
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-11-05

Constraints for Service
Contracts

Maria Grazia Buscemi Mario Coppo
Mariangiola Dezani-Ciancaglini Ugo Montanari

March 5, 2011
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Constraints for Service Contracts

Maria Grazia Buscemi1, Mario Coppo2,

Mariangiola Dezani-Ciancaglini2, and Ugo Montanari3

1 IMT Institute for Advanced Studies, Lucca, Italy
2 Dipartimento di Informatica, Università di Torino, Italy

3 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. This paper focuses on client-service interactions distinguishing be-
tween three phases: negotiate, commit and execute. The participants negotiate
their behaviours, and if an agreement is reached they commitand start an exe-
cution which is guaranteed to respect the interaction scheme agreed upon. These
ideas are materialised through a calculus of contracts enriched with semiring-
based constraints, which allow clients to choose services and to interact with them
in a safe way. A concrete representation of these constraints with logic programs
and logic program combinations is straightforward, thus reducing constraint so-
lution (and consequently the establishment of a contract) to the execution of a
logic program.

1 Introduction

Formal methods are fundamental tools to guarantee that the programs we develop be-
have as desired. The classical approach is based on static analysis: programs and pro-
gram development methods are analysed in terms of their semantics and of the proper-
ties which have to be proved. Recently, however, network based computing has added
important open endness requirements, which often make static analysis less than mean-
ingful.

An alternative approach is NCE, Negotiate, Commit, Execute, where agents nego-
tiate certain desired behaviours, but without any guarantee of success. However, if and
when an agreement is reached (commit), under certain conditions a coordinated compu-
tation of the involved agents can start, which is guaranteedto have the properties agreed
upon in the negotiation phase.

In the paper, we focus on the property of stuck-freedom [15] for two-parties ses-
sions, where if an agent is ready to have an interaction, it cannot be stuck forever.
Existing work on session types [9] and behavioural contracts [8] mainly focuses on a
static analysis phase, which has a yes-no answer: either thesession can take place with
the desired properties, or not at all. Instead in our approach a negotiation phase between
the client and the services guarantees thebestinteraction.

Here we present a simple source calculus with client and service processes and with
an LTS semantics: the clients are recursive and can place nested service calls, while
services are permanent and nonrecursive. The calculus is nondeterministic, with exter-
nal choices, and a client-service behaviour which allows for more choices is considered
better, provided they are stuck-free. A target calculus is then defined, where clients

and sapervices are compiled to, augmenting them withnamed constraint semirings[5],
which encode their behaviour.

Constraint semirings are semirings with an idempotent additive operation and a
commutative multiplicative operation. They generalise boolean algebra and are equipped
with a partial ordering with 1 as maximal and 0 as minimal element. Semiring values
model constraints: larger values are less constraining, multiplication means combina-
tion of constraints, and addition returns the lub, namely the smaller value larger than
both arguments. Among the most relevant semirings we can mention the fuzzy semir-
ing, the tropical or optimisation semiring, the powerdomain semiring.Namedconstraint
semirings are equipped in addition with name permutations,interpreted as free names,
which imply a notion of support, and with name restriction, understood in the usual way.
Named constraint semirings inherit from ordinary constraints on the boolean semiring
interesting properties and efficient algorithms, like constraint propagation and dynamic
programming.

In the paper we take advantage of a quite simple and standard named constraint
semiring: the one employed by logic programming, where the Herbrand signature con-
tains as many unary operations as actions and a constant to model termination. The
semiring values are sets of assignments with Herbrand termsto all the names. How-
ever, only the assignments to the tuple of free names formingthe support are relevant.
Addition is union and multiplication is intersection. Restriction adds all the assignments
where the restricted variable is assigned in all possible ways. Value 1 is the set of all as-
signments, and thus its support is empty, while 0 is the emptyset. The correspondence
with logic programming is quite simple: given a set of clauses and a goalP(x1, . . . ,xn),
its semantics in terms of our constraint system is the set of all the ground instantiations
of the goal which satisfy the clauses. The support is the set{x1, . . . ,xn} or smaller. Goal
composition is multiplication, while multiple clauses forthe same goal model addition.
Variables appearing in the body but not in the head of a clauserepresent restriction. In
our notation, the effect of recursive clauses is obtained byan explicit fixpoint operator.

To understand our approach, let us first consider the case of aclient without nested
calls and with a single service. The source client is then compiled into a target client
combined with a constraint with just one support name, sayx. The constraint is thus
just a set of traces, representing the behaviour of the client. The compiled code is very
similar to the source, except that its choices are guarded bycheckconstructs, similar
to theaskconstructs of concurrent constraint programming, which enable the corre-
sponding continuations only if the global constraint allows it. The source service is also
compiled, yielding a constraint ony which represents its behaviour but no check guards
are included. The negotiation phase consists of multiplying the two constraints, and
their result with the constraint1 x = y. The resulting constraint contains exactly all the
executions of the source client-service system which are not stuck. If the constraint is
not 0, i.e. if it is not the empty set, the commit takes place, and the execution phase can
start. Thanks to the check guards, the traces possible for the target client-service system
are exactly those in the constraint. Notice that while the client (service) compilation is
static, and thus it does not fit in the NCE scheme, it does not depend on the particular

1 Constraintx = y has support{x,y} and contains all assignments with the same term forx and
y. In logic programming it is specified by the goaleq(x,y) with the clause eq(x,x):-

2

service (client) partner it will be matched to. Thus the openendness requirement is here
satisfied by the possibility of introducing into the system new services (clients) without
the need of any further modification.

For instance, letT = �.α1.4.0+ α2.4.0 be a client andS= �.α1.4+ α3.4 be
a service, where� is service call,4 is call end,α ranges over actions and the co-
symbols have the expected meaning. The interactions offered by T and S are repre-
sented, respectively, by the constraintsc = eq(x,α1(end))⊕ eq(x,α2(end)) and d =
eq(y,α1(end))⊕eq(y,α3(end)) (noting that constraints disregard co-actions). It holds
thatc⊗d⊗eq(x,y) = eq(x,α1(end))⊗eq(y,α1(end))⊗eq(x,y) 6= 0, which reflects the
fact that the only successful interaction betweenT andS is (over)α1.

