% of cases, which means that only
a small percentage of the good-debtor classification could be
attributed to a bias in favor of non-single women.


Finally, observe that the distributions in Fig. 2 (a,b) tend
to shrink as k increases. This is intuitive, since for k → ∞
the k-NN sets of protected and unprotected groups tend to
include all the elements of the group, and then diff (r) →
p̂1 − p̂2 where p̂1 (resp., p̂2) is the proportion of decision
dec(r) in the whole protected (resp., unprotected) group.
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Figure 2: Cumulative distributions of diff () for datasets credit and credit-d


Example 4.6. It is worth studying how the distributions
vary for different parameters in the previous example.


Fig. 2 (c) shows the cumulative distribution of diff () for
protected groups defined on ranges of age. The plot clearly
shows that youngers suffer from a higher bias towards the
bad-debtor classification than middle-age or older people.


Fig. 2 (d) shows how the distribution varies with the
set G of attributes used in distance measurement (see Re-
mark 4.3). The plot refers to three sets. G1 includes all
attributes except sex, used to define the protected group,
and class, used as the decision attribute. G1 is the set used
so far. G2 includes attributes related to credit (history, pur-
pose, amount, existing) and to properties (savings, property,
housing, third parties) – but nothing about job. Finally, G3


includes only attributes related to credit. From the plot,
we can conclude that the distributions are not dramatically
sensible to the set of attributes, although by restricting the
set of attributes, high values of diff () tend to be even higher.


Fig. 2 (e) highlights the dual concept of favoritism, namely
discrimination in favor of a group, where the “protected”
group under analysis here consists of married men in the
age range between 30 and 60. Compared to Fig. 2 (a,b), the
distributions for the bad and the good decision are swapped,
in the sense that there is no bias against the group in bad-
debtor classification decisions, and there is bias in favor of
the group members in good-credit classification decisions.


Finally, Fig. 2 (f) shows the distribution of diff () for the
credit-d dataset, which is obtained by discretizing interval-
scaled attributes in credit. Protected group, decision at-
tribute and attributes in G are kept the same as in Fig. 2 (a).
Technically, discretization affects the distance function, pos-
sibly resulting in different k-NN sets. The plot, however,
closely resembles the distribution of the the original dataset,
with a slight shift towards higher values.


Statistical significance of the diff () measure should also
be taken into account, and it is actually customary in legal
cases [13, 16]. In our context, we can interpret the observed
proportions p1 and p2 from Def. 4.4 as the result of an exper-
iment. What is the chance that the observed value p1−p2 is
affected by randomness in decisions of the dataset at hand?
A confidence interval provides us with a range for the true
value over the entire population (of decisions), at a certain
significance level. Let us denote by π1 and π2 the true pro-
portions over the protected and the unprotected neighbors.
The Wald confidence interval for π1 − π2 at 100(1 − α)%
level of significance is [(p1 − p2)− d, (p1 − p2) + d] where:


dα = Z1−α/2


√
p1(1− p1)


k
+
p2(1− p2)


k
.


We refer the reader to [1, 11] for details, and to [15] for a
comparison of several methods for interval estimation. We
mention here that when k is very low, the Wald interval be-
comes imprecise. Exact methods have been proposed in the
statistics literature, where“exact”means that the actual dis-
crete distribution of the statistical parameter is adopted in
computing the confidence intervals, instead of approximat-
ing it with a normal distribution as done in Wald intervals.
In our context, we extend the diff () function as follows:


diff (r, α) =


{
max{0, p1 − p2 − dα} if p1 − p2 ≥ 0
min{0, p1 − p2 + dα} otherwise


Intuitively, non-negative values of diff () are corrected to the
lower bound of the confidence interval, and negative values
are corrected to its upper bound. diff (r, α) = 0 when the
null hypothesis π1 − π2 = 0 cannot be rejected.


