UNIVERSITA DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT TR-11-05

Constraints for Service
Contracts

Maria Grazia Buscemi Mario Coppo
Mariangiola Dezani-Ciancaglini Ugo Montanari

March 5, 2011

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: 439 050 2212726

Constraints for Service Contracts

Maria Grazia Buscemj Mario Copp,
Mariangiola Dezani-Ciancagliiiand Ugo Montanati

1 |MT Institute for Advanced Studies, Lucca, Italy
2 Dipartimento di Informatica, Universita di Torino, Italy
3 Dipartimento di Informatica, Universita di Pisa, Italy

Abstract. This paper focuses on client-service interactions disisigng be-
tween three phases: negotiate, commit and execute. Thieipants negotiate
their behaviours, and if an agreement is reached they coamditstart an exe-
cution which is guaranteed to respect the interaction setegneed upon. These
ideas are materialised through a calculus of contractstesal with semiring-
based constraints, which allow clients to choose servieds$ainteract with them
in a safe way. A concrete representation of these constnaiitit logic programs
and logic program combinations is straightforward, thuiduping constraint so-
lution (and consequently the establishment of a contracthe execution of a
logic program.

1 Introduction

Formal methods are fundamental tools to guarantee thatrtigggms we develop be-
have as desired. The classical approach is based on statjsianprograms and pro-
gram development methods are analysed in terms of theirrge&msand of the proper-
ties which have to be proved. Recently, however, networkdasmputing has added
important open endness requirements, which often make atalysis less than mean-
ingful.

An alternative approach is NCE, Negotiate, Commit, Executeere agents nego-
tiate certain desired behaviours, but without any guaeoteuccess. However, if and
when an agreement is reached (commit), under certain ¢onslé coordinated compu-
tation of the involved agents can start, which is guarante&dve the properties agreed
upon in the negotiation phase.

In the paper, we focus on the property of stuck-freedom [dBhfvo-parties ses-
sions, where if an agent is ready to have an interaction,riheabe stuck forever.
Existing work on session types [9] and behavioural consrf&} mainly focuses on a
static analysis phase, which has a yes-no answer: eitheeision can take place with
the desired properties, or not at all. Instead in our apgreawgotiation phase between
the client and the services guaranteedibstinteraction.

Here we present a simple source calculus with client andcgeprvocesses and with
an LTS semantics: the clients are recursive and can pladedssrvice calls, while
services are permanent and nonrecursive. The calculusigeterministic, with exter-
nal choices, and a client-service behaviour which allowsrfore choices is considered
better, provided they are stuck-free. A target calculuhentdefined, where clients

and sapervices are compiled to, augmenting them mathed constraint semirings],
which encode their behaviour.

Constraint semirings are semirings with an idempotenttagdoperation and a
commutative multiplicative operation. They generaliselban algebra and are equipped
with a partial ordering with 1 as maximal and 0 as minimal edatn Semiring values
model constraints: larger values are less constrainindfjptication means combina-
tion of constraints, and addition returns the lub, nameéydmaller value larger than
both arguments. Among the most relevant semirings we cartionethe fuzzy semir-
ing, the tropical or optimisation semiring, the powerdomsgmiring Namedconstraint
semirings are equipped in addition with name permutatioestpreted as free names,
which imply a notion of support, and with name restrictionglarstood in the usual way.
Named constraint semirings inherit from ordinary constisadbn the boolean semiring
interesting properties and efficient algorithms, like doaigt propagation and dynamic
programming.

In the paper we take advantage of a quite simple and stan@anead constraint
semiring: the one employed by logic programming, where taebkand signature con-
tains as many unary operations as actions and a constantdel teomination. The
semiring values are sets of assignments with Herbrand teyrall the names. How-
ever, only the assignments to the tuple of free names forthi@gupport are relevant.
Addition is union and multiplication is intersection. Restion adds all the assignments
where the restricted variable is assigned in all possibieswéalue 1 is the set of all as-
signments, and thus its support is empty, while 0 is the ersgityThe correspondence
with logic programming is quite simple: given a set of claiaad a goaP(x1,...,Xn),
its semantics in terms of our constraint system is the set tifeaground instantiations
of the goal which satisfy the clauses. The support is th§set. ., xn} or smaller. Goal
composition is multiplication, while multiple clauses the same goal model addition.
Variables appearing in the body but not in the head of a cleefs@sent restriction. In
our notation, the effect of recursive clauses is obtainedrbgxplicit fixpoint operator.

To understand our approach, let us first consider the caselisfra without nested
calls and with a single service. The source client is thenpitaad into a target client
combined with a constraint with just one support name,»sayhe constraint is thus
just a set of traces, representing the behaviour of thetclide compiled code is very
similar to the source, except that its choices are guardecthbgkconstructs, similar
to theaskconstructs of concurrent constraint programming, whicabéa the corre-
sponding continuations only if the global constraint alkdv The source service is also
compiled, yielding a constraint gnwhich represents its behaviour but no check guards
are included. The negotiation phase consists of multiglyhre two constraints, and
their result with the constraihix = y. The resulting constraint contains exactly all the
executions of the source client-service system which atetogck. If the constraint is
not 0, i.e. if it is not the empty set, the commit takes placel the execution phase can
start. Thanks to the check guards, the traces possibledaatet client-service system
are exactly those in the constraint. Notice that while thentl(service) compilation is
static, and thus it does not fit in the NCE scheme, it does nomie on the particular

1 Constraintx = y has suppor{x,y} and contains all assignments with the same ternx famd
y. In logic programming it is specified by the gaai(x, y) with the clause eq(x,x):-

service (client) partner it will be matched to. Thus the opedness requirementis here
satisfied by the possibility of introducing into the systeewrservices (clients) without
the need of any further modification.