Let us now consider the general case of a client with nested calls and several ser-
vices. Services are compiled in the usual way, but their behaviours are added up. The
behaviour of the client, instead, must be represented by a constraint with several names
in the support. In fact, different service calls may not be independent: imagine that the
client in an inner call makes a choice which must be matched bythe corresponding
service. Then the client returns to the outer level and makesanother choice which must
be matched this time by the service corresponding to the outer call. The two choices
may be dependent, and this requirement is represented by a constraint with a two-name
support. Thus the ability of the constraint system of representing sets of tuples of traces
(and not only tuples of sets of traces) allows us to guaranteestuck-freedom for complex
client-service pairs, which at the best of our knowledge have not been considered in the
literature by now.

An example of this kind of clients is�.α.�β.(γ.4.δ.4.0 +µ.4.ρ.4.0), where the
choices made by the two nested calls depend on each other. Such a dependency is not
at all unusual: for instance it can arise when modelling a traveller who asks both for
two-ways flies to an airline company and for one room to an hotel. The resulting con-
strainteq(x1,α(δ(end)))⊗eq(x2,β(γ(end)))⊕eq(x1,α(ρ(end)))⊗eq(x2,β(µ(end))),
with support{x1,x2}, obliges the run of each service call to be coherent with the run of
the other.

In the paper, the source and the target calculus are the content of Sections 2 and
3, respectively. Section 4 presents the compilation from the first to the second calculus
and states its soundness and completeness. Section 5 shows how to use the constraints
in order to get most liberal interactions. Lastly Sections 6and 7 discuss related papers
and some future developments. Proofs are only sketched.

2 Source Calculus

In choosing the source calculus we were guided by the requirement of having a minimal
number of process operators to represent one client with (nested) service calls and a set
of available services offering finite interactions. For this reason communications are
atomic actions, all choices are external, client processesare recursive and can do nested
calls, services are permanent, non recursive and each instance of a service can accept
exactly one call.

Let N be an infinite set of names (ranged over byα,β, . . .) representing actions
andN be an infinite set of disjoint co-names (ranged over byᾱ, β̄, . . .) representing co-

3

Source client processes

P := �.P | α.P | P+P | rec p.P | 4.P | p | 0

Source service processes

Q := α.Q | Q+Q | 4

Table 1.Syntax of source client and service processes.

actions, with as usual̄̄α = α. The syntax of client and service processes is the content
of Table 1. For the sake of readability we assume that client processes offer co-actions
and service processes offer actions,+ is the external choice,� is service call and4,4
are end of call for client and service processes, respectively.

Recursive processes cannot have nested calls (namely, service calls cannot occur
under the scope of therec operator). We will consider recursive processes modulo
fold/unfold, i.e. we identify the processesrec p.P andP[p := rec p.P].

A client is a client process of the shape�.P. A client is balancedif each � is
followed by a corresponding4 in each branch. We useT to range over balanced clients.

A serviceis a service process prefixed by� (representing call acceptance), i.e. it
has the shape�.Q. We useS to range over services.

We considersystemsformed by one balanced client and a setSs of available ser-
vices. The interaction between a client and a service is represented by boxing the paral-
lel composition of the client process which follows the callwith the interacting service
process (see rule(s-call) in Table 2). Therefore by reducing a balanced client we will
get a box containing either the parallel composition of a client process and a service
process or the parallel composition of a box and a service process. We get then the
following syntax for systemsV:

V ::= T | [U] | 0 U ::= P | Q | [U] | Q

Since we want to compare reductions in the source and in the target calculus we
give the operational semantics of both calculi via labelledtransition systems. We say
that the processQ exhibits the service end(notationQ ↓4) if either Q is 4 or Q is the
sum of two processes one of which exhibits the service end.
Table 2 gives the reduction rules for the source calculus, whereW denotes a client
process, a service process, or a box,λ∈N ∪N , φ ∈ {[,4}∪N ∪N andψ∈ {[,]}∪N .
The symmetric rule with respect to+ has been omitted. Rule(s-up) terminates the
execution of a call leaving the client process which followsthis call one nesting level
up.

Let σ be a strings on{[,]}∪N . We defineV
σ

=⇒V ′ if

– eitherσ = ε andV = V ′

– or σ = ψσ′ andV
ψ

−→
σ′

=⇒V ′.

We writeV ⇓may if ∃σ such thatV
σ

=⇒ 0.

4

�.Q∈ Ss

�.P
[

−→ [P | Q]
(s-call) λ.W

λ
−→W (s-action) 4.P

4
−→ P (s-end)

W
φ

−→W′

W +W1
φ

−→W′
(s-choice)

P
ᾱ

−→ P′ Q
α

−→ Q′

P | Q
α

−→ P′ | Q′
(s-interaction)

P
4
−→ P′ Q ↓4

[P | Q]
]

−→ P′
(s-up)

U
ψ

−→U ′

[U]
ψ

−→ [U ′]
(s-box)

V
ψ

−→V ′

V | Q
ψ

−→V ′ | Q
(s-parallel)

Table 2.LTS for the source calculus

3 Target Calculus

The target calculus enriches the source calculus by introducing constraints, which are
meant to prevent clients and services from initiating interactions that will eventually
lead to deadlocks. The constraints we adopt coincide with those used in logic program-
ming and form anamed constraint semiring[5], which is a constraint semiring [2] along
with a notion of relevant names that allows plugging constraints into languages having
an explicit concept of names. Hereafter, we use the term ‘variable’ rather to ‘name’ in
conformance with the standard notation of logic programming. Below we introduce the
formal definitions which are used throughout the paper. We refer to [5, 2, 1] for a more
detailed treatment.

3.1 Constraints

Let V be a set of variables, ranged over byx,y,z, Assume a signatureΣ consisting
of monadic functions corresponding to actions plus a constant end(which expresses the
successful end of a process):

Σ = {α(),end|α ∈N }

A term is any expression that can be obtained fromV andΣ; a ground term is a term
that does not contain variables. The Herbrand UniverseH , ranged over byh, is the set
of ground terms overΣ. A ground assignment is a total functions that maps variables
to ground terms, namelys : V →H .