Example 4.7. In the adult dataset the decision attribute
income is not properly a “decision” but a range of income
(lower or equal than $50K , and higher than $50K). Here,
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Figure 3: Cumulative distributions of diff () for datasets adult, census-income and crimes


the objective of the discrimination analysis is to discover
whether people in a protected group suffer from low income
not for their own specific characteristics but rather due to
membership to the group – a form of the so-called social dis-
crimination. Fig. 3 (a,b,c) show the distributions of diff ()
for non-white people with low income at the variation of
three parameters of the analysis: (a) the number k of nearest
neighbors; (b) the additional constraint maxd on maximum
allowable distance of the nearest neighbors (see Def. 4.1);
and (c) the level of significance in statistical validation. As
one would expect, the distributions tend to shrink as k in-
creases (already observed in Ex. 4.5) and as the confidence
level increases. Fig. 3 (c) shows that very few cases could be
brought in a court of law with the support of strong statisti-
cal arguments. Finally, putting a maximum distance thresh-
old when looking for neighbors results in a longer right tail
distribution, as shown in Fig. 3 (b). The maximum distance
parameter affects those tuples r that are somehow isolated
(ether because of their own attributes, or by effect of the
curse of dimensionality on the distance function) by exclud-
ing “distant neighbors” from their k-NN set.


The dataset census-income also contains census data, with
the same decision attribute as adult. However, it is larger
both in the number of tuples and in the number of at-
tributes. In Fig. 3 (d) we highlight the analysis of multiple
discrimination [8], namely discrimination on the grounds of
two or more factors. The plot shows the distributions of
diff () for the low income class of three protected groups:
women, married people, and married women. As it can be
readily observed, society leads married women with low in-
come to experience a higher difference from the unprotected
group (not-married or men) than the difference experienced
as women (w.r.t. men) or as married people (w.r.t. not mar-
ried ones) alone.


The definition of diff () extends to interval-scaled decision
attributes by setting:


p1 = |{r′ ∈ ksetP(R)\{r}(r, k) | dec(r′) ≥ dec(r)}|/k
p2 = |{r′ ∈ ksetU (R)(r, k) | dec(r′) ≥ dec(r)}|/k


(?)


Assume that higher decision values mean more negative out-
comes, e.g., as when the decision attribute is the interest
rate to be paid for a loan or a mortgage. Intuitively, p1
(resp., p2) measures the proportion of the neighbors in the
protected (resp., unprotected) group that have a higher de-
cision value. A difference diff (r) = p1 − p2 greater than 0
means a negative bias due to membership to the protected
group. For the interest rate example above, diff (r) = 0.3
means that there are 30% more neighbors in the unprotected
group, compared to the protected group, with a granted in-
terest rate better1 than dec(r). Finally, assume that lower
decision values mean more negative outcomes, e.g., as when
the decision attribute is the percentage of salary increase. In
order to have that positive values of diff (r) = p1−p2 denote
bias against the protected group, the comparison predicates
in (?) must be changed from ≥ to ≤.


Example 4.8. The census-income dataset includes the
attribute wages recording the wage per hour. We have se-
lected the tuples with known values of wages. For the re-
sulting dataset, we can set wages as the (interval-scaled)
decision attribute and study the distribution of diff (). As
for nominal decision attributes, we concentrate on negative
decisions. For interval-scaled attributes, the analogous of
dec(r) = 	 is, for some threshold value t, dec(r) ≥ t if
higher decision values mean more negative outcomes, and
dec(r) ≤ t otherwise. Fig. 3 (e) shows the distribution for


1This statement can be better understood by observing that
diff (r) = p1 − p2 = (1− p2)− (1− p1),







DiscoveryN(R, t) {
L = ∅
for r ∈ P(R) {


if( dec(r) = 	 and
diff (r) ≥ t )


r[disc] = yes
else


r[disc] = no
L = L ∪ {r}
}
build a classifier on L
}


DiscoveryI(R, l, t) {
L = ∅
for r ∈ P(R) {


if( dec(r) ≥ l and
diff (r) ≥ t )


r[disc] = yes
else


r[disc] = no
L = L ∪ {r}
}
build a classifier on L
}


Figure 4: Procedures for discrimination discovery


wages up to $5.00 for the protected groups of black people,
and of other minorities (non-black & non-white people). It
is readily checked that blacks with low wages observe a bias
towards their group that is higher than the bias observed by
the other minorities.