For instance, leT = 0.01.K.0+ 0,.1.0 be a client andS= .01.K +03.K be
a service, wherél is service call® is call end,a ranges over actions and the co-
symbols have the expected meaning. The interactions dffeyel’ and S are repre-
sented, respectively, by the constraints: eq(x,01(end)) & eqx,az(end) andd =
eqy,ai(end) @ eqly,az(end)) (noting that constraints disregard co-actions). It holds
thatco d®@eq(x,y) = eq(x,a1(end) @ eq(y,a1(end) @ eqx,y) # 0, which reflects the
fact that the only successful interaction betw@eandSis (over)a;.

Let us now consider the general case of a client with nestitslaxad several ser-
vices. Services are compiled in the usual way, but theiriehes are added up. The
behaviour of the client, instead, must be represented bysti@int with several names
in the support. In fact, different service calls may not b#ejpendent: imagine that the
client in an inner call makes a choice which must be matchethbycorresponding
service. Then the client returns to the outer level and makegher choice which must
be matched this time by the service corresponding to ther @ate The two choices
may be dependent, and this requirement is represented bst&r@ot with a two-name
support. Thus the ability of the constraint system of repnéag sets of tuples of traces
(and not only tuples of sets of traces) allows us to guarasitexk-freedom for complex
client-service pairs, which at the best of our knowledgeshast been considered in the
literature by now.

An example of this kind of clients igl.a.0p.(V.8.6.8.0 +LE.p.®.0), where the
choices made by the two nested calls depend on each othéraSiependency is not
at all unusual: for instance it can arise when modelling eeltar who asks both for
two-ways flies to an airline company and for one room to anlhdtee resulting con-
strainteq(x, a(3(end))) @ eq(xz, B(y(end))) & eq(x1, a(p(end) @ eq(xz, B(k(end)),
with support{xi,x2}, obliges the run of each service call to be coherent with theof
the other.

In the paper, the source and the target calculus are thertarit&ections 2 and
3, respectively. Section 4 presents the compilation froafitist to the second calculus
and states its soundness and completeness. Section 5 sbvis hse the constraints
in order to get most liberal interactions. Lastly Sectioren@ 7 discuss related papers
and some future developments. Proofs are only sketched.

2 Source Calculus

In choosing the source calculus we were guided by the remein¢of having a minimal
number of process operators to represent one client wisi€dgservice calls and a set
of available services offering finite interactions. Forstihéason communications are
atomic actions, all choices are external, client proceaesecursive and can do nested
calls, services are permanent, non recursive and eacimaestd a service can accept
exactly one call.

Let AL be an infinite set of names (ranged overdo, ...) representing actions
and4\(be an infinite set of disjoint co-names (ranged oveab, ...) representing co-

Source client processes
P=TP | aP | P+P | recpp | mP | p | O

Source service processes
Q=0aQ | Q+Q | ®

Table 1. Syntax of source client and service processes.

actions, with as usual = a. The syntax of client and service processes is the content
of Table 1. For the sake of readability we assume that cliestgsses offer co-actions
and service processes offer actionss the external choicé]l is service call an@@, ®

are end of call for client and service processes, respégtive

Recursive processes cannot have nested calls (nameligeseralls cannot occur
under the scope of theec operator). We will consider recursive processes modulo
fold/unfold, i.e. we identify the processesc p.P andP[p := rec pP].

A client is a client process of the shap&P. A client is balancedif each O is
followed by a correspondirg in each branch. We u§eto range over balanced clients.

A serviceis a service process prefixed by (representing call acceptance), i.e. it
has the shapél.Q. We useSto range over services.

We consideisystemdgormed by one balanced client and a Setof available ser-
vices. The interaction between a client and a service iesgmted by boxing the paral-
lel composition of the client process which follows the eegith the interacting service
process (see rules-call) in Table 2). Therefore by reducing a balanced client we will
get a box containing either the parallel composition of ardliprocess and a service
process or the parallel composition of a box and a servicegs We get then the
following syntax for system¥':

vi=T | U] |o U:=P[Q | U]|Q

Since we want to compare reductions in the source and in thettaalculus we
give the operational semantics of both calculi via labettadsition systems. We say
that the proces® exhibits the service endotationQ |) if either Q is ® or Q is the
sum of two processes one of which exhibits the service end.

Table 2 gives the reduction rules for the source calculugreM/ denotes a client
process, a service process, or a Bog AL UA[, € {[,B}UANUAN andy € {[,]} UA.
The symmetric rule with respect tp has been omitted. Rules-up) terminates the
execution of a call leaving the client process which follahis call one nesting level
up.

Leto be a strings off[,]} UA(. We defineV == V" if

— eithero =g andVv =V’
— oro = Yo’ andV LI AV}

We writeV | ™ if 3o such that/ == 0.

0.Q€ Ss

e (scall) AW Aw (s-action) EPE P (s-end)
OP—[P|Q
w2 w _ PLP Q%tQ | _
— (s-choice & o (srinteraction)
W+ Wp —— W/ PIR—PQ
PEP Qlx) u-u (sbox VARV (o)
——— (sup sbox) ———p——— (s-paralle
PIQ 5P TN vie-LviQ

Table 2. LTS for the source calculus

3 Target Calculus

The target calculus enriches the source calculus by intiadwconstraints, which are
meant to prevent clients and services from initiating iatéions that will eventually
lead to deadlocks. The constraints we adopt coincide withdlused in logic program-
ming and form anamed constraint semirif§], which is a constraint semiring [2] along
with a notion of relevant names that allows plugging coristsanto languages having
an explicit concept of names. Hereafter, we use the ternialobg’ rather to ‘name’ in
conformance with the standard notation of logic prograngmBelow we introduce the
formal definitions which are used throughout the paper. \iéx tte [5, 2, 1] for a more
detailed treatment.

