

Università di Pisa


Dipartimento di Informatica


Technical Report: TR-11-08


Generalized Bundle Methods for
Sum-Functions with “Easy”
Components: Applications to


Multicommodity Network Design


Antonio Frangioni


Dipartimento di Informatica, Università di Pisa
Polo Universitario della Spezia


Via dei Colli 90, 19121 La Spezia (SP) – Italy
frangio@di.unipi.it


Enrico Gorgone


Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria, 87036 Rende (CS) – Italy


egorgone@deis.unical.it


ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726











Generalized Bundle Methods for Sum-Functions with


“Easy” Components: Applications to Multicommodity


Network Design


Antonio Frangioni


Dipartimento di Informatica, Università di Pisa
Polo Universitario della Spezia


Via dei Colli 90, 19121 La Spezia (SP) – Italy
frangio@di.unipi.it


Enrico Gorgone


Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria, 87036 Rende (CS) – Italy


egorgone@deis.unical.it


Abstract


We propose a modification to the (generalized) bundle scheme for minimization of
a convex nondifferentiable sum-function in the case where some of the components are
“easy”, that is, they are Lagrangian functions of explicitly known convex programs
with “few” variables and constraints. This happens in many practical cases, particu-
larly within applications to combinatorial optimization. In this case one can insert in
the master problem a suitably modified representation of the original convex subprob-
lem, as an alternative to iteratively inner-approximating it by means of the produced
extreme points, thus providing the algorithm with exact information about a part of
the objective function, possibly leading to performance improvements. This is shown
to happen in at least one relevant application: the computation of tight lower bounds
for Fixed-Charge Multicommodity Min-Cost Flow problems.


Keywords: Nondifferentiable Optimization, Bundle methods, Lagrangian Relaxation,


Partial Dantzig-Wolfe Decomposition, Multicommodity Network Design


1 Introduction, motivation


We are concerned with the numerical solution of the problem


(Π) infx
{


f(x) =
∑


k∈K fk(x) : x ∈ X
}


, (1)


1







where K is a finite set, each fk : Rn → R is a finite-valued (hence proper) convex possibly
nondifferentiable function, and X ⊆ R


n is closed convex. Bundle methods are known to
be among the most efficient implementable algorithms for this class of problems. We will
refer in particular to the generalized ones defined in [13], since that is perhaps the largest
class of bundle methods with a unified convergence analysis. However, several other bundle
algorithms have been proposed (see [24] for a through discussion and some more recent
references like [27, 28, 29, 32, 34]), and the basic idea of the present paper appears to be easily
applicable to most of them as well. A particularly relevant application of these approaches
is the one where f is a Lagrangian function of some optimization problem; some linking
constraints are relaxed so that the Lagrangian relaxation decomposes into |K| independent
subproblems, and the minimization of f corresponds to the solution of the Lagrangian dual.
In this case, it is known that bundle algorithms also solve a “convexified” version of the
original problem [13, 11, 33], which is useful e.g. in combinatorial optimization [14].


It is standard in bundle methods to assume that f is only known through an oracle
(“black box”) that, given any x ∈ X , returns the value f(x) and z ∈ ∂f(x). To simplify
the treatment, we will initially assume X = R


n, with the extension to the constrained case
to be separately discussed later on. Bundle methods generate a sequence of tentative points
{xi} where the oracle is probed to gather the bundle B = { ( f(xi) , zi ∈ ∂f(xi) ) }; in
our setting, the typical assumption is that a separate oracle is available for each component
providing fk(xi) and zki ∈ ∂fk(xi), so that f(xi) =


∑


k∈K fk(xi) and zi =
∑


k∈K zki . These
are used to construct a model fB of f ; typically, the (aggregated) cutting-plane model


f̂B(x) = max
{


f(xi) + zi(x− xi) : i ∈ B
}


≤ f . (2)


This is fundamental to construct the next tentative point x+; its simplest choice—that
of Kelley’s Cutting Plane method—is just a minimum of f̂B, but some form of stabilization
(discussed below) is usually necessary in order to improve the performances. Several different
forms of stabilization have been analyzed in the literature, but the focus of the present
paper is rather the choice of the model fB. It has been repeatedly shown that exploiting
as much as possible the structure of the problem at hand is highly beneficial. For a sum-
function, a relatively straightforward idea is to separately keep the |K| disaggregated bundles
Bk = { ( fk(xi) , z


k
i ) }. Doing so allows to construct |K| independent cutting plane models


fk
B, one for each component, so that fB =


∑


k∈K fk
B is a much better model—for the same


bundle B = ∪k∈K Bk—of f than (2). This more accurate disaggregated cutting plane model
improves the convergence speed so much as to amply compensate the increased cost due to
the larger size of the corresponding master problems (cf. (13)–(14) below) [2, 5, 26].


All this has been known for a long time, but only recently it has been realized that in
several applications not all the components of f are equivalent. Indeed, it is often the case
that while some of the them do require a complex oracle, others have a “simple” form. Recent
results—not by chance, motivated by a multicommodity flow structure similar to the one of
interest here—have focussed on the case where one of the fk is smooth [32, 29]. Furthermore,
it can be argued (cf. §2.3) that even seemingly unrelated work on faster constrained bundle
methods [28] basically hinges on the concept that the true objective function is the sum of two
rather different components: a generic f , and the indicator function IX of a “simple” set. In
this paper, we will show a different approach along the same lines for the case where some of
the components can be expressed by means of a “simple” convex program. This allows to use


2







an exact model of these components by basically just copying the corresponding constraints
in the formulation of the master problem, instead of approximating them piecemeal by inner
linearization. This may enlarge the initial size of the master problem, but not necessarily the
average size since the exact model does not grow in size with the iterations like classical ones
do. Furthermore, it provides the algorithm with a better—indeed, “perfect”—knowledge of
a part of the function to be minimized, thereby possibly improving the convergence speed.
From the primal viewpoint, this amounts at performing a Stabilized Partial Dantzig-Wolfe
Decomposition where not all the polyhedra whose Cartesian product forms the feasible region
are reformulated be extreme points and iteratively inner approximated. The new approach
leads to a very substantial reduction in the overall running time in at least one relevant
application: the computation of tight lower bounds for Fixed-Charge Multicommodity Min-
Cost Flow problems.


The structure of the paper is as follows. In Section 2 an overview of (generalized) bundle
methods is provided, and we show how “exact” models of “easy” components can be inserted
in the master problem. Then, in Section 3 the computational results obtained with Fixed-
Charge Multicommodity Min-Cost Flow problems are presented and discussed, and, finally,
in Section 4 conclusions are drawn.


Throughout the paper the following standard notation is used. Given a set X , IX(x) = 0
if x ∈ X (and +∞ otherwise) is its indicator function, σX(z) = supx{ zx : x ∈ X }
is its support function, cl X is its closure, and co X is its convex hull. Given a convex
function f , ∂f(x) is its subdifferential at x, epi f = { (v, x) : v ≥ f(x) } is its epigraph,
dom f = { x : f(x) < ∞ } is its domain, and f ∗(z) = supx{ zx − f(x) } is its Fenchel’s
conjugate. Given a problem (P ) inf[sup]x{ f(x) : x ∈ X }, v(P ) denotes its optimal value;
X = ∅ ⇒ v(P ) = +[−]∞.


2 Bundle methods with “easy” components
We first provide an overview of (generalized) bundle methods in the “unstructured” case
where f is any convex function provided by an oracle; then, we show what modifications are
needed to the approach (mainly, to the master problem) in order to accommodate “exact”
representation of the “easy” components of f .


2.1 A brief overview of (generalized) Bundle methods
Bundle methods are best described as implementable forms of (generalized) Proximal Point
algorithms, i.e., as the combination of two different ideas:


Proximal Point In order to choose the next iterate f , one selects a current point x̄
(usually the best iterate found so far) and a stabilizing term Dt—a closed convex function
with suitable properties—and solves the stabilized primal problem


(Πx̄,t) φt(x̄) = infd
{


f(x̄+ d) +Dt(d)
}


. (3)


This amounts at computing the (generalized) Moreau–Yosida regularization φt of f in x̄;
with a proper Dt, φt has the same set of minima as f but enjoys additional properties, e.g.,
smoothness, making it easier to construct descent algorithms for its minimization. Under
mild assumptions on Dt, the optimal solution d∗ to (3) is 0 if x̄ is optimal for (1), while d∗


is a descent direction (that is, f(x̄+ d∗) < f(x̄)) otherwise.


3







Approximation Unfortunately, solving (3) with the sole help of the black box for f is,
in principle, as difficult as solving (1). Therefore, bundle methods resort to a two-level
approach, repeatedly solving the stabilized primal master problem


(ΠB,x̄,t) φB,t(x̄) = infd
{


fB(x̄+ d) +Dt(d)
}


, (4)


an approximation of (3) where fB is a model of f constructed using the information available
in B. The optimal solution d∗ of (4)—an approximation to the optimal solution of (3)—is
used to compute the next iterate x+ = x̄ + d∗. If the model is “accurate enough”, d∗ will
indeed be a descent direction, i.e., f(x+) < f(x̄); provided that the decrease in the function
value is “sizable”, x̄ can be moved to x+ (a Serious Step) and convergence is attained as
in the Proximal Point approach. Otherwise x̄ is left unchanged (a Null Step) and some
z+ ∈ ∂f(x+) is added to B in order to improve fB. Sequences of consecutive Null Steps are
to be seen as steps of an approach for the (approximated) solution of (3) based on iteratively
refining the model fB using information provided by the oracle. This approach may (at least
asymptotically) provide the optimal solution of (3); however, for the sake of efficiency it is
better to stop it as soon as the obtained d∗ provides a large enough descent, which is the
rationale for solving (3) in the first place.
In this process, Dt may be simply kept fixed (assuming that it has suitable properties,
otherwise one has to ensure that eventually the stabilizing term vanishes [13, §8]), but on-
line tuning of t to suitably reflect the actual “trust region” where fB is a “good” model of
f is known to be very important for the practical efficiency of the approach (see e.g. [31]).
Anyway, general rules can be given [13] such that any t-strategy obeying them eventually
constructs a minimizing sequence for (1).


