

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-11-09

Nominal models and resource
usage control

Pierpaolo Degano Gian-Luigi Ferrari Gianluca Mezzetti

July 11, 2011
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Nominal models and resource usage control

Pierpaolo Degano Gian-Luigi Ferrari Gianluca Mezzetti

July 11, 2011

Abstract

Two classes of nominal automata, namely Usage Automata (UAs) and
Variable Finite Automata (VFAs) are considered to express resource con-
trol policies over program execution traces expressed by a nominal calcu-
lus (Usages). We first analyse closure properties of UAs, and then show
UAs less expressive than VFAs. We finally carry over VFAs the symbolic
technique for model checking Usages against UAs, so making it possi-
ble to verify the compliance of a program with a larger class of security
properties.

Introduction
Computational models based on finite alphabets seem insufficient to accurately
describe programs that adapt their behaviour when plugged inside mutable op-
erational environments, and that therefore offer a multiplicity of dynamic enti-
ties. Ubiquitous computing is an illustrative example of these phenomena. For
instance, network resources are neither created nor destroyed by programs, but
directly acquired on-the-fly from rental services, upon need. Since we cannot
predict the actual identities of all the entities that programs may plug in, we can
abstractly represent such mutable operational environments as issuing stimuli
taken from infinite alphabets. The challenge is therefore developing structures
to formally manage infinite alphabets.

In this paper, we exploit nominal techniques [13] to deal with these alpha-
bets, the elements of which are called urelements. Urelements are atomic objects
that are indistinguishable: we can always substitute one for another. The only
thing that characterizes an object made of urelements is its shape, rather than
the actual urelements it is made of. There are many instances of nominal mod-
els in the real word. E.g. XML files may contains URL links coming from the
web but, roughly, an XML Schema Definition can validate XML files ignoring
the specific actual content of these links.

Nominal techniques have been fruitful considered in several fields. Nominal
process calculi, namely calculi with dynamic name creations and name-passing,
have been shown effective to deal with security and mobility [14]. Nominal au-
tomata, that recognize languages over an infinite alphabet, have been developed
over the years [20, 10, 6, 15, 17, 9, 23, 11]. Some of these formalisms, among

1

which [10, 9, 8], operate on data words, i.e. strings of operations acting on data
objects, e.g. reading a file or invoking a remote server. We refer to [22, 19] for
a detailed survey and some comparisons. The motivating application of some
nominal automata, for example Finite Memory Automata (FMA) [17] and Vari-
able Finite Automata (VFAs) [15], is to express properties of XML and Datalog
data. Also, HD-Automata [18] and Fresh Register Automata [23] can decide
bisimulation properties of a finite control restriction of the π-calculus [21].

This paper builds over the nominal technique introduced in [5]. There,
a basic nominal process calculus, now called Usages, is proposed to abstractly
represent the behaviour of programs that dynamically generate and operate over
resources, through actions, so generating data words. Usages encompass full
sequentialization, general recursive definitions, and a dynamic name generation
operator, much like the π-calculus. Instead, Usages do not include name passing
facilities.

Usage Automata, UAs for short, have been introduced [6, 7] to specify and
enforce security policies of a system, the behaviour of which is abstractly repre-
sented by the language of a usage. The security policies considered are actually
safety properties, expressing that nothing bad will occur during an execution.
To show that a usage U respects a policy ϕ, i.e. a UA, [6] resorted to model
checking, in spite of the possible infinite resources the usage U can generate.
This is done by carefully defining a mapping, called collapsing, that keeps apart
a finite, a priori bounded, number of witnessing urelements, while coalescing all
the others in a distinguished object. This form of approximation is shown sound,
and also complete for checking the considered access control policies. Following
this path, the verification of security is reduced to the emptiness problem of
the intersection between a pushdown and a finite state automata. The first,
i.e. the model, comes from U , the second, i.e. the property, from the UA ϕ.
Indeed, this is the classical automata based model checking technique by Vardi
and Volper [24].

Here, we first establish some closure properties of the UAs, by studying them
as a nominal automata from a language theoretic viewpoint. In particular, we
show that UAs are closed under intersection and union, but not under comple-
ment and Kleene star. When seen as policies, this result amounts to say that
we can impose two policies together or be happy if one out of two is obeyed.
Instead, to consider secure only those traces that violate a given policy, one has
to explicitly build a new UA, which is not guaranteed to exist at all.

Then, we conservatively extend VFAs to deal with data words. We also
show that this new kind of automata are more expressive than UAs, so slightly
extending the taxonomy in [22, 19]. It is now possible to use VFAs to express a
larger class of security policies on Usages. The crucial point is whether a usage
U can be model checked against a VFA. We face this problem by rephrasing the
technique of [6] and by defining symbolic VFAs, that represent the languages
of VFAs under collapsing. In this way, VFAs become standard Finite State
Automata, making thus model checking possible.

The paper is organised as follows. Sections 1.1 and 1.2 recall Usages and
UAs from [6]; Section 1.3 extends VFAs to operate on data words. Section 2

2

studies closure properties of UAs from a language theoeretical point of view. It
also contains a new characterization of the languages accepted by them, that
makes it easy to compare their expressive power with the one of VFAs. In
Section 3 we show that Usages can be efficiently model checked against VFAs.
We then conclude and sketch some possible future lines of research. The Ap-
pendix contains all the proofs of our statements, and some additional auxiliary
definitions and results.

1 Preliminaries
We recall the notion of Usages and Usage Automata [6] and extend VFAs [15] to
work on data words. These formalism will be used to represent execution traces
of programs that dynamically generate new resources, and to express properties
of sets of traces.

We assume hereafter a set Act of actions that operate on a given infinite
set Res of resources. The actions comprise a special action new that represent
the generation of a fresh resource. An event is a pair α(r) with α ∈ Act and a
r ∈ Res, that represents the firing of the action α on the resource r. Then, an
execution trace is a sequence of events, i.e. a data word. We only consider here
Usages and Usage Automata with actions on a single resource and we refer the
interested reader to [6] for the polyadic version.

The set of resources Res is partitioned in two subset: Ress and Resd. Ress
is a finite set of static resources, typically the one that are hard-coded in the
program. Instead, Resd is a countable infinite set of dynamic resources, i.e.
the urelements, that are dynamically created. Indeed, whenever a program can
generate an execution trace α(a)α(d)α(d′)α(a) with a ∈ Ress, d, d

′ ∈ Resd it
can also generate α(a)α(d′)α(d)α(a), since the two strings have the same shape
and d, d′ are obtained dynamically.

1.1 Usages
Usages are a simple nominal process calculus designed to represent the be-
haviour of programs that create and use resources dynamically. They were orig-
inally introduced in [5], and mechanically derived by a type and effect system
from the expressions of a λ-calculus suitably extended to specify web services
in a secure manner (e.g. it features a call-by-contract primitive and security
policies); see also [4]. The semantics of a usage is a set of traces.

Definition 1.1 (Usages). Let Nam be a countable set of names such that
Nam ∩Res = ∅. Usages are inductively defined as follows:

3

ε · U,R ε−→ U,R r,R α(r)−−−→ ε,R µh.U,R ε−→ U{µh.U/h},R

U,R r−→ U ′,R′

U · V,R α(r)−−−→ U ′ · V,R′

U,R α(r)−−−→ U ′,R′

U + V,R α(r)−−−→ U ′,R′

V,R α(r)−−−→ V ′,R′

U + V,R α(r)−−−→ V ′,R′

νh.U,R new(r)−−−−→ U{r/n},R∪ {r}
if r ∈ Resd \ R

Table 1: Operational semantics of Usages

U, V ::= ε empty
h recursion variable
α(r) α(r) ∈ Act× (Res ∪ Nam), α 6= new

U · V sequence
U + V choice
µh.U recursion
νn.U resource creation, n ∈ Nam

The operators of the calculus are similar to those of the π-calculus, but we
have full sequentialization, general recursion and no parallel operator; µh and
νn are binders, the first one on recursion variables, the second on names.

A usage is closed when it has no free names and no free variables; it is initial
when it is closed and with no dynamic resources.

The semantics of Usages is specified through the labelled transition system
in Table 1 and it is the set of all the prefixes of the maximal traces. The
configurations of the transition system are pairs (U,R), where U is a usage and
R ⊆ Resd is the set of dynamic resources generated so far.

Definition 1.2 (Semantics of Usages). Given a closed usage U we denote with
JUK the set of traces η = a1 . . . an(ai ∈ (Act×Res)∪{ε}, 1 ≤ i ≤ n) such that:

∃U ′,R′. U, ∅ a1−→ · · · an−−→ U ′,R′

The following definition is technical and will be used in Section 2.3.