3.1 Constraints

Let 7 be a set of variables, ranged overdy,z Assume a signatur® consisting
of monadic functions corresponding to actions plus a canetad(which expresses the
successful end of a process):

> ={a(.),endla e A’}

A term is any expression that can be obtained frohandZ; a ground term is a term
that does not contain variables. The Herbrand Univéfseanged over by, is the set
of ground terms ovekE. A ground assignment is a total functisthat maps variables
to ground terms, namely: V — #.

A constraintis a set of ground assignments and we&lgtanged over byg, be the set
of all constraints. The restriction operatbrover a constraint makes a variablelocal
in c, and is defined asx.c = {slh/x]|h € #, se c}. Of course, the ordering @x’s in
a constraints is irrelevant. Thus, we can convenientlyastX in place ofaxy, ..., Iy,
for X = {x1,...,%n}. The supportof a constraint sup(g) is the minimum seti’ of
variables such thate W implies thatdx.c # c. Intuitively, the support of a constraint
c contains all the variables which amgevantfor c. The notion of support corresponds
with the concept of set of free variables in process calt\li.abbreviate the notation
for constraints by disregarding variables which are ndté@dupport. Hence, Bq(x,y)
we write the constrairt with support{x, y} that contains all assignments with the same

ground term fox andy, namelyc = {s1,,...} such thas = [hi/x,h; /y,h{/z....] with
z¢ supgc) andz # x,y for all ze V. Similarly, byeq(x,end) we denote the constraint
consisting of all the assignments that mafo end The set of constraints’ can be
proved to be a named constraint semiring [5] by taking produsume, 0, and 1 as
follows:

- chdd=cuUd,

- ced=cnd,

— The bottom element O is the empyset;

— The top element 1 is the constraint with empty support.

We also define a recursive operatecc over constraints. Recursive constraint vari-
ablescy contain (except that in the binding construct) an extraalde that is used
when unfolding the constraint. All occurrences ot@in ¢ are bound byrecc in
reccc.c, independently of the variable appearing in the subsdRptursive constraints
are folded/unfolded using the following equation:

reccc.3Xc=3X.c[Ci/cy, | iel]

with ¢; = reg, c.(X)c[Yi/x] andy; for i € | the variables occurring as indexeswmin

¢. The (solution of the) recursive constramtyc.c can be defined as a least fixpoint,
which exists because the operations on constraints arenaons and are defined over
a domain that is a lattice.

It can be easily proved that constraints coincide with tleeigd semantics of logic
programs [12]. As an example, consider a recursive constizt amounts to assigning
to a variablez an arbitrary number adfiz’s followed byaz and, subsequently, bgnd),
namely:

C = rec,c.3xy, Xz, y1,Y2. (€A Z 1) ©eqzy:)) ® eqxy, 01(X2))®
eq(x2,end @ eqy1, dz(y2)) ®cy,

The logic program correspondingads given by the godt(z) along with the following
clauses:

F(x1) - Gi(xa)
F(y1) - Hi(ya)
G(ai(x2)) - G(x2)
G(end.
H(az(yz2)) - Ha(y2)
Ha(y2) - F(y2)

3.2 Syntax and Semantics

The syntax of target calculus (see Table 3) is analogousteythtax of the source cal-
culus apart for the introduction in the target processesonétaints € C, as defined
in 83.1, over possibly restricted variables. A servicesialx) includes the ‘root’ vari-
ablex of the constraint representing the interaction offeredhgydlient to the invoked
service. The processheck ¢;1.P1,check C,.P2> generalises the external choice by
evolving to the procesB; if ¢; ® ¢ # 0, with c the current constraint store ang- 1, 2.

AKkin to recursive constraints, recursive processes aeddsorated with a source
process recursion varialpeAll occurrences ofy in R are bound byeg,pP in rec,pP.R.
We identify recursive processes via the following foldidfequation

rec,p”.(X)c | R= (X)c | R[Pi/pf i € 1]
whereP; = rec,, p.(X)c[Yi/x| | R[Yi/x| andy; for i € | are all the variables occurring as
indexes ofpP in R.
Target client processes
P:=0(x).P |@.P | (check c1.P1,check ¢p.Pp) |pk|recpP.R|®.P|0 R:=(X)c|P

Target service processes
Q:=0Q|Q+Q|x
Table 3. Syntax of target client and service processes.

(X)d|0(x).QeS; cod#£0

t-call c E.PEC P (t-en
- (t-call) |
c|Ox).P— (X)[cad|P|Q]
cla.P-%c|P (t-actions) a.Q = Q (t-actions)
clP 2w c®G #0 Q--Q ,
5 (t-check ———5—— (t-choice
C| check €;.Py,check ¢p.Pp — W Q+Q — Q
clp-LclP QLQ clP2clP Qlg
a (t-interaction) (t-up)
c|PlQ-Sc|P|Q c|P|Q] c|P
u-Lu ebox v v (el v v sty
t-box t-paralle t-restr
1] via VY A T~ U W
U] — [U/] VIiQ— \V4 |Q X))V — (X)V/

Table 4.LTS for the target calculus

A target clienthas the shapgX)c | C(x).P. We use€T to range over target clients.
A target servicehas the shapex)c | [CJ(x).Q. We useS to range over service3arget
systems/ are the same as source systems apart for the fact that tHeepeoanposi-
tion of a client and a service includes a constraint and tisatt A of variables can be
restricted in a box:

Ut=c|P|Q | X)[U]|Q Vi=T | X[| X)c|o

Assume a set of available target servi€gesThe labelled transition system is re-
ported in Table 4, wherg¢ € {[W}UA, ¢ € {[,]} UA., Q | is defined as for source

processes)V stands forc | P or (X)[U], and the symmetric rule with respecttohas
been omitted. The rules are the same as their homologousimities source target,
taking into account that systems contain constraints. Rutbeck activates a process
continuationP; only if the corresponding guard is consistent with the c@ist store
(conditionc® ¢; # 0).

