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Abstract


The paper deals with equilibrium problems (EPs) with nonlinear convex constraints. First,
EP is reformulated as a global optimization problem introducing a class of gap functions, in
which the feasible set of EP is replaced by a polyhedral approximation. Then, an algorithm
is given for solving EP through a descent type procedure related to exact penalties of the gap
functions and its global convergence is proved. Finally, the algorithm is tested on a network
oligopoly problem with nonlinear congestion constraints.
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1 Introduction


In this paper we consider the following equilibrium problem


find x∗ ∈ C s.t. f(x∗, y) ≥ 0, ∀ y ∈ C, (EP)


where C ⊆ Rn is closed and convex and f : Rn × Rn → R is a bifunction. It is well-known (see
e.g. [2]) that (EP) provides a general setting which includes several problems such as scalar and
vector optimization, variational inequality, fixed point, complementarity, and Nash games.


Several methods to solve equilibrium problems have been proposed, often extending those
originally conceived for optimization problems or variational inequalities [8, 10, 13, 23] to the
framework of more general equilibrium problems. Well-known solution methods are the so-called
descent methods, which are based on the reformulation of the equilibrium problem as a global
optimization problem through appropriate gap functions [1, 4, 14, 15, 17, 21, 22]. Most approaches
need to minimize a convex function over C in order to evaluate the gap function, and the eval-
uation could be computationally expensive when the feasible region C is described by nonlinear
convex inequalities. Therefore, we introduce a family of gap functions which rely on a polyhedral
approximation of C rather than on the feasible region itself, and we develop a method based on the
minimization of convex functions over polyhedra. In Section 2 these gap functions are introduced,
considering f along with an additional regularizing bifunction, and some properties about their
continuity and generalized directional differentiability are given. Moreover, we prove that mono-
tonicity type assumptions on f guarantee that each stationary point of a gap function is actually
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a solution of the equilibrium problem. This result extends to equilibrium problems a similar one
developed in [19] for variational inequalities. Section 3 is devoted to the solution method: unlike
most of the available algorithms, we consider a search direction which could be unfeasible, so that
the introduction of an exact penalty function is required. Under a concavity type assumption on
f the direction is indeed a descent one if either the regularization or the penalization parameter
is small enough. Therefore, the algorithm exploits fixed values for the two parameters as long as
they provide a descent direction and it decreases both of them otherwise. Section 4 provides the
results of some numerical tests, which have been performed applying the algorithm to a problem
of production competition over a network under the Nash-Cournot equilibrium framework.


Throughout all the paper the following basic assumptions are made:


• The set C is given by the intersection of a bounded polyhedron D and a convex set given
through convex inequalities, namely C = D ∩ C̃ with


D = {y ∈ Rn : 〈aj , y〉 ≤ bj , j = 1, . . . , r}


for some aj ∈ Rn and bj ∈ R, and


C̃ = {y ∈ Rn : ci(y) ≤ 0, i = 1, . . . ,m},


where ci : Rn → R are twice continuously differentiable (nonlinear) convex functions, and
there exists ŷ ∈ D such that ci(ŷ) < 0 for all i = 1, . . . ,m.


• The bifunction f : Rn×Rn → R is continuously differentiable, f(x, ·) is convex and f(x, x) =
0 for all x ∈ D.


It is well-known (see e.g. [9]) that the above assumptions guarantee the existence of at least one
solution of (EP).


2 Gap functions


A function g : C → R is said to be a gap function for (EP) if g is non-negative on C and x∗


solves (EP) if and only if x∗ ∈ C and g(x∗) = 0. Thus, gap functions are tools to reformulate an
equilibrium problem as a global optimization problem, whose optimal value is known a priori.


In order to build gap functions with good regularity properties, auxiliary bifunctions are gener-
ally exploited together with f . While the most used regularizing bifunction is h(x, y) = ||y−x||22/2,
in this paper we consider any continuously differentiable bifunction h : Rn × Rn → R such that


• h(x, y) ≥ 0 for all x, y ∈ D and h(z, z) = 0 for all z ∈ D,


• h(x, ·) is strictly convex for all x ∈ D,


• ∇yh(z, z) = 0 for all z ∈ D,


• 〈∇xh(x, y) +∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ D.


Given any α > 0, a well-known gap function (see e.g. [17]) is


φα(x) = −min
y∈C


{f(x, y) + αh(x, y)} . (1)
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Computing φα(x) involves the solution of a convex optimization problem with nonlinear con-
straints. Thus, we consider a modification of the above gap function, which is obtained replacing
the feasible region C by its polyhedral approximation at each considered point, namely


ϕα(x) = − min
y∈P (x)


{f(x, y) + αh(x, y)} , (2)


where
P (x) = {y ∈ D : ci(x) + 〈∇ci(x), y − x〉 ≤ 0, i = 1, . . . ,m}.


Since the constraining functions ci are convex, then C ⊆ P (x) ⊆ D holds for all x ∈ Rn, that
is P (x) is a bounded polyhedral outer approximation of the feasible region C at the point x.
Moreover, x ∈ C if and only if x ∈ P (x).


Since the objective function f(x, ·) + αh(x, ·) is strictly convex and P (x) is compact, there
exists a unique optimal solution yα(x) of the optimization problem which defines the gap function
(2). Therefore, it can be written as


ϕα(x) = −f(x, yα(x))− αh(x, yα(x)), (3)


and yα(x) satisfies the optimality condition


〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), y − yα(x)〉 ≥ 0, ∀ y ∈ P (x). (4)


Let Λα(x) denote the set of Lagrange multipliers associated to yα(x), i.e. the set of the vectors
(λ, µ) ∈ Rm+ × Rr+ such that


∇yf(x, yα(x)) + α∇yh(x, yα(x)) +


m∑
i=1


λi∇ci(x) +


r∑
j=1


µj aj = 0,


λi [ci(x) + 〈∇ci(x), yα(x)− x〉] = 0, i = 1, . . . ,m,


µj [〈aj , yα(x)〉 − bj ] = 0, j = 1, . . . , r.


A fixed point reformulation of (EP) holds relying on the optimal map yα, which is single-valued
under our assumptions.


Lemma 1 Given any α > 0, x∗ solves (EP) if and only if yα(x∗) = x∗.