Definition 1.3 (Well formed traces). A trace η is well-formed when it is never
the case that:

1. η = η′new(r)η′′ for some η′, η′′ with r ∈ Ress or

2. η = η′new(r)η′′new(r)η′′′ for some η′, η′′, η′′′, r or

3. η = η′α(r)η′′new(r)η′′′ for some η′, η′′, η′′′, α

4

1.2 Usage Automata
Usage Automata (UAs) [6] are nominal automata over data words. To define
them, it is convenient to assume a countable infinite set of variables Var; from
now onwards, let V ⊂ Var. We start with a couple of auxiliary definitions.

Definition 1.4 (Substitution). We call substitution for V a function σ : V →
R,R ⊆ Res.

Hereafter a substitution σ is considered trivially extended on Ress so that
σ(a) = a for all a ∈ Ress. Hence, if σ : V → R, the set R contains at least
Ress.

Below, we recall the syntax and the semantics of guards

Definition 1.5 (Guards). Given a set V of variables we inductively define the
set G of guards on Ress ∪ V , ranged over by ζ, ζ ′, as follows:

G1, G2 := true | ζ = ζ ′ | ¬G1 | G1 ∧G2

A given substitution σ : V → R satisfies a guard g, in symbols σ � g,
if and only if: (g = true) or (g = (ζ = ζ ′) and σ(ζ) = σ(ζ ′)) or (g =
¬g′ and it is not the case that σ � g′) or (g = g′ ∧ g′′ and σ � g′ and σ � g′′)

We write (ζ 6= ζ ′) for ¬(ζ = ζ ′), g1 ∨ g2 for ¬(g1 ∧ g2) and g1 → g2 for
¬g1 ∨ g2.

Definition 1.6 (Usage Automata). A Usage Automaton (UA) ϕ is
〈S,Q, q0, F, E〉. The set S ⊆fin Act × (Ress ∪ V ar) is the alphabet; Q
is the finite set of states; q0 the initial state; F ⊆ Q the set of final states;
E ⊆ Q× S ×G×Q is the finite set of edges with G set of guards on resources
and variables in S.

Given a UA ϕ, we will refer to the variables occurring in S with V ar(ϕ).

Definition 1.7 (Instantiation of UAs). Let ϕ = 〈S,Q, q0, F, E〉 be a UA and
σ : V ar(ϕ) → R be a substitution. The instantiation of ϕ under σ is the
automaton ϕσ = 〈R,Q, q0, F, δσ〉, where δσ = Xσ ∪ Compσ(Xσ) with

Xσ = {(q, α (σ(v)) , q′) | (q, α(v), g, q′) ∈ E and σ � g}
Compσ (Xσ) = {(q, α(r), q) | α ∈ Act, r ∈ R and @q′ ∈ Q.(q, α(r), q′) ∈ Xσ}

Note that the completion Compσ (Xσ) may possibly contain infinite self-loops.
Language recognizability by an automaton with infinite edges is defined

much like that for standard Finite State Automata (FSA, for short): η ∈ L(ϕσ)
if there exists a finite path in ϕσ from q0 to a q′ ∈ F labelled with η.

Definition 1.8 (Language of UAs). The string η ∈ L(ϕ) iff there exists a
substitution σ : V ar(ϕ)→ R for some R ⊆ Res such that η ∈ L(ϕσ).

5

1.3 Variable Finite Automata on Data Words
Here we conservatively extend Variable Finite Automata [15] to work over data
words.

Definition 1.9 (Variable Finite Automata). The tuple A = 〈Act,Ω,Ωs, X ∪
{y}, A〉 is a Variable Finite Automaton (VFA), where X is a finite set of vari-
ables; Act is a finite set of actions; and Ω is a possibly infinite alphabet with
Ωs ⊆ Ω finite subset, Ω ∩ X = ∅. A = 〈Γ, Q, q0, F, δ〉 is a NFA with alphabet
Γ = Act× (Ωs ∪X ∪ {y}) and y /∈ (Ω ∪X).

Given a function m : Ω → (Ωs ∪ X ∪ {y}), let m(α(a)) = α(m(a)). When
unambiguous, we will write m(η) for m homomorphically applied to η.

Definition 1.10 (Language of VFAs). A string η ∈ (Act×Ω)∗ is a legal instance
of s ∈ Γ∗ and s is a witnessing pattern of η, if there exists a function m : Ω →
(Ωs ∪X ∪ {y}) such that m(η) = s and m is a correspondence, i.e.

1. ∀a ∈ Ωs.m(a) = a

2. ∀x, z ∈ X. if (∃a, b ∈ Ω.m(a) = x and m(b) = x) then a = b and a, b /∈ Ωs

A string η ∈ L(A) iff there exists s ∈ L(A) such that η is a legal instance of s.

Note that here we explicitly present the correspondence between strings and
witnessing patterns as a function. Our definition is equivalent to that of [15]
when actions are ignored.

Of course, we are interested in the behaviour of VFAs with infinite alphabets,
typically when Ω = Res,Ωs = Ress,Ω \ Ωs = Resd.

2 Properties of UAs
We now study UAs from an automata theoretic viewpoint. We first introduce
two helpful classes of UAs, saturated and frozen UAs, that also give an alterna-
tive characterization of the languages recognized by UAs.

Definition 2.1 (Saturated Usage Automata). Let ϕ = 〈S,Q, q0, F, E〉 be a
UA and let
σ : V ar(ϕ) → R be a substitution. Then ϕ is σ-saturated iff given
(q, α(r), q) ∈ Comp(Xσ) in ϕσ = 〈R,Q, q0, F, δσ〉 we have that r ∈ Resd and
∀x ∈ V ar(ϕ).σ(x) 6= r.
The automaton ϕ is saturated iff for all substitutions σ ϕ is σ-saturated.

Example 2.1. The automaton in Figure 1(a) is not saturated. Under the
substitution
σ := x 7→ d ∈ Resd, Compσ(Xσ) contains both an edge (q0, α(b), q0) and
(q0, α(d), q0). This violates both the requirements. We can easily obtain a
saturated automaton recognizing the same language of (a) by adding appropriate
self loops to it, see Figure 1(b).

6

q0

α(a) α(x)

(a)
q0

α(a)

α(b), α(x) α(a), α(b) α(a), α(b), α(x)

α(x)

(b)

Figure 1: A UA in (a) and its saturated version in (b). The alphabet is S =
Act× ({a, b} ∪ {x}),Act = {α}

The following property holds.

Property 2.1. Let ϕ be a UA and let σ : V ar(ϕ)→ R be a substitution, then:

∀qi, q′i, qj , q′j ∈ Q, v ∈ Act×R.(qi, v, q′i) ∈ Compσ(Xσ)⇔ (qj , v, q
′
j) ∈ Compσ(Xσ)

Indeed, since the set of the outgoing edges in a saturated automata is the same
for every state (and for every instantiation), the set of the edges added in the
completion Compσ(Xσ) is the same for every state.

We have the following theorem, the proof of which is in the Appendix.

Theorem 2.2. Every UA can be saturated preserving the recognized language.

The second class consists of frozen UAs. To define them, note that substitutions
and guards melt together the values of some variables. A substitutions σ does
this over the whole automaton, and a guard g under σ drives the instantiation
removing or not the edges where it occurs.

Definition 2.2 (Freezing Substitution). Given a UA ϕ, a substitution σ :
V ar(ϕ)→ R is freezing if it is injective and ∀x ∈ V ar(ϕ).σ(x) ∈ Resd

Under a freezing substitution, an automaton has all variables distinct. Theo-
rem 2.5 below shows that the needed fusions can be anyway handled anyway
through additional edges and states.

Definition 2.3 (Frozen UAs). Let ϕ = 〈S,Q, q0, F, E〉 be a UA. The automaton
ϕ is frozen iff both conditions hold:

• there exists a sink state ? ∈ Q such that ? /∈ F , and

• for all non freezing substitution σ if (q, α(r), q′) ∈ δσ in ϕσ with q′ 6= ?
then
(r /∈ Image(σ) ∧ r ∈ Resd).

An ubiquitous guard for ϕ is any guard g such that for all σ if σ � g then σ is
freezing.

The three usage automata in Figure 2 are frozen.

Property 2.3. Let ϕ be a frozen UA:

7

q0

?

a : g∗

b, x : g∗ a, b : g∗ a, b, x : g∗

a, b, x : g∗

x : g∗

x
,
a
,
b

:¬
g
∗

x
, a
, b

:
¬g
∗x

, a, b
: ¬
g ∗

(a)

q0

?

a : g∗

b, a : g∗ x, b : g∗ b, x : g∗

a, b, x : g∗

a : g∗

x
,
a
,
b

:¬
g
∗

x
, a
, b

:
¬g
∗x

, a, b
: ¬
g ∗

(b)

q0

?

a : g∗

b, a : g∗ x, b : g∗ b, x : g∗

a, b, x : g∗

b : g∗

x
,
a
,
b

:¬
g
∗

x
, a
, b

:
¬g
∗x

, a, b
: ¬
g ∗

(c)

Figure 2: The automata (a),(b),(c) are frozen. Their alphabet is S = Act ×
({a, b} ∪ {x}) with Act = {α}, g∗ = x 6= a ∧ x 6= b. We write here a, b, x for
α(a), α(b), α(x), respectively.