Below we characterise the shape of the initial state of th®, Which plays a key
role in our theory as the existence of the initial state isméaguarantee absence of
deadlocks. To this purpose, we first define a functi@r) that applied to a target client
gives a sely of sets of variables which start the service calls. Each &&t @ontains
the variables corresponding to a different execution @dtite thaty cannot be infinite
because recursive clients cannot have nested callsY Focollection of sets, we let
{XpuwY={{xpuz|ZeY}.

I(O(x).P) = {x}w I(P) I(a.P)=I(P) 1(0) = {0} I(®.P)=1I(P)
I((check c1.P1,check C2.P2)) =I1(P1)UI(P2) I(pg) = {0} I(recpP.R) = {0}

Assume a clienT and a set of available servicBs Suppose

T = (X)co|Ox).P St ={(X)ci | Ox).Qi[i€l}
[(O(x).P) =Y o = Dzey Qzez Dicl (Xi) 6 ® eqzx)

If co®@ dy # 0 thenstart(T,St) = (XUUzey Z)co @ dy | O(X).P is theinitial state of
the labelled transition system in Table 4.

The consistency chealy ® dy amounts to say that for at least a Zet Y, every
service call corresponding toac Z can successfully interact with a serviceSp
Remark that rult-call) is applied withc being the product o€y, the constraint of
the client, and the constraintls of services interacting with service calls. Hence, the
conditionc® d # 0 not only ensures that the interaction with the actual serwiill be
successful, but also that any subsequent service call eitidde not to lead to a stuck
state.

We defineV =% as expected. We say thtis satisfiedif it is (X)c | 0 for some
X, c. We defineV ||\ MUstif eitherV is satisfied or for alb, V/ such thal/ == V’ we have
VI leust.

4 Compilation

We map the source calculus into the target calculus by adtbngtraints which take
into account the interactions offered by the processes dllows us to model the ne-
gotiation phase which precedes the choice of a service.

The compilation of services (Table 5) is simple, since th@ay of source and tar-
get processes is the same, when forgetting constraint®atréttions. This compilation
adds an appropriate constraint for each process consthuctotroducing a fresh vari-
ablexwhich is equated tendfor &, to a(y) for a.Q (wherey is the variable introduced
by the compilation 0of), to x; or xz for Q1 + Q2 (wherexy, xo are the variables intro-
duced by the compilation dD;, Q2, respectively). Lastly the compilation of a service
00.Q uses the variablg introduced by the compilation d® to get((x).Q, whereQ

{{[&]}x=eqx.end | =

{[Qly = (X)c| Q implies {fo.Q}x = (XU{y})cwed(xa(y)) | a.Q

{[Qiba = (X1)er | Q1 and{[Qz]}x, = (X2)c2 | Q2 imply {[Q1 + Qalbx =
(X1UXU{xi}U{x2})c1®@Co @ (eq(x,x1) D eqx x2)) | Q1+ Q2

{{[QBx = (X)c| Qimplies{[0.QJ} = (XU{x})c[D{x).Q

Table 5. Compilation of services

is the process obtained by compiliqy All variables occurring in constraints are re-
stricted in the resulting target service.

[O]ai1 =0

[Pl cons(x) = <% | PX

[Ple = (X)c| P implies [&.P]cons(xs) = (X)c@edx,end) | =.P

[Plleons(y.) = (X)c| P implies[[@.P]cons(x) = (XU {y})c@eqx a(y)) |a.P
[Pllcons(x.e) = (X)c| P implies

[rec pPlleons(xs) = reckeP.((X)c) | recepP.(X)cfYef; [i€1]|P)
wherey; for i € | are all the variables occurring as indexeg®fn c.

[Ple, = (Xa)er | Prand[[Pe]l,, = (Xz)cz | P2 imply
[PL+Pa, =
(X1 UX2 UX(£) UX (£2)})er @C2® (EQ(L,41) DEQ(L, 7)) |
(check EQ(¢,¢1).P1,check EQ(!, £2).P2)
wherel = F (¢1,02)

[[Pﬂcons(xf) = (X)C| P implies [[EPHK = (X)C ‘ E<X>P

Table 6. Compilation of balanced clients

The compilation of clients (Table 6) is more complex, sintient processes have
nested calls, recursion and check expressions.

In order to deal with nested service calls we use a stackesepted as a lishésting
list), recording the variables which are the roots of the comgs @ the encoding of the
nested service calls which are still open and suspendedifandheed to be closed); the
head of this list contains the variable corresponding tatirestraint root of the current
call. We denote byil the empty list, by¢ an arbitrary list of variables of and by
cons(x,¢) the list with headk and tail¢. The nesting list 00 isnil. For an interaction
a.P the nesting list is obtained just replacing the fresh vaeiaio the variabley which

cons(X, F (¢1,05)) if {j = cons(x;,¢]) i=1,2

cons(x, F (€1,x)) if {1 =cons(xq,£}) andly = x

cons(X, F (€y,x)) if lp = cons(xp,£,) andly = x

F(£1,02) =< nil if /1 =/{¢,=mnilorf; =nil andl, =x Wwherexis fresh
or/p =nil and/; =%

* if f]_ = fg =%

undefined otherwise

eqxq, X2) REQ(],05) if i = cons(x,4) i=1,2

EQ(fl,fz)Z 1 if (4 =1V0=mnil oréy=x0rfly; =x,
undefined otherwise
X(nil) =0
X (%) =0

X(cons(x,£)) = {x}UX(¥)
Table 7. Auxiliary functions for the compilation of client choices

is the head of the nesting list in the compilation of prod@sehe compilation of the end
X of a service call corresponds (being the compilation bottgojto the resumption of
the interaction with a service after the end of the nesteetaation. Then we push a
new fresh variable on the nesting list corresponding todkedction of the nested call.