Proof. If x∗ solves (EP), then it is minimizes f(x∗, ·) over C since f(x∗, x∗) = 0. Thus, there
exist Lagrange multiplier vectors λ∗ ∈ Rm+ and µ∗ ∈ Rr+ such that


∇yf(x∗, x∗) +


m∑
i=1


λ∗i∇ci(x∗) +


m∑
i=1


µ∗jaj = 0,


λ∗i ci(x
∗) = 0, i = 1, . . . ,m,


µj [〈aj , x∗〉 − bj ] = 0 j = 1, . . . , r,


ci(x
∗) ≤ 0, i = 1, . . . ,m,


〈aj , x∗〉 ≤ bj , j = 1, . . . , r.
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Setting gi(y) = ci(x
∗) + 〈∇ci(x∗), y − x∗〉, then we have gi(x


∗) = ci(x
∗) and ∇gi(y) = ∇ci(x∗) for


all y ∈ Rn and i = 1, . . . ,m. Hence, the above system can be equivalently stated as


∇yf(x∗, x∗) +


m∑
i=1


λ∗i∇gi(x∗) +


m∑
i=1


µ∗jaj = 0,


λ∗i gi(x
∗) = 0, i = 1, . . . ,m,


µj [〈aj , x∗〉 − bj ] = 0 j = 1, . . . , r,


gi(x
∗) ≤ 0, i = 1, . . . ,m,


〈aj , x∗〉 ≤ bj , j = 1, . . . , r,


which are the Karush-Kuhn-Tucker conditions for the problem of minimizing f(x∗, ·) over P (x∗).
Since this is a convex problem, x∗ solves it and therefore


f(x∗, yα(x∗)) ≥ f(x∗, x∗) = 0.


Moreover, condition (4) for y = x = x∗ reads


〈∇yf(x∗, yα(x∗)) + α∇yh(x∗, yα(x∗)), x∗ − yα(x∗)〉 ≥ 0.


Since f(x∗, ·) + αh(x∗, ·) is convex and f(x∗, x∗) = h(x∗, x∗) = 0, we have


0 ≥ f(x∗, yα(x∗)) + αh(x∗, yα(x∗))


+〈∇yf(x∗, yα(x∗)) + α∇yh(x∗, yα(x∗)), x∗ − yα(x∗)〉.


The above inequalities imply h(x∗, yα(x∗)) = 0 since h is non-negative on D ×D. Moreover, the
assumptions on h imply that x∗ is the unique minimizer of h(x∗, ·) over D and hence yα(x∗) = x∗.


Now, suppose yα(x∗) = x∗. Since x∗ ∈ P (x∗), then x∗ ∈ C. Moreover, condition (4) for x = x∗


reads
〈∇yf(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ P (x∗).


Since C ⊆ P (x∗) and f(x∗, ·) is convex, we have


f(x∗, y) ≥ f(x∗, x∗) + 〈∇yf(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,


i.e. x∗ solves (EP). �


Since the solutions of (EP) coincide with the fixed points of the optimal map yα, they actually
minimize ϕα over C.


Theorem 1 Given any α > 0, ϕα is a gap function for (EP), i.e.


a) ϕα(x) ≥ 0 for all x ∈ C;


b) x∗ solves (EP) if and only if x∗ ∈ C and ϕα(x∗) = 0.


Proof. a) If x ∈ C, then x ∈ P (x). Thus, ϕα(x) ≥ −f(x, x)− αh(x, x) = 0.
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b) If x∗ solves (EP), then x∗ ∈ C and Lemma 1 implies yα(x∗) = x∗. Hence,


ϕα(x∗) = −f(x∗, x∗)− αh(x∗, x∗) = 0.


Now, suppose x∗ ∈ C and ϕα(x∗) = 0. Thus, we have


f(x∗, y) + αh(x∗, y) ≥ −ϕα(x∗) = 0, ∀ y ∈ P (x∗).


Since C ⊆ P (x∗), x∗ minimizes f(x∗, ·) + αh(x∗, ·) over C and therefore the first order optimality
condition reads


〈∇yf(x∗, x∗) + α∇yh(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ C.


Since f(x∗, ·) is convex and ∇yh(x∗, x∗) = 0, we have


f(x∗, y) ≥ f(x∗, x∗) + 〈∇yf(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,


i.e. x∗ solves (EP). �


In order to achieve continuity and generalized differentiability properties of ϕα, the map yα has
to be continuous in light of equality (3).


Lemma 2 Given any α > 0, the map yα is continuous on Rn.


Proof. The set-valued map x 7−→ P (x) is continuous on Rn (see [19]). Moreover, f is continuous
and the map yα is single-valued and it is also bounded since yα(x) ∈ P (x) ⊆ D for all x ∈ Rn.
Hence, [12, Corollary 8.1] guarantees that yα is continuous on Rn. �


The gap function ϕα is locally Lipschitz continuous near any x ∈ Rn, and therefore its gener-
alized directional derivative


ϕ◦α(x; d) := lim sup
z→x
t↓0


t−1 [ϕα(z + t d)− ϕα(z)]


at x in any direction d ∈ Rn is finite. Furthermore, an upper estimate of the directional derivative
at x in the particular direction yα(x)− x is available.


Theorem 2 Let α > 0. Then,


a) ϕα is locally Lipschitz continuous on Rn;


b) the inequality


ϕ◦α(x; yα(x)− x) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), yα(x)− x〉 (5)


holds for any x ∈ D.


Proof. a) Introducing gi(x, y) := ci(x)+〈∇ci(x), y − x〉 for i = 1, . . . ,m and g(x, y) = (g1(x, y), . . . ,
gm(x, y)), the optimization problem in (2) can be written as


min { f(x, y) + αh(x, y) : g(x, y) ≤ 0, y ∈ D},


and its dual problem is


sup { inf {f(x, y) + αh(x, y) + 〈u, g(x, y)〉 : y ∈ D} : u ∈ Rm+}.


5







By the assumptions gi(x, ŷ) ≤ ci(ŷ) < 0 for all x ∈ D and all i = 1, . . . ,m. Thus, the set Uα(x) of
the optimal solutions of the dual problem is nonempty for all x ∈ D and (yα(x), uα(x)) is a saddle
point of the Lagrangian function


L(x, y, u) = f(x, y) + αh(x, y) + 〈u, g(x, y)〉,


for any uα(x) ∈ Uα(x), i.e.


L(x, yα(x), u) ≤ L(x, yα(x), uα(x)) ≤ L(x, y, uα(x)), ∀ y ∈ D, ∀ u ∈ Rm+ .


Since L(x, yα(x), uα(x)) = f(x, yα(x)) + αh(x, yα(x)) = −ϕα(x), we get


−L(x, y, uα(x)) ≤ ϕα(x) ≤ −L(x, yα(x), u), ∀ y ∈ D, ∀ u ∈ Rm+ .