1. let σ be a non-freezing substitution on V ar(ϕ) and let ϕσ be the instanti-
ation of ϕ, then:
@ (q, α(r), q′) ∈ δσ. q′ 6= q, ? and ∀ (q, α(v), g, q′) ∈ E, q′ 6= ?. σ 2 g

2. for all substitution σ on V ar(ϕ) if (∃(q, α(v), g, q′) ∈ E, q′ 6= ?, q. σ � g)
then σ is freezing.

Guards of the edges not leading to the sink play a marginal role in a frozen
UA. They are ubiquitous, hence they are satisfiable by freezing substitutions,
only. Additionally, under a freezing substitution guards are either tautologies
or unsatisfiable.

Property 2.4. Let ϕ be a frozen UA. If there exists a freezing substitution σ :
V ar(ϕ)→ R such that σ � g, then for all freezing substitutions σ′ : V ar(ϕ)→ R
it holds σ′ � g.

The following theorem uses saturated and frozen automata to give an alter-
native characterization of the languages accepted by UAs.

Theorem 2.5. Let ϕ be a UA, there exists then a finite set {ϕi}i∈I , ϕi frozen
and σ-saturated automaton (for all freezing substitutions σ) such that L(ϕ) =⋃
i∈I L(ϕi)

Example 2.2. Figure 2 shows three frozen automata. The union of their lan-
guages gives the language recognized by the automaton in Figure 1. The state
? is the sink, g∗ is the ubiquitous guard. Clearly if σ � g∗ (i.e. σ is freezing) the
automata are σ-saturated.

8

2.1 Closure Properties
The motivating application of UAs is to express policies for controlling the usage
of resources. Policies are regular sets of traces [16]. Logical connectives between
policies have an equivalent counterpart as language operators. The complement
of a language recognized by a UA ϕ is the set of traces that violates the negation
of policy expressed by ϕ. The union/intersection of the languages recognized
by two UAs ϕ,ψ is the set of traces violating the conjunction/disjunction of the
two policies expressed by ϕ and ψ.

Hence, closure properties are not only interesting from a theoretical view-
point, but also deeply connected with the applications of UAs.

Theorem 2.6 (Closure). The set of languages accepted by UAs is closed under
union and intersection.

Theorem 2.7 (Non-closure). The set of languages accepted by UAs is not closed
under complement and Kleene star.

2.2 From saturated, frozen UAs to VFAs
Every language recognized by a saturated and frozen UA ϕ on Res = Ress ∪
Resd can be recognized by a VFA A = 〈Act,Res,Ress, V ar(ϕ)∪{y}, A〉. Below
we intuitively describe the steps needed to construct the underlying NFA A. The
formal definition of this technical but easy construction is in the Definition A.8
of the Appendix.

• Remove all the edges with an unsatisfiable guard: they would never be
present in any instantiation.

• Keep the edges with satisfiable guard g and remove g: this step is correct
since if g is satisfiable then any substitution σ such that σ � g is freezing,
and then all freezing substitutions will satisfy g, by Property 2.4.

• Remove the sink ? and all the edges involving it.

• Add to every node a self-loop with label α(y) for every action α ∈ Act,
so accounting for completion of edges. The special symbol y can be put
in correspondence with any resource that is different from any value as-
sociated with a variable and any static resource, that turns out to be
guaranteed by saturation.

The result of the transformation above, applied to Figure 2(c), is in Figure 3

Lemma 2.8. Given a UA ϕ, let A be the VFA obtained from the construction
above.
Then L(A) = L(ϕ).

Actually, UAs are strictly less expressive than VFAs.

Lemma 2.9. No UA accepts the language recognized by the VFAs in Figure 4

9

By Theorem 2.5 and by VFAs being closed under union, of we get that:

Theorem 2.10. UAs are less expressive than VFAs.

It would be interesting to formally compare the expressive power of some
variants of UAs and of VFAs. We have a couple of preliminary results. First,
restrict VFAs by only permitting y to occur in self-loops. We conjecture that
this variant of VFAs has the same expressive power of UAs. Instead, consider
the extension of UAs with a wild-card, introduced in [3]. A wild-card can stand
for any resource, and so it plays the role of y in a VFA. Not surprisingly UAs
extended in this way are as expressive as VFAs.

2.3 Model checking
As mentioned above, UAs have been introduced to specify and enforce secu-
rity policies of systems, the behaviour of which is abstracly represented by the
language of a usage U. The security policies considered are actually safety prop-
erties, expressing that nothing bad will occur during a computation η [16]. The
approach taken in [6] follows the default-accept paradigm, i.e. only the unwanted
behaviour is explicitly mentioned — this assumption justifies the way UAs are
instantiated, and in particular the completion step made therein. Consequently,
the language of ϕ is the set of unwanted traces, and an accepting state is con-
sidered offending. Then U respects the property ϕ, in symbols U � ϕ, if and
only if η ∈ JUK⇒ η /∈ L(ϕ).

To show that a usage U respects a policy ϕ, the authors of [6] resorted to
model-checking, in spite of the possible infinite resources a usage can generate.
This is done by carefully collapsing the verification to a well-known problem: the
emptiness of the intersection between a pushdown and a finite state automata,
that is decidible [12]. The first, i.e. the model, comes from U , the second, i.e.
the property, from the UA ϕ. Indeed, this is the classical automata based model
checking technique by Vardi and Volper [24].

The reader may have noticed that the language in Figure 4 is a safety prop-
erty, when the final state is considered offending. Since this property cannot be
expressed by any UA, the question arises whether the same checking technique
of [6] can be used to model check a usage against more expressive policies, ex-
pressed by VFAs. The answer is positive and one can model check a usage U
against a VFAs, defining policy compliance in the obvious way: U � A if and
only if η ∈ JUK⇒ η /∈ L(A).

q0

α(a)

α(b), α(a), α(y) α(x), α(b), α(y) α(b), α(x), α(y)

α(b)

Figure 3: a VFA recognizing the same language of the UA in Figure 2(c)

10

To do this we introduce symbolic VFAs. Their alphabet is a finite set of
witness W ⊂ {#i}i∈N, where {#i}i∈N ∩Res = ∅. We also need a distinguished
symbol _ /∈ Res ∪ {#i}i∈N.

We recall from [6] the crucial notion of collapsing mapping, that is the link
between Usages, VFAs and their symbolic counterparts. As a matter of fact,
this is the technical machinery that deals with urelements, and it permits to
abstract from their actual identity.

Definition 2.4 (Collapsing). Given a finite set of witnesses W, a collapsing
mapping
κ : Res→ Ress ∪W ∪ {_} of R ⊂ Resd onto W is a function such that:

1. κ(r ∈ Ress) = r

2. κ(R) = W and it is injective

3. κ(Resd \R) = {_}

We write κ(α(a)) for α(κ(a)) and κ(η) for the homomorphic extension of κ to
the trace η.

The following property is very technical, and simplifies the procedure for
model checking Usages against UAs and VFAs. Roughly, it states that well-
formedness of traces can be checked by the so-called unique-witness automaton.

Property 2.11 (Unique-witness). Given a finite set of witness W and an initial
usage U , there exists an unique-witness FSA NW such that:

• η /∈ NW =⇒ ∀#i ∈W. there is a single new(#i) in η

• η ∈ JUK =⇒ η /∈ L(NW)

By exploiting the construction given in [6], we can now associate with a usage
U a symbolic pushdown automaton BW(U), the language of which is denoted
by L(BW(U)). The following theorem puts together some results proved in [6].

Theorem 2.12. Given an initial usage U , there exist a finite set W of witnesses
and a pushdown automata BW(U) on the finite alphabet Act× (Ress∪W∪{_})
such that:

q0

α(a)α(y)

α(a), α(y)

α(y)

α(a)

α(a), α(y)

Figure 4: The language recognized by this VFA is not accepted by any UA. The
alphabet is Ω = Resd ∪ {a} with Act = {α}

11

• Given a collapsing κ such that κ(Resd) ⊆W ∪ {_} then:

∀η. η ∈ JUK⇒ κ(η) ∈ L(BW(U))

• Given a collapsing κ such that κ(Resd) ⊇W, then:

∀η′. (η′ ∈ L(BW(U)) ∧ η′ /∈ NW)⇒ (∃η. η ∈ JUK ∧ η′ = κ(η))

Definition 2.5 (Symbolic VFAs). Let A = 〈Act, Res,Ress, X ∪ {y}, A〉 be a
VFA. Given a finite set of witness W, let ResW = Ress ∪W ∪ {_}.
The symbolic VFA on W is AW = 〈Act, ResW, Ress, X ∪ {y}, A〉. Language
recognition for symbolic VFAs additionally requires the correspondence m to
be such that m(_) = y.