When compiling a recursion variable the list of nested seri$ not yet known
(being the compilation one-step) and so is replaced by theeploldex. Going on in
the compilation process, however, we check (via the fundfi@ defined in in Table 7)
that the nesting lists of the suspended services in all besof the recursive client are
consistent (recall that no new service can be opened ingigeuasive processes).

In the compilation of a choice we must assure that the susgkservices call will
be resumed safely in the different branches (which couldiredlifferent choices also
in the paired services). This check is performed using tmetfan 7 (see Table 7)
which creates a new fresh nesting list starting from theingdists in the compilation
of the two branches. The application$fto the lists/1, ¢5 is defined only if eithefy, />
have the same length or the shorter list terminates wittwhen defined the value of
F (£1,£2) is a list ofn fresh variables, wheneis the maximum of the lengths éf, /5,
terminating withx if both /1, /> terminate withx and withnil otherwise. Note that in
a recursive process i can occur along a path ending in a recursion variable.

The compilation of a service calll uses the head variable of the nesting list to
compile the call and continues with the tail of the nestisgdioing then one level up in
the call nesting. Note the compilation of a balanced cliesil as final nesting list.

The process resulting from the compilation of a recursioratde is the parallel
of a constraint variable and a process variable. This isremesn compiling recursive
processes we need to generate both a recursive “globaltreartgtaking into account
all possible unfoldings of the process) and a recursivege®icluding a “local” copy
of its constraint (associated to each specific unfoldingg @lobal recursive constraint
characterises the process behaviour and is used in segfohia contract with the set

10

Fig. 1. Constraint store of Example 1

of considered services. The local copy of the constraingaich recursive call is used
instead to keep track of the overall solution in #teeck branches. In the local copy
of the constraint the occurrences of the recursion comstvairiable (which are free)
can be replaced by 1 since the consistency with the globatisnlis assured by the
replacements of the process variables.

The compilation of a choice needs to check if one or both ofwhebranches agree
with the interactions offered by services. This is accosid by requiring that the list
F (¢1,¢2) can be equated 1 or to ¢> considering that can be equated to any list (see
the definition ofEQin Table 7).

All fresh variables which are introduced by compilation estricted in the result-
ing process, but for the variables which occur in the sereédks. In order to restrict the
variables of nesting lists in the compilation of choices we the functionX defined in
Table 7. We show below two examples of compiled clients.

Example 1.The compilation of the source cliefta.0B.(y.8.0.8.0 + L E.p.&8.0) is
the following target client:

(X0, Y0, V1, Vo, t1, to, 21, Z0, W1, Wo) €G(X1, 0 (X0)) @ €q(Y1, B(Yo)) ®
(€d(xo,t1) ® €qYo, V1) & €q(Xo, W1) © €q(Yo, 1)) © €g(V1, Y(Vo)) @ €q(Vo, end)©
eqt1,8(to)) © eqto,end) © eq(z1, U(z0)) © €2, €nd) © eq(wi, p(Wo)) © eqWo,end) |
O(x1).a.0(y1).B.check eqXo,t1) ® eqyo, y1).Y.®B.8. 8.0,

check eq(Xp,W1) ® eq(Yo,z1).LX.p.K.0

which can be simplified to

1,Y1)edx1,a(Xo)) ® eq(y1, B(Yo)) @
Xo,8(end)) ® edyo,y(end)) & eq(xo, p(end)) © eqyo, H(e 0)
(x0).0.(yo)-B.check eq(xo, 5(end)) ® eqyo, y(end)). VE3E
check eq(Xp, p(end) ® eq(yo, l(end)).f.

(x
(e
O

In Figure 1 we give the graph representation of the condteadme of this client.
Each node represents a variable and each constraint is ledtgl a hyperedge con-
necting the variables involved in the constraint. Byve abbreviate the constraint
c=-eqXo,t1) ®eqyo,Vv1) D eqxo,W1) ®eq Yo,z). The remaining constraints are equal-
ities: by placing a name on the right of an hyperedge we aldeethe constraint that

11

Client

0 e @ N : endi

Service

Fig. 2. Constraint store of Example 2

fuses the variable on the left to a function correspondirtab name, possibly applied
to the variable on the right. For instance, nadrstands for the constraietts, (to));
similarly, the top-most occurrence ehddenotes the constraiat|to,end).

Note that this client can safely interact, for instancehvaitset of (source) services

including{C.a.0.x, O.B.(Y.&K +V.X)}.

Example 2.Compiling the recursive proceBsrecp. (@.p+ B.X.0) we get, after some
simplifications:

rec,cP. (2) (eq(x, a(z)) & eq(x, B(end) & cf|
[.(x).recxpP.(2)(eq(x, a(2)) & eq(x, B(end))) _
(check eq(x,0(2)).0.pY, check eq(x, B(end)).B.0)

The recursive constraint after two unfoldings and some Kifitgitions becomes:

¢ = (zZ)(eqx,a(2)) eqx B(end)) ® (eqza(Z)) & eqz B(end))®
recycP.(Z')((eqZ,a(Z")) ® eqZ,B(end)) @ ch)
and the corresponding process:
O(x)(2)(edxa(z)) @ eqx, B(end)) |
(check eq(x,0(2)).0.
(Z)(eqza(Z)) ©eqzp(end)) | _
(check eqz,a(Z)).0.recypP....., check eqz B(end)).p.0),

check eqx,3(end).p.0)

12

If the service(y)d | O({y).a.p.®, where
d = (o, w1) eq(y, a(wo)) eq(wo, B(w1)) © eq(ws, end)

is available, then the constraifiy.c® d @ eqx,y) is equal toeg(x,a(B(end))).