A relevant aspect of bundle methods in the present context is their dual viewpoint. This
hinges on the well-known concept of Fenchel conjugate of f , the closed convex function f ∗(z)
which characterizes the set of all vectors z that are support hyperplanes to the epigraph of
f . Among the several useful properties of f ∗ [13, 23], we just remind that from the very
definition f ∗(0) = −v(Π); thus, the (apparently weird) dual problem


(∆) infz
{


f ∗(z) : z = 0
}


(5)


is equivalent to (Π), i.e., v(Π) = −v(∆). Likewise, one can thus construct the Fenchel’s dual
of any convex program by computing the conjugate of the objective function and evaluating
it in 0; doing this for (4) reveals the stabilized dual master problem


(∆B,x̄,t) infz
{


f ∗
B(z)− zx̄+D∗


t (−z) } . (6)


Clearly, (6) with fB = f is the dual of (3), and can be seen as a (generalized) augmented
Lagrangian of (5) where the constraints z = 0 are replaced with the linear term −x̄z (with
Lagrangian multipliers x̄) and the nonlinear term D∗


t (−z) in the objective function. This
becomes more revealing by realizing that the Lagrangian relaxation of (5) with respect to
the constraints z = 0, using x as Lagrangian multipliers,


(∆x) f(x) = − infz
{


f ∗(z)− zx
}


(7)


can be seen as the problem that the oracle has to solve for computing f(x). Thus, bundle
methods can also be seen as an approximated augmented Lagrangian approach to (5): (6)
is solved and x is updated using the corresponding first-order information provided that f ∗


B


4







is an accurate enough model of f ∗. All this becomes clearer when fB is the cutting plane
model (2), which in our notation is better rewritten


f̂B(x) = supz̄


{


z̄x− f ∗(z̄) : z̄ ∈ B
}


,


(using f(xi) + f ∗(zi) = xizi as zi ∈ ∂f(xi)). Thus


f̂ ∗
B(z) = infθ


{
∑


z̄∈B f
∗(z̄)θz̄ :


∑


z̄∈B z̄θz̄ = z , θ ∈ Θ
}


,


where Θ = {
∑


z̄∈B θz̄ = 1 , θ ≥ 0 } is the unitary simplex. In this case, the stabilized
primal problem (3) is approximately solved by means of a simple cutting plane algorithm
[24, Algorithm XII.4.2.1], where the unknown f is replaced with its known polyhedral outer
approximation f̂B. Correspondingly, the stabilized dual problem is approximately solved by
means of an inner approximation approach, where the unknown f ∗ is replaced with its known
polyhedral inner approximation f̂ ∗


B (note that dom f̂ ∗
B = co B), the dual pricing problem (7)


providing new pairs (f ∗(z+), z+) to improve the inner approximation.


Thus, every bundle algorithm can be read as an approach to solving (5), and one can show
that, under fairly general assumptions, an optimizing sequence for the problem is constructed.
This may appear highly uninteresting at first (after all, the only solution can be z = 0!) but
this impression reveals itself wrong at least for the case where f is a Lagrangian function of
a (convex) problem. That is, let


(Ω) supu


{


c(u) : Au = b , u ∈ U
}


, (8)


and consider its Lagrangian function


(Ωx) f(x) = supu


{


c(u) + x(b−Au) : u ∈ U
}


. (9)


It is well known that f(x) is intimately tied with the (opposite of the) value function of (8)


ν(z) = − supu


{


c(u) : b− Au = z , u ∈ U
}


; (10)


indeed, ν∗(x) = supz


{


zx + supu


{


c(u) : b−Au = z , u ∈ U
} }


= supu


{


c(u) + x(b− Au) : u ∈ U
}


= f(x)


for z can only take the value b − Au, making the sup irrelevant. Of course, this does not
imply that f ∗ = ν, as without assumptions on c() and U we cannot even expect ν to be
convex; rather, f ∗ = ν∗∗, i.e., the closed convex envelope of ν. Indeed, it is well known
that v(Π) − v(Ω) = ν(0) − ν∗∗(0), i.e., the duality gap between the original problem and
its Lagrangian dual, if any, is entirely captured by the difference between ν and its convex
envelope in 0 [31]. Thus, for f ∗ = ν to hold one has first to assume that (Ω) is convex in
the first place—c() is concave and U is convex—plus some technical assumptions that will
be discussed later on. When this happens, plugging f ∗ = ν into the stabilized dual problem
((6) with fB = f) gives


(Ωx̄,t) supu


{


c(u) + x̄(b−Au)−D∗
t (Au− b) : u ∈ U


}


and optimal solutions of (5) naturally translate into very interesting objects. Indeed, if e.g. c
is affine and the cutting plane model f̂B is used, (6) becomes


(ΩB,x̄,t) inf
z,θ


{


− c
(
∑


ū∈B ūθū
)


− zx̄+D∗
t (−z) : A


(
∑


ū∈B ūθū
)


− b = z , θ ∈ Θ
}


5







= supu


{


c(u) + x̄(b−Au)−D∗
t (Au− b) : u ∈ co B = UB


}


, (11)


where B is now seen as the set of optimal solutions ū ∈ U of the dual pricing problem (9)
such that z̄ = b − Aū. Thus, (generalized) bundle method combine an inner linearization
approach (where U is substituted by its “simple” approximation UB) and a (generalized)
augmented Lagrangian scheme for solving (8). In particular, the optimal solution of (11) in
the u-space, u∗ =


∑


ū∈B ūθ
∗
ū where θ∗ is its optimal solution in the θ-space, can be shown,


under mild conditions, to converge to a solution of (8). Its representative z∗ = b−Au∗ in the
dual space can also be used to keep the size of B bounded; under appropriate conditions on
Dt [13], it is possible to prune down the bundle to any fixed size—downto B = {u∗}—without
impairing convergence, provided that u∗ is inserted to make up for the lost information. A
milder way to attain the same result is to keep in B all the ū such that θ∗ū > 0. If c is not
concave and/or U is not convex, f is nonetheless a convex function and (5) is equivalent to
(and, therefore, bundle methods solve) the “close-convexified version” of (1)


(Ω̃) supu


{


c̃(u) : Au = b
}


where c̃ = (c+ IU)
∗∗ [33]; when c is linear, for instance, this simply amounts to replacing U


with co U in (8). These results immediately extend to inequality constraints Au ≤ b (yielding
sign constraints x ≥ 0 in the primal); conversely, the generic nonlinear case A(u) ≤ b is
considerably more complex, even in the convex case [33].


As previously remarked, a modification of the approach is possible when f is a sum-
function. This happens e.g. when (8) is a block-structured problem where the constraints
Au = b link together blocks of variables that would otherwise be independent, i.e.,


(Ω) supu


{
∑


k∈K ck(uk) :
∑


k∈K Akuk = b , uk ∈ Uk k ∈ K
}


. (12)


It this case, rather than aggregating the individual subgradients zk—which are provided by
the independent solution of each subproblem—into the unique subgradient z =


∑


k∈K zk,
one is better off to construct independent models for each component; the corresponding
disaggregated (primal and dual) master problems


(ΠB,x̄,t) infd
{


∑


k∈K fk
B(x̄+ d) +Dt(d)


}


(13)


(∆B,x̄,t) infz
{


∑


k∈K(f
k
B)


∗(zh)−
(
∑


k∈K zk
)


x̄+D∗
t


(


−
∑


k∈K zh
) }


(14)


are then solved instead of the aggregated versions. In the Lagrangian case, assuming c
linear for simplicity (and disregarding constant terms) (14) is equivalent to the approximated
generalized augmented Lagrangian


(∆B,x̄,t) supu


{
∑


k∈K(c
k − x̄Ak)uk −D∗


t


(
∑


k∈K Akuk − b
)


: uk ∈ Uk
B k ∈ K


}


(15)


where Uk
B = co Bk, that is, to each sub-component Uk of the feasible region (whose carte-


sian product makes U) to be separately inner-approximated. We will push this approach
further, recognizing that for some type of sets Uk inner-approximation is not the most effi-
cient representation. Actually, we will concentrate on sets where there is no need of inner
approximating anything, because a “compact” representation exists and is known that can
be directly added to the (dual) master problem.


6







2.2 Exact models of “easy” components: the basic case
Consider the Lagrangian function f of the following structured optimization problem


(Ω) supu1,u2


{


c1u1 + c2(u2) : u1 ∈ U1 , u2 ∈ U2 , A1u1 + A2u2 = b
}


(16)


where both Lagrangian problems


f 1(x) = supu1


{


(c1 − xA1)u1 : u1 ∈ U1
}


f 2(x) = supu2


{


c2(u2)− (xA2)u2 : U2 = { u2 : G(u2) ≤ g }
}


(17)


are “easy”, but for different reasons. In particular, let U1 be any set for which a “reasonably
efficient” (linear) optimization oracle exists, however exotic it may be (e.g. [17]), that can
be embedded into the standard “very opaque black box” of Lagrangian optimization. Con-
versely, assume that c2() is concave and U2 is a convex set such that (17) can be solved by
any appropriate convex solver (e.g., the convex constraint function G : Rn → R


m is explicitly
known and m is “small”). Actually the linearity of c1 is not necessary, and it is kept only for
simplifying the results; also, the proposed method immediately extends to more than two
components, as well as to other situations that will be explicitly discussed in the following.


The standard approach up to now has been to treat both components in exactly the same
way: develop two (different) “black box” solvers, one for each component. Then, at each
iteration the bundle approach computes a feasible pair (u1, u2) by invoking both, and add
them to the respective bundle B1 and B2; this results in a dual master problem with the form
of (15), where both U1 (actually, its convex hull) and U2 are inner approximated by a finite
subset of their (extreme) points. This looks very natural, until one examines more in details
some relevant case. For instance, in the application of interest here and in others [19], U2


is the unitary hypercube in the n-dimensional space, and c2 is linear. So, the whole U2 can
be completely described by means of 2n constraints, while in the standard (disaggregated)
bundle approach it is rather iteratively approximated by means of a subset of its 2n extreme
points (cf. §3.2). In light of this example, the standard bundle approach suddenly looks
somewhat less natural, or at least less smart: one is blatantly using the “wrong” description
of U2. Fortunately, using the “right” description instead is possible.