The following theorem makes clear the links between the language of a VFA
and that of its symbolic automaton.

Theorem 2.13. Let A = 〈Act, Res,Ress, X ∪ {y}, A〉 be a VFA, and let W be
a set of witness such that |W| = |X|, AW as in Definition 2.5 and let K be the
set of the collapsing κ such that κ(Resd) = W ∪ {_}, then:

• ∀η.(η ∈ A ⇒ ∃κ ∈ K.κ(η) ∈ AW)

• ∀κ ∈ K, η.(κ(η) ∈ AW ⇒ η ∈ A)

We carry over VFAs the notions of substitution and instantiation, which trans-
forms a VFA into a Finite State Automaton. The language recognized by any
VFA can then be represented under collapsing by a finite class of its instantia-
tions.

Definition 2.6 (Instantiation of VFAs). Let AW = 〈Act, ResW, Ress, X ∪
{y}, A〉 be a symbolic VFA with A = 〈Γ, Q, q0, F, δ〉, Γ = Act×(Ress∪X∪{y}).
Given a function m̄ : X ∪Ress → Ress ∪W it is a substitution for A if it is the
identity on Ress and it is injective on X.
Given a substitution m̄ the instantiation of A is Am̄ = 〈ResW, Q, q0, F, δ

∗〉,
where

δ∗ ={(q, α(m̄(v)), q′) | (q, α(v), q′) ∈ δ, v 6= y}∪
{(q, α(d), q′) | (q, α(y), q′) ∈ δ, d ∈ (ResW \ (Ress ∪ Image(m̄))}

We remark that, by the finiteness of W, Am̄ is a standard FSA on a finite
alphabet.

Theorem 2.14. Let A = 〈Act, ResW, Ress, X ∪ {y}, A〉 be a symbolic VFAs.
Then:

η ∈ L(A)⇔ ∃ substitution m̄.η ∈ L(Am)

12

To simplify the technical development, we find convenient to resort to the well-
known weak-until operator A W B between automata, meaning that A holds
until B holds or B always holds. We refer to a standard book on model checking,
e.g. [1], or to [6] for more details.

Theorem 2.15 (Model checking). Let U be an initial usage on the resources
Res = Resd ∪Ress; let A = 〈Act, Res,Ress, X ∪ {y}, A〉 be a VFA; and let W
be a set of witness such that |W| = |X|. Then U � A if and only if:

∀ substitution m̄ : X ∪Ress → Ress ∪W. L(BW) ∩ L(Am̄W W NW) = ∅

This theorem gives us the means for an efficient model checking proce-
dure. Given a substitution m̄, it is indeed decidable to check whether L(BW) ∩
L(Am̄W W NW) = ∅ and there are finitely many substitutions m̄, because Ress, X
and W are finite. We can then also re-use the model checker LocUsT [2] for ver-
ifying properties of Usages expressed by VFAs. As for complexity issues, we
recall from [6] that the algorithm implemented by LocUsT has a worst-case
asymptotic behaviour in O(|U ||n|+1

), where n is the number of variables of the
checked property.

Conclusions
We have first studied two classes of nominal automata, namely Usage Automata
(UAs) [6] and Variable Finite Automata (VFAs) [15], aiming at using them to ex-
press resource control policies. We analysed closure properties of the languages
recognized by UAs, and shown that the expressive power of UAs is weaker that
the one of VFAs. Then, we considered Usages [6], a nominal process calculus
for modelling the (abstract) behaviour of programs with dynamic creation of
resources.

We slightly extended the symbolic technique of [6], that is based on collaps-
ing and that reduces the two nominal automata mentioned above to standard
Finite State Automata. Also the execution traces of a nominal calculus can be
collapsed to traces of standard pushdown automata. This enables us to model
check the compliance of execution traces against a property expressed in terms
of a VFA. Indeed the collapsing above brings back us to the classical problem
of verifying the emptiness of the intersection between a pushdown and a finite
state automaton. Our results guarantees the correctness and the completeness
of our proposal.

Future work will be on studying whether the symbolic technique used here
can be extended and applied to other classes of nominal automata (e.g. Finite
Memory Automata) and to more expressive nominal process calculi to specify
systems. It would be also interesting to investigate further the hierarchy of
nominal automata [22]. A co-algebric presentation of these automata could help,
expecially for investigating their relation with functors on nominal sets possibly
with with fusion of names. The operational approach to express properties based
on nominal automata is deeply connected with the logical approach. It would

13

then be important to exactly relate the expressive power of different kinds of
nominal automata with that of various logics, e.g. EMSO [9, 8] or LTL [1].

References
[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT

Press, 2008.

[2] M. Bartoletti and R. Zunino. Locust: a tool for checking usage policies.
Technical Report TR08-07, University of Pisa, 2008.

[3] Massimo Bartoletti, Gabriele Costa, Pierpaolo Degano, Fabio Martinelli,
and Roberto Zunino. Securing Java with local policies. Journal of Object
Technology, 8(4):5–32, 2009.

[4] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Types and
effects for secure service orchestration. In CSFW, pages 57–69. IEEE Com-
puter Society, 2006.

[5] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Types and effects for resource usage analysis. In Helmut Seidl,
editor, FoSSaCS, volume 4423 of Lecture Notes in Computer Science, pages
32–47. Springer, 2007.

[6] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Model checking usage policies. In Christos Kaklamanis and Flem-
ming Nielson, editors, TGC, volume 5474 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2008. Extended version to appear in Math.
Stuct. Comp. Sci.

[7] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Local policies for resource usage analysis. ACM Trans. Program.
Lang. Syst., 31(6), 2009.

[8] M. Benedikt, C. Ley, and G. Puppis. Automata vs. logics on data words.
In Computer Science Logic, pages 110–124. Springer, 2010.

[9] Benedikt Bollig. An automaton over data words that captures EMSO logic.
CoRR, abs/1101.4475, 2011.

[10] P. Bouyer. A logical characterization of data languages. Information Pro-
cessing Letters, 84(2):75–85, 2002.

[11] V. Ciancia and E. Tuosto. A novel class of automata for languages on
infinite alphabets. Technical report, CS-09-003, University of Leicester,
UK, 2009.

14

[12] Javier Esparza. On the decidability of model checking for several µ-calculi
and Petri nets. In Proc. 19th Int. Colloquium on Trees in Algebra and
Programming, volume 787 of Lecture Notes in Computer Science. Springer,
1994.

[13] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with
variable binding. Formal aspects of computing, 13(3):341–363, 2002.

[14] A. Gordon. Notes on nominal calculi for security and mobility. Foundations
of Security Analysis and Design, pages 262–330, 2001.

[15] O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over
infinite alphabets. Language and Automata Theory and Applications, pages
561–572, 2010.

[16] Kevin W. Hamlen, J. Gregory Morrisett, and Fred B. Schneider. Com-
putability classes for enforcement mechanisms. ACM Trans. on Program-
ming Languages and Systems, 28(1):175–205, 2006.

[17] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Com-
puter Science, 134(2):329–363, 1994.

[18] U. Montanari and M. Pistore. π-calculus, structured coalgebras, and min-
imal hd-automata. Mathematical Foundations of Computer Science 2000,
pages 569–578, 2000.

[19] F. Neven, T. Schwentick, and V. Vianu. Towards regular languages over
infinite alphabets. Mathematical Foundations of Computer Science 2001,
pages 560–572, 2001.

[20] D. Perrin and J.E. Pin. Infinite words: automata, semigroups, logic and
games, volume 29. Elsevier, 2004.

[21] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001.

[22] L. Segoufin. Automata and logics for words and trees over an infinite
alphabet. In Computer Science Logic, pages 41–57. Springer, 2006.

[23] N. Tzevelekos. Fresh-register automata. ACM SIGPLAN Notices,
46(1):295–306, 2011.

[24] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In LICS, pages 332–
344. IEEE Computer Society, 1986.

15

A Appendix

A.1 Properties of UAs
This section formally defines the constructions on UAs introduced in the paper
and prove the statements. For simplicity in the proofs we will assume that Act
is a singleton and we will write v for α(v). All the proofs straightforwardly
extends when there are more actions.

Additionally we will always consider S = Act × (Ress ∪ V). This is not
a restriction since we can always extend the alphabet of a UA to such an S
while preserving the accepted language. Indeed, it suffices to add a sink and
appropriate edges, labelled with the new symbols.

A.1.1 Saturation

Definition A.1 (Saturation of a UA). Let S = Act × (Ress ∪ V), V ⊂ V ar
and let ϕ = 〈S,Q, q0, F, E〉 be a usage automaton. Let C be

C =

(q, α(v), gv, q)

∣∣∣∣∣∣∣∣∣
v ∈ V ar(ϕ) ∪Ress
α ∈ Act

gv =
∧

(q,α(v′),g′,q′)∈E

g′ → (v 6= v′)

The saturation of ϕ is the usage automaton ϕS = 〈S,Q, q0, F, E ∪ C〉.