A constraintis a set of ground assignments and we letC , ranged over byc, be the set
of all constraints. The restriction operator∃x over a constraintc makes a variablex local
in c, and is defined as∃x.c = {s[h/x] |h∈H , s∈ c}. Of course, the ordering of∃x’s in
a constraints is irrelevant. Thus, we can conveniently write∃X in place of∃x1, . . . ,∃xn,
for X = {x1, . . . ,xn}. The supportof a constraint supp(c) is the minimum setW of
variables such thatx∈W implies that∃x.c 6= c. Intuitively, the support of a constraint
c contains all the variables which arerelevantfor c. The notion of support corresponds
with the concept of set of free variables in process calculi.We abbreviate the notation
for constraints by disregarding variables which are not in the support. Hence, byeq(x,y)
we write the constraintc with support{x,y} that contains all assignments with the same

5

ground term forx andy, namelyc= {s1,s2, . . .} such thatsi = [hi/x,hi/y,h′i/z. . . .] with
z /∈ supp(c) andz 6= x,y for all z∈ V . Similarly, byeq(x,end) we denote the constraint
consisting of all the assignments that mapx to end. The set of constraintsC can be
proved to be a named constraint semiring [5] by taking product ⊗, sum⊕, 0, and 1 as
follows:

– c⊕d = c∪d;
– c⊗d = c∩d;
– The bottom element 0 is the empyset;
– The top element 1 is the constraint with empty support.

We also define a recursive operatorrecxc over constraints. Recursive constraint vari-
ablescy contain (except that in the binding construct) an extra variable that is used
when unfolding the constraint. All occurrences of acy in c are bound byrecxc in
recxc.c, independently of the variable appearing in the subscript.Recursive constraints
are folded/unfolded using the following equation:

recxc.∃Xc= ∃X.c[ci/cyi | i ∈ I]

with ci = recyi c.(X)c[yi/x] andyi for i ∈ I the variables occurring as indexes ofc in
c. The (solution of the) recursive constraintrecxc.c can be defined as a least fixpoint,
which exists because the operations on constraints are continuous and are defined over
a domain that is a lattice.

It can be easily proved that constraints coincide with the ground semantics of logic
programs [12]. As an example, consider a recursive constraint that amounts to assigning
to a variablezan arbitrary number ofα2’s followed byα2 and, subsequently, by(end),
namely:

c = reczc.∃x1,x2,y1,y2.(eq(z,x1)⊕eq(z,y1))⊗eq(x1,α1(x2))⊗
eq(x2,end)⊗eq(y1,α2(y2))⊗ cy2

The logic program corresponding toc is given by the goalF(z) along with the following
clauses:

F(x1) :- G1(x1)
F(y1) :- H1(y1)
G1(α1(x2)) :- G2(x2)
G2(end).
H1(α2(y2)) :- H2(y2)
H2(y2):- F(y2)

3.2 Syntax and Semantics

The syntax of target calculus (see Table 3) is analogous to the syntax of the source cal-
culus apart for the introduction in the target processes of constraintsc∈ C , as defined
in §3.1, over possibly restricted variables. A service calls�〈x〉 includes the ‘root’ vari-
ablex of the constraint representing the interaction offered by the client to the invoked
service. The processcheck c1.P1,check c2.P2 generalises the external choice by
evolving to the processPi if ci ⊗c 6= 0, with c the current constraint store andi = 1,2.

6

Akin to recursive constraints, recursive processes are also decorated with a source
process recursion variablep. All occurrences ofpp

x in R are bound byrecyp
p in recyp

p.R.
We identify recursive processes via the following fold/unfold equation

recxpp.(X)c | R = (X)c | R[Pi/p
p
yi | i ∈ I]

wherePi = recyi p.(X)c[yi/x] | R[yi/x] andyi for i ∈ I are all the variables occurring as
indexes ofpp in R.

Target client processes

P := �〈x〉.P | α.P | (check c1.P1,check c2.P2) | p
p
x | recxp

p.R | 4.P | 0 R := (X)c | P

Target service processes
Q := α.Q | Q+Q | 4

Table 3.Syntax of target client and service processes.

(X)d | �〈x〉.Q ∈ St c⊗d 6= 0

c | �〈x〉.P
[

−→ (X)[c⊗d | P | Q]
(t-call) c | 4.P

4
−→ c | P (t-end)

c | α.P
α

−→ c | P (t-actionC) α.Q
α

−→ Q (t-actionS)

c | Pi
ϕ

−→ W c⊗ci 6= 0

c | check c1.P1,check c2.P2
ϕ

−→ W
(t-check)

Q
α

−→ Q′

Q+Q1
α

−→ Q′
(t-choice)

c | P
α

−→ c | P′ Q
α

−→ Q′

c | P | Q
α

−→ c | P′ | Q′
(t-interaction)

c | P
4
−→ c | P′ Q ↓4

[c | P | Q]
]

−→ c | P′
(t-up)

U
ψ

−→ U′

[U]
ψ

−→ [U′]
(t-box)

V
ψ

−→ V′

V | Q
ψ

−→ V′ | Q
(t-parallel)

V
ψ

−→ V′

(X)V
ψ

−→ (X)V′
(t-restr)

Table 4.LTS for the target calculus

A target clienthas the shape(X)c | �〈x〉.P. We useT to range over target clients.
A target servicehas the shape(X)c | �〈x〉.Q. We useS to range over services.Target
systemsV are the same as source systems apart for the fact that the parallel composi-
tion of a client and a service includes a constraint and that asetX of variables can be
restricted in a box:

U ::= c | P | Q | (X)[U] | Q V ::= T | (X)[U] | (X)c | 0

Assume a set of available target servicesSt . The labelled transition system is re-
ported in Table 4, whereϕ ∈ {[,4}∪N , ψ ∈ {[,]}∪N , Q ↓4 is defined as for source

7

processes,W stands forc | P or (X)[U], and the symmetric rule with respect to+ has
been omitted. The rules are the same as their homologous onesin the source target,
taking into account that systems contain constraints. Rule(t-check) activates a process
continuationPi only if the corresponding guard is consistent with the constraint store
(conditionc⊗ci 6= 0).

Below we characterise the shape of the initial state of the LTS, which plays a key
role in our theory as the existence of the initial state is meant to guarantee absence of
deadlocks. To this purpose, we first define a functionI () that applied to a target client
gives a setY of sets of variables which start the service calls. Each set of Y contains
the variables corresponding to a different execution path.Note thatY cannot be infinite
because recursive clients cannot have nested calls. ForY a collection of sets, we let
{x}⊎Y = {{x} ∪ Z |Z ∈Y}.