Finally, the decision attribute in the crimes dataset is
ViolentCrimesPerPop, the number of violent crimes in a
community per 100K individuals. As already observed, it
is not actually a “decision” taken by someone. Rather, here
the interest is to understand whether some conclusions can
be drawn from the dataset that relate high values of Vi-


olentCrimesPerPop to the percentage of minorities, e.g.,
blacks, in the community. Such conclusions could drive
forms of statistical discrimination against communities with
large presence of black people. Fig. 3 (f) shows the distribu-
tion of diff () for the protected communities having 20% or
more of blacks. Those of such communities that have a high
number of crimes (ViolentCrimesPerPop≥ 0.20) observe a
significant difference in crimes with communities that are
similar to them apart from having less than 20% of blacks.
In other words, a high number of crimes is “discriminatorily”
present in communities with a high percentage of blacks!
To further support this, Fig. 3 (f) shows the distribution
for communities with a low number of crimes (Violent-
CrimesPerPop< 0.20). Now, communities with 20% or more
of blacks and a low number of crimes observe no bias for such
low number of crimes due to the high presence of blacks.


5. DISCRIMINATION DISCOVERY
In this section, we devise an approach for discovering and


characterizing discrimination. From the examples of the last
section, it is clear that for a tuple r of the protected group
diff (r) measures the discrimination bias. By assuming a
non-negative threshold value for diff (r), we can label a tuple
as discriminated or not.


Definition 5.1. Let t ∈ [0, 1] be a threshold value. We
say that r is t-discriminated, and write disc(t, r), if dec(r) =
	 and protected(r) and diff (r) ≥ t.


Notice that we require that dec(r) = 	, namely that the
decision value for r is negative, in order to distinguish dis-
crimination from favoritism, such as the one resulting from
affirmative actions. In fact, if dec(r) = ⊕ and diff (r) ≥ t,
then r and its protected neighbors were granted a benefit in
higher proportion than its unprotected neighbors. Also, we
require that protected(r) holds because we are interested in
characterizing under which conditions a member of the pro-
tected group was discriminated or not. Obviously, also mem-
bers of the unprotected group might be discriminated (again,
for instance, because of affirmative actions), but labeling


both protected and unprotected group members would mix
different causes of discrimination.


How should t be chosen? The answer depends on the law.
For instance, the U.K. legislation [23] for sex discrimination,
sets t = 0.05, namely a 5% difference. The U.S. legislation
[24] for employment discrimination, sets a threshold (known
as the “four-fifths rule”) of 1.25 for the measure of selection
lift slift(). We take a general approach, and leave t as a
parameter for the analyst. We are now in the position to
provide a global description of the tuples that are discrim-
inated by reducing the discrimination discovery problem to
a classification problem.


Definition 5.2. The t-labeled version of a dataset R is
the dataset obtained: (1) by adding a binary attribute, called
disc, assuming, for a tuple r ∈ R the boolean value disc(t, r);
and (2) by restricting to tuples of the protected group only.


Discrimination discovery reduces now to the extraction of
an accurate classifier over a labeled version of R with disc


as the class attribute. Accuracy will be evaluated with stan-
dard measures, e.g., precision and recall over the class value
disc=yes. The intended use of the classifier is descriptive,
namely to provide the analyst with a description of the con-
ditions under which discrimination occurred. Classification
models that can be interpreted clearly and easily should be
adopted, such as decision trees and classification rules. The
overall procedure for discrimination discovery over nominal
decision attributes is shown in Fig. 4 as DiscoveryN(),
where the t-labeled version of R is computed in L.