The idea is, on the outset, simple: form (13) where only f 1 is approximated by some
(e.g., cutting plane) model f 1


B, while f 2 is just kept as is


(ΠB,x̄,t) infd
{


b(x̄+ d) + f 1
B(x̄+ d) + f 2(x̄+ d) +Dt(d)


}


. (18)


The corresponding stabilized dual master problem is then


(∆B,x̄,t) infz1,z2


{


(f 1
B)


∗(z1) + (f 2)∗(z2)−
(


z1 + z2 + b
)


x̄+D∗
t


(


− b− z1 − z2
)


}


. (19)


Note in the above derivation that the Lagrangian function actually has three terms: f 1, f 2,
and f 0(x) = bx. So, one has a z0 besides z1 and z2 in the dual, and an extra term (f 0)∗(z0)
in the objective function: however, the conjugate of the linear function bx is I{ b }, and this,
via z0 = b, gives (19). This passage, that we have purposely not discussed in the general
derivation of §2.1, is interesting here because it shows that also in the normal development
(and even with a non-sum f) one typically has at least one “very easy” component that is
not approximated in the master problem. To make (19) implementable one has to choose


7







an appropriate model f 1
B, e.g. the cutting plane one. Then, by the very same development


as in (10) for the whole of (Ω), one has


(f 2)∗(z) = − supu2


{


c2(u2) : z = −A2u2 , G(u2) ≤ g
}


(20)


under the technical assumptions ensuring no gap between the u2-problem and its Lagrangian
dual. These are very mild, and range from simple compactness of the feasible set, to the
Slater constraint qualification, to “regular enough ” G(u2) ≤ g constraints, such as linear,
quadratic or semidefinite [31, Theorem 22]. In practice, any formulation that has a working
algebraic dual, such as conic linear programs, satisfies these assumptions. Plugging (20) into
(19) for f 1


B = f̂ 1
B gives the implementable form


(∆B,x̄,t) sup
θ,u2


{


c1
(
∑


ū1∈B
ū1θū1


)


+ c2(u2) + x̄z −D∗
t (−z)


z = b− A1


(
∑


ū1∈B
ū1θū1


)


− A2u2 , G(u2) ≤ g , θ ∈ Θ
(21)


with the corresponding “abstract form”


(ΩB,x̄,t) sup
z,u1,u2


{


c1u1 + c2(u2) + x̄z −D∗
t (−z)


z = b− A1u1 − A2u2 , u1 ∈ U1
B , u2 ∈ U2


.


So, in terms of the original problem the idea is quite straightforward: because U2 is an
“easy” set, one just uses its representation within the master problem, while keeping all the
rest of the (approximated generalized augmented) Lagrangian approach unchanged.


It is easy to check from the definition that all the information required by a bundle
approach can be obtained by an optimal solution to (21): d∗ and f 1


B(x̄ + d∗) are the dual
optimal multipliers of constraints z = b − A1


(
∑


ū1∈B
ū1θū1


)


− A2u2 and
∑


ū1∈B
θū1


= 1,
respectively, z∗2 = −A2u


∗
2, (f


2)∗(z∗2) = −c2(u
∗
2), and so on. Actually, if U2 and c2 are “nice


enough” even the primal of (21) can be written: if G and c2 are linear, for instance, one has


(ΠB,x̄,t) inf
d,ω,v

















b(x̄+ d) + v + gω +Dt(d)


v ≥
(


c1 − (x̄+ d)A1


)


ū1 ū1 ∈ B


ωG = c2 − (x̄+ d)A2 , ω ≥ 0


(22)


where ω are the dual variables of the Gu2 ≤ g constraints in (17). Similar results hold
whenever c2 and G allow for closed-form duals, such as those expressible as generic conic
programs; note that these typically satisfy the necessary technical assumptions.


Clearly, little changes in the standard convergence theory of bundle methods. Only a
few simple properties are required to models fk


B—basically not to overestimate fk and to be
“tight enough” at points where the function is computed [13, §5]—and the real function fk


cannot but satisfy those requirements. Usually, the crucial between fk and fk
B is that the


former is either unknown or too complex to use, while the latter is efficiently implementable.
As this is no longer true for “easy” components, it makes sense to use the original fk as a
model. Because the objective f = f 0 + f 1 + f 2 is overall a “difficult” function that needs
to be approximated by fB = f 0 + f 1


B + f 2, all the machinery of the bundle approach still is
required, and no much actually changes in the outlook of the algorithm. Only, because some
of the components are exactly known, the algorithm is provided with better information on
the function to be minimized, and one expects faster convergence in practice.


8







An interesting observation is that one can entirely avoid the oracle for the easy com-
ponents. This requires that the function value is only computed at x+ = x̄ + d∗; indeed,
once f 1(x+) is known, the value of f(x+) can be computed since f 2(x+) is obtained “for
free” as a by-product of the solution of the (22). This requires doing away with line- or
curved-searches; yet this is what happens anyway in most practical implementations, and
the convergence theory requires computing f(x+) at least “frequently enough” [13]. A minor
issue with this approach is that at the very first iteration—when (22) has never been solved
yet—the value of f(x̄) is not known, and therefore the descent condition cannot be checked;
however, there are several easy workarounds for this, as the convergence theory allows to
skip the descent test entirely “from time to time” [13].


Another relevant feature of bundle methods, aggregation, is not impacted at all from the
use of easy components. Simply, one only aggregates on the “difficult” components—e.g.,
u∗
1 =


∑


ū1∈B
ū1θ


∗
ū1


in (21)—and prunes their bundles after having inserted the aggregated
solution—downto B = {u∗


1} in (21). Clearly, no aggregation is possible and needed for
the “easy” components. Yet, this allows to keep the maximum size of the master problems
bounded, as the “easy” components result in a constant number of variables and constraints.


This basic idea readily extends to all the typical variants and tricks of standard bundle
methods, as discussed below.


2.3 The constrained case
Bundle methods easily cope with constraints, provided the set X is known and (closed)
convex; basically, all that is needed is to insert full knowledge about X into (4), i.e., solving


(ΠB,x̄,t) infd
{


fB(x̄+ d) +Dt(d) : (x̄+ d) ∈ X
}


(23)


which is nothing but (4) using the model fX,B = fB+IX of the essential objective fX = f+IX .
Its rather abstract dual


(∆B,x̄,t) infz,w
{


f ∗
B(z) + σX(w)− x̄(z + w) +D∗


t (−z − w)
}


becomes a lot more comfortable e.g. for polyhedral X = { x ∈ R
n : Hx ≤ h }:


(∆B,x̄,t) infz,ω
{


f ∗
B(z) + ωh− x̄(z + ωH) +D∗


t (−z − ωH) : ω ≥ 0
}


(ω being the dual variables of the optimization subproblem implicit in the definition of σX).
For f 1


B = f̂ 1
B this finally gives a fully implementable dual master problem


(∆B,x̄,t) sup
θ,u2,ω

















c1
(
∑


ū1∈B
ū1θū1


)


+ c2(u2) + ωh+ x̄z −D∗
t (−z)


z = b+ ωH − A1


(
∑


ū1∈B
ū1θū1


)


−A2u2


G(u2) ≤ g , θ ∈ Θ , ω ≥ 0


; (24)


for instance, sign constraints x ≥ 0, associated to inequality constraints in (Ω), simply
give rise to slack variables ω in the constraint defining z. The primal of (24), when it is
easily written (cf. (22)), simply contains the explicit constraint Hd ≤ h − Hx̄. Clearly,
handling constraints in this way is nothing but another case of “easy” component, since one
is simply using a suitable “exact” model of IX in the stabilized primal master problem. This
requires a specific (minor) update of the convergence theory only because IX is not finite-
valued, as opposed to the fks [13, §9.1]. Actually, whenever the set of defining inequalities
of X is finite, it is not even required that all of them be inserted in the master problem in


9







advance: when an unfeasible x is probed, the black box should just return +∞ and some of
the violated inequalities. This is useful e.g. in applications to combinatorial optimization if
some of the sets Uk are not compact, and therefore the Lagrangian functions can evaluate
to +∞. However, with Xk = dom fk for k ∈ K, f(x) = +∞ at any point x outside
X = ∩k∈K Xk, no matter which and how many of the Xk it fails to belong to. Thus, there is
no reason to “disaggregate X”, too: constraints are “global” in nature, although in practice
one may want to keep track of which component has generated a specific constraint, as
e.g. in the Lagrangian case the associated multipliers are those of rays of some Uk that may
be needed to reconstruct the solution in the u-space. The inherent finiteness of the underlying
representation makes it easy to ensure that the algorithm remains convergent, provided that
minimal care is exercised in not removing information “too quickly” (the extreme, obvious
case being never removing anything); see e.g. [16] for a similar situation.


Interestingly, for “simple” sets X an alternative approach has been proposed to lessen
the cost of the master problem. The Proximal-Projection idea [28] is to exploit aggregation
to replace the solution of the master problem with just one (or possibly more) step(s) of
a block-descent approach. In a nutshell, the observation—in the notation of (24)—is that
the “crucial” optimal aggregated subgradient z∗ is given by z∗ = s∗0 + s∗X + s∗1 + s∗2, where
s∗0 = b, s∗X = ω∗H , s∗1 = −A1u


∗
1 (with u∗


1 obtained by θ∗) and s∗2 = −A2u
∗
2 are (approxi-


mated) subgradients of the four components f 0, IX , f
1 and f 2, respectively. What one does


is to alternatively replace some of the components with the linearizations provided by these
(approximated) subgradients, just as aggregation does; except that aggregation is “perma-
nent”, while in this approach the original data is later restored. To mirror the approach of
[28], one could first solve a master problem where the constraints (x̄+ d) ∈ X in (23), that
is IX , are replaced by a linearization using s∗X from the previous iteration. Then, a second
master problem is solved where IX is restored, but all the other components are replaced by
their linearizations (s∗1 and s∗2) resulting from the first master problem (this does nothing to
f 0, of course). This provides an approximated solution of the “true” master problem (23),
which corresponds to one round of a block-Gauss-Seidel approach to (24) where first ω is
kept fixed (to the optimal value ω∗ of the previous iteration) and θ, u are allowed to vary,
then θ, u are kept fixed and ω is allowed to vary. Since the results of [28] hold when f is a
sum-function and the disaggregated model is used, they a fortiori hold if some components
of f are “easy” and our approach is employed. This suggests that the Proximal-Projection
approach could be extended to a specialized handling of the “easy” components in case they
have an appropriate structure. In particular, assume that (24) with ω and θ fixed is easily
solved with specialized approaches due to the structure of U2 (which is often an “easy” set,
cf. e.g. §3.2). Then, one could envision a three-step block-Gauss-Seidel approach where at
each step only one among θ, ω and u2 is allowed to vary, the other two being fixed. Note that
the same idea (called Alternating Linearization) has been applied already for yet another
notion of “simple” component in [29], so convergence of such an approach could be relatively
easy to obtain; this is out of the scope of the present paper and it is left for future devel-
opments, especially since our computational results seem to present a strong case against
approximation of the master problem (cf. §3.4).