This solution is determined only by the (proper) unfoldirfgifee recursive con-
straint of the client and the constraint of the service. Qtheesolution is determined
the constraint of each unfolding is used only to assure thecbchoices in theheck
branches. These constraints are propagated via the umdaddithe recursive process
and so no unfolding of the outermost recursive constrainemsded in the process re-
duction.

Figure 2 depicts the constraint store representing a cotmehiteen the recursive
client and the service. We represent recursive constragitsoxed constraints with a
connection to the variable that is the index of the recursperator. Bye we abbreviate
the constraints of the shape= eq(uy, u2) & equy, uz), whereu; is the variable on the
left node andl,,us are the variables on the right nodes.

It is easy to verify that our compilation is successful fdrsalurce clients and pro-
cesses, but for the case of unbalanced clients.

Theorem 1. Each balanced client and each service can be compiled.

More interesting (and more complex to prove) is the fact tiie¢n a compiled
client and a set of available servicgs the labelled transition system in Table 4 either
is empty or always terminates. We start with some definitions

Definition 1. 1. A source system V igachableéf T == V for someo and some
source client T.
2. A target systerv is reachabléf start(T,S;) = V for somec and soméeT ob-
tained by compiling a source client.

Note that each source systémwhich is not a client or satisfied has the shape
V =[...[[P| Qo]|Qi]...Qn] for somen > 0. Similarly each target syste which is
obtained by reducing the compilation of a client and it is satisfied has the shape

V = (Xn)[(Xn=1)...[(Xo)[c | P | Qo]|Q1]...Qn]. This justifies the mappings defined in
Table 8.

Lemma 1. If Visreachable and not satisfiedonstraint(V) =c¢, client(V) =P,
depth(V) = n, service(i,V) = Qi for 1 <i < n, then there are B, x;,y; such that
P= [[P]]cons(xo,...cons(xn,nil))1 Q= {[Qi]}Yi' andc<x =yifor1<i<n.

Proof. By induction on reductions.

Lemma 2. If V is reachable and not satisfiedpnstraint(V) = ¢, client(V) =P
andservice(0,V) =Q, then

— P =0(x).P" implies that there iX)d | 0(x).Q € S such that @ d # 0;
- P=a.P impliesQ % Q' for someQ’;

13

constraint((X)c|0) =c¢
constraint(c|P|Q) =c
constraint((X)[U] | Q) = constraint(U)
constraint((X)[U]) = constraint(U)
client(c|P|Q) =P
client((X)[U] | Q) = client(U)
client((X)[U]) = client(U)
depth(c|P|Q) =0
depth((X)[U] | Q) = depth(U)+1
depth((X)[U]) = depth(U)
service(0,c|P|Q) =Q
| i = deptn((X)U]).
service(i, X)[U]1 Q) = {serv1ce otherwise

service(i, (X = service(

Table 8.AUX|I|ary mappings

— P=wx.PimpliesQ ..
— P =check ¢1.P1,check Cp.P;implies that c» ¢; # 0 for some i and:

e eitherP; R V' for someV’;

o orPi % P’ andQ % Q' for somea, P, Q';
e or P 2. P’ andQ | g for someP’.

Proof. By Lemma 1 we have® = [P]lcons(x), Q = {[Q]}y andc < x =y for some
P,x,¢,Q,y. The proof follows by looking at the compllation.

Theorem 2. If T is obtained by compiling a source client asdart(T,S;) = v,
thenV |must

Proof. First of all notice that there are no infinite computationscs services are not
recursive, and the constraint of a client can be satisfiegunfblding its recursive calls
a finite number of times. Therefore we only need to showhiatnot stuck. The proof
is by cases orlient(V) using Lemmas 1 and 2.

Comparing the reduction rules in Tables 2 and 4 it is easy tilyvhat the reduc-
tions of a target client obtained by compiling a source ¢l@respond to reductions
of the source client itself. We denote py| the source system obtained from the target
systemV by erasing all constraints and restrictions and by reptachrecks by sums,
see Table 9, wher¢/ denotes a compiled client or a compiled service.

Theorem 3. (Soundness) I§; is obtained by compiling the source serviceSgand
start([T],St) == V, then T== |V/|.

The aim of the compilation is to avoid deadlocks, but alsor&serve all successful
interactions. This is the content of the following theorerhpse proof requires a precise
analysis of the relations between the reduct of a targeesysind the compilation of
the reduct of a source system.

14

|O(x).P| =0.IP|

A.W| =AW
|(check c1.P1,check c3.P2)| = |P1|+|P2|
| pY| =p
[reckpP.R| =recp|R|
[.P| = X.|P|

0| =0

|| =&
|(X)c|P| = |P|

|Q1+ Q1 = |Qa|+]Q2|
I0(x).Q =0.Q|
lc|P[Q] = |P[]]Q|
I(X)[U] Q] = [(X)[V]| Q]
|(X)[U]] = [|U]]

Table 9. The "forgetting” map |

Theorem 4. (Completeness) I8 is obtained by compiling the source servicesSef
and T==V and V|™®, then there i3/ such thatstart([[T],St) = V and|V| = V.

The remaining of this section is devoted to the completepessf. Table 10 defines
a translation from source systems to target systems.

{PIQ}}r = XqUXe) cr@cr@eqxy)@d;p) [P |Q
where[[P]cons(x0) = (X1)c1 | P and{[Ql}ly = (X2)c2 | Q
{{U]1Q} = XUX) ez @eqx,y) | [U]|Q
where{{U }}cons(x0) = (X1)C1 | U and{[Qf}y = (X2)c2 [Q
{{T }}ni1 = start(T,St) whereT = [T]ni1
{0} ni1 =1]0
Table 10.From source systems to target systems

Lemma 3. If Vis reachabley —* V/ andconstraint(V) =c, thenconstraint(V’') =
3Z.c® ¢ for some Z ¢’ where ¢+ 0.