Similarly, given any z ∈ Rn and any uα(z) ∈ Uα(z), we have


−L(z, y, uα(z)) ≤ ϕα(z) ≤ −L(z, yα(z), u), ∀ y ∈ D, ∀ u ∈ Rm+ . (6)


Therefore, choosing y = yα(x) and u = uα(z) , we get


ϕα(x)− ϕα(z) ≤ L(z, yα(x), uα(z))− L(x, yα(x), uα(z))


= f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))]


+〈uα(z), g(z, yα(x))− g(x, yα(x))〉


≤ f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))]


+‖uα(z)‖2 ‖g(z, yα(x))− g(x, yα(x))‖2


Let x̄ ∈ Rn be fixed. The mean value theorem guarantees that


f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))]


= 〈∇xf(z′, yα(x)) + α∇xh(z′, yα(x)), z − x〉


holds for some z′ in the line segment between z and x. Since yα, ∇xf , and ∇xh are continuous,
there exist L1 > 0 and δ1 > 0 such that


f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))] ≤ L1 ‖z − x‖2


holds for all x, z ∈ B(x̄, δ1). On the other hand, the functions gi are continuously differentiable
with respect to the first variable, hence there exist L2 > 0 and δ2 > 0 such that


‖g(z, yα(x))− g(x, yα(x))‖2 ≤ L2 ‖z − x‖2


holds for all x, z ∈ B(x̄, δ2). Moreover, [11, Lemma 2] guarantees that there exist L3 > 0 and
δ3 > 0 such that ‖uα(z)‖2 ≤ L3 holds for all z ∈ B(x̄, δ3) and all uα(z) ∈ Uα(z). Therefore, the
last three inequalities imply that


ϕα(x)− ϕα(z) ≤ (L1 + L2 L3) ‖z − x‖2


holds for all x, z ∈ B(x̄, δ), where δ = min{δ1, δ2, δ3}.
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b) Set d := yα(x)−x and zt := z+ t d for any z ∈ Rn and t > 0, and consider any uα(zt) ∈ Uα(zt).
Arguing as in a), we get


ϕα(zt)− ϕα(z) ≤ f(z, yα(zt)) + αh(z, yα(zt))−
[
f(zt, yα(zt))


+αh(zt, yα(zt))
]


+ 〈uα(z), g(z, yα(zt))− g(zt, yα(zt))〉.


The mean value theorem guarantees that


f(z, yα(zt)) + αh(z, yα(zt))− [f(zt, yα(zt)) + αh(zt, yα(zt))]


= 〈∇xf(z̃(z, t), yα(zt)) + α∇xh(z̃(z, t), yα(zt)), z − zt〉


= t 〈−∇xf(z̃(z, t), yα(zt))− α∇xh(z̃(z, t), yα(zt)), d〉


holds for some z̃(z, t) in the line segment between z and zt. Similarly, applying the mean value
theorem to gi, we get


gi(z, yα(zt))− gi(zt, yα(zt)) = 〈∇xgi(z̃′i(z, t), yα(zt)), z − zt〉


= −t 〈∇xgi(z̃′i(z, t), yα(zt)), d〉


for some z̃′i(z, t) in to the line segment between z and zt.
By the definition of the generalized directional derivative there exist two sequences zk → x,


tk ↓ 0 such that ϕ◦α(x; d) = limk→∞ t−1
k


[
ϕα(zktk)− ϕα(zk)


]
. Exploiting the last three formulas


above with z = zk and t = tk (and therefore zt = zktk), we get


ϕα(zktk)− ϕα(zk)


tk
≤ 〈−∇xf(z̃(zk, tk), yα(zktk))− α∇xh(z̃(zk, tk), yα(zktk)), d〉


−〈uα(zk), wα(x, zktk , tk)〉.


where wα(x, zktk , tk) = (〈∇xgi(z̃′i(zk, tk), yα(ztk)), d〉)i=1,...,m. Since zk → x and tk ↓ 0, then


zktk → x, z̃(zk, tk)→ x, and yα(zktk)→ yα(x) by Lemma 2. Hence, we get


lim
k→∞


〈−∇xf(z̃(zk, tk), yα(zktk))− α∇xh(z̃(zk, tk), yα(zktk)), yα(x)− x〉


= −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), d〉


since ∇xf is continuous. [11, Lemma 2] guarantees that Uα(z) is uniformly bounded on a neigh-
borhood of x and closed at x. Hence, eventually taking a subsequence, there exists û ∈ Uα(x) such
that uα(zk)→ û. Moreover, we get


lim
k→∞


−〈uα(zk), wα(x, zktk , tk)〉 = −〈û,∇xg(x, yα(x)) d〉


= −
m∑
i=1


ûi〈d,∇2ci(x) d〉 ≤ 0,


since z̃′i(z
k, tk) → xi, ∇xg is continuous, and all the ci’s are convex functions. Therefore, we get


ϕ◦α(x; d) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), d〉. �
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Theorem 1 allows to formulate (EP) as the global optimization problem


min{ ϕα(x) : x ∈ C}. (7)


However, most optimization algorithms lead only to a stationary point. Actually, any stationary
point of ϕα solves (7) and therefore (EP) under suitable assumptions on f , which anyway do not
guarantee the convexity of ϕα. Hence, any (local) minimization algorithm could be applied to (7)
for solving (EP).


Theorem 3 Suppose


〈∇xf(x, y) +∇yf(x, y), y − x〉 > 0, ∀ x, y ∈ D with x 6= y. (8)


a) If x ∈ C is not a solution of (EP), then yα(x)− x is a descent direction for ϕα at x, i.e.


ϕ◦α(x; yα(x)− x) < 0.


b) If x∗ ∈ C is a stationary point of ϕα over C, i.e.


ϕ◦α(x∗; y − x∗) ≥ 0, ∀ y ∈ C,


then x∗ solves (EP).


Proof. a) By Lemma 1 yα(x)− x 6= 0. Therefore, considering (5), (8) and any (λ, µ) ∈ Λα(x) we
have


ϕ◦α(x; yα(x)− x) ≤ 〈−∇xf(x, yα(x))− α∇xh(x, yα(x)), yα(x)− x〉


< 〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yα(x)− x〉


= 〈−
m∑
i=1


λi∇ci(x)−
r∑
j=1


µj aj , yα(x)− x〉


= −
m∑
i=1


λi 〈∇ci(x), yα(x)− x〉+


r∑
j=1


µj [〈aj , x〉 − bj ]


=


m∑
i=1


λi ci(x) +


r∑
j=1


µj [〈aj , x〉 − bj ] ≤ 0.


b) Since there exists ŷ ∈ Rn such that ci(ŷ) < 0 for any i = 1, ...,m, the Bouligand tangent cone


of C̃ at x∗ is the set


T (C̃, x∗) = {y ∈ Rn : 〈∇ci(x∗), y〉 ≤ 0, i s.t. ci(x
∗) = 0}.


Since ŷ ∈ D, the Bouligand tangent cone of C at x∗ is the set


T (C, x∗) = T (C̃, x∗) ∩ cone (D − x∗),


where cone denotes the cone generated by a set. Theferore, we have


P (x∗) ⊆ x∗ + T (C, x∗).
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Since C̃ is convex, T (C̃, x∗) = cl cone (C̃ − x∗) and therefore C = D ∩ C̃ guarantees


P (x∗) ⊆ x∗ + cl {τ (y − x∗), y ∈ C, τ > 0},


where cl denotes the closure of a set. Moreover, the stationarity of x∗ for ϕα over C and the
positive homogeneity of ϕ◦α(x∗; ·) imply


ϕ◦α(x∗, y − x∗) ≥ 0, ∀ y ∈ P (x∗).