I (�〈x〉.P) = {x}⊎ I (P) I (α.P) = I (P) I (0) = { /0} I (4.P) = I (P)
I ((check c1.P1,check c2.P2)) = I (P1)∪ I (P2) I (p

p
x) = { /0} I (recxp

p.R) = { /0}

Assume a clientT and a set of available servicesSt . Suppose

T = (X)c0 | �〈x〉.P St = {(Xi) ci | �〈xi〉.Qi | i ∈ I}

I (�〈x〉.P) = Y dY =
L

Z∈Y
N

z∈Z
L

i∈I (Xi)ci ⊗ eq(z,xi)

If c0⊗dY 6= 0 thenstart(T,St) = (X∪
S

Z∈Y Z)c0⊗dY | �〈x〉.P is theinitial stateof
the labelled transition system in Table 4.

The consistency checkc0 ⊗ dY amounts to say that for at least a setZ ∈ Y, every
service call corresponding to az∈ Z can successfully interact with a service inSt .
Remark that rule(t-call) is applied withc being the product ofc0, the constraint of
the client, and the constraintsdY of services interacting with service calls. Hence, the
conditionc⊗d 6= 0 not only ensures that the interaction with the actual service will be
successful, but also that any subsequent service call will be able not to lead to a stuck
state.

We defineV
σ

=⇒ as expected. We say thatV is satisfiedif it is (X)c | 0 for some
X,c. We defineV ⇓must if eitherV is satisfied or for allσ,V′ such thatV

σ
=⇒V′ we have

V′ ⇓must.

4 Compilation

We map the source calculus into the target calculus by addingconstraints which take
into account the interactions offered by the processes. This allows us to model the ne-
gotiation phase which precedes the choice of a service.

The compilation of services (Table 5) is simple, since the syntax of source and tar-
get processes is the same, when forgetting constraints and restrictions. This compilation
adds an appropriate constraint for each process constructor by introducing a fresh vari-
ablex which is equated toendfor 4, to α(y) for α.Q (wherey is the variable introduced
by the compilation ofQ), to x1 or x2 for Q1 + Q2 (wherex1,x2 are the variables intro-
duced by the compilation ofQ1,Q2, respectively). Lastly the compilation of a service
�.Q uses the variablex introduced by the compilation ofQ to get�〈x〉.Q, whereQ

8

{[4]}x = eq(x,end) | 4

{[Q]}y = (X)c | Q implies{[α.Q]}x = (X∪{y})c⊗eq(x,α(y)) | α.Q

{[Q1]}x1 = (X1)c1 | Q1 and{[Q2]}x2 = (X2)c2 | Q2 imply {[Q1 +Q2]}x =

(X1∪X2∪{x1}∪{x2})c1⊗c2⊗ (eq(x,x1)⊕eq(x,x2)) | Q1 +Q2

{[Q]}x = (X)c | Q implies{[�.Q]} = (X∪{x})c | �〈x〉.Q

Table 5.Compilation of services

is the process obtained by compilingQ. All variables occurring in constraints are re-
stricted in the resulting target service.

[[0]]nil = 0

[[p]]
cons(x,⋆) = c

p
x | p

p
x

[[P]]ℓ = (X)c | P implies [[4.P]]cons(x,ℓ) = (X)c⊗eq(x,end) | 4.P

[[P]]cons(y,ℓ) = (X)c | P implies[[α.P]]cons(x,ℓ) = (X∪{y})c⊗eq(x,α(y)) | α.P

[[P]]cons(x,ℓ) = (X)c | P implies

[[recp.P]]cons(x,ℓ) = recxcp.((X)c) | recxp
p.((X)c[1/cp

yi | i ∈ I] | P)

whereyi for i ∈ I are all the variables occurring as indexes ofcp in c.

[[P1]]ℓ1 = (X1)c1 | P1 and[[P2]]ℓ2 = (X2)c2 | P2 imply

[[P1+P2]]ℓ =

(X1∪X2∪X (ℓ1)∪X (ℓ2)})c1⊗c2⊗ (EQ(ℓ,ℓ1)⊕EQ(ℓ,ℓ2)) |

(check EQ(ℓ,ℓ1).P1,check EQ(ℓ,ℓ2).P2)

whereℓ = F (ℓ1, ℓ2)

[[P]]
cons(x,ℓ) = (X)c | P implies [[�.P]]ℓ = (X)c | �〈x〉.P

Table 6.Compilation of balanced clients

The compilation of clients (Table 6) is more complex, since client processes have
nested calls, recursion and check expressions.

In order to deal with nested service calls we use a stack, represented as a list (nesting
list), recording the variables which are the roots of the constraints in the encoding of the
nested service calls which are still open and suspended (andthen need to be closed); the
head of this list contains the variable corresponding to theconstraint root of the current
call. We denote bynil the empty list, byℓ an arbitrary list of variables or⋆ and by
cons(x, ℓ) the list with headx and tailℓ. The nesting list of0 is nil. For an interaction
α.P the nesting list is obtained just replacing the fresh variable x to the variabley which

9

F (ℓ1, ℓ2) =



















































cons(x,F (ℓ′1, ℓ
′
2)) if ℓi = cons(xi , ℓ

′
i) i = 1,2

cons(x,F (ℓ′1,⋆)) if ℓ1 = cons(x1, ℓ
′
1) andℓ2 = ⋆

cons(x,F (ℓ′2,⋆)) if ℓ2 = cons(x2, ℓ
′
2) andℓ1 = ⋆

nil if ℓ1 = ℓ2 = nil or ℓ1 = nil andℓ2 = ⋆

or ℓ2 = nil andℓ1 = ⋆

⋆ if ℓ1 = ℓ2 = ⋆

undefined otherwise.

wherex is fresh

EQ(ℓ1, ℓ2) =











eq(x1,x2)⊗EQ(ℓ′1, ℓ
′
2) if ℓi = cons(xi , ℓ

′
i) i = 1,2

1 if ℓ1 = ℓ2 = nil or ℓ1 = ⋆ or ℓ2 = ⋆,

undefined otherwise.