Proof. By cases on.

Lemma 4. LetV ™. Thenconstraint({{V }}ni1) # 0.

Proof. If V |/™ then 3o such thatv == 0. The proof is by induction om using
Lemma 3. Note thatonstraint(1|0) = 1.

We define the equivalence between target systems as the minimal congruence
generate by the following axioms:

15

(XU Q] = (X)[[U] | Q]
X)[U] & (XUX)[U] if X' NFV(U) =0
c|P~3Zc|Pif ZNFV(P) =0

Note thatV ~ V' impliesconstraint(V) # 0 if and only if constraint(V') # 0.

Lemma5. 1.V = {{V}}.i1 implies|V|=V.
2. V~V andV -% V1 imply V' v, Vi andVi = V.

Lemma 6. If V - V’, constraint({{V'}}ni1) # 0 and constraint({{V }}ni1) #
0, then{{V a1 —= V' and {{V' Hu1 ~ V.

Proof. By cases onp using Lemma 2.

We prove a slightly different version of the completenesotlem, which immedi-
ately implies the original version by Lemma 5(1).

Theorem 5. (Completeness) If; is obtained by compiling the source servicesSef
and T==V and V{™, then there isV such thatstart([[T],S;) = V andV ~
{{V i

Proof. By induction ona. The base step is straightforward.
As for the induction step assuriie=—=V Y.V andv’ M, Then alse/ ||M&, By in-

duction hypothesistart([T],St) == V whereV ~ {{V }},:1 is reachable. By Lemma
4 constraint({{V}}ni1) # 0 andconstraint({{V'}}ai1) # 0. Therefore we can ap-

ply Lemma 6 to gef{V }H i1 YLV whereV” & {{V'}}ni1- Then we conclude using
Lemma 5(2).

5 Optimised semantics

In the previous Section we have shown that the semanticedétiyet calculus ensures
stuck-freedom provided that for each service call of a tltbere is a service which
is able to complete an interaction with the client succdlssfNevertheless, during a
client-service negotiation, it is desirable to have a measetect the services that offer
more choices to the client (considering all choices equeatisfactory), among all ser-
vices which can successfully complete an interaction. proeperty holds for the target
LTS only if there is a single service. By contrast, in the gahease in which there is
more than a ‘complying’ service available, the target LTegino guarantee on this
respect. For instance, I&t= 0.(d.®8.0+ B.®.0) be a client an;, = 0.(0.8 + B.X)
andS = [.(0.x + y.)) be two services. According to the target semantics ISth
and$; can be selected, as none of them would lead to a deadlockriNeless S, is
somehow preferable as it additionally alloWso exhibit actiorB. Clearly for the client

0.(0.®.0+V.K.0) the services; is better.

16

We define aroptimisedLabelled Transition System that is obtained from the LTS
given in Table 4 by replacing rulg-call) by the following rule:

cod#£0andAX)d | {x).Q €S s.t.
cod#£0andced<ced

¢|Tx.P -5 (X)cwd|P| Q]

(X)d | OXx).Q € $

(t-call’)

We denote by= reductions in the optimised LTS.

Rule (t-call’) ensures that a serviceis selected if it isone of the bespossible
services, namely such that there is no other service whignsofhesamesuccessful
interaction paths df and some more. Clearly in general we can get incomparable con
straints, like for example for the cliefit = 0.(T.(I=.0+ px.0) + B.8.0+¥.%.0) and
the service§ = 0. (a.)LB + B.®+Y.K) andS; = O.0.(Ux + px). Note that the client
T’ has 3 successful paths choosing ser@gand only 2 successful paths choosing ser-
vice &, but these paths are incomparable. In such casestral!l’) chooses in a non
deterministic way.

We prove that the new target semanticgpgimal, in the sense that by choosing one
of best services at each service call we obtain a set of &srtfiat guarantee the same
interactions with more choices to a client. For simplicity @onsider onlyunambiguous
source processes, i.e. processes whose sums start withfterert actions (modulo
commutativity and associativity of sums).

Theorem 6. If T is obtained by compiling a source client asdart(T,S;) =V,
then there is n&’ such thastart(T,S;) = V' andconstraint(V) < constraint(V').

Proof. Remark that the condition of non ambiguity assures ¢haniquely determines
the choices performed by the applications of riikehecKk. So the only non determin-
ism comes from the applications of rufecall) and(t-call’), which are also the only
rules which change the constraint. The result then folloasifthe observation that rule
(t-call’) always maximises the constraint of the resulting system.

6 Related Papers

Our notion of stuck-freedom is taken from [15]: there are nessages waiting for-
ever to be send or sent messages which are never receivaedpropierty is crucial in
communication centred programming.

The most common calculi used to model communicating presem® session types
and behavioural contracts.

Sessions and session typésst introduced in [16]) are built omtcalculus: the
key idea is that channels can be used to send and receivegasssadifferent types
following a fixed communication protocol. We refer to [9] add’] for overviews.

Behavioural contractare CCS-like processes which describe the global communi-
cations between clients and services. Many recent papeus fim the compatibility be-
tween clients and services and the safe replacements afe&rifhe necessary control
on communications is achieved by explicit interfaces [filfgring [8], orchestration
[14]. A companion research line develops choreographiesdivice composition [13].

17

To the best of our knowledge, in a client-server contextdea iof using constraints
for negotiating which interactions to choose, hence angjdieadlocks, is novel.