10







2.4 Exploiting lower bounds
In practice, it is often the case that global lower bounds are available, either on some of the
components (lk ≤ fk(x) ∀x ∈ X), or on the whole objective function (l ≤ f(x) ∀x ∈ X);
it is then desirable to incorporate this valuable information in the master problems. For
individual lower bounds, this is pretty straightforward. Of course, this is only relevant for the
“difficult” f 1, since for the “easy” f 2 the bound is implicit anyway in the (already available)
complete description of the function. Then, inserting l1 in the model simply requires adding
the single item (0, (f 1)∗(0) = l1) to B1; with f 1


B = f̂ 1
B, for instance, this simply results in


a new constraint v ≥ l1 in (22), and thus in a new variable ρ1 in (21), with cost l1, that
does not appear in the definition of z, but it does in the constraint


∑


ū1∈B
θū1


+ ρ1 = 1. An
analogous trick works if all components of f are difficult: the constraint v1+ v2 ≥ l does the
job, corresponding to a null subgradient belonging to both B1 and B2 (a unique ρ variable,
distinct from the “individual” ρ1 and ρ2, participating in both constraints


∑


ūk∈Bk θūk
= 1).


Matters are more complex when f 2 is “easy”, as one than needs a model of the bounded
function f̄(x) = max{ f(x) , l }, whose conjugate (consult e.g. [23]) is


epi f̄ ∗ = cl co
(


epi f ∗ , epi l∗
)


, where l∗(z) = I{ −l }(z) .


Thus, the epigraph of f̄ ∗ can be constructed by taking all points (in the epigraphical space)
(z, f ∗(z)) and computing their convex hull with the point (0,−l); the function value is then
the inf over all these possibilities for a fixed z. In a formula,


f̄ ∗(z) = infz′,ρ
{


ρf ∗(z′)− l(1− ρ) : z = ρz′ , ρ ∈ [0, 1]
}


. (25)


Note that we are assuming l ≤ inf f , thus f ∗(0) ≥ −l: (0,−l) is outside (or at most on the
frontier of) epi f ∗. Hence, the “generic” stabilized dual master problem (6) becomes


(∆B,x̄,t) infz′,ρ
{


ρf ∗(z′)− l(1− ρ)− ρz′x̄+D∗
t (−ρz′) : ρ ∈ [0, 1]


}


where we have substituted the original variable z with ρz′, giving rise to nasty bilinear terms.
Analogously, our disaggregate case with an easy component is


(∆B,x̄,t) inf
z,z′


1
,z′


2
,ρ


{


ρ(f 1
B)


∗(z′1) + ρ(f 2)∗(z′2)− l(1− ρ)− zx̄ +D∗
t (−z)


z = ρ (b+ z′1 + z′2) , ρ ∈ [0, 1]
(26)


where we prefer keeping track of the original variable z (not that this spares us with the
bilinear term, though). Using the cutting plane model for the first component and the
compact representation for the second component one has


ρ(f 1
B)


∗(z′1) = − supθ


{


ρc1
∑


ū1∈B
ū1θū1


:
∑


ū1∈B
ū1θū1


= z′1 , θ ∈ Θ
}


ρ(f 2)∗(z′2) = − supu2


{


ρc2(u2) : z′2 = −A2u2 , G(u2) ≤ g
}


which in turn yields


(∆B,x̄,t) sup
ρ,z,θ,u2


{


ρc1
∑


ū1∈B
ū1θū1


+ ρc2(u2)− l(1− ρ) + zx̄−D∗
t (−z)


z = ρ
(


b−A1


∑


ū1∈B
ū1θū1


− A2u2


)


, G(u2) ≤ g , θ ∈ Θ , ρ ∈ [0, 1]
.


This can be brought to a fully implementable master problem if c2 and G are linear and U2


is compact. In fact, in this case the bilinear terms can be eliminated by substituting z with
its definition and the change of variables θ′ = ρθ and u′


2 = ρu2, which finally gives


11







(∆B,x̄,t) sup
ρ,z,θ′,u′


2

















c1
∑


ū1∈B
ū1θ


′
ū1


+ c2u
′
2 − l(1− ρ) + zx̄ −D∗


t (−z)


z = ρb− A1


∑


ū1∈B
ū1θ


′
ū1


−A2u
′
2 , ρ =


∑


ū1∈B
θ′ū1


Gu2 ≤ ρg , θ′ ≥ 0 , ρ ∈ [0, 1]


.


Note that the original variables θ (hence, u1) and u2 must be obtained by scaling them by
1/ρ after the problem has been solved, except if ρ = 0 when { u2 : G(u2) ≤ 0 } = { 0 }
by compactness of U2. The corresponding primal is


(ΠB,x̄,t) − l + inf
d,v,v1



































v +Dt(d)


v1 ≥
(


c1 − (x̄+ d)A1


)


ū1 ū1 ∈ B


v ≥ b(x̄+ d) + v1 + gy , v ≥ l


yG = c2 − (x̄+ d)A2 , y ≥ 0


Incorporating individual lower bounds f 1
B ≥ l1 in the above development is straightforward.


The above reformulations are no longer possible when c2 and/or G are nonlinear, making
incorporation of a global lower bound more difficult. Analogously, while the treatment
immediately extends to any model f 1


B such that (f 1
B)


∗ has a polyhedral representation, it
does not extend easily to non-polyhedral models; a significant exception is that when the
model can be expressed by mean of a conic program (e.g. [1]).


3 Application: the Fixed-Charge Multicommodity Min-


Cost Flow problem


3.1 Formulation
The Fixed-Charge Multicommodity Min-Cost Flow problem (FC-MMCF) is as follows.
Given a directed network G = (N,A), where N is the set of nodes and A is the set of
arcs, we must satisfy the demands of a set of commodities K. Each commodity k ∈ K is
characterized by a deficit vector bk = [bki ]i∈N indicating the net amount of flow required by the
node, so that nodes with negative deficit are sources, nodes with positive deficits are sinks,
and nodes with zero deficits are transshipment. In many (but not all) applications, e.g. in
telecommunications, a commodity is an origin-destination pair (sk, tk) with an associated
demand dk > 0 that must flow between sk and tk, i.e., b


k
i = −dk if i = sk, b


k
i = dk if i = tk,


and bki = 0 otherwise. Each arc (i, j) in the network can only be used if the corresponding
fixed cost fij > 0 is paid; in this case it has an aggregated (mutual) arc capacity uij > 0.
Also, individual arc capacities uk


ij are defined for the maximum amount of flow of commodity
k on arc (i, j). These may either come from the real application modeled by the problem, or
be introduced to strengthen the model; for instance, in the origin-destination pair case one
may set uk


ij = dk, which is useful if dk ≪ uij. Furthermore, a routing cost ckij has to be paid
for each unit of commodity k moving through (i, j). The problem consists in minimizing the
sum of all costs, while satisfying demand requirements and capacity constraints.


Defining arc flow variables wk
ij , which represent the amount of the flow of commodity k


on arc (i, j) ∈ A, and binary design variables yij, which define whether or not the arc (i, j)
has been paid for, the arc flow formulation of the problem is


12







min
∑


k∈K


∑


(i,j)∈A ckijw
k
ij +


∑


(i,j)∈A fijyij (27)
∑


(j,i)∈A wk
ji −


∑


(i,j)∈Awk
ij = bki i ∈ N , k ∈ K (28)


∑


k∈K wk
ij ≤ uijyij (i, j) ∈ A (29)


0 ≤ wk
ij ≤ uk


ij (i, j) ∈ A , k ∈ K (30)


yij ∈ {0, 1} (i, j) ∈ A (31)


Model (27)–(30) is known as the weak formulation because the lower bound produced by
the corresponding continuous relaxation is usually weak. The strong formulation can be
obtained by replacing (30) with


0 ≤ wk
ij ≤ uk


ijyij (i, j) ∈ A , k ∈ K (32)


which is obviously valid, and useful if uk
ij < uij .


3.2 Decomposition approaches
FC-MMCF lends itself nicely to the application of Lagrangian techniques for the computation
of lower bounds, that can then be effectively incorporated into either heuristic [22, 9, 21]
or exact [25, 30] approaches. Indeed, the multicommodity flow structure has always been
a favorite target for Lagrangian approaches [8, 7, 15, 16, 20, 26, 32]. Here we consider the
Lagrangian relaxation of constraints (29) with multipliers α = [ αij ](i,j)∈A ≥ 0, which gives
the (concave) Lagrangian function


f(α) =


{


min
∑


k∈K


∑


(i,j)∈A(c
k
ij + αij)w


k
ij +


∑


(i,j)∈A(fij − αijuij)yij


(28) , (30) , (31)


whose computation is easy due to separability. In fact, the feasible region is (w, y) ∈ W ×Y ,
where in turn W =


⊗


k∈K W k, with each W k ⊂ R
|A| being defined by


∑


(j,i)∈Awk
ji −


∑


(i,j)∈Awk
ij = bki i ∈ N , 0 ≤ wk


ij ≤ uk
ij (i, j) ∈ A ,


i.e., the classical (single-commodity) min-cost flow structure, for which plenty of efficient
solution algorithms exist [18, 20]. Also, linear optimization on the set Y given by the simple
constraints (31) is very easy; actually, Y =


⊗


(i,j)∈A Y ij itself is separable into the |A| sets


Y ij = [0, 1], each one concerning the single variable yij. Thus, computation of f(α) (and its
subgradients) is quite easy; this is also true for the strong formulation, where constraints (32)
are also relaxed in Lagrangian fashion with multipliers β = [ βk


ij ](i,j)∈A , k∈K ≥ 0, yielding


f(α, β) =


{


min
∑


(i,j)∈A


(


∑


k∈K(c
k
ij + αij + βk


ij)w
k
ij + (fij − αijuij −


∑


k∈K βk
iju


k
ij)yij


)


(28) , (30) , (31)


(note that the constraints (30), redundant when (32) are present, are used to tighten up the
relaxation).