Lemma A.1. The automaton ϕS is saturated.

Proof. Let (ϕS)σ be an instantiation of ϕS with R ⊆ Res, σ : V ar(ϕS) → R.
Let XS ∪ Comp(XS) be the edges of such instantiation.

By contradiction, let (q, r, q) ∈ Comp(XS) and r ∈ Ress. Since Comp(XS)∩
X = ∅ (q, r, q) /∈ XS . By definition of C we have (q, r, gr, q) ∈ C, but since
(q, r, q) /∈ XS clearly σ 2 gr. Hence we have a false statement in gr of the form
g′ → v′ 6= r with an associated edge (q, v′, g′, q′) ∈ E such that σ � g′ ∧ v′ = r,
this implies (q, r, q′) ∈ XS , in contradiction with the hypothesis.

By contradiction, let (q, r, q) ∈ Comp(XS) and σ(x) = r for some x. By
definition of C we have (q, x, gx, q) ∈ C, but since (q, r, q) /∈ XS clearly σ 2 gr.
The proof goes on as above.

Lemma A.2. L(ϕ) = L(ϕS)

Proof. Given R ⊆ Res and a substitution σ : V ar(ϕ) → R, let X ∪ Comp(X)
be the edges of the instantiation ϕσ of ϕ and let XS ∪ Comp(XS) be the ones
of (ϕS)σ.

By definition we note that:

16

Remark.

(q, r, q) ∈ X ∪ Comp(X)⇔
∃g, v.(q, v, g, q) ∈ E ∧ σ(v) = r ∧ σ � g ∨ (1)
∀v, g, q′.((q, v, g, q′) ∈ E ⇒ σ(v) 6= r ∨ σ 2 g) (2)

To obtain the thesis we only need to prove that given a substitution σ the
set of the edges of the two instantiation of the automata are the same:

(q, r, q′) ∈ X ∪ Comp(X)⇔ (q, r, q′) ∈ XS ∪ Comp(XS)

For q′ 6= q the statement is easy.
For q′ = q the statement become

(q, r, q) ∈ X ∪ Comp(X)⇔ (q, r, q) ∈ XS ∪ Comp(XS)

(⇒)
(q, r, q) ∈ X ∪ Comp(X)⇒ (q, r, q) ∈ XS ∪ Comp(XS)

1. If (q, r, q) ∈ X then there exists an edge (q, v, g, q′) ∈ E such that σ �
g ∧ σ(v) = r, from this (q, r, q) ∈ XS follows easily.

2. If (q, r, q) ∈ Comp(X) then we are in case 2 of Remark A.2.

(a) If r ∈ Ress and does not exists x ∈ V.σ(x) = r then does not exists
any edge (q, v, g, q′) ∈ XS such that σ(v) = r. Hence we obtain that
(q, r, q) ∈ Comp(XS).

(b) If r /∈ Resd ∨ ∃x ∈ V.σ(x) = r then let

A = {(q, v, g, q) ∈ E ∪ C | σ(v) = r}

If r ∈ Ress then by saturation we have (q, r, g′, q) ∈ A for some
guard g′. If σ(x) = r, for some x, then by saturation we have that
(q, r, g′, q) ∈ A for some guard g′. Hence A is not empty and for each
r ∈ Res such that r ∈ Ress or σ−1(r) 6= ∅ the set A always contains
an edge (q, r, g′, q) ∈ C ∩A.
It is not possible that the guards of the edges in A are all false.
i. By indirect reasoning, if all guards are false we obtain a contra-

diction. Let (q, v̄, ḡ, q) ∈ A∩ C, by the hypothesis σ 2 ḡ and this
implies σ � ¬ḡ. Since (q, v̄, ḡ, q) ∈ C the guard ḡ is of the form
∧i∈Igi → v̄ 6= vi. and I is not empty since ∀σ′.σ′ � true. Since
σ � ¬ḡ, we have σ � ¬(gj → v̄ 6= vj) and hence σ � (gj ∧ v = vj)
for some j ∈ I. Associated with gi → v̄ 6= vj we have an associ-
ated edge (q, vj , gj , qi) ∈ E. We obtain a contradiction since:
A. If qj = q then, since σ � qj and σ(v̄) = σ(vj) = r, there

exists an edge (q, vj , gj , q) ∈ A, in contradiction with the
hypothesis that all guards in A are false.

17

B. If qj 6= q then we have found (q, vj , gj , qj) ∈ E such that
σ � gj and σ(v̄) = σ(vj) = r, in contradiction with the
hypothesis that (q, r, q) ∈ Comp(X).

Hence, there exists an edge (q, v, g, q) ∈ (E ∪ C) ∩A such that σ � g
and σ(v) = r. Then we obtain the thesis (q, r, q) ∈ XS .

(⇐)

1. If (q, r, q) ∈ Comp(XS) then, since XS ⊇ X, by definition, Comp(XS) ⊆
Comp(X), obtaining the thesis (q, r, q) ∈ Comp(X).

2. If (q, r, q) ∈ Comp(X) then there exists an edge (q, v, g, q) ∈ E ∪ C, σ �
g, σ(v) = r

(a) If (q, v, g, q) ∈ E, σ � g, σ(v) = r then we obtain the thesis (q, r, q) ∈
X.

(b) If (q, v, g, q) ∈ C, σ � g, σ(v) = r and, by indirect reasoning, (q, r, q) /∈
X ∪ Comp(X). Since (q, r, q) /∈ X then, by completion, (q, r, q) ∈
Comp(X) that is absurd.

Theorem. Proof of 2.2
Every UA can be saturated preserving the recognized language.

Proof. Straightforward from Definition A.1, Lemma A.2 and Lemma A.1

A.1.2 Frozen UAs

First of all we prove the properties in 2.3:
Property. Proof of 2.3
Let ϕ be a frozen UA:

1. let σ be a non-freezing substitution on V ar(ϕ) and let ϕσ be the instan-
tiation of ϕ, then:
@ (q, α(r), q′) ∈ δσ. q′ 6= q, ? and ∀ (q, α(v), g, q′) ∈ E, q′ 6= ?. σ 2 g

2. for all substitution σ on V ar(ϕ) if (∃(q, α(v), g, q′) ∈ E, q′ 6= ?, q. σ � g)
then σ is freezing.

Proof. 1. For the first claim of the conjunction: Let us suppose that such an
edge (q, r, q′), q′ 6= q, ? exists. Since q′ 6= q then (q, r, q′) ∈ Xσ, this implies
that there exists an edge (q, v, g, q′) ∈ E, σ � g, σ(v) = r, in contradiction
with ∀x.σ(x) 6= r ∧ r /∈ Ress whenever q′ 6= ?. For the second claim
of the conjunction: By contradiction, let us suppose that there exists
(q, v, g, q′) ∈ E, q′ 6= ?.σ 2 g, then we have an edge (q, r, q′) ∈ Xσ such
that r = v ∈ Ress∨σ(v) = r, in contradiction with ∀x.σ(x) 6= r∧r /∈ Ress
whenever q′ 6= ?.

18

2. Consequence of the contrapositive of 1.

Throughout the development of this section we will assume to be always
enabled to choose a canonical witness over the finite subsets of V ar ∪Ress.

Hereafter, let ϕ = 〈S,Q, q0, F, E〉 be a usage automaton with S = Ress ∪
V ar(ϕ).
Respectful Equivalence Relations

Definition A.2 (Respectful Equivalence Relations). An equivalence relation
R ⊆ (V ar(ϕ) ∪ Ress) × (V ar(ϕ) ∪ Ress) respects the identity of the static
resources if (a, b) ∈ R ∧ a, b ∈ Ress implies a = b. The set of respectful
equivalence relations ≡i over Ress ∪ V ar(ϕ) is Rϕ.

Quotients
Given an equivalence relation ≡i∈ Rϕ, let n̄ ∈ (V ar(ϕ) ∪ Ress)/≡i be the
equivalence class of a generic element n ∈ (V ar(ϕ) ∪ Ress). Then, we denote
with [m]i the canonical witness of {v | v ∈ n̄} and with Mi = {[m]i | m ∈
(V ar(ϕ) ∪Ress)}
By definition it follows:

Property A.3. 1. Mi ⊆ (V ar(ϕ) ∪Ress)

2. Mi = V ari ∪Ress, V ari ⊆ V ar(ϕ).

Guards
Given a relation ≡i∈ Rϕ, and a guard g over (Ress ∪ V ar(ϕ)) we inductively
define the following rewriting system (with normal form) over guards:

[n = m]i ⇒ [n]i = [m]i

[true]i ⇒ true

[¬G]i ⇒ ¬[G]i

[G ∧G′]i ⇒ [G]i ∧ [G′]i

The guard modified in this way is still over (Ress ∪ V ar(ϕ)).