Condition (2) in Def. 5.2 follows from the fact that for
tuples not in the protected group disc(t, r) is always false,
so any classification model would derive assertions such as
“if not protected(r) then disc=no”, assuming that the model
is able to express the condition defining protected .


Example 5.3. Consider the credit dataset, with the set-
tings of Fig. 2 (a) and k = 32. Using a C4.5 decision
tree classifier [17], the procedure DiscoveryN(credit, 0.10)
yields the following model and evaluation measures2.


num_dependents <= 1
| credit_amount <= 2631: disc=yes (59.0/9.0)
| credit_amount > 2631: disc=no (44.0/15.0)
num_dependents > 1: disc=no (6.0)


disc=yes: Precision 0.847 Recall 0.769


A pair (x, y) at a leaf node means that x tuples reach the
leaf, y of which are incorrectly classified. y is omitted if it
is 0. Intuitively, the bad debtor class (the decision) is dis-
criminatorily assigned to a female non-single (the protected
group) when she has zero or one dependents and asks for
a credit amount up to $2,631. This is a concise, clear, and
global characterization of the cases when discrimination oc-
curred. It covers 77% of the protected group (recall), and
it is accurate at 85 % (precision). On the same dataset, the
RIPPER rule classifier [6] yields a slightly better recall.


(credit_amount >= 3190) => disc=no (39.0/12.0)
(installment_commitment <= 2) and (residence_since >= 3)


=> disc=no (10.0/2.0)
=> disc=yes (60.0/9.0)


disc=yes: Precision 0.85 Recall 0.785


2Since the purpose of the classifier is descriptive, precision
and recall are calculated over the training set. Notice that
a predictive procedure simply consists of checking disc(t, r).







PreventionN(T , V, t) {
T ′ = ∅
for r ∈ T {


r′ = r
if( dec(r) = 	 and


protected(r) and
diff (r) ≥ t )


r′[dec] = ⊕
T ′ = T ′ ∪ {r′}
}
build classifiers on T and T ′
compare them on V
}


PreventionI(T , V, l, t) {
T ′ = ∅
for r ∈ T {


r′ = r
if( dec(r) ≥ l and


protected(r) and
diff (r) ≥ t )


r′[dec] = l − ε
T ′ = T ′ ∪ {r′}
}
build classifiers on T and T ′
compare them on V
}


Figure 5: Procedures for discrimination prevention


The model can be read as follows. Discrimination occurs in
all cases, except when the credit requested is at least $3,190,
or when there are up to 2 installment payments (short term
loans) of a resident since at least 3 years. Of course, changing
a parameter of the approach may yield different models. The
following decision tree is obtained for k = 8.


num_dependents <= 1
| installment_commitment <= 2
| | age <= 23: disc=no (9.0)
| | age > 23
| | | employment = unemployed: disc=yes (1.0)
| | | employment = <1: disc=no (8.0/1.0)
| | | employment = 1<=X<4: disc=yes (8.0/1.0)
| | | employment = 4<=X<7: disc=yes (1.0)
| | | employment = >=7: disc=yes (4.0/2.0)
| installment_commitment > 2: disc=yes (72.0/19.0)
num_dependents > 1: disc=no (6.0/1.0)


disc=yes: Precision 0.744 Recall 0.970


Discrimination occurs when there are zero or one dependents
and mid to long-term loans, or short term loans to applicants
older than 23 that are either unemployed or employed since
at least 1 year.


Finally, the overall procedure for discrimination discovery
over interval-scaled decision attributes is shown in Fig. 4 as
DiscoveryI(). A further parameter is now required, namely
the threshold l such that dec(r) ≥ l denotes the negative de-
cision outcome (see Ex. 4.8). Notice that the class attribute
disc in the labeled dataset L is still nominal, binary valued.