If x∗ were not a solution of (EP), then ϕ◦α(x∗; yα(x∗)− x∗) < 0 would hold by a) in contradiction
with the above inequality for y = yα(x∗). �


Condition (8) was introduced in [17], and named strict ∇-monotonicity later [1], in order
to obtain the same properties of Theorem 3 for a different class of gap functions. When (EP) is
actually a variational inequality, i.e. f(x, y) = 〈F (x), y − x〉 for some F : Rn → Rn, condition (8)
is equivalent to require that ∇F is positive definite. Therefore, Theorem 3 generalizes Theorem
2.11 of [19], which stated the analogous result for variational inequalities only.


Note that replacing > with≥ in (8), which means weakening the assumption to positive semidef-
initeness in the case of variational inequalities, Theorem 3 is no longer true as the following example
shows.


Example 1 Consider (EP) with n = 2, m = 1, f(x, y) = x1 − y1 + x2 − y2, c1(x) = x2
1 + x2


2 − 1
and D = [−1, 1]× [−1, 1]. Therefore, the feasible region C is the unit ball, which is a subset of the
given box D, and x∗ = (


√
2/2,
√


2/2) is the unique solution of (EP). Notice that f does not satisfy
(8) since


∇xf(x, y) +∇yf(x, y) = (1, 1) + (−1,−1) = (0, 0) ∀ x, y ∈ R2.


Furthermore, we have


P (x) = {y ∈ [−1, 1]2 : 2x1y1 + 2x2y2 ≤ 1 + x2
1 + x2


2}.


Considering h(x, y) = [(x1 − y1)2 + (x2 − y2)2]/2, we have


ϕα(x) = max{y1 + y2 − α[(y1 − x1)2 + (y2 − x2)2)]/2 : y ∈ P (x)} − x1 − x2.


Since ŷα(x) = (x1 + 1/α, x2 + 1/α) maximizes the objective function over the whole R2, it is easy
to check that yα(x) = ŷα(x) and ϕα(x) = 1/α if α ∈ [1/2,


√
2] and x ∈ [−1 − 1/α, 1 − 1/α]2.


Therefore, considering any fixed α ∈ (1/2,
√


2], there exists no descent direction for ϕα at any
x ∈ (−1, 1− 1/α)2 ∩ C, as x is stationary for ϕα though it does not solve (EP).


3 Solution method


Different descent methods for solving (EP) have been proposed, relying on the minimization of the
gap function (1) for some fixed parameter α [4, 14, 15, 17, 21, 22] or relying on the whole family
of such functions [1]. In this section we aim at developing a solution method based on a descent
type procedure related to the family of gap functions ϕα. Similarly to literature, the basic idea is
to use the vector yα(x) − x as a search direction at the current point x. However, yα(x) belongs
to the approximating polyhedral set P (x) while, unlike literature, it does not necessarily lie in C
and thus the new point could be unfeasible. Following the penalization approach proposed in [19]
for variational inequalities, an exact penalty function can be exploited instead of the function ϕα
itself, namely


ψα,ε,p(x) = ϕα(x) +
1


ε
‖c+(x)‖p
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where c+(x) = (c+1 (x), . . . , c+m(x)) with c+i (x) = max{0, ci(x)}, ε > 0 and p ∈ [1,∞]. Given any
ᾱ > 0, the exactness of the penalization is achieved (and therefore the penalty function is a gap
function) when the parameter ε is sufficiently small [6]. Actually, the penalty function keeps being
a gap function for the same range of ε also decreasing the parameter α.


Lemma 3 Given any ᾱ > 0 and any p ∈ [1,∞], there exists ε̄ > 0 such that


a) ψα,ε,p(x) ≥ 0 for all x ∈ D,


b) x∗ solves (EP) if and only if x∗ ∈ D and ψα,ε,p(x
∗) = 0,


for all α ∈ [0, ᾱ] and ε ∈ (0, ε̄).


Proof. Consider any compact set D′ such that it contains D in its interior, namely D ⊂ intD′,
and the penalty function


ψ̃α,ε,p(x) = ϕα(x) +
1


ε
‖(c+(x), d+(x))‖p,


where d+(x) = (d+
1 (x), . . . , d+


r (x)) with d+
j (x) = max{0, 〈aj , x〉 − bj}. By [6, Theorem 4] ψ̃ᾱ,ε,p is


a weakly exact penalty function for problem (7) with α = ᾱ with respect to the set D′, i.e. there
exists ε̄ > 0 such that


argmin{ ϕᾱ(x) : x ∈ C } = argmin{ ψ̃ᾱ,ε,p(x) : x ∈ intD′ }


holds for any ε ∈ (0, ε̄). Take any global minimizer x̂ of ϕᾱ or equivalently of ψ̃ᾱ,ε,p. Since x̂ ∈ C,


then ϕᾱ(x̂) = 0 guarantees also ψ̃ᾱ,ε,p(x̂) = 0. Therefore, ψ̃ᾱ,ε,p(x) ≥ 0 for all x ∈ intD′ and


Theorem 1 implies that x∗ ∈ intD′ and ψ̃ᾱ,ε,p(x
∗) = 0 if and only if x∗ solves (EP). Taken any


α ∈ [0, ᾱ], then ϕα(x) ≥ ϕᾱ(x) and thus ψ̃α,ε,p(x) ≥ ψ̃ᾱ,ε,p(x) for any x ∈ Rn. Note that ψ̃α,ε,p
coincides with ψα,ε,p on D, and thus a) and b) follow immediately. �


Lemma 3 provides a whole family of gap functions to exploit within a descent framework.
While yα(x) is computed through ϕα (see (2) and (3)), the descent of the direction is tested on
the penalized gap function ψα,ε,p checking whether or not


ψ◦α,ε,p(x; yα(x)− x) < 0 (9)


holds. Computing the value of the generalized directional derivative may be not easy. Anyway, if
the equilibrium bifunction f satisfies a concavity type assumption1 [1], namely


f(x, y) + 〈∇xf(x, y), y − x〉 ≥ 0, ∀ x, y ∈ D, (10)


then an upper estimate for the generalized directional derivative is available.


Lemma 4 If f satisfies (10), then


ψ◦α,ε,p(x; yα(x)− x) ≤ −ψα,ε,p(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉]


holds for any x ∈ D, α > 0, ε > 0 and p ∈ [1,∞].