Definition A.3. We define

g∗ =
∧

u,v∈Ress∪V ar(ϕ)

¬(u = v)

as the ubiquitous guard of our frozen automata.

It is easy to show that g∗ respects the properties requested by Definition 2.3.
Substitutions

19

Definition A.4 (Closure of a function). Given a function f : A → B, the
reflexive, symmetric, transitive closure is obtained by looking at it as a relation
f ⊆ (A ∪B)× (A ∪B). Hence:

Closurerst(f) = f ∪ {(u, u) | u ∈ A ∪B}∪
∪ {(u, v) | (v, u) ∈ Closurerst(f)}∪
∪ {(u, z) | ∃v.(u, v) ∈ Closurerst(f) ∧ (v, z) ∈ Closurerst(f)}

Definition A.5 (Compatibility). A substitution σ : V ar(ϕ) → R,R ⊆ Res is
compatible with ≡i⊆ Rϕ iff ≡i⊆ Closurerst(σ). A compatible relation ≡i∈ Rϕ
is maximal with σ, in symbols σ G≡i, whenever does not exists any relation
≡j∈ Rϕ compatible with σ such that ≡i⊆≡j .

Property A.4. Given σ : V ar(ϕ)→ R, if ≡iG σ then ≡i is unique.

Proof. Closurerts(σ)\(Resd×Resd) is a respectful equivalence relation maximal
compatible with σ.

Definition A.6 (Freezing of a substitution). Given a substitution
σ : V ar(ϕ) → R and a relation ≡i∈ Rϕ such that σ G≡i we define the
substitution [σ]i, the freezing of σ with respect to ≡i, as follows

∀x ∈ V ari. [σ]i(x) = σ(x)

∀x ∈ V ar(ϕ) \ V ari. [σ]i(x) = d with d dynamic resource not in the image of [σ]i

It is easy to verify that [σ]i is a freezing substitution.

Property. Proof of 2.4
Let ϕ be a frozen UA. If there exists a freezing substitution σ : V ar(ϕ) → R
such that σ � g, then for all freezing substitutions σ′ : V ar(ϕ) → R it holds
σ′ � g.

Proof. By contradiction, if σ � g but σ′ 2 g for some freezing σ′ then there is
an atomic formula g′ in g such that σ � g′ and σ′ 2 g′ or viceversa. Such a g′
does not exists. We have that g′ 6= true since true � σ and true � σ′ for all σ′
Also g′ 6= (x = v) and g′ 6= (x 6= v) with x ∈ V ar(ϕ), v ∈ V ar(ϕ) ∪ Ress since
the first case implies that σ or σ′ is not freezing, the second case is impossible
since x 6= z is satisfied by any freezing substitution.

Property A.5.

1. ∀v ∈ V ar(ϕ).[σ]i([v]i) = σ(v).

2. Let σ : V ar(ϕ)→ R be a freezing substitution and ≡i∈ Rϕ a relation then
there exists a unique substitution [σ]−1

i : V ar(ϕ)→ R such that [σ]−1
i G ≡i

and σ �V ari = [σ]−1
i �V ari.

20

3. Let σ : V ar(ϕ) → R be a freezing substitution, ≡i∈ Rϕ and g a guard
then

[σ]−1
i � g ⇔ σ � [g]i

4. Given σ : V ar(ϕ)→ R and ≡i∈ Rϕ, if σ G≡i then

σ � g ⇔ [σ]i � [g]i

Proof. 1. By compatibility, since [v]i ≡i v, then σ([v]i) = σ(v). Since [v]i ∈
V ari, by definition, [σ]i([v]i) = σ([v]i) obtaining the thesis.

2. Let [σ]−1
i be:

x ∈ V ari ⇒ [σ]−1
i (x) = σ(x)

x /∈ V ari ⇒ [σ]−1
i (x) = σ([x]i)

it is easy to show that [σ]−1
i is compatible with ≡i and that ≡i is maximal

compatible.

3. (⇒)
By contradiction, if [σ]−1

i � g and σ 2 [g]i then there exists an atomic
formula g′ in g such that: [σ]−1

i � g′ and σ 2 [g′]i or vice versa. We
examine the atomic formulas one by one concluding that such a g does
not exists.

• We have that g′ 6= true since then [σ]−1
i � g

′ and σ � [g′]i .

• If g′ = (x = v), x ∈ V ar(ϕ), v ∈ V ar(ϕ) ∪ Ress then, since σ is
freezing, if σ � [g′]i the only case is that x ≡i v, but then, since [σ]−1

i

is maximal compatible with ≡i also [σ]−1
i � g′. Hence the only case

is that σ 2 [g′]i and [σ]−1
i � g

′. By σ 2 [g′]i we get that x 6≡i v, since
[σ]−1

i � g
′ implies [σ]−1

i (x) = [σ]−1
i (v) we obtain a contradiction with

the fact that ≡i is maximal compatible with [σ]−1
i � g

′.

• If g′ = (x 6= v), x ∈ V ar(ϕ), v ∈ V ar(ϕ) ∪ Ress we repeat the
reasoning above using the fact that if σ � [g′]i then x 6≡i v and if
σ 2 [g′]i then x ≡i v.

(⇐)
By contradiction, if [σ]−1

i 2 g and σ � [g]i then there exists an atomic
formula g′ in g such that: [σ]−1

i 2 g′ and σ � [g′]i or vice versa. The proof
is then the same as above.

4. By contradiction, let σ � g and [σ]i 2 [g]i. Then there exists an atomic
formula g′ in g such that σ � g′ and [σ]i 2 [g′]i or vice versa. We examine
the atomic formulas one by one concluding that such a g′ does not exists.
The result is obtained as in the proof above using the fact that σ G≡i.

21

Frozen instantiation

Definition A.7 (Frozen instantiation). Given a relation ≡i∈ Rϕ and a UA ϕ,
we define its frozen instantiation [ϕ]i = 〈S,Q ∪ {?}, q0, F, [E]i〉.

The set [E]i is the smallest set satisfying:

∀u ∈ (Ress ∪ V ar(ϕ)). ((q, u, g, q′) ∈ E ⇒ (q, [u]i, [g]i ∧ g∗i , q′) ∈ [E]i)

∀u ∈ (Ress ∪ V ar(ϕ)), q ∈ Q.(q, u,¬g∗, ?) ∈ [E]i

Theorem A.6. [ϕ]i is frozen.

Theorem. Proof of 2.5
Let ϕ be a UA, there exists then a finite set {ϕi}i∈I , ϕi frozen and σ-saturated
automaton (for all freezing substitutions σ) such that L(ϕ) =

⋃
i∈I L(ϕi)

Proof. We prove that Li = L(ϕi) where ϕi are frozen and σ-saturated (for any
freezing substitutions σ) automata from Definition A.7. Let

L∪ =
⋃
{L([ϕ]i) |≡i∈ Rϕ}

we prove that

L(ϕ) = L∪

We rewrite the claim

η ∈ ϕ⇔ ∃i.η ∈ ϕi

that is:

∃σ : V ar(ϕ)→ H,H ′ ⊆ Res.η ∈ ϕσ ⇔ ∃i.∃σ′ : V ar(ϕ)→ H ′, H ′ ⊆ Res.η ∈ ([ϕ]i)σ′

⇒
We distinguish two cases by looking whether σ is freezing or not.

1. If σ is freezing:

The thesis is obvious since we take the empty equivalence relation ≡j .
This implies that [v]j = v for all v and σ � g∗. Hence the two automata
ϕ and [ϕ]j have the same labels on edges, the guards differs only by g∗,
that is satisfied. The additional edges to the sink are never active, since
their guards are unsatisfiable.

2. If σ is not freezing:

We take j such that ≡jG σ, H = H ′ and σ′ = [σ]j . We show that
η ∈ ϕσ ⇒ η ∈ ([ϕ]j)[σ]j by proving that the two automata are the same.
The only thing to check is the equality of edges.

22

Let X be the edges of ϕσ and let [X]j be the ones of ([ϕ]j)[σ]j . The sets
X and [X]j are defined:

X = {(q, σ(v), q′) | (q, v, g, q′) ∈ E ∧ σ � g}
[X]j = {(q, [σ]j([v]j), q

′) | (q, [v]j , [g]j ∧ g∗j , q′) ∈ [E]j ∧ [σ]j � [g]j ∧ g∗j }

We note that [σ]j is freezing by the maximality of ≡j and hence [σ]j � g∗

. The edges to the sink are never replicated in [X]j since their guards are
not satisfied. The equality of X, [X]j follows from the fact that σ(v) =
[σ]j([v]j) by definition and by σ G ≡j By the latter, σ � g ⇔ [σ]j �
[g]j ∧ g∗j by Property A.5 and (q, v, g, q′) ∈ E ⇒ (q, [v]j , [g]j) ∈ [E]j and
(q, v, g ∧ g∗j) ∈ [E]j ⇒ ∃v′, [v′]j = v.∃g′, [g′]j = g.(q, v′, g′, q′) ∈ E by
construction. This proves:

(q, v, g, q′) ∈ E ∧ σ � g ⇔ (q, [v]j , [g]j ∧ g∗, q′) ∈ [E]j ∧ [σ]j � [g]j ∧ g∗j

⇒

1. If σ : V ar(ϕ)→ R is freezing:

Let i = j, then by Property A.5 there exists a unique [σ]−1
j such that

[σ]−1
j G≡j and σ �V arj = [σ]−1

j �V ari.