For both functions, several possibilities exist when solving the corresponding minimiza-
tion problem via a Bundle method. These do not impact on how the function is computed,
but rather on how the information produced by the computation is used in the master
problem. In particular, one can have:


13







• a fully aggregated (FA) version, where the separability in f is totally ignored and only
one subgradient of the function is produced;


• a partly disaggregated with easy y (PDE) version, where the W and Y components are
treated as two distinct functions, and with the Y component treated as an “easy” one;


• a disaggregated with difficult y (DD) version, where the W component is decomposed into
its |K| distinct functions, while the Y component is treated as one other function;


• a disaggregated with easy y (DE) version, which is the same as the above but with the Y
component treated as an “easy” one.


It is instructive to present the master problem of the DE formulation under some simplyfing
assumptions that may render it more familiar to some readers. Let us assume that com-
modities are origin-destination pairs; in this case, the relevant extreme points of each set W k


correspond to elements p ∈ Pk, the set of all sk–tk paths. Hence, defining path flow variables
fp for each p ∈ P = ∪k∈K Pk, one can consider the (weak) path flow formulation


min
∑


p∈P cpfp +
∑


(i,j)∈A fijyij (33)
∑


p∈P : (i,j)∈p fp ≤ uijyij (i, j) ∈ A (34)
∑


p∈Pk fp = dk k ∈ K (35)


fp ≥ 0 p ∈ P (36)


yij ∈ [0, 1] (i, j) ∈ A (37)


where cp is the cost of the path p (sum of the costs of its arcs); the equivalent of constraints
(32) could be easily added to obtain the corresponding strong version, which we avoid only
for the sake of notational simplicity. It is easy to realize that, modulo a scaling of the
variables, this is precisely what the master problem of DE would look like if: a) one had
generated all possible extreme points of each W k already, and b) one would be using the
non-stabilized the cutting-plane method, i.e., choose Dt(·) = 0 which corresponds to D∗


t (·)
being “the constraint z = 0”. Said the other way around, DE corresponds to: a) doing
column generation on the exponential-size reformulation (33)–(37), after b) having replaced
the linking constraints (34) by a slackened version, appropriately penalizing the slacks z
in the objective function (cf. (21)). This can be defined a Stabilized Partial Dantzig-Wolfe
Decomposition, in that only a subset of the feasible region is reformulated by means of its
extreme points and iteratively inner approximated. Now, DD would be obtained from that
by the substitution


y =
∑


s∈S ȳsθs with constraints
∑


s∈S θs = 1 , θs ≥ 0 s ∈ S


where S is the set of all extreme points ȳ ∈ {0, 1}|A| of Y , i.e., the 2|A| vertices of the unitary
hypercube. Looked at in this way, it is not much surprising that, as shown in §3.4, the
versions with “easy” components are much better than those using the standard approach;
the latter use a blatantly “wrong” representation of Y , arguably the worst possible one. Yet,
this approach—as ungainly as it looks when seen from the primal viewpoint—does not seem
to have ever been questioned before.


One important observation is that a further possibility exists: a fully disaggregated (FD)
version where the W component is decomposed into its |K| distinct functions, and the Y
component is decomposed into its |A| distinct functions. However, this is basically equivalent
to DE. In fact, for each (i, j) ∈ A there are only two extreme points ȳij = 0 and ȳij = 1.


14







If both are inserted into the bundle Bij for that component, with multipliers θij,0 and θij,1,
respectively, it is easy to verify that one is basically substituting the yij variable with


yij = 0 · θij,0 + 1 · θij,1 , θij,0 + θij,1 = 1 , θij,0 ≥ 0 , θij,1 ≥ 0


which is of course is nothing but a convoluted way to write (37). Therefore, in the following
we will not test the FD variant.


The last remark may have mislead the reader into thinking that the whole “easy com-
ponent” idea is then just a special case of, or a minor improvement upon, the standard
approach of exploiting the existing sum-structure of the function by disaggregating the mas-
ter problem accordingly. This clearly isn’t so. For instance, consider the slight variant of
FC-MMCF where one requires that at most a given number h of arcs are “opened”. In the
model, this corresponds to the simple extra constraint


∑


(i,j)∈A yij ≤ h (38)


whose immediate effect is to kill separability of the Y set. Thus, in such a variant the max-
imum possible degree of disaggregation is |K|+ 1, as all the y variables must belong to the
same subproblem, and the FD variant is no longer viable. However, the DE variant is still
perfectly possible, with basically the single constraint (38) added to the master problem, be-
cause the corresponding set Y still has the integrality property. Thus, while being equivalent
to the FD approach for FC-MMCF, the “easy” component idea is clearly more general.


3.3 Stabilizing functions
The generalized bundle algorithm is largely independent on the choice of the stabilizing term
Dt, provided that the a few weak conditions are satisfied. Indeed, by looking at (21)/(24),
one notices that the choice of Dt only impacts on the D∗


t (−z) term in the objective function,
allowing for many different stabilizing functions to be tested at relatively low cost in the same
environment. A number of alternatives have been proposed in the literature; all are separable,
that is, Dt(d) =


∑n
i=1Ψt(di) and D∗


t (z) =
∑n


i=1Ψ
∗
t (zi), where Ψt : R → R ∪ {+∞} are


convex. Notable examples are:
• Trust Region/BoxStep: This uses Ψt = I[−t,t], that is, it establishes a trust region of
“radius t” around the current point. From the dual viewpoint, this corresponds to Ψ∗


t =
t| · |, i.e., to a linear stabilization.


• Proximal stabilization: This uses Ψt =
1
2t
(·)2, Ψ∗


t = 1
2
t(·)2, hence both the primal and


dual master problems are separable convex quadratic problems.
• Linear-quadratic penalty : This is a modification of the boxstep method where


Ψ∗
t,ε(z) = t


{


z2/ε if − ε ≤ s ≤ ε


|z| otherwise
Ψt,ε(d) =


{ ε
4t
d2 if − t ≤ d ≤ t


+∞ otherwise


and therefore nonsmoothness at zero of D∗
t is avoided.


Actually, the treatment can be extended to the case when the stabilizing term depends on
multiple parameters instead of just one. For instance, the 5-piecewise linear penalty function


Ψt(d) =



































+∞ if d ≤ −(Γ− +∆−)
−ε−(d−∆−) if −(Γ− +∆−) ≤ d ≤ −∆−


0 if −∆− ≤ d ≤ ∆+


+ε+(d−∆+) if ∆+ ≤ d ≤ (∆+ + Γ+)
+∞ if (∆+ + Γ+) ≤ d


, (39)


15







whose corresponding 4-piecewise primal penalty is


Ψ∗
t (z) =























−(Γ− +∆−)z − Γ−ε− if −(ζ− + ε−) ≤ z ≤ −ε−


−∆−z if −ε− ≤ z ≤ 0
+∆+z if 0 ≤ z ≤ ε+


+(Γ+ +∆+)z + Γ+ε+ if ε+ ≤ z ≤ (ζ+ + ε+)


. (40)


In this case, t = [ζ±, ε±,Γ±,∆±] is a vector of parameters. These and similar piecewise-linear
stabilizing functions have been tested (for instance, in [4]), showing that appropriately setting
their parameters may lead to faster convergence of stabilized algorithms (in that case, applied
to column generation). All these cases can be easily implemented within the same framework.
Even the “complicated” (39)/(40) just corresponds to defining z = z−2 + z−1 − z+1 − z+2 , with


ζ+ ≥ z+2 ≥ 0 ε+ ≥ z+1 ≥ 0 ε− ≥ z−1 ≥ 0 ζ− ≥ z−2 ≥ 0


in the primal master problem, and objective function


(ȳ −∆− − Γ−)z−2 + (ȳ −∆−)z−1 − (ȳ +∆+)z+1 − (ȳ +∆+ + Γ+)z+2 .


Hence, the primal master problem is still a linear program with the same number of con-
straints and 4m new variables. For our experiments we only used the simpler choices, i.e.,
trust region and proximal stabilization.


3.4 Computational results
We have implemented the proposed approach within a general-purpose C++ bundle code
developed by the first author and already used with success in several other applications [5, 8,
19]. The structure of the code allows to solve the Lagrangian dual with different approaches,
such as Kelley’s Cutting Plane method, several “quick and dirty” subgradient-like methods
[3, 10], and the bundle method. The latter in particular is generalized, in the sense that
the solution of the master problem is demanded to a separate software component under an
abstract interface. This allows to test different solution algorithms, and different stabilizing
terms, without affecting the main logic of the bundle approach. For our experiments, we
have tested both the specialized quadratic solver described in [12] (for Ψt = 1


2t
(·)2) and


the use of general-purpose LP solvers (for Ψt = I[−t,t]). All the LPs have been solved with
CPLEX 12.2, while the Lagrangian relaxations have been solved with efficient Min-Cost Flow
solvers from the MCFClass project (cf. e.g. [20]). All the algorithms have been coded in C++,
compiled with GNU g++ 4.4.5 (with -O3 optimization option) and ran on a server with
multiple Opteron 6174 processors (“Magny-Cours”, 12 cores, 2.2 GHz) each with with 32
GB of RAM, under a i686 GNU/Linux (Ubuntu 10.10 server). The computation of the
Lagrangian function could have been easily parallelized [7], but, as the results will show, this
would have hardly—if at all—improved the running times.