X (nil) = /0
X (⋆) = /0
X (cons(x, ℓ)) = {x}∪X (ℓ)

Table 7.Auxiliary functions for the compilation of client choices

is the head of the nesting list in the compilation of processP. The compilation of the end
4 of a service call corresponds (being the compilation bottom-up) to the resumption of
the interaction with a service after the end of the nested interaction. Then we push a
new fresh variable on the nesting list corresponding to the last action of the nested call.

When compiling a recursion variable the list of nested service is not yet known
(being the compilation one-step) and so is replaced by the placeholder⋆. Going on in
the compilation process, however, we check (via the function EQdefined in in Table 7)
that the nesting lists of the suspended services in all branches of the recursive client are
consistent (recall that no new service can be opened inside arecursive processes).

In the compilation of a choice we must assure that the suspended services call will
be resumed safely in the different branches (which could require different choices also
in the paired services). This check is performed using the functionF (see Table 7)
which creates a new fresh nesting list starting from the nesting lists in the compilation
of the two branches. The application ofF to the listsℓ1, ℓ2 is defined only if eitherℓ1, ℓ2

have the same length or the shorter list terminates with⋆. When defined the value of
F (ℓ1, ℓ2) is a list ofn fresh variables, wheren is the maximum of the lengths ofℓ1, ℓ2,
terminating with⋆ if both ℓ1, ℓ2 terminate with⋆ and withnil otherwise. Note that in
a recursive process no4 can occur along a path ending in a recursion variable.

The compilation of a service call� uses the head variable of the nesting list to
compile the call and continues with the tail of the nesting list going then one level up in
the call nesting. Note the compilation of a balanced client hasnil as final nesting list.

The process resulting from the compilation of a recursion variable is the parallel
of a constraint variable and a process variable. This is so since in compiling recursive
processes we need to generate both a recursive “global” constraint (taking into account
all possible unfoldings of the process) and a recursive process including a “local” copy
of its constraint (associated to each specific unfolding). The global recursive constraint
characterises the process behaviour and is used in searching for a contract with the set

10

x1 x0

t1 t0

w0w1

y1 y0

v1 v0

z1 z0

α

β

γ

δ

µ

ρ

end

end

end

end

c

Fig. 1. Constraint store of Example 1

of considered services. The local copy of the constraints ineach recursive call is used
instead to keep track of the overall solution in thecheck branches. In the local copy
of the constraint the occurrences of the recursion constraint variable (which are free)
can be replaced by 1 since the consistency with the global solution is assured by the
replacements of the process variables.

The compilation of a choice needs to check if one or both of thetwo branches agree
with the interactions offered by services. This is accomplished by requiring that the list
F (ℓ1, ℓ2) can be equated toℓ1 or to ℓ2 considering that⋆ can be equated to any list (see
the definition ofEQ in Table 7).

All fresh variables which are introduced by compilation arerestricted in the result-
ing process, but for the variables which occur in the servicecalls. In order to restrict the
variables of nesting lists in the compilation of choices we use the functionX defined in
Table 7. We show below two examples of compiled clients.

Example 1.The compilation of the source client�.α.�β.(γ.4.δ.4.0 +µ.4.ρ.4.0) is
the following target client:

(x0,y0,v1,v0, t1, t0,z1,z0,w1,w0)eq(x1,α(x0))⊗eq(y1,β(y0))⊗
(eq(x0, t1)⊗eq(y0,v1)⊕eq(x0,w1)⊗eq(y0,z1))⊗eq(v1,γ(v0))⊗eq(v0,end)⊗
eq(t1,δ(t0))⊗eq(t0,end)⊗eq(z1,µ(z0))⊗eq(z0,end)⊗eq(w1,ρ(w0))⊗eq(w0,end) |
�〈x1〉.α.�〈y1〉.β.check eq(x0,t1)⊗eq(y0,y1).γ.4.δ.4.0,

check eq(x0,w1)⊗eq(y0,z1).µ.4.ρ.4.0

which can be simplified to

(x1,y1)eq(x1,α(x0))⊗eq(y1,β(y0))⊗
(eq(x0,δ(end))⊗eq(y0,γ(end))⊕eq(x0,ρ(end))⊗eq(y0,µ(end))) |
�〈x0〉.α.�〈y0〉.β.check eq(x0,δ(end))⊗eq(y0,γ(end)).γ.4.δ.4.0,

check eq(x0,ρ(end))⊗eq(y0,µ(end)).µ.4.ρ.4.0

In Figure 1 we give the graph representation of the constraint store of this client.
Each node represents a variable and each constraint is modelled by a hyperedge con-
necting the variables involved in the constraint. Byc we abbreviate the constraint
c= eq(x0, t1)⊗eq(y0,v1)⊕eq(x0,w1)⊗eq(y0,z1). The remaining constraints are equal-
ities: by placing a name on the right of an hyperedge we abbreviate the constraint that

11

x

x

v

v

z

z

y w0 w1

y

y

w

w

α

α

α

α

α

β

β

β

β

β

end

end

end

end

end

cp

cp
e

e

e

e

recxc
p

recz′c
p

v′ z′

y′ w′

v′′ z′′

y′′ w′′

=

Service

Client

Fig. 2. Constraint store of Example 2

fuses the variable on the left to a function corresponding tothat name, possibly applied
to the variable on the right. For instance, nameδ stands for the constrainteq(t1,δ(t0));
similarly, the top-most occurrence ofenddenotes the constrainteq(t0,end).

Note that this client can safely interact, for instance, with a set of (source) services
including{�.α.δ.4, �.β.(γ.4+ ν.4)}.

Example 2.Compiling the recursive process�.recp.(α.p+ β.4.0) we get, after some
simplifications:

recxc
p.(z)(eq(x,α(z))⊕eq(x,β(end)))⊗ c

p
z |

�.〈x〉.recxp
p.(z)(eq(x,α(z))⊕eq(x,β(end)))

(check eq(x,α(z)).α.p
p
z ,check eq(x,β(end)).β.0)

The recursive constraint after two unfoldings and some simplifications becomes:

c = (z,z′)(eq(x,α(z))⊕eq(x,β(end)))⊗ (eq(z,α(z′))⊕eq(z,β(end)))⊗
recz′c

p.(z′′)((eq(z′,α(z′′))⊕eq(z′,β(end)))⊗ c
p
z′′)

and the corresponding process:

�〈x〉(z)(eq(x,α(z))⊕eq(x,β(end))) |
(check eq(x,α(z)).α.