Let

[X]j = {(q, σ(v), q′) | (q, v, g ∧ g∗, q′) ∈ [E]j ∧ σ � g}
X = {q, [σ]−1

j (v′), q′) | (q, v′, g′, q′) ∈ E ∧ [σ]−1
j � g

′}

be respectively the edges of ([ϕ]j)([σ]−1
j) and ϕσ.

The two sets are equals by proving (q, σ(v), q′) ∈ [X]j

1︷︸︸︷⇔ (q, v, g∧g∗, q′) ∈

[E]j∧σ � g∧g∗
︷︸︸︷⇔ 2(q, v′, g′, q′) ∈ E∧[σ]−1

j � g
′

3︷︸︸︷⇔ (q, [σ]−1
j (v′), q′) ∈ X

with (q, σ(v), q′) = (q, [σ]−1
j (v′), q′).

1︷︸︸︷⇔ by definition.
2︷︸︸︷⇔ by definition.

(a) ⇒:
If (q, v, g ∧ g∗, q′) ∈ [E]j then, by construction, there exists an edge
in (q, v′, g′, q′) ∈ E such that [v′]j = v and [g′]j = g. This implies
that v′ ≡j v and since [σ]−1

j G≡j we have [σ]−1
j (v) = [σ]−1

j (v′).
By properties of [σ]−1

j we have [σ]−1
j (v) = σ(v). By Property A.5

[σ]−1
j � [g′]j ⇔ σ � g′.

23

(b) ⇐
By construction of [E]j and by the equalities shown above.

3︷︸︸︷⇔ by definition.

2. If σ : V ar(ϕ)→ R is not freezing:

Let i = j, and let [X]j ∪Comp([X]j) be the edges of ([ϕ]j)σ. Since σ 2 g∗
we have that ∀r ∈ Ress∪ Image(σ), q ∈ Q.(q, r, ?) ∈ [X]j and nothing else
is in.

If η is recognized by the instantiation ([ϕ]j)σ then it is the only case that
η = a1 . . . an and for all 1 ≤ k ≤ n.(q0, ak, q0) ∈ Comp([X]j), with q0 final,
hence ak /∈ Ress ∪ Image(σ).

This implies that these edges are also edges in Comp(X) of ϕσ.

A.1.3 Proofs of closure under operations

In this section we prove Theorems 2.6 and 2.7.

Theorem A.7 (Complement of UAs). Usage automata are not closed under
complement.

Proof. Consider the following autmaton ϕ:

q0
α(x) α(x)

This automaton recognizes the language containing at least two times the
same symbol, hence its complement recognizes the words whose resources are all
pairwise different. This property can not be expressed by a UA. Let ϕ be such a
UA and let η = a1 . . . an be a string with ai 6= aj , i 6= j and n = |ϕ|+2. η ∈ L(ϕ̄)
Every collapsing κ such that |κ(Res)| = |ϕ| + 1 will cause κ(au) = κ(av) for
some au, av in η. Hence we obtain that η ∈ L(ϕ̄) but ηκ /∈ L(ϕ̄) obtaining an
absurd by Theorem 4.7 in [6].

Theorem A.8 (Closure Under Union). Usage Automata are closed under
union.

Proof. We assume w.l.o.g. the union of two saturated automata (since the
saturation is always feasible) on an alphabet S = Ress ∪ V, V ⊆ V ar. Indeed,
we note that extending both variables and static resources in S, the language
recognized by the automaton does not change.

24

Then, let ϕ = 〈S,Q, q0, F, E〉, ψ = 〈S,Q′, q′0, F ′, E′〉 be two saturated au-
tomata, S = Ress ∪ V, V ⊆ V ar. We define

ϕ ∪ ψ = 〈S,
℘(Q ∪Q′),
{q0, q

′
0} ,

{P ∈ ℘(Q ∪Q′) | ∃q ∈ P ∩ (F ∪ F ′)},
E∪〉

with

E∪ =
{

(P, v, g, P ′)
∣∣ P ′ = {q′ | ∃q ∈ P.(q, v, g, q′) ∈ E ∪ E′

}
We now show that L(ϕ∪ψ) = L(ϕ)∪L(ψ). To do this we will prove that given
a substitution σ : V → R,R ⊆ Res \ {_} the set E∪ correctly mimes E and E′.

In symbols, let Xϕ, Xψ, Xϕ∪ψ be the edges of the instantiation respectively
of ϕ,ψ, ϕ ∪ ψ.

We consider w.l.o.g ϕ and we show that if (q, r, q′) is an edge of ϕσ then
for all P ∈ ℘(Q ∪ Q′) if q ∈ P then there exists P ′ such that q′ ∈ P ′ and
(P, r, P ′) ∈ (ϕ ∪ ψ)σ.

1. If (q, r, q′) ∈ Xϕ then there exists an edge (q, v, g, q′) ∈ E, σ � g, σ(v) = r.
Hence, by taking P ′ = {q′ | ∃q ∈ P.(q, v, g, q′) ∈ E ∪ E′}, we have that
q′ ∈ P ′. Since σ � g we obtain that (P, r, P) ∈ Xϕ∪ψ.

2. If (q, r, q) ∈ Comp(Xϕ) then, by saturation r ∈ Resd \ Image(σ). Since
the alphabets of ϕ,ψ, ϕ∪ψ are the same, clearly (P, r, P) ∈ Comp(Xϕ∪ψ)

Viceversa, if (P, r, P ′) is an edge of (ϕ∪ψ)σ then for every q′ ∈ P ′ ∩Q there
exists q ∈ P ∩Q such that (q, r, q′) ∈ ϕσ and q′ ∈ P ′∩Q′ there exists q ∈ P ∩Q′
such that (q, r, q′) ∈ ψσ .

1. If (P, r, P ′) ∈ Xϕ∪ψ then there exists an edge (P, v, g, P ′) ∈ E∪, σ �
g, σ(v) = r. This implies that for every q′ ∈ P ′ ∩Q there exists q ∈ P ∩Q
such that (q, v, g, q′) ∈ E and for every q′ ∈ P ′∩Q′ there exists q ∈ P ∩Q′
such that (q, v, g, q′) ∈ E′. The thesis follows by σ � g and σ(v) = r.

2. if (P, r, P ′) ∈ Comp(Xϕ∪ψ) the thesis follows by noting that the saturation
condition
If (P, r, P) ∈ Comp(Xσ) implies r ∈ Resd and ∀x ∈ V.σ(x) 6= r
holds in E∪ for non-empty P.

The proof of the equality of the languages follows by induction: Given any
path in ϕσ it can be replicated stepwise from the beginning. Viceversa, given

any path (P
v,g−−→ P ′ . . .

vf ,gf−−−→ P
′f) in (ϕ ∪ ψ)σ with f ∈ P f ∩ Q(w.l.o.g) final

state, starting from f we can recreate a path from q0 ∈ Q to P f .

25

Theorem A.9 (Closure under intersection). Usage Automata are closed under
intersection.

Proof. Let ϕ = 〈Ress ∪ V,Q, q0, F, E〉, ψ = 〈Ress ∪ V ′, Q′, q′0, F ′, E′〉 be two
UAs with V ∩ V ′ = ∅

Let ≡i⊆ Ress ∪ V ×Ress ∪ V ′ be a respectful equivalence relation. We will
denote with [a]i the equivalence class of a under ≡i. Clearly, there exists a finite
number of such relations ≡i.

Given ≡i, we construct a UA (ϕ∩ψ)i = 〈Ress∪V ∪V ′, Q×Q′, (q0, q
′
0), F ×

F ′, Ei〉 with

Ei = {((p, q), α([r′]), g∧g′, (p′, q′)) | (p, α(r), g, p′) ∈ E and (q, α(r′), g′, q′) ∈ E′ and r ≡i r′}

We then consider the union of such finite class of automata.
It remains to prove that η ∈ L(ϕ) ∩ L(ψ) iff η ∈ L(ϕ ∩ ψ). We follow these

deductions

η ∈ L(ϕ) ∩ L(ψ) ⇔ by definition
η ∈ L(ϕ) ∧ η ∈ L(ψ) ⇔ by definition
∃σ.η ∈ L(ϕσ) ∧ ∃σ′.η ∈ L(ψ′σ) ⇔ by definition
∃σ, σ′.η ∈ L(ϕσ) ∩ L(ψ′σ) ⇔ by the fact below (*)
∃ ≡i .∃σ∗.η ∈ L(((ϕ ∩ ψ)i)σ∗) ⇔ by definition
∃ ≡i .η ∈ L((ϕ ∩ ψ)i)⇔ η ∈ L(ϕ ∩ ψ).