1if f(·, y) is concave for all y ∈ D, then f satisfies (10)
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Proof. Since it is convex, the function v(x) = ‖c+(x)‖p is regular in the Clarke sense, i.e.
v◦(x; ·) = v′(x; ·) where v′(x; ·) denotes the standard directional derivative. Moreover, it holds
(see [6]):


v′(x; yα(x)− x) =





m∑
i=1


ξi(x) if p = 1,


[
m∑
i=1


(c+i (x))p−1ξi(x)


]
· ‖c+(x)‖1−pp if p ∈ (1,∞), x /∈ C,


[
m∑
i=1


(ξi(x))p


]1/p


if p ∈ (1,∞), x ∈ C,


max
i∈I∞(x)


ξi(x) if p =∞,


where


ξi(x) =



0 if i ∈ I−(x) := {i : ci(x) < 0},


max{0, 〈∇ci(x), yα(x)− x〉} if i ∈ I0(x) := {i : ci(x) = 0},


〈∇ci(x), yα(x)− x〉 if i ∈ I+(x) := {i : ci(x) > 0},


and I∞(x) = {i : c+i (x) = ‖c+(x)‖∞}. Moreover, yα(x) ∈ P (x) implies that 〈∇ci(x), yα(x)− x〉 ≤
−ci(x), and hence ξi(x) = 0 if i ∈ I0(x) and ξi(x) ≤ −ci(x) if i ∈ I+(x). If p = 1, then


v′(x; yα(x)− x) =


m∑
i=1


ξi(x) ≤ −
∑


i∈I+(x)


ci(x) = −
m∑
i=1


c+i (x) = −v(x).


If p ∈ (1,∞) and x /∈ C, then


v′(x; yα(x)− x) =


[
m∑
i=1


(c+i (x))p−1ξi(x)


]
/‖c+(x)‖p−1


p


≤ −


 ∑
i∈I+(x)


(c+i (x))p−1ci(x)


 /‖c+(x)‖p−1
p


= −‖c+(x)‖p = −v(x).


If p ∈ (1,∞) and x ∈ C, then


v′(x; yα(x)− x) =


[
m∑
i=1


(ξi(x))p


]1/p


= 0 = −v(x).


Finally, if p =∞ then


v′(x; yα(x)− x) = max
i∈I∞(x)


ξi(x) ≤ max
i∈I∞(x)


−c+i (x) = −‖c+‖∞ = −v(x).
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Hence, we have v◦(x; yα(x)− x) = v′(x; yα(x)− x) ≤ −v(x). Moreover, we obtain


ϕ◦α(x; yα(x)− x) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), yα(x)− x〉


≤ f(x, yα(x))− α〈∇xh(x, yα(x)), yα(x)− x〉


= −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ,


where the first inequality follows from Theorem 2b) and the second one from condition (10).
Therefore, we have


ψ◦α,ε,p(x; yα(x)− x) ≤ ϕ◦α(x; yα(x)− x) + 1
ε v
◦(x; yα(x)− x)


≤ −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉]− 1
ε v(x)


= −ψα,ε,p(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] .


�


One way to force the decrease of the gap function along a descent direction is to compare the
above upper estimate with the value of the gap function itself, i.e.


−ψα,ε,p(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ≤ −η ψα,ε,p(x) (11)


where η ∈ (0, 1) is a fixed parameter. If x is feasible and does not solve (EP), then (11) guarantees
that yα(x)−x is a descent direction for ψα,ε,p at x. Indeed, inequality (11) holds at a feasible point
x whenever the regularization parameter α is small enough. On the contrary, if x is not feasible,
it may happen ψα,ε,p(x) < 0 when the penalization parameter ε is not below the threshold of
exactness, and therefore (11) may be useless. Anyway, yα(x)− x is a descent direction also in this
case regardless of (11) if ε is small enough. Any (λ, µ) ∈ Λα(x) provides an upper bound for the
appropriate ε, relying on the vector λ+ ∈ Rm, whose components are given by


λ+
i =


{
λi if ci(x) > 0
0 otherwise.


Theorem 4 Suppose that f satisfies (10).


a) If x ∈ C does not solve (EP) and η ∈ (0, 1), then (11) holds for any ε > 0, p ∈ [1,∞], and
any sufficiently small α.


b) If x ∈ D \ C and (λ, µ) ∈ Λα(x), then (9) holds for any α > 0, p ∈ [1,∞] and ε such that
ε < ‖λ+‖−1


q , where ‖ · ‖q is the dual norm of ‖ · ‖p.


Proof. a) Since x ∈ C, then ψα,ε,p(x) = ϕα(x) > 0 for any α > 0, ε > 0 and p ∈ [1,∞]. By
contradiction, suppose that there exists a sequence αk ↓ 0 such that (11) does not hold for α = αk.
Thus,


ψα1,ε,p(x) ≤ ψαk,ε,p(x)


≤ − αk
1− η


[h(x, yαk
(x)) + 〈∇xh(x, yαk


(x)), yαk
(x)− x〉] .


Since D is bounded and yαk
(x) ∈ D for all k , then we obtain the contradiction ψα1,ε,p(x) ≤ 0


simply taking the limit in the above inequalities.
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b) Since f(x, ·) is convex, then


0 = f(x, x) ≥ f(x, y) + 〈∇yf(x, y), x− y〉


holds for all y ∈ D, and hence (10) implies that also


〈∇xf(x, y) +∇yf(x, y), y − x〉 ≥ 0


holds for all y ∈ D. Exploiting the upper estimate provided by Theorem 2(b), we get


ϕ◦α(x; yα(x)− x) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), yα(x)− x〉


≤ 〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yα(x)− x〉


= −
m∑
i=1


λi 〈∇ci(x), yα(x)− x〉 −
r∑
j=1


µj 〈aj , yα(x)− x〉


=


m∑
i=1


λi c
+
i (x) +


r∑
j=1


µj [〈aj , x〉 − bj ]


≤
m∑
i=1


λ+
i ci(x) = 〈λ+, c+(x)〉.


Considering v(x) = ‖c+(x)‖p, the above inequalities together with v◦(x; yα(x) − x) ≤ −v(x) (see
the proof of Lemma 4) allow to get


ψ◦α,ε,p(x; yα(x)− x) ≤ ϕ◦α(x; yα(x)− x) + 1
ε v
◦(x; yα(x)− x)


≤ 〈λ+, c+(x)〉 − 1
ε ‖c


+(x)‖p


≤ ‖λ+‖q ‖c+(x)‖p − 1
ε ‖c


+(x)‖p


=
(
‖λ+‖q − 1


ε


)
‖c+(x)‖p < 0


where the last inequality follows from the assumption ε < ‖λ+‖−1
q . �


The above results provide the key tools to devise a solution method. Given values for α and ε,
the corresponding penalty function ψα,ε,p is exploited as long as three conditions hold: its value
at the current point is positive; the penalization parameter ε is small enough with respect to
the magnitude of a vector of multipliers corresponding to the linearized constraints at the current
point; the search direction is indeed a descent direction and the decrease of the value of the penalty
function is large enough according to (11). When any of the three conditions fails to hold, a null
step is performed simply decreasing both parameters simultaneously.


Algorithm


(0) Choose p ∈ [1,∞], β, γ, δ, η ∈ (0, 1), sequences αk, εk ↓ 0, x0 ∈ D and set k = 1.


(1) Set z0 = xk−1 and j = 0.
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(2) Compute yj = arg min{f(zj , y) + αkh(zj , y) : y ∈ P (zj)} and λj any Lagrange multiplier
vector corresponding to the linearized constraints.


(3) If dj := yj − zj = 0, then STOP.