The experiments have been performed on 48 randomly generated problem instances. The
random generator is the one already employed in several studies (e.g. [8]), but due to the
remarkable effectiveness of the new approach we were able to tackle much larger instances
than previously possible. In particular, we generated 12 groups of 4 instances each as follows.
The number of nodes and arcs were chosen in the set {(20, 300), (30, 600), (50, 1200)}. For
each of these, the number of commodities was chosen in the set {100, 200, 400, 800}. Then,
each of the four instances with the same size differs for the parameters which control how
“tight” the capacities are, and how “large” the fixed costs are. The characteristics of the


16







12 groups are summarized in Table 1. For the largest instances, the formulation has 960000
continuous variables and 1200 binary ones, 40000 equality constraints, and 962400 inequality
constraints (not counting the sign restrictions). Of the latter, in the weak formulation
960000 are simple bound restrictions, whereas in the strong one they are the strong forcing
constraints (32). While these are only slightly denser than bound restrictions, their impact
on the bound computation time is quite dramatic, as the following results will show.


group |N | |A| |K|
1 20 300 100
2 20 300 200
3 20 300 400
4 20 300 800
5 30 600 100
6 30 600 200
7 30 600 400
8 30 600 800
9 50 1200 100


10 50 1200 200
11 50 1200 400
12 50 1200 800


Table 1: Description of the instances


3.5 Results for the weak formulation
The results are presented in Table 2 for the different approaches discussed in §3.2. In
particular, the columns “FA-2” report results for the FA approach with Ψt =


1
2t
(·)2, where


the master problem is solved with the specialized quadratic solver of [12], while columns
“FA-1” report results for the same approach with Ψt = I[−t,t], where the master problem is
solved with Cplex, as for all the other cases. For all the approaches, a maximum running
time of 1000 seconds has been set, and the total running time (in seconds) is reported in
column “time”. The stopping criterion was set to a relative accuracy of 1e-6, a rather high
call for this kind of algorithms; to account for the case where such an accuracy is not reached
within the allotted time, the final relative gap w.r.t. the “exact” lower bound computed with
Cplex is reported in column “gap”. The value is not reported if it is lower than 1e-12, the
default accuracy for the simplex-type algorithms in Cplex; if this always happens (as is the
case with DE), the whole column is avoided. Column “iter” reports the number of iterations
(computations of the Lagrangian function and master problem solutions). Finally, column
“f” reports the total running time spent in the computation of the Lagrangian function;
almost all the remaining time, which usually amounts to the vast majority, is spent in the
master problem solution. The order of the rows in Table 2 is the same as these in Table 1, thus
we avoid to report again the size of the instances in order to save on space; the results in each
row are averaged among the four instances of the same group. The algorithmic parameters
were tuned for all individual approaches, but uniformly on all instances; furthermore, the
chosen sets of algorithmic parameters were, quite naturally, very similar to each other.


Comparing FA-2 with FA-1, it is clear that the proximal stabilization is in general largely
preferable to the trust-region one. This has been reported several times over in different
applications [6, 4, 16], and it just proves true once again here. Part of the result is due
to the (still) more effective quadratic Master Problem solver of [12] w.r.t. general-purpose
LP technology, as testified by the lower cost per iteration; however, the largest part of the


17







DE PDE DD FA-1 FA-2
time f it time f it gap time f iter gap time f iter gap time f iter gap
0.04 0.00 5 0.03 0.01 6 557 2.54 6200 1e-7 979 3.97 9105 1e-3 7.64 0.75 2383 1e-7
0.08 0.01 6 0.08 0.01 12 772 2.94 3153 6e-3 1000 4.43 4772 3e-2 14.24 1.37 1931 6e-9
0.25 0.01 7 0.57 0.12 52 1e-7 739 2.79 1365 2e-7 862 10.57 5579 3e-3 12.66 1.99 1117 5e-7
0.64 0.03 7 1.06 0.23 50 3e-7 1000 2.27 482 9e-3 1000 14.49 3201 8e-3 42.38 7.74 1714 7e-7
0.10 0.01 7 0.30 0.03 39 665 4.92 5799 4e-3 945 6.15 7538 8e-3 4.12 0.50 834 3e-7
0.25 0.02 10 1.81 0.21 122 498 3.37 1899 7e-8 808 9.76 5599 3e-3 6.36 1.06 664 1e-6
0.45 0.04 8 20.56 1.93 483 2e-7 1000 1.81 415 2e-2 1000 2.58 638 5e-2 134.49 15.00 3795 6e-7
1.10 0.08 9 5.17 1.09 120 1e-7 1000 3.48 378 2e-2 1000 10.08 1134 4e-2 126.29 26.19 2905 8e-7
0.34 0.02 11 34.80 0.78 449 5e-9 1000 1.39 746 5e-3 1000 2.23 1205 4e-2 28.92 2.77 1630 1e-6
0.42 0.05 9 2.39 0.26 89 1000 6.23 1647 3e-2 1000 8.51 2343 5e-2 32.77 5.26 1414 8e-7
0.99 0.10 11 16.03 2.34 271 1e-7 1000 6.18 717 2e-2 1000 11.31 1321 4e-2 80.05 16.48 1848 8e-7
2.19 0.18 10 124.38 13.95 811 6e-7 1000 5.05 278 2e-2 1000 14.63 838 6e-2 233.40 50.47 2851 8e-7


Table 2: Results for the weak formulation


improvement comes from faster convergence. Disaggregating X has surprisingly little effect;
this is likely due to the fact that the master problem cost is way higher (as testified by the
yet higher iteration cost), without a sufficient effect on convergence speed to counterbalance
it. However, “disaggregating Y ”—that is, considering Y as an easy component—has a far
larger impact, being most often better than FA-2 despite the disadvantage of the trust-region
stabilization. Yet, the decomposition method really shines when both X is disaggregated
and Y is treated as an easy component; this ends up being in the region of two order of
magnitude faster than the best of the other approaches for the largest instances.


To put these results in the context of alternative available solution methods, in Table 3 we
compare the running times of DE and FA-2 on all the instances with these obtained by the
several applicable LP algorithms in Cplex. These usually attain the much higher accuracy
of 1e-12, except barrier which usually falls more towards 1e-10, and while DE (but not
FA-2) actually obtains solution of comparable quality even when run with an accuracy of
1e-6, there is a difference between reaching a solution with a given tolerance and being able
to certify it. The latter typically involves producing a high-quality feasible primal solution,
which is therefore relevant to applications. Thus, for both Lagrangian approaches we report
the running time required to stop when the accuracy is set to both 1e-6 and 1e-12. The
rows of the Table are arranged as those in Table 2.


Cplex DE FA-2
primal dual barrier p.net. d.net. auto 1e-6 1e-12 1e-6 1e-12


0.30 0.13 8.73 0.18 0.23 0.36 0.04 0.04 7.64 7.74
0.89 0.90 21.25 0.58 1.95 2.40 0.08 0.08 14.24 14.37
3.04 10.22 76.24 2.24 16.32 25.44 0.25 0.26 12.66 13.13
8.21 16.56 151.14 4.62 27.58 44.79 0.64 0.64 42.38 49.18
1.09 4.98 42.57 0.74 6.88 10.62 0.10 0.10 4.12 4.19
3.28 24.68 135.57 2.77 29.46 69.86 0.25 0.26 6.36 7.94
53.25 22.58 417.10 8.96 51.45 55.86 0.45 0.45 134.49 137.41
18.74 67.24 1115.22 10.56 99.96 177.40 1.10 1.10 126.29 163.88
19.98 84.33 303.29 3.92 112.71 187.37 0.34 0.35 28.92 42.71
7.89 82.64 583.52 18.60 259.65 309.74 0.42 0.42 32.77 40.60
38.09 230.79 1952.75 15.85 325.33 690.30 0.99 0.99 80.05 108.94


586.07 459.49 3586.63 51.71 738.23 1266.87 2.19 2.19 233.40 1789.08


Table 3: Comparison with Cplex for the weak formulation


18







The Table shows that, unlike what reported in [8], even at the lower accuracy setting FA-
2 is not competitive with the best that Cplex offers (the primal network algorithm, which
somewhat surprisingly is not automatically chosen, cf. the column “auto”); furthermore,
although the time required to obtain a very-high-accuracy solution of 1e-12 is usually not
much different from that required to reach 1e-6, there are cases where the difference is
significant. It is not much surprising that the results of [8] are outdated now due to the
giant strides in general-purpose LP technology since then; yet, said giant strides can be
exploited with DE, whose master problem—which is where the vast majority of the time
is spent—is solved with a general-purpose LP solver. Unlike the original formulation (27)–
(31), the master problem is rather “unstructured”, so that the specialized network-exploiting
algorithms that make such a difference for Cplex are not poised to make any substantial
contribution. Indeed, Cplex algorithms perform much more similarly on the master problem
than on the original formulation, with the “auto” setting now being perfectly appropriate.
Furthermore, requiring the very-high accuracy to DA hardly changes the required running
time; thus, not only a high-quality solution is obtained efficiently, but also its quality can
be certified in basically the same time. Such high-quality solutions are obtained at least one
order of magnitude faster than the best Cplex option, and several orders of magnitude faster
than the others, on all but the smallest instances.


3.6 Results for the strong formulation
Due to the huge number of constraints (32), tackling the problem directly, either with a
decomposition approach or with a LP solver, is not advisable. Rather, since one can expect
that only a relatively small fraction of these constraints be actually active at optimality,
one should rather resort to dynamic generation, whereby the constraints are only inserted
in the formulation when they are found to be necessary. For Cplex, this is actually very
simple: one only has to declare these as lazy constraints, and the solver then takes the entire
burden of deciding when checking for their violation. One minor technical consequence is
that the problem has to be declared as a Mixed-Integer Linear Program even if one only
wants to solve the continuous relaxation, i.e., one does not declare the y variables to be
integer. In fact, in Cplex violation of lazy constraints is only checked when an integral
solution is generated, that is, a solution where all variables declared as integer actually have
integer values; in our case, this means just any feasible solution. A similar approach can be
used for the decomposition approach, and it has already shown to be very effective [15, 19]
for very-large-scale Lagrangian optimization. This is true here as well, as demonstrated by
Table 4 which compares the running time of the static version with that of the dynamic
version for both Cplex and DE (similar results hold for all the other ones). The results are
only limited to the first four, smaller groups of instances (the first four rows in Table 1),
and of course compare between identical settings for both approaches (the “auto” setting for
Cplex), save for static vs. dynamic generation of the constraints.


Cplex DE
static dynamic static dynamic
53.68 9.94 44.23 31.69


315.26 53.63 232.56 47.53
1539.23 113.91 1234.08 28.98
2788.91 458.01 2227.04 65.31


Table 4: Comparison of static and dynamic constraint handling


19







As the Table shows, the impact of dynamic generation is already very large for Cplex,
reaching one order of magnitude; for the decomposition approach it is even more humongous,
being close to two orders of magnitude (and actually far surpassing it for larger instances
not shown here). Thus, in the following we will always use dynamic generation.