(z′)(eq(z,α(z′))⊕eq(z,β(end))) |
(check eq(z,α(z′)).α.recz′′p

p....., check eq(z,β(end)).β.0),

check eq(x,β(end)).β.0)

12

If the service(y)d | �〈y〉.α.β.4, where

d = (w0,w1) eq(y,α(w0))⊗eq(w0,β(w1))⊗eq(w1,end)

is available, then the constraint∃y.c⊗d⊗eq(x,y) is equal toeq(x,α(β(end))).
This solution is determined only by the (proper) unfolding of the recursive con-

straint of the client and the constraint of the service. Oncethe solution is determined
the constraint of each unfolding is used only to assure the correct choices in thecheck
branches. These constraints are propagated via the unfolding of the recursive process
and so no unfolding of the outermost recursive constraint isneeded in the process re-
duction.

Figure 2 depicts the constraint store representing a commitbetween the recursive
client and the service. We represent recursive constraintsas boxed constraints with a
connection to the variable that is the index of the recursiveoperator. Byewe abbreviate
the constraints of the shapee= eq(u1,u2)⊕eq(u1,u3), whereu1 is the variable on the
left node andu2,u3 are the variables on the right nodes.

It is easy to verify that our compilation is successful for all source clients and pro-
cesses, but for the case of unbalanced clients.

Theorem 1. Each balanced client and each service can be compiled.

More interesting (and more complex to prove) is the fact thatgiven a compiled
client and a set of available servicesSt , the labelled transition system in Table 4 either
is empty or always terminates. We start with some definitions.

Definition 1. 1. A source system V isreachableif T
σ

=⇒ V for someσ and some
source client T .

2. A target systemV is reachableif start(T,St)
σ

=⇒ V for someσ and someT ob-
tained by compiling a source client.

Note that each source systemV which is not a client or satisfied has the shape
V = [. . . [[P | Q0]|Q1] . . .Qn] for somen ≥ 0. Similarly each target systemV which is
obtained by reducing the compilation of a client and it is notsatisfied has the shape
V = (Xn)[(Xn−1) . . . [(X0)[c | P | Q0]|Q1] . . .Qn]. This justifies the mappings defined in
Table 8.

Lemma 1. If V is reachable and not satisfied,constraint(V) = c, client(V) = P,
depth(V) = n, service(i,V) = Qi for 1≤ i ≤ n, then there are P,Qi ,xi ,yi such that
P = [[P]]cons(xo,...cons(xn,nil)), Q = {[Qi]}yi , and c≤ xi = yi for 1≤ i ≤ n.

Proof. By induction on reductions.

Lemma 2. If V is reachable and not satisfied,constraint(V) = c, client(V) = P

andservice(0,V) = Q, then

– P = �〈x〉.P′ implies that there is(X)d | �〈x〉.Q ∈ St such that c⊗d 6= 0;

– P = α.P′ impliesQ
α

−→ Q′ for someQ′;

13

constraint((X)c | 0) = c
constraint(c | P | Q) = c
constraint((X)[U] | Q) = constraint(U)
constraint((X)[U]) = constraint(U)

client(c | P | Q) = P

client((X)[U] | Q) = client(U)
client((X)[U]) = client(U)

depth(c | P | Q) = 0
depth((X)[U] | Q) = depth(U)+1
depth((X)[U]) = depth(U)

service(0,c | P | Q) = Q

service(i,(X)[U] | Q) =

{

Q if i = depth((X)[U]),

service(i,U) otherwise.
service(i,(X)[U]) = service(i,U)

Table 8.Auxiliary mappings

– P = 4.P′ impliesQ
4
−→;

– P = check c1.P1,check c2.P2 implies that c⊗ci 6= 0 for some i and:

• eitherPi
[

−→ V′ for someV′;

• or Pi
α

−→ P′ andQ
α

−→ Q′ for someα,P′,Q′;

• or Pi
4
−→ P′ andQ ↓4 for someP′.

Proof. By Lemma 1 we haveP = [[P]]cons(x,ℓ), Q = {[Q]}y and c ≤ x = y for some
P,x, ℓ,Q,y. The proof follows by looking at the compilation.

Theorem 2. If T is obtained by compiling a source client andstart(T,St)
σ

=⇒ V,
thenV ⇓must.

Proof. First of all notice that there are no infinite computations, since services are not
recursive, and the constraint of a client can be satisfied only unfolding its recursive calls
a finite number of times. Therefore we only need to show thatV is not stuck. The proof
is by cases onclient(V) using Lemmas 1 and 2.

Comparing the reduction rules in Tables 2 and 4 it is easy to verify that the reduc-
tions of a target client obtained by compiling a source client correspond to reductions
of the source client itself. We denote by|V| the source system obtained from the target
systemV by erasing all constraints and restrictions and by replacing checks by sums,
see Table 9, whereW denotes a compiled client or a compiled service.

Theorem 3. (Soundness) IfSt is obtained by compiling the source services ofSs and
start([[T]],St)

σ
=⇒ V, then T

σ
=⇒ |V|.

The aim of the compilation is to avoid deadlocks, but also to preserve all successful
interactions. This is the content of the following theorem,whose proof requires a precise
analysis of the relations between the reduct of a target system and the compilation of
the reduct of a source system.

14

�〈x〉.P	= �.	P		
λ.W	= λ.	W		
(check c1.P1,check c2.P2)	=	P1	+	P2
p				

p
x| = p

|recxp
p.R| = rec p.|R|

|4.P| = 4.|P|
|0| = 0
|4| = 4

(X)c	P	=	P				
Q1 +Q1	=	Q1	+	Q2			
�〈x〉.Q	= �.	Q					
c	P	Q	=	P			Q
(X)[U]	Q	=	(X)[U]			Q	
(X)[U]	= [U]				

Table 9.The ”forgetting” map| |

Theorem 4. (Completeness) IfSt is obtained by compiling the source services ofSs

and T
σ

=⇒V and V⇓may, then there isV such thatstart([[T]],St)
σ

=⇒ V and|V| = V.

The remaining of this section is devoted to the completenessproof. Table 10 defines
a translation from source systems to target systems.