(4) If the following relations hold


a) ψαk,εk,p(z
j) > 0,


b) 1/εk ≥ ‖(λj)+‖q + δ,


c) −ψαk,εk,p(z
j)− αk


[
h(zj , yj) + 〈∇xh(zj , yj), yj − zj〉


]
≤ −η ψαk,εk(zj)


then compute the smallest non-negative integer s such that


ψαk,εk,p(z
j + γs dj)− ψαk,εk,p(z


j) ≤ −β γ2s ‖dj‖2,


set tj = γs, zj+1 = zj + tjd
j , j = j + 1 and goto Step 2


else set xk = zj , k = k + 1 and goto Step 1.


Convergence to a solution of (EP) is achieved considering separetely the case in which the
parameters actually go to zero from the case in which they are updated a finite number of times.


Theorem 5 If f satisfies (10), then either the algorithm stops at a solution of (EP) after a finite
number of iterations, or it produces either an infinite sequence {xk} or an infinite sequence {zj}
such that any of its cluster points solves (EP).


Proof. First, we prove that the line search procedure in step 4 is always finite. By contradiction,
assume that there exist k and j such that


ψαk,εk,p(z
j + γs dj)− ψαk,εk,p(z


j) > −β γ2s ‖dj‖2


holds for all s ∈ N. Therefore, we have


ψ◦αk,εk,p
(zj ; dj) ≥ lim sup


s→∞
γ−s(ψαk,εk,p(z


j + γs dj)− ψαk,εk,p(z
j)) ≥ 0,


which is impossible since Theorem 4 guarantees ψ◦αk,εk,p
(zj ; dj) < 0.


If the algorithm stops at zj after a finite number of iterations, then the stopping criterion and
Lemma 1 guarantee that zj solves (EP).


Now, suppose that the algorithm generates an infinite sequence {xk}. Let x∗ be a cluster point
of {xk}: taking the appropriate subsequence {xk`}, we have xk` → x∗. Since αk, εk ↓ 0, Lemma 3
guarantees that there exists k′ such that ψαk,εk,p is a gap function for all k ≥ k′ and in particular
there exists `′ such that ψαk`


,εk`
,p(x


k`) > 0 for all ` ≥ `′. Lemma 2 in [11] guarantees that {λk`} is


bounded for ` sufficiently large, thus there exists `′′ such that 1/εk` > ‖(λk`)+‖q + δ for all ` ≥ `′′.
Choosing ¯̀ := max{`′, `′′}, then we have both 1/εk` > ‖(λk`)+‖q + δ and ψαk`


,εk`
,p(x


k`) > 0 for


all ` ≥ ¯̀. By the rule in step 4 condition c) fails at zj = xk` for ` ≥ ¯̀ and hence


0 < ψαk¯̀,εk¯̀,p
(xk`) ≤ ψαk`


,εk`
,p(x


k`)


< − αk`
(1− η)


[
h(xk` , yk`) + 〈∇xh(xk` , yk`), yk` − xk`〉


]
.
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Since xk` and yk` belong to the bounded set D, the continuity of h and ∇xh guarantee that
the sequence {h(xk` , yk`) + 〈∇xh(xk` , yk`), yk` − xk`〉} is bounded from above. Thus, we get
ψαk¯̀,εk¯̀,p


(x∗) = 0 taking the limit as `→ +∞, and therefore x∗ solves (EP).


Now, suppose that the algorithm generates an infinite sequence {zj} for some fixed k. Therefore,
we can set α = αk and ε = εk as these values don’t change anymore, and let z∗ be a cluster point of
{zj}: taking the appropriate subsequence {zj`}, we have zj` → z∗. Expoiting Lemma 2, zj` → z∗


implies also dj` → d∗ = yα(z∗)− z∗.
By contradiction, suppose that z∗ does not solve (EP), or equivalently d∗ 6= 0. The step size


rule implies
ψα,ε,p(z


j`)− ψα,ε,p(zj`+1) ≥ β t2j` ‖d
j`‖2 ≥ 0.


Taking the limit as `→ +∞, we get tj` → 0 since d∗ 6= 0. Moreover, the inequality


ψα,ε,p
(
zj` + tj` γ


−1 dj`
)
− ψα,ε,p(zj`) > −β (tj` γ


−1)2 ‖dj`‖2
holds for all ` ∈ N. Since ψα,ε,p is locally Lipschitz continuous, the mean value theorem guarantees
that there exists θj` ∈ (0, 1) such that


ψα,ε,p
(
zj` + tj` γ


−1 dj`
)
− ψα,ε,p(zj`) = 〈ξj` , tj` γ−1 dj`〉


where ξj` is a generalized gradient of ψα,ε,p at zj` + θj` tj` γ
−1 dj` . Hence, we get


〈ξj` , dj`〉 > −β tj` γ−1 ‖dj`‖2.


On the other hand, we also have


〈ξj` , dj`〉 ≤ ψ◦α,ε,p
(
zj` + θj` tj` γ


−1 dj` ; dj`
)
.


Thus, we get
ψ◦α,ε,p


(
zj` + θj` tj` γ


−1 dj` ; dj`
)
> −β tj` γ−1 ‖dj`‖2.


Moreover, zj` + θj` tj` γ
−1 dj` → z∗ as `→ +∞. Since ψ◦α,ε,p is upper semicontinuous as function


of (z; d) (see e.g. [5]), we get


ψ◦α,ε,p(z
∗; d∗) ≥ lim sup


`→+∞
ψ◦α,ε,p


(
zj` + θj` tj` γ


−1 dj` ; dj`
)
≥ 0. (12)


On the other hand, if z∗ ∈ C then ψα,ε,p(z
∗) = ϕα(z∗) > 0 since z∗ does not solve (EP). Moreover,


the three conditions at step 4 are satisfied for all `, hence we have


−ψα,ε,p(zj`)− α
[
h(zj` , yj`) + 〈∇xh(zj` , yj`), yj` − zj`〉


]
≤ −η ψα,ε,p(zj`).


Thus, taking the limit the upper estimate provided in Lemma 4 gives


ψ◦α,ε,p(z
∗; d∗) ≤ −ψα,ε,p(z∗)− α [h(z∗, yα(z∗)) + 〈∇xh(z∗, yα(z∗)), d∗〉]


≤ −η ψα,ε,p(z∗) < 0,


which contradicts (12). Therefore, z∗ /∈ C. Since 1/ε ≥ ‖(λj`)+‖q + δ, then taking the limit as
`→ +∞ (eventually considering a subsequence) provides 1/ε ≥ ‖(λ∗)+‖q + δ for some multipliers
(λ∗, µ∗) ∈ Λα(z∗). Thus, Theorem 4b) guarantees ψ◦αk,εk,p


(z∗; d∗) < 0, contradicting again (12).
Therefore, z∗ solve (EP). �


When (EP) is the variational inequality associated to the operator F , condition (10) is equiva-
lent to require that ∇F is positive semidefinite, while the algorithm presented in [19] for varational
inequalities requires positive definiteness. Updating the parameters α and ε, which on the contrary
are kept fixed in [19], is the key feature to devise a solution method that converges under weaker
assumptions. Furthermore, the above algorithm involves an inexact line search while the algorithm
in [19] needs the rather theoretical exact line search.
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4 Numerical tests