Due to the previous results, we should expect that not all the decomposition approaches
be capable of solving the strong formulation efficiently enough. This is indeed true, as shown
in Table 5 again only for the four groups of smaller instances (things only get worse as size
increase). The meaning of the rows and columns (where applicable) is the same as in Table
2. In order to try to compensate for the increase in size of the problem as the number
of commodities grows—which now heavily impacts the number of Lagrangian multipliers,
instead as “only” the cost of computing the Lagrangian function and possibly the number
of columns in the master problem—the maximum running time is now dependent on |K|; in
particular, is fixed to 1000, 3000, 9000 and 27000 seconds when the number of commodities
is 100, 200, 400 and 800, respectively.


DE PDE DD FA-1 FA-2
time it gap time it gap time it gap time it gap time it gap
31.69 77 1e-7 1000 2980 2e-2 1000 2714 2e-1 1000 1990 2e-1 410.30 14880 9e-7
47.53 30 3e-7 3000 2896 6e-2 3000 3720 7e-2 3000 7351 2e-1 1854.97 11141 3e-6
28.98 24 2e-7 9000 8370 2e-2 9000 5061 5e-2 9000 10918 1e-1 1254.21 9035 2e-6
65.31 20 3e-8 27000 5618 3e-2 27000 2148 4e-2 27000 5293 8e-2 1732.17 12940 1e-6


Table 5: (Partial) results for the strong formulation


As the Table shows, most decomposition approaches do not even come close to the
required 1e-6 precision even allowing for such long computing times. FA-2 actually succeeds
almost always, failing to reach the required precision (and not by much) in only one of the 16
instances. This is due to two advantages: the quadratic stabilizing term which provides much
better convergence, and the specialized master problem solver which allows it to perform
many more iterations in the same time, thus giving it far better chances to get near to a
good dual solution. Yet, DE is again by far the best approach, delivering solution with the
prescribed accuracy in a tiny fraction of the allotted time. Furthermore, DE can efficiently
solve all the instances to much higher precision. This is shown in Table 6; since (as it could
be expected by Table 5) getting to 1e-12 is more difficult than in the weak formulation case,
we report the behavior of the algorithm for the four settings 1e-6, 1e-8, 1e-10 and 1e-12.
The meaning of the rows and columns is the same as in Table 2, except for the extra columns
“add” which report the time required to dynamically check the violation of constraints (32).
As in Table 2, “ex-post” gaps smaller than 1e-12 are not reported; since this always happens
for 1e-12, the corresponding column is avoided entirely. Also, columns “f” and “add” are
avoided for the middle precisions to improve the readability of the Table; the trends closely
follows these for the two extreme precisions.


The picture painted by Table 6, albeit not spectacular as that of the corresponding Table
3 for the weak formulation, is still quite good: doubling the certified precision from 1e-6 to
1e-12 requires no more than doubling the running time, and much often far less. Note that
e.g. for bounding purposes within an enumerative algorithm, 1e-6 is typically more than
enough already.


Remarkably, in order to obtain these results it is instrumental to “let information accu-
mulate”. In particular, the best algorithmic settings for DA are:


20







1e-6 1e-8 1e-10 1e-12


time f add it gap time it gap time it gap time f add it
31.69 0.05 0.96 77 1e-7 57.73 143 4e-9 62.07 170 3e-11 63.78 0.11 1.10 181
47.53 0.04 2.04 30 3e-7 51.22 33 2e-9 51.37 33 51.38 0.05 2.06 33
28.98 0.07 2.70 24 2e-7 29.15 25 29.15 25 29.16 0.07 2.74 25
65.31 0.14 6.58 20 3e-8 65.67 21 65.68 21 65.69 0.15 6.61 21
25.93 0.04 0.89 47 8e-8 28.28 51 3e-9 32.00 57 32.00 0.06 0.93 57
27.97 0.09 1.48 36 4e-7 55.43 51 4e-10 56.01 52 1e-11 56.28 0.12 1.60 52
20.80 0.09 1.80 21 2e-8 20.84 21 2e-9 25.69 24 25.69 0.11 1.84 24
132.60 0.24 10.03 23 8e-8 132.74 23 132.76 23 132.78 0.24 10.09 23
2.47 0.06 0.48 26 2e-10 2.47 26 2e-10 2.57 27 3e-12 2.66 0.06 0.49 27


245.91 0.26 4.18 59 1e-7 295.56 72 4e-9 333.22 84 2e-11 337.38 0.39 4.54 86
283.71 0.43 7.24 39 7e-8 442.56 55 2e-9 506.83 63 5e-12 507.52 0.71 7.78 63
241.84 0.52 11.85 24 2e-11 241.88 24 2e-11 241.92 24 2e-11 253.59 0.55 11.98 25


Table 6: Results for DE with varying precision


• the maximum size of the bundle is set to 50 · |K|, and subgradients are only removed if
their multiplier θ is zero for 40 consecutive iterations;


• constraints violation is checked at every iteration of the bundle algorithm, and constraints
whose Lagrangian multiplier is zero are never removed.


These are pretty “extreme” settings which surprised us. The bundle size of 40000 in the
largest instances would be absolutely unmanageable for the standard quadratic programming
solvers [12] often used (not without a certain success, cf. FA-1 vs. FA-2 in Table 2 and 5) in
bundle methods, and clearly requires access to state-of-the-art LP technology to be viable.
Checking violation every iteration is also uncommon; as a result, the time required for
performing this function (“add” in Table 6) is rather large, actually much larger than that
required to compute the Lagrangian function and as much as 10% of the total running time
in some cases. However, the time for solving the Lagrangian function is itself a very small
fraction of the total time, that is largely dominated by the master problem time, even more
so than in the weak case; thus, the overall impact on performances is by far compensated
by the very consistent improvement in the convergence speed. This is confirmed by Table 7,
where we show the effect of even “slight” changes in these parameters on the performances
of DE for the first four groups of instances (as in Table 5, and with the same maximum
time). In particular, columns “opt” are the best settings used for the results in Table 5 and
6, columns “20 · |K|” are relative to setting the maximum size of the bundle to 20 · |K|,
columns “Rmv = 20” are relative to removing subgradients if their multiplier θ is zero for 20
(as opposed to 40) consecutive iterations, and columns “Sep = 10” are relative to performing
separation of constraints (32) every 10 iterations (as opposed to every iteration).


opt 20 · |K| Rem = 20 Sep = 10
time add it gap time add it gap time add it gap time add it gap
31.69 0.96 77 1e-7 289.41 2.27 841 7e-7 104.60 1.20 218 2e-7 72.96 1.35 194 1e-6
47.53 2.04 30 3e-7 3000.76 7.67 1585 3e-4 1564.82 4.99 803 4e-5 363.67 4.12 159 3e-7
28.98 2.70 24 2e-7 1125.93 6.73 726 4e-7 2585.05 7.82 796 1e-6 141.61 5.51 65 1e-6
65.31 6.58 20 3e-8 81.33 6.68 20 3e-8 17415.68 28.00 2121 8e-5 669.34 18.82 78 5e-7


Table 7: Effect of different algorithmic parameters settings on DA


The Table shows that curtailing information accumulation has in general dire conse-
quences, although the details differ for the different parameters. For instance, requiring
|B| ≤ 20 · |K| has little effect when |K| = 800, indicating that the optimal bundle dimen-


21







sion is likely to be somewhat sublinear in |K|, although the size of the master problem is
linear in |K|. Conversely, the effect of “early removal” of subgradients (Rem = 20) grows
dramatically as |K| increases.


To put again these performances in context, in Table 8 we compare DE (at the two
accuracies 1e-6 and 1e-12) with the various LP algorithms in Cplex, FA-2 and FA-V,
i.e., the fully disaggregated model solved with the Volume algorithm [3]; subgradient-type
approaches have often been found competitive with bundle ones for the approximate solution
of difficult large-scale problems [8, 19]. As a minor note, since the problem to be solved is
now “formally” a MILP (to allow use of lazy constraints), there is no longer a way to specify
primal or dual network simplex, but only a generic “network simplex”. This does not look
to be an issue, as in this case Cplex is much better at actually picking the best solver: the
automatic choice invariably reverts on the dual simplex (and thus need not be reported),
which is indeed appropriate. Anyhow, the performances of the different approaches are much
more similar than in the case of the weak formulation (a factor of two rather than more than
an order of magnitude). We also mention that we experimented using the Volume algorithm
to “warm-start” the bundle method, a trick that sometimes pays surprisingly good dividends
[16]; unfortunately, this was not one of these cases.


Cplex DE FA-2 FA-V
primal dual net. barr. 1e-6 1e-12 time f add it gap time f add it gap


12 10 11 15 31.69 63.78 410 12 7 14880 9e-7 2.50 0.47 0.45 875 9e-3
64 53 61 71 47.53 51.38 1855 19 16 11141 3e-6 5.83 1.15 1.15 842 2e-2


139 114 132 157 28.98 29.16 1254 32 20 9035 1e-6 11.91 2.28 2.24 796 3e-2
559 456 531 587 65.31 65.69 1732 100 67 12940 1e-6 25.76 5.07 4.96 760 4e-2
46 39 43 60 25.93 32.00 322 12 10 10320 1e-6 5.53 0.88 1.13 871 8e-3


147 132 144 209 27.97 56.28 294 15 9 5300 1e-6 11.88 2.13 2.38 831 9e-3
509 301 478 648 20.80 25.69 5033 169 155 27231 1e-6 25.91 4.50 5.37 794 3e-3
2329 1930 2302 2590 132.60 132.78 3122 192 169 14547 1e-6 51.35 8.58 10.63 760 4e-2
196 131 156 304 2.47 2.66 344 20 12 7169 1e-6 11.61 1.99 2.30 827 3e-3
926 708 862 1174 245.91 337.38 2256 111 118 17034 2e-5 28.50 4.95 6.08 869 1e-2
2706 2167 2542 3272 283.71 507.52 5475 192 249 15061 3e-6 57.86 9.23 13.00 817 2e-2


11156 8908 11675 11683 241.84 253.59 11863 349 413 13953 1e-6 108.75 16.78 24.07 765 2e-2


Table 8: Comparison with Cplex and Volume for the strong formulation


The Table shows that FA-2 is capable of reaching a reasonably high accuracy of 1e-6
in almost all instances—but 5 out of 48, where anyway the ex-post accuracy is not too far
from the desired target—within the allotted timeframe. This improves on [8], where Bundle
methods could only work with a very small maximum bundle size (|B| ≈ 10), and however
could not produce very accurate solutions. The difference is to be mostly attributed to the
dynamic generation of constraints, that was not implemented (except in a very primitive
fashion) in [8]. The Volume algorithm used here is remarkably more “robust” than the sub-
gradient algorithms employed in [8]—Bundle methods were found preferable mostly because
much less dependent on fine-tuning of the algorithmic parameters—but, try as we might,
we have never been able to have it attain more than 3e-3 precision. It is interesting to
remark that for FA-2 separation is performed every 100 iterations. The Table clearly shows
why this is necessary: even with this setting, the separation time (“add”) is comparable
to the function evaluation time (“f”). More frequent separation, say every 10 iterations,
would render it far too costly. Remarkably, separation every 10 iteration is instead the best


22







setting for the Volume algorithm, obtaining a reasonably low “add” time. This is likely
due to the fact that the aggregated primal solution used to perform separation is obtained
by the convex combination of only two solutions for FA-V, while many more solutions are
used in FA-2; thus, computing the aggregated solution, rather than separation proper, is
the costly operation. However, neither FA-V nor FA-2 are competitive with Cplex: the
former is faster but obtains unacceptably coarse bounds, the latter is slower and the quality
of the bounds is lower as well. Conversely, the DE bundle method obtains accurate—even
extremely so—solutions much faster than Cplex, except for the smallest instances.