{{P | Q}}ℓ = (X1∪X2) c1⊗c2⊗eq(x,y)⊗dI (P) | P | Q

where[[P]]
cons(x,ℓ) = (X1)c1 | P and{[Q]}y = (X2)c2 | Q

{{[U] | Q}}ℓ = (X1∪X2) c1⊗c2⊗eq(x,y) | [U] | Q

where{{U}}cons(x,ℓ) = (X1)c1 | U and{[Q]}y = (X2)c2 | Q

{{T}}nil = start(T,St) whereT = [[T]]nil

{{0}}nil = 1 | 0

Table 10.From source systems to target systems

Lemma 3. If V is reachable,V
ψ

−→V′ andconstraint(V)= c, thenconstraint(V′)=
∃Z.c⊗c′ for some Z, c′ where c′ 6= 0.

Proof. By cases onψ.

Lemma 4. Let V ⇓may. Thenconstraint({{V}}nil) 6= 0.

Proof. If V ⇓may then∃σ such thatV
σ

=⇒ 0. The proof is by induction onσ using
Lemma 3. Note thatconstraint(1 | 0) = 1.

We define the equivalence≈ between target systems as the minimal congruence
generate by the following axioms:

15

[(X)[U] | Q] ≈ (X)[[U] | Q]
(X)[U] ≈ (X∪X′)[U] if X′∩FV(U) = /0
c | P ≈ ∃Z.c | P if Z∩FV(P) = /0

Note thatV ≈ V′ impliesconstraint(V) 6= 0 if and only ifconstraint(V′) 6= 0.

Lemma 5. 1. V ≈ {{V}}nil implies|V| = V.

2. V ≈ V′ andV
ψ

−→ V1 implyV′ ψ
−→ V′

1 andV1 ≈ V′
1.

Lemma 6. If V
ψ

−→ V ′, constraint({{V′}}nil) 6= 0 andconstraint({{V}}nil) 6=

0, then{{V}}nil
ψ

−→ V′ and{{V′}}nil ≈ V′.

Proof. By cases onψ using Lemma 2.

We prove a slightly different version of the completeness theorem, which immedi-
ately implies the original version by Lemma 5(1).

Theorem 5. (Completeness) IfSt is obtained by compiling the source services ofSs

and T
σ

=⇒ V and V⇓may, then there isV such thatstart([[T]],St)
σ

=⇒ V and V ≈

{{V}}nil.

Proof. By induction onσ. The base step is straightforward.

As for the induction step assumeT
σ

=⇒V
ψ

−→V ′ andV ′ ⇓may. Then alsoV ⇓may. By in-
duction hypothesisstart([[T]],St)

σ
=⇒V whereV ≈ {{V}}nil is reachable. By Lemma

4 constraint({{V}}nil) 6= 0 andconstraint({{V′}}nil) 6= 0. Therefore we can ap-

ply Lemma 6 to get{{V}}nil
ψ

−→ V′′ whereV′′
≈ {{V′}}nil. Then we conclude using

Lemma 5(2).

5 Optimised semantics

In the previous Section we have shown that the semantics of the target calculus ensures
stuck-freedom provided that for each service call of a client there is a service which
is able to complete an interaction with the client successfully. Nevertheless, during a
client-service negotiation, it is desirable to have a mean to select the services that offer
more choices to the client (considering all choices equallysatisfactory), among all ser-
vices which can successfully complete an interaction. Thisproperty holds for the target
LTS only if there is a single service. By contrast, in the general case in which there is
more than a ‘complying’ service available, the target LTS gives no guarantee on this
respect. For instance, letT = �.(α.4.0+ β.4.0) be a client andS1 = �.(α.4 + β.4)
andS2 = �.(α.4 + γ.4) be two services. According to the target semantics bothS1

andS2 can be selected, as none of them would lead to a deadlock. Nevertheless,S1 is
somehow preferable as it additionally allowsT to exhibit actionβ. Clearly for the client
�.(α.4.0+ γ.4.0) the serviceS2 is better.

16

We define anoptimisedLabelled Transition System that is obtained from the LTS
given in Table 4 by replacing rule(t-call) by the following rule:

(X)d | �〈x〉.Q ∈ St
c⊗d 6= 0 and6 ∃(X′) d′ | �〈x〉.Q′ ∈ St s.t.
c⊗d′ 6= 0 andc⊗d < c⊗d′

c | �〈x〉.P
[

−→ (X)[c⊗d | P | Q]
(t-call′)

We denote by
σ

Z=⇒ reductions in the optimised LTS.
Rule (t-call′) ensures that a serviceS is selected if it isone of the bestpossible

services, namely such that there is no other service which offers thesamesuccessful
interaction paths ofS and some more. Clearly in general we can get incomparable con-
straints, like for example for the clientT ′ = �.(α.(µ4.0+ρ4.0)+β.4.0+ γ.4.0) and
the servicesS3 = �.(α.µ.4+β.4+ γ.4) andS4 = �.α.(µ4+ρ4). Note that the client
T ′ has 3 successful paths choosing serviceS3 and only 2 successful paths choosing ser-
vice S4, but these paths are incomparable. In such cases rule(t-call′) chooses in a non
deterministic way.

We prove that the new target semantics isoptimal, in the sense that by choosing one
of best services at each service call we obtain a set of services that guarantee the same
interactions with more choices to a client. For simplicity we consider onlyunambiguous
source processes, i.e. processes whose sums start with two different actions (modulo
commutativity and associativity of sums).

Theorem 6. If T is obtained by compiling a source client andstart(T,St)
σ

Z=⇒ V,
then there is noV′ such thatstart(T,St)

σ
=⇒V′ andconstraint(V)< constraint(V′).

Proof. Remark that the condition of non ambiguity assures thatσ uniquely determines
the choices performed by the applications of rule(t-check). So the only non determin-
ism comes from the applications of rule(t-call) and(t-call′), which are also the only
rules which change the constraint. The result then follows from the observation that rule
(t-call′) always maximises the constraint of the resulting system.

6 Related Papers

Our notion of stuck-freedom is taken from [15]: there are no messages waiting for-
ever to be send or sent messages which are never received. This property is crucial in
communication centred programming.

The most common calculi used to model communicating processes are session types
and behavioural contracts.

Sessions and session types(first introduced in [16]) are built onπ-calculus: the
key idea is that channels can be used to send and receive messages of different types
following a fixed communication protocol. We refer to [9] and[17] for overviews.