We applied the algorithm to solve a problem of production competition over a network under the
Nash-Cournot equilibrium framework. We considered a modification of the oligopolistic model
originally proposed in [16]. The same commodity is produced by n firms, which compete over
quantity in a noncooperative fashion. Given a transportation network (N,A), the firms and the
markets are located at some sets of nodes I ⊂ N and J ⊂ N , respectively. Each firm i ∈ I chooses
the quantity xij to supply to each market j ∈ J and how to ship it, by choosing the quantities via
to be sent on each arc a ∈ A; the goal of the firm is to maximize its profit given by


∑
j∈J


xijpj


(∑
`∈I


x`j


)
−
∑
a∈A


sa v
i
a − πi


∑
j∈J


xij


 ,


where pj : R+ → R+ is the inverse demand function for market j, that is pj(z) denotes the unitary
price at which the market j requires a total quantity z, sa is the unitary transportation cost on
arc a, and πi : R+ → R+ is the production cost function. On the other hand, each firm is subject
to flow-conservation constraints


(Evi)k =



−
∑
j∈J


xkj if k = i


0 if k /∈ J
xik if k ∈ J


k ∈ N, (13)


where E is the node-arc incidence matrix of the network and vi = (via)a∈A. Moreover, it has a
bounded production capacity, i.e. ∑


j∈J
xij ≤ qi, (14)


where qi denotes the maximum quantity that firm i may produce. Finally, a public authority selects
a set R of paths and imposes upper bounds on the congestion of these selected paths, namely∑


a∈r
ta(v) ≤ Tr ∀ r ∈ R, (15)


where ta denotes the (convex) travel time function on arc a and Tr is the maximum travel time on
path r.


An equilibrium state is reached when the production levels and the flows are such that no
firm would increase its profit by changing its own production and shipping choices while the other
firms keep the same ones. Finding such an equilibrium can be formulated as a Generalized Nash
Equilibrium Problem (GNEP), i.e. a noncooperative game in which the strategy set of each player
(firm), as well as his payoff function, depends on the strategies of all players (see [7] and references
therein). More precisely, the congestion constraints (15), which are shared by all the players, make
the problem a jointly convex GNEP. It is well known that normalized equilibria of a jointly convex
GNEP are the solutions of a suitable equilibrium problem (see e.g. [20]). In our case, setting
x = (xij)i∈I,j∈J , v = (vi)i∈I and analogously y and w, normalized equilibria coincide with the
solutions of (EP) where the feasible set C is defined by constraints (13)–(15) and the bifunction f
is given by:


f((x, v), (y, w)) =
∑
i∈I


[∑
j∈J


xijpj


(∑̀
∈I
x`j


)
−
∑
j∈J


yijpj


(
yij +


∑
`∈I, 6̀=i


x`j


)


+
∑
a∈A


sa (wia − via) + πi


(∑
j∈J


yij


)
− πi


(∑
j∈J


xij


)]
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We applied our algorithm to a problem with 3 firms, 2 markets, and the transportation network
of Figure 1 with I = {1, 2, 3} and J = {13, 14}.


Figure 1: Transportation network.
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We assumed that both markets have the same inverse demand function


pj(z) = p(z) = ρ1/τ (z + σ)−1/τ ,


and that the cost functions have the form


πi(xi) = πi xi + (1 + δi)
−1K−δii x1+δi


i ,


where ρ = 5000 and τ = 1.1 have been selected as in [18] as well as the values for the parameters
of the cost functions, which are shown in Table 1. We chose σ = 0.01 rather than σ = 0: while
the effect on the equilibrium values is negligible, the problem is well defined also for a zero total
production, which could be selected as the starting point of the algorithm.


Table 1: Parameters of cost functions.


i πi Ki δi
1 10 5 5/6
2 6 5 1
3 2 5 5/4


Since the functions πi and p have been chosen convex and differentiable, the function z 7→ z p(z)
is therefore concave. Thus, the bifunction f(·, (y, w)) turns out to be concave for any (y, w) and
hence assumption (10) of the algorithm is satisfied.
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Regarding the constraints, we set production bounds qi of the firms all equal to 40. Moreover,
we considered the travel time functions introduced by the U.S. Bureau of Public Roads [3]


ta(v) = fa


[
1 + 0.15


(∑
i∈I v


i
a


Ca


)4
]
,


where fa denotes the free flow time and Ca the capacity of arc a. The values of fa are displayed
in Figure 1 and the capacity Ca has been set to 5 for all the arcs. Congestion constraints have
been set on the 8 paths listed in Table 2, and the values Tr have been chosen equal to 50 for all
the paths.


Table 2: Paths with congestion constraint.


1 2 3 4 5 6 7 8
path 4-5-6 7-8-9 10-11-12 10-7-4 5-8-11 6-9-12 4-8-12 6-8-10


The algorithm has been implemented in MATLAB 7.10.0; the built-in function fmincon from
the Optimization Toolbox was exploited to evaluate the gap function ϕα and to compute the
direction yα(x) − x. The value 10−2 was used as the threshold for the stopping criterion of the
algorithm at step 3. We chose the regularizing bifunction h(x, y) = ‖y − x‖22/2.


After some preliminary tests we set parameters of the algorithm as follows: β = 0.1, γ = 0.7,
η = 0.9, αk = 1/3k, εk = 1/k2, and p = ∞. Running the algorithm with these values of
parameters and a zero total production and flow as the starting point, it performed 11 iterations,
3 just updated the parameters α and ε (null steps), and the gap function had to be evaluated 14
times. The solution found is given in Tables 3 and 4. As shown in the Tables some bounds on
production and travel times are tight.


Table 3: Equilibrium solution found (supplied quantities).


markets total
firms 13 14 production


1 20.2087 15.6148 35.8235
2 27.9749 12.0251 40.0000
3 13.5517 26.4483 40.0000


Table 4: Equilibrium solution found (path flows and travel times).


path 4-5-6 7-8-9 10-11-12 10-7-4 5-8-11 6-9-12 4-8-12 6-8-10
flow 27.89 0.00 27.70 0.00 0.90 23.48 12.75 13.03


travel time 50.00 5.00 50.00 5.00 4.00 50.00 50.00 50.00


Subsequently, we randomly selected 50 starting points and we ran the algorithm for different
choices of the parameters β, γ, η, αk, εk, and p. Results with respect to different values of β and γ
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are given in Table 5: in each row the minimum, average and maximum number of iterations, null
steps and solved optimization problems are given. The results suggest to choose β < γ. A good
choice seems to be a small value of β, close to zero, and a value of γ close to one.