6. DISCRIMINATION PREVENTION
Starting from a dataset of historical decision records, clas-


sification models are typically extracted with the intent to
learn and predict the decision dec(r) (the class attribute)
starting from the other attributes of a tuple r. Preventing
discrimination when training a classifier consists of balanc-
ing these two contrasting objectives: maximize accuracy of
the extracted classification model; and minimize the number
of predictions that are discriminatory. Within our frame-
work, a prediction is discriminatory if the classified tuple
is t-discriminatory, for some fixed threshold t. Why a clas-
sification model should be discriminatory? The main rea-
son is due to statistical discrimination, namely the fact that
the classification algorithm may recognize patterns in the
data where, either directly or indirectly, the membership to
a protected group is a proxy for lower performances (e.g.,
capacity to pay the loan installments). We now propose a
simple pre-processing step, orthogonal to the classification
algorithm, for tackling the discrimination prevention prob-
lem. The method consists of changing the decision value for
tuples in the training set that are t-discriminated.


No pre-processing 0.10-correction
classifier accuracy 0.10-discr. accuracy 0.10-discr.


C4.5 85.60% 4.24% 84.94% 1.07%
Näıve Bayes 82.46% 4.06% 82.33% 2.23%


Logistic 85.28% 6.61% 84.70% 0.61%
RIPPER 84.42% 5.24% 83.98% 3.94%


PART 85.20% 12.62% 84.00% 2.3%


Table 2: Discrimination prevention on dataset adult


Definition 6.1. The t-corrected version of a training set
T is the dataset obtained by changing dec(r) from 	 to ⊕ if
disc(t, r) holds.


Given a protected group and a threshold t, in order to
evaluate the effectiveness of the pre-processing method, we
build two classifiers: one on the training set T , and the other
on its t-corrected version T ′. Both classifiers are evaluated
on a test set V with respect to two measures: accuracy, and
t-discrimination. Accuracy is measured as the percentage of
correct predictions. t-discrimination is measured as follows.
Consider the dataset V where the decision attribute is set
to the prediction of the classifier. t-discrimination is the
percentage of tuples r with diff (r) ≥ t among the tuples
in the protected group with negative decision. Graphically,
we look at the value of the cumulative distribution of diff ()
(such as those in Fig. 2, 3) for the x-axis equal to t. The
overall procedure is shown in Fig. 5 as PreventionN().


Example 6.2. Consider the dataset adult from Ex. 4.7,
where the protected group consists of non-white people. By
splitting the dataset into 2/3 training and 1/3 test sets, Ta-
ble 2 shows accuracy and 0.10-discrimination for various
types of classifiers, including decision trees (C4.5), Näıve
Bayes, logistic regression, and rule induction (RIPPER and
PART). If no pre-processing correction is performed, we
can observe that the dataset of predictions exhibit a 0.10-
discrimination measure ranging from 4.24% to 12.62%. Over-
all, C4.5 exhibits the best trade-off between accuracy and
non-discrimination. If the training set is pre-processed by a
0.10-correction, all the classifiers have a modest decrease in
accuracy and a significant gain in non-discrimination. The
logistic regression model exhibits now the best trade-off.


Finally, the overall procedure for discrimination preven-
tion over interval-scaled decision attributes is shown in Fig. 5
as PreventionI(). As for discrimination discovery, a thresh-
old l, such that dec(r) ≥ l denotes the negative decision out-
come, is required as a further input. Notice that the change
of the decision for t-discriminated tuples is now implemented
by setting the decision value to a minimum l− ε that keeps
the tuple below the limit of negative decisions.


7. CONCLUSIONS
We have modelled the discrimination analysis problems


by a variant of k-NN classification that implements the le-
gal methodology of situation testing. Major advancements
over existing proposals consist in providing: a stronger legal
ground, overcoming the weaknesses of aggregate measures
over undifferentiated groups; a global description of who
is discriminated and who is not in discrimination discov-
ery; a discrimination prevention method that is independent
from the classification model at hand; an approach admit-
ting interval-scaled and ordinal attributes and decisions.







Download. The software implementing the discrimination
discovery and prevention procedures is available at:


http://www.di.unipi.it/∼ruggieri.
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