Qualitatively, the results can be described by saying that decomposition algorithms can
work in “two different regimes”. If enough information is collected and retained, they attain
accurate optimal solutions in a few iterations, although with a high master problem cost
(DE). If information is either aggregated (FA-2, FA-V) or withdrawn (Table 7), they tail-off
rapidly, thus requiring many more iterations (and, usually, time) to reach the same precision.
This shows that decomposition approaches highly benefit from—indeed, require—very large
master problems, which in turn call for appropriate solution technology. However, size is not
the only factor at play here, as Table 5 clearly show, for otherwise DD should be roughly
as successful as DE. Appropriate structure of the master problem, under the form of the
compact representation (as opposed to, perhaps, “entirely inappropriate” representation by
its vertices) of the “easy” set Y , is at least as important. Thus, the “easy component” idea
seems to be a key enabler, at least as the application considered in this paper goes.


4 Conclusions
Exploiting structure of the different components of the function in order to improve the
performances is a strong recent trend in the research about bundle methods for nondiffer-
entiable optimization [16, 28, 29, 32], delivering very promising results especially for La-
grangian relaxations of large-scale, highly structured problems. This work examines one
form of structure which appears to be both quite general and widespread; hence, we expect
several other (hopefully, successful) applications. One possibility comes from another sta-
ple of Lagrangian optimization: the hydro-thermal Unit Commitment problem in electrical
power production [2, 5]. There, while thermal units require complex combinatorial oracles
[17], hydro units—at least with some widely accepted simplifications—are just small-scale
continuous flow problems, and therefore amenable to the “easy components” treatment.


Our results also suggest several possible directions for future research. An interesting
observation is that while these approaches can be very efficient, they require extremely large
master problems which can be very costly to solve with general-purpose (even if state-of-
the-art) LP technology. Besides, the cost for linear stabilization (at least with “simple”
stabilizing functions, the story could be different with “complex” multi-pieces ones [4]) is a
considerable decrease in the convergence speed w.r.t. quadratic stabilization. Thus, research
should probably be resumed on specialized quadratic programming solvers capable of exploit-
ing the structure of the master problems to substantially improve the performances; that the
15-years-old implementation of [12] is still effective nowadays is comforting in this respect,
showing just how powerful appropriate structure exploitation can be. Yet, for the approach
proposed in this paper one would require an oxymoron-sounding “generic-specialized” solver
that on one hand exploits the standard structure of the master problem as [12], but on the


23







other hand be able to deal with as many structures of the easy components as possible. The
Alternating Linearizaton approach (cf. §2.3) may be a direction to explore, but the task
may call for the development of some entirely new solution methodologies for structured
quadratic programming.


References


[1] A. Astorino, A. Frangioni, M. Gaudioso, and E. Gorgone. Piecewise Quadratic Approx-
imations in Convex Numerical Optimization. Technical Report 2/10, DEIS, Università
della Calabria, 2010.


[2] L. Bacaud, C. Lemaréchal, A. Renaud, and C. Sagastizábal. Bundle Methods in Stochas-
tic Optimal Power Management: A Disaggregated Approach Using Preconditioners.
Computational Optimization and Applications, 20:227–244, 2001.


[3] L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited: relation
with bundle methods. Mathematical Programming, 94(1):41–70, 2002.


[4] H. Ben Amor, J. Desrosiers, and A. Frangioni. On the Choice of Explicit Stabilizing
Terms in Column Generation. Discrete Applied Mathematics, 157(6):1167–1184, 2009.


[5] A. Borghetti, A. Frangioni, F. Lacalandra, and C.A. Nucci. Lagrangian Heuristics
Based on Disaggregated Bundle Methods for Hydrothermal Unit Commitment. IEEE
Transactions on Power Systems, 18(1):313–323, February 2003.


[6] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck.
Comparison of bundle and classical column generation. Mathematical Programming,
113(2):299–344, 2008.


[7] P. Cappanera and A. Frangioni. Symmetric and Asymmetric Parallelization of a Cost-
Decomposition Algorithm for Multi-Commodity Flow Problems. INFORMS Journal on
Computing, 15(4):369–384, 2003.


[8] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based Relaxation Methods for
Multicommodity Capacitated Fixed Charge Network Design Problems. Discrete Applied
Mathematics, 112:73–99, 2001.


[9] T.G. Crainic, B. Gendron, and G. Hernu. A Slope Scaling/Lagrangean Perturbation
Heuristic with Long-Term Memory for Multicommodity Capacitated Fixed-Charge Net-
work Design. Journal of Heuristics, 10(5):525–545, 2004.


[10] G. d’Antonio and A. Frangioni. Convergence Analysis of Deflected Conditional Approx-
imate Subgradient Methods. SIAM Journal on Optimization, 20(1):357–386, 2009.


[11] S. Feltenmark and K. Kiwiel. Dual Applications of Proximal Bundle Methods, includ-
ing Lagrangian Relaxation of Nonconvex Problems. SIAM Journal on Optimization,
10(3):697–721, 2000.


24







[12] A. Frangioni. Solving semidefinite quadratic problems within nonsmooth optimization
algorithms. Computers & Operations Research, 21:1099–1118, 1996.


[13] A. Frangioni. Generalized Bundle Methods. SIAM Journal on Optimization, 13(1):117–
156, 2002.


[14] A. Frangioni. About Lagrangian Methods in Integer Optimization. Annals of Operations
Research, 139:163–193, 2005.


[15] A. Frangioni and G. Gallo. A Bundle Type Dual-Ascent Approach to Linear Multicom-
modity Min Cost Flow Problems. INFORMS Journal on Computing, 11(4):370–393,
1999.


[16] A. Frangioni and B. Gendron. A Stabilized Structured Dantzig-Wolfe Decomposition
Method. Technical Report CIRRELT-2010-02, CIRRELT, 2010.


[17] A. Frangioni and C. Gentile. Solving Nonlinear Single-Unit Commitment Problems with
Ramping Constraints. Operations Research, 54(4):767 – 775, 2006.


[18] A. Frangioni and C. Gentile. Experiments with a hybrid interior point/combinatorial
approach for network flow problems. Optimization Methods and Software, 22(4):573 –
585, 2007.


[19] A. Frangioni, A. Lodi, and G. Rinaldi. New approaches for optimizing over the semi-
metric polytope. Mathematical Programming, 104(2-3):375–388, 2005.


[20] A. Frangioni and A. Manca. A Computational Study of Cost Reoptimization for Min
Cost Flow Problems. INFORMS Journal on Computing, 18(1):61–70, 2006.


[21] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Path Relinking, Cycle-Based Neigh-
bourhoods and Capacitated Multicommodity Network Design. Annals of Operations
Research, 131(1-4):109–133, 2004.


[22] I. Ghamlouche, T.G. Crainic, and B. Gendron. Cycle-Based Neighbourhoods for Fixed-
Charge Capacitated Multicommodity Network Design. Operations Research, 51(4):655–
667, 2003.


[23] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
I—Fundamentals, volume 306 of Grundlehren Math. Wiss. Springer-Verlag, New York,
1993.


[24] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
II—Advanced Theory and Bundle Methods, volume 306 of Grundlehren Math. Wiss.
Springer-Verlag, New York, 1993.


[25] K. Holmberg and D. Yuan. A Lagrangian Heuristic Based Branch-and-Bound Approach
for the Capacitated Network Design Problem. Operations Research, 48(3):461–481, 2000.


25







[26] K.L. Jones, I.J. Lustig, J.M. Farwolden, and W.B. Powell. Multicommodity Network
Flows: The Impact of Formulation on Decomposition. Mathematical Programming,
62:95–117, 1993.


[27] K. Kiwiel and C. Lemaréchal. An inexact bundle variant suited to column generation.
Mathematical Programming, 118:177–206, 2009.


[28] K.C. Kiwiel. A Proximal-Projection Bundle Method for Lagrangian Relaxation, In-
cluding Demidefinite Programming. SIAM Journal on Optimization, 17(4):1015–1034,
2006.


[29] K.C. Kiwiel. An Alternating Linearization Bundle Method for Convex Optimization
and Nonlinear Multicommodity Flow Problems. Mathematical Programming, to appear,
2011.


[30] G. Kliewer and L. Timajev. Relax-and-Cut for Capacitated Network Design. In Al-
gorithms – ESA 2005, volume 3669/2005 of Lecture Notes in Computer Science, pages
47–58. Springer, Berlin / Heidelberg, 2005.


[31] C. Lemaréchal. Lagrangian Relaxation. In M. Jünger and D. Naddef, editors, Compu-
tational Combinatorial Optimization, pages 115–160. Springer-Verlag, Heidelberg, 2001.


[32] C. Lemaréchal, A. Ouorou, and G. Petrou. A Bundle-type Algorithm for Routing
in Telecommunication Data Networks. Computational Optimization and Applications,
44(3):385–409, 2009.


[33] C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applications.
Mathematical Programming, 90:399–427, 2001.


[34] A. Ouorou. A proximal cutting plane method using Chebychev center for nonsmooth
convex optimization. Mathematical Programming, 119(2):239–271, 2009.


26