Table 5: Results with different values of parameters β and γ.


iterations null steps opt. problems
β γ min avg max min avg max min avg max


0.1 0.1 9 19.36 44 2 2.94 4 10 30.46 79
0.1 0.3 9 12.74 19 2 2.84 4 10 17.5 29
0.1 0.5 9 10.66 14 2 2.68 4 10 13.24 20
0.1 0.7 9 9.94 14 2 2.62 4 10 13.22 19
0.1 0.9 9 10.22 13 2 2.62 4 10 16.16 23
0.3 0.1 10 21.94 52 2 2.94 4 11 36.48 96
0.3 0.3 9 13 22 2 2.84 4 11 18.82 36
0.3 0.5 9 10.5 15 2 2.68 4 11 13.86 23
0.3 0.7 9 9.94 13 2 2.62 4 11 14.74 25
0.3 0.9 9 10.08 13 2 2.62 4 11 19.28 46
0.5 0.1 10 23.46 52 2 2.94 4 13 40.06 96
0.5 0.3 9 13.38 22 2 2.84 4 11 20.14 36
0.5 0.5 9 10.72 16 2 2.68 4 11 14.84 25
0.5 0.7 9 10.22 14 2 2.62 4 11 16.72 40
0.5 0.9 9 10.16 13 2 2.62 4 12 23.2 77
0.7 0.1 12 25.48 52 2 2.94 4 15 45.18 122
0.7 0.3 9 13.62 22 2 2.84 4 11 20.96 36
0.7 0.5 9 11.1 17 2 2.68 4 12 16.64 46
0.7 0.7 9 10.56 15 2 2.62 4 11 19.32 59
0.7 0.9 9 10.32 14 2 2.62 4 12 27.8 123


The impact of different values of η is shown in Table 6, in which the minimum, average and
maximum number of iterations, null steps and solved optimization problems are given. Results
show that the closer η is to one, the better is the behaviour of the algorithm.


Table 6: Results with different values of parameter η.


iterations null steps opt. problems
η min avg max min avg max min avg max


0.1 10 22.66 33 1 1.40 3 13 83.68 157
0.2 11 21.48 33 1 1.44 3 13 77.38 157
0.3 10 20.42 33 1 1.54 3 12 71.44 157
0.4 10 22.28 32 1 1.48 3 12 82.46 157
0.5 10 20.20 32 1 1.58 4 12 68.76 157
0.6 9 13.30 27 1 1.92 3 10 25.30 111
0.7 9 11.82 24 1 2.12 3 12 16.96 93
0.8 9 11.22 14 1 2.46 3 11 14.66 33
0.9 9 9.94 14 2 2.62 4 10 13.22 19
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Table 7 reports the results with respect to different values of parameters αk and εk. According
to the results, it is better to choose an exponentially decreasing sequence for αk, while εk should
be a polynomially decreasing one.


Table 7: Results with different values of parameters αk and εk.


iterations null steps opt. problems
αk εk min avg max min avg max min avg max
1/k 1/k 21 31.12 71 7 20.52 61 24 39.32 101
1/k 1/k2 24 28.30 40 4 4.36 7 33 57.70 152
1/k 1/3k 34 51.54 79 2 2.12 3 77 176.18 333
1/k2 1/k 11 16.76 23 4 9.26 16 12 20.12 27
1/k2 1/k2 11 13.70 20 2 3.38 7 13 19.92 51
1/k2 1/3k 14 15.80 28 2 2.14 4 17 25.86 140
1/3k 1/k 9 17.24 23 2 9.24 16 10 20.82 27
1/3k 1/k2 9 9.94 14 2 2.62 4 10 13.22 19
1/3k 1/3k 9 12.08 19 1 1.88 3 12 18.60 68


Table 8 shows the impact of different choice of the value of p, which seems not to have a
significant impact on the behaviour of the algorithm.


Table 8: Results with different values of parameter p.


iterations null steps opt. problems
p min avg max min avg max min avg max
1 9 10.2 14 2 2.66 4 11 13.92 21
2 9 10.08 14 2 2.66 4 10 13.58 21
3 9 10.02 14 2 2.64 4 10 13.42 19
4 9 9.92 14 2 2.62 4 10 13.22 19
5 9 9.94 14 2 2.62 4 10 13.22 19
10 9 9.94 14 2 2.62 4 10 13.22 19
∞ 9 9.94 14 2 2.62 4 10 13.22 19


Finally, we selected production capacities for each firm in the range [20, 50] and congestion
bounds for any path in the range [30, 100] and we ran the algorithm with the original values of
parameters: β = 0.1, γ = 0.7, η = 0.9, αk = 1/3k, εk = 1/k2, p = ∞, and the zero vector as
starting point. The results are shown in Table 9, which shows the effect of capacity and congestion
bounds on the production values, path flows, and path travel times at the equilibrium solution.
In particular, for each given value of the capacities and of the congestion bounds, the quantities
supplied by the firms to each markets are reported on the first line, the total quantities supplied on
the second line, and the path flows on the third line, where a bold font denotes that the congestion
constraint is active on the correponding path.
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Table 9: The effect of capacity and congestion bounds on the production values, path flows, and
path travel times at the equilibrium solution.


quantities supplied to each market
bounds total quantities supplied


q1 q2 q3 Tr path flows
40 40 40 50 20.21 15.61 27.97 12.03 13.55 26.45


35.82 40.00 40.00
27.89 0.00 27.70 0.00 0.90 23.48 12.75 13.03


40 40 40 30 20.52 15.25 28.33 11.67 12.01 27.99
35.78 40.00 40.00


24.03 0.00 24.03 0.00 0.00 19.86 11.88 12.31
40 40 40 100 20.25 16.09 26.65 13.35 14.49 25.51


36.34 40.00 40.00
33.62 0.00 29.35 0.00 0.74 26.71 15.72 15.72


50 50 50 50 19.06 14.42 32.46 13.97 13.92 28.77
33.48 46.43 42.69


27.83 0.00 27.83 0.00 0.00 23.48 13.99 14.98
50 50 50 100 18.58 15.28 32.24 14.77 15.53 28.22


33.86 47.00 43.74
33.55 0.00 31.06 0.00 0.00 28.65 15.28 16.16


30 30 30 50 16.40 13.60 19.04 10.96 11.56 18.44
30.00 30.00 30.00


27.96 0.00 23.97 0.00 1.71 21.92 12.75 12.75
30 30 30 30 16.51 13.49 19.79 10.21 11.10 18.90


30.00 30.00 30.00
24.18 0.00 23.62 0.00 2.56 19.86 10.57 10.86


20 20 50 50 10.83 9.17 13.89 6.11 18.61 26.59
20.00 20.00 45.20


27.83 0.00 27.83 9.38 0.00 6.11 9.16 15.27
20 50 20 50 11.17 8.83 30.33 19.05 5.83 14.17


20.00 49.38 20.00
27.46 0.00 15.43 0.00 8.87 23.48 3.71 19.70


20 50 20 100 11.15 8.85 29.89 20.11 6.08 13.92
20.00 50.00 20.00


31.83 0.00 11.48 0.68 8.85 27.05 0.00 22.02
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