Named constraint semirings have beed originally proposdtdeaunderlying struc-
ture of the cc-pi calculus [5], a process calculus for madglagreements on non-
functional parameters in a service oriented scenario. @&tget calculus we have in-
troduced in this paper is close in spirit to the cc-pi calsulexcept for the fact that
cc-pi adopts a communication mechaniana pi-calculus while the primitives of our
target calculus are meant to model two-party sessionsr@@jgmts a variant of the cc-pi
calculus in which the non-deterministic choice is replabgdn operation that allows
selecting an action if the corresponding constraint hasaaifyrover the constraints of
the alternative branches. Though priorities are assigolaifing different criteria, the
optimised semantics we have proposed is inspired by theiwea cc-pi calculus.

Named constraint semirings have been defined as an extefsgonstraint semir-
ings with a notion of relevant names. C-semirings [2] allasfiging soft constraints,
namely constraints which do not return only true or falsd, hare informative val-
ues instead (e.g., degree of preference, cost), thus ertppdradigms like Constraint
Logic Programming or Concurrent Constraint Programming4] a version of the Soft
CCP has been used for specifying SLA negotiations, bagiaéth the same goal of the
cc-pi calculus.

7 Conclusion and Future Work

In the paper we have augmented a client-service calcullssuitable constraints. A
run time combination (multiplication in the simple case§)lent and service con-
straints guarantees that all and only the stuck-free iotienas are possible. The con-
straints are exactly those of logic programming, and indamncrete representation of
our constraints with logic programs and logic program camahions is straightforward.
This property is comfortable from a theoretical point ofwjsince logic programs are
well understood, but it is now appropriate to ask if it migktuseful also from a prac-
tical point of view. We did not study the issue, which is odésthe scope of this paper,
but we can say that asking for satisfaction of the combinezhtkervice constraint
would be perfectly possible in any logic programming impégrtation, which would
return an example of stuck-free interaction. Efficiency Imidepend on the exact way
in which clauses are listed and parallel goals expandedeMerit might be possible to
devise an efficient algorithm (e.g. factorizing constragatd matching them top down
breadth first) and to build a metainterpreter implementirggaigorithm.

In the future, we plan to generalise the current target ¢addoy exploiting the for-
malism of Soft Constraint Logic Programming by Bistare\lipntanari and Rossi [3].
In that paper, the ground semantics of a logic program (a@udbket of clauses) is not
a set of ground assignments of the free variables of its goékather a function from
ground assignments to values of (another) constraint sggnirhese values could give
a measure of how acceptable the assignments are. Suclhofusictomputed pointwise,
form again a constraint semiring, and thus the formal treatrturns out simple and el-
egant. In particular the three semantics of logic programgrf@perational, denotational
and model theoretical) can be defined also for soft constlagic programming and

18

proved equivalent. Specifically, in the context of the pmegmper a particular client-

service computation would not be only possible or impossiblit it could be assigned
an acceptance weight, which might itself be structured bgsueng the quality of ser-

vice obtained in the interaction. For instance these weigbtild be taken into account
in the reduction rulest-call) and(t-choice in order to allow only executions which
maximise client’s satisfaction.

In a different direction we will extend both source and tarcgdculi with internal
choices in order to model interactions in which one paréinigakes one branch inde-
pendently from what is offered by the other participant.a@iigto avoid deadlocks in
presence of internal choices we need to rethink the conmpilaf clients and services.

Lastly we are interested in considering how to apply our appih to model inter-
actions of more than two participants, taking inspiraticmf [10] and [7].

19

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

S. Bistarelli and F. Gadducci. Enhancing constraintsipudation in semiring-based for-
malisms. INECAI'06, volume 141 ofrontiers in Artif. Intel. and Applic.pages 63-67. I0S
Press, 2006.

. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-lothsenstraint satisfaction and opti-

mization. Journal of the ACM44(2):201-236, 1997.

. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-lothsenstraint logic programming:

syntax and semanticACM Transactions on Programming Languages and Syst28(s%):1—
29, 2001.

. S. Bistarelli and F. Santini. A nonmonotonic soft coneatrconstraint language for SLA

negotiation. INCILC’08, volume 236 oENTCS pages 147-162. Elsevier, 2009.

. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-balsejuage for specifying service

level agreements. IBSOP’07 volume 4421 of NCS pages 18-32. Springer, 2007.

. M. G. Buscemi and U. Montanari. Qos negotiation in seremaposition.Journal of Logic

and Algebraic Programming30(1):13-24, 2011.

. L. Caires and H. T. Vieira. Conversation typeSheoretical Computer Sciencd11(51-

52):4399-4440, 11 2010.

. G. Castagna, N. Gesbert, and L. Padovani. A Theory of @atstfor Web ServicesACM

Transactions on Programming Languages and Syst8i<2009. article n.19, pages 51.

. M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions arnss&m types: an overview. In

WSFM’'09 volume 6194 of NCS pages 1-28. Springer, 2010.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asyodous session types. In
POPL'08 pages 273-284. ACM, 2008.

C. Laneve and L. Padovani. The must preorder revisitedalgebraic theory for web ser-
vices contracts. ICONCUR’07 volume 4703 o£.NCS pages 212-225. Springer, 2007.
J. W. Lloyd.Foundations of Logic Programming, 2nd Editio&pringer, 1987.

M.Bravetti and G. Zavattaro. A theory of contracts fapsy service complianceMathe-
matical Structures in Computer Sciend®:601-638, 2009.

L. Padovani. Contract-directed synthesis of simpléestrators. lCONCUR’08 volume
5201 ofLNCS pages 131-146. Springer, 2008.

S. K. Rajamani and J. Rehof. Conformance checking forefsaaf asynchronous message
passing software. I@AV’02, volume 2402 o NCS pages 166—179. Springer, 2002.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-baketyuage and its typing system.
In PARLE’'94 volume 817 oLNCS pages 398-413. Springer, 1994.

V. T. Vasconcelos. Sessions, from types to programnagingdagesEATCS Bulletin2011.
to appear.

20