Behavioural contractsare CCS-like processes which describe the global communi-
cations between clients and services. Many recent papers focus on the compatibility be-
tween clients and services and the safe replacements of services. The necessary control
on communications is achieved by explicit interfaces [11],filtering [8], orchestration
[14]. A companion research line develops choreographies for service composition [13].

17

To the best of our knowledge, in a client-server context the idea of using constraints
for negotiating which interactions to choose, hence avoiding deadlocks, is novel.

Named constraint semirings have beed originally proposed as the underlying struc-
ture of the cc-pi calculus [5], a process calculus for modelling agreements on non-
functional parameters in a service oriented scenario. The target calculus we have in-
troduced in this paper is close in spirit to the cc-pi calculus, except for the fact that
cc-pi adopts a communication mechanismà la pi-calculus while the primitives of our
target calculus are meant to model two-party sessions. [6] presents a variant of the cc-pi
calculus in which the non-deterministic choice is replacedby an operation that allows
selecting an action if the corresponding constraint has a priority over the constraints of
the alternative branches. Though priorities are assigned following different criteria, the
optimised semantics we have proposed is inspired by the prioritised cc-pi calculus.

Named constraint semirings have been defined as an extensionof constraint semir-
ings with a notion of relevant names. C-semirings [2] allow defining soft constraints,
namely constraints which do not return only true or false, but more informative val-
ues instead (e.g., degree of preference, cost), thus extending paradigms like Constraint
Logic Programming or Concurrent Constraint Programming. In [4] a version of the Soft
CCP has been used for specifying SLA negotiations, basically with the same goal of the
cc-pi calculus.

7 Conclusion and Future Work

In the paper we have augmented a client-service calculus with suitable constraints. A
run time combination (multiplication in the simple cases) of client and service con-
straints guarantees that all and only the stuck-free interactions are possible. The con-
straints are exactly those of logic programming, and in facta concrete representation of
our constraints with logic programs and logic program combinations is straightforward.
This property is comfortable from a theoretical point of view, since logic programs are
well understood, but it is now appropriate to ask if it might be useful also from a prac-
tical point of view. We did not study the issue, which is outside the scope of this paper,
but we can say that asking for satisfaction of the combined client-service constraint
would be perfectly possible in any logic programming implementation, which would
return an example of stuck-free interaction. Efficiency might depend on the exact way
in which clauses are listed and parallel goals expanded. However it might be possible to
devise an efficient algorithm (e.g. factorizing constraints and matching them top down
breadth first) and to build a metainterpreter implementing the algorithm.

In the future, we plan to generalise the current target calculus by exploiting the for-
malism of Soft Constraint Logic Programming by Bistarelli,Montanari and Rossi [3].
In that paper, the ground semantics of a logic program (a goaland set of clauses) is not
a set of ground assignments of the free variables of its goal,but rather a function from
ground assignments to values of (another) constraint semiring. These values could give
a measure of how acceptable the assignments are. Such functions, computed pointwise,
form again a constraint semiring, and thus the formal treatment turns out simple and el-
egant. In particular the three semantics of logic programming (operational, denotational
and model theoretical) can be defined also for soft constraint logic programming and

18

proved equivalent. Specifically, in the context of the present paper a particular client-
service computation would not be only possible or impossible, but it could be assigned
an acceptance weight, which might itself be structured by measuring the quality of ser-
vice obtained in the interaction. For instance these weights could be taken into account
in the reduction rules(t-call) and(t-choice) in order to allow only executions which
maximise client’s satisfaction.

In a different direction we will extend both source and target calculi with internal
choices in order to model interactions in which one participant takes one branch inde-
pendently from what is offered by the other participant. Clearly to avoid deadlocks in
presence of internal choices we need to rethink the compilation of clients and services.

Lastly we are interested in considering how to apply our approach to model inter-
actions of more than two participants, taking inspiration from [10] and [7].

19

References

1. S. Bistarelli and F. Gadducci. Enhancing constraints manipulation in semiring-based for-
malisms. InECAI’06, volume 141 ofFrontiers in Artif. Intel. and Applic., pages 63–67. IOS
Press, 2006.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization.Journal of the ACM, 44(2):201–236, 1997.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint logic programming:
syntax and semantics.ACM Transactions on Programming Languages and Systems, 23(1):1–
29, 2001.

4. S. Bistarelli and F. Santini. A nonmonotonic soft concurrent constraint language for SLA
negotiation. InCILC’08, volume 236 ofENTCS, pages 147–162. Elsevier, 2009.

5. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-basedlanguage for specifying service
level agreements. InESOP’07, volume 4421 ofLNCS, pages 18–32. Springer, 2007.

6. M. G. Buscemi and U. Montanari. Qos negotiation in servicecomposition.Journal of Logic
and Algebraic Programming, 80(1):13–24, 2011.

7. L. Caires and H. T. Vieira. Conversation types.Theoretical Computer Science, 411(51-
52):4399–4440, 11 2010.

8. G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services.ACM
Transactions on Programming Languages and Systems, 31, 2009. article n.19, pages 51.

9. M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions and session types: an overview. In
WSFM’09, volume 6194 ofLNCS, pages 1–28. Springer, 2010.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In
POPL’08, pages 273–284. ACM, 2008.

11. C. Laneve and L. Padovani. The must preorder revisited: An algebraic theory for web ser-
vices contracts. InCONCUR’07, volume 4703 ofLNCS, pages 212–225. Springer, 2007.

12. J. W. Lloyd.Foundations of Logic Programming, 2nd Edition. Springer, 1987.
13. M.Bravetti and G. Zavattaro. A theory of contracts for strong service compliance.Mathe-

matical Structures in Computer Science, 19:601–638, 2009.
14. L. Padovani. Contract-directed synthesis of simple orchestrators. InCONCUR’08, volume

5201 ofLNCS, pages 131–146. Springer, 2008.
15. S. K. Rajamani and J. Rehof. Conformance checking for models of asynchronous message

passing software. InCAV’02, volume 2402 ofLNCS, pages 166–179. Springer, 2002.
16. K. Takeuchi, K. Honda, and M. Kubo. An interaction-basedlanguage and its typing system.

In PARLE’94, volume 817 ofLNCS, pages 398–413. Springer, 1994.
17. V. T. Vasconcelos. Sessions, from types to programming languages.EATCS Bulletin, 2011.

to appear.

20