(*) We establish the following relation between σ, σ′, σ∗ and ≡i.

σ(x) = σ′(y) = a⇔ x ≡i y and σ∗([x]i) = a

We show that we can move from a state in one automaton then we can do
the same in the other one. We will use a bold style for states of the automaton
ϕσ ∩ ψ′σ. It is easy to verify the following deductions:

(p,q)
σ(x)−−−→ (p′,q′) ⇔

p
σ(x)−−−→ p′ and q

σ(y)−−−→ q′ and σ(x) = σ(y) ⇔

p
x−→ p′ and q y−→ q′ ⇔

(p, q)
[x]−→ (p′, q′) ⇔

(p, q)
σ∗([x])−−−−→ (p′, q′)

Theorem A.10 (Kleene Star). The UAs are not closed under Kleene star.

Proof. Consider the language recognized by the following automaton ϕ, the
recognized strings must contain exactly one α(a)

26

q0
α(a) α(x) : x 6= a

α(a)

α(a)

By contraddiction let ψ = 〈S,Q, q0, F, E〉 be the the automaton recognizing
L∗(ϕ). Consider the string η = α(a)α(d1)α(a)α(d2) . . . α(a)α(dn) with a ∈
Ress, di ∈ Resd, i 6= j ⇒ di 6= dj and n ≥ |E| + 1. The string η ∈ L(ψ),
hence there exists substitution σ such that η ∈ L(ψσ). Because |Xσ| = |E| < n
di, in the path recognizing η there must be an edge (q, α(dj), q) obtained by
completion. Hence also η′ = η{ε/α(dj)} ∈ L(ψσ) (obtained removing α(dj))
and this is a contradiction. Indeed η′ /∈ L(ψ) because α(a)α(a) is a substring
of η′.

A.1.4 Frozen Instantiation and Saturation Together

Given a frozen UA automaton ϕ we can saturate it with the construction in
Section A.1.1. To make it be frozen after the saturation we only need to add
to every edge in the saturation the ubiquitous guard. This does not change the
language recognized by the automata since the only state that we can reach in
the instantiation of a non freezing σ is q0 and q0 is already saturated.

A.1.5 From UAs to VFAs

Definition A.8. Let ϕ = 〈S,Q, q0, F, E〉 with S = Act× (Ress ∪ V), V ⊆ V ar
be a UA frozen and saturated for freezing substitutions. We consider the VFAs
A = 〈Act, Res,Ress, V ar(ϕ) ∪ {y}, A〉 with A = 〈Γ, Q \ {?}, q0, δ, F 〉 with Γ =
Ress ∪ V ar(ϕ) ∪ {y}. The function δ is obtained from E:

δ = {(q, α(v), q′) | ∃g.(q, α(v), g, q′) ∈ E ∧ q, q′ 6= ? ∧ g is satisfiable}
∪ {(q, α(y), q) | q ∈ Q}

Lemma A.11. Let σ : V ar(ϕ) → R be a freezing substitution and σ−1 its
inverse. Let c be σ−1 ∪ {(d, y) | d ∈ Resd \ Image(σ)}. Then, if c(η) = s then η
is a legal instance of s in A.

Lemma A.12. Given ϕ and A from the definition above, if η is a legal instance
of s in A then any σ = {(si, ηi) | si 6= y∧si /∈ Ress} can be extended to a freezing
substitution for ϕ.

Proof. Clearly if (u, v) ∈ σ then u ∈ X = V = V ar(ϕ). The relation σ is a
function and it is freezing by the property 2 of the legal instances. The extension

27

to the domain V ar(ϕ) can be obtained by assigning a fresh dynamic resource
to each x ∈ V ar(ϕ) that is not mentioned in σ.

Lemma. Proof of 2.8
Given a UA ϕ, let A be the VFA obtained from the construction above.
Then L(A) = L(ϕ).

Proof. Preliminaries: Let η be a legal instance of s, and let σ be the associated
freezing substitution. Then:

1. (q, v, q′) ∈ δ, s 6= y ⇒ (q, σ(v), q′) ∈ Xσ ∪ Comp(Xσ) in ϕσ

2. (q, y, q′) ∈ δ ⇒ ∀a ∈ Resd \ Image(σ).(q, a, q) ∈ Xσ ∪ Comp(Xσ) in ϕσ

Now, let η ∈ L(ϕσ) with σ freezing substitution, and let c be the associated
correspondence between η and c(η).

1. (q, a, q′) ∈ Xσ ⇒ (q, c(a), q′) ∈ δ

2. (q, a, q′) ∈ Comp(Xσ)⇒ (q, y, q) ∈ δ ∧ c(a) = y

η ∈ L(A)⇒ η ∈ L(ϕ)
The proof can be easily completed by induction on the length of η.
η ∈ L(ϕ)⇒ η ∈ L(A)
The proof can be easily completed by induction on the length of η. The proper-
ties in the preliminaries can be used since the thesis is trivial for a non freezing
substitution σ. Indeed, the characters in η would be in Resd \ Image(σ) and
yyyy . . . would be the witnessing pattern in (A).

Lemma. Proof of 2.9
No UA accepts the language recognized by the VFAs in Figure 4

Proof. By contradiction, let ϕ = 〈S,Q, q0, F, E〉 be the automaton recognizing
the language of the VFA A in Figure 4. Let η = α(a)α(d1) . . . α(a)α(dn)α(dn)
with di ∈ Resd, di 6= dj , a ∈ Ress and n ≥ |E| + 1. Since η ∈ L(A) then
η ∈ L(ϕσ) for some σ. Since |Xσ| = |E|, by the pigeonhole principle, in
the path recognizing η there is an edge (q, dj , q) ∈ Compσ(Xσ). Hence, also
η′ = α(a)α(d1) . . . α(dj−1)α(a)α(a)α(dj+1) . . . α(a)α(dn)α(dn) ∈ L(ϕσ) and
this implies η′ ∈ L(ϕ) but η′ /∈ L(A)

Theorem. Proof of 2.10
UAs are less expressive than VFAs.

Proof. Every UA can be decomposed (preserving the language) into the union
of a finite set of frozen automata:

ϕ∪ =
⋃
{[ϕ]i |≡i∈ Rϕ}

28

Each [ϕ]i can be transformed into an equivalent VFA [A]i by saturating and
applying the construction in Definition A.8. Since VFAs are closed by union,
by taking

A∪ =
⋃
{[A]i}

we obtain a VFA whose language is equivalent to ϕ∪ and hence to ϕ.

A.2 Model checking
Theorem. Proof of 2.13
Let A = 〈Act, Res,Ress, X ∪ {y}, A〉 be a VFA, and let W be a set of witness
such that |W| = |X|, AW as in Definition 2.5 and let K be the set of the
collapsing κ such that κ(Resd) = W ∪ {_}, then:

• ∀η.(η ∈ A ⇒ ∃κ ∈ K.κ(η) ∈ AW)

• ∀κ ∈ K, η.(κ(η) ∈ AW ⇒ η ∈ A)

Proof. • If η ∈ A then there exists a correspondence m : Res →
(Ress ∪X ∪ {y}) and s ∈ A such that m(η) = s. Since |X| = |W|, then
there exists an isomorphism ι : X → W. We define a collapsing κ̂ in the
following way:

κ̂(a) =

ι(x) if m(a) = x

_ if m(a) = y

a if m(a) = a, a ∈ Ress

It is easy to verify that the function m̂ = ι−1 ∪ (_, y)∪ {(a, a)}a∈Ress is a
correspondence such that m̂(κ̂(η)) = s, s ∈ L(A). Hence κ̂(η) ∈ L(AW).

• Let C be the subset of the chars of η. Since κ(η) ∈ L(AW) then there exists
a correspondence m and a witnessing pattern s ∈ L(A) s.t. m(κ(η)) = s
with m(_) = y. We now consider the function

m′(a) =

(κ;m)(a) a ∈ C
y if a = y

g(a) otherwise

with

g any function such that
g(Res \ C) = (X \ Image(κ;m)) ∪ {y}, injective on X \ Image(κ;m)

Then, the correspondence m′ : Res → Ress ∪ X ∪ {y} makes η a legal
instance of s. Hence η ∈ L(A).

29

Theorem. Proof of 2.14
Let A = 〈Act, ResW, Ress, X ∪ {y}, A〉 be a symbolic VFAs. Then:

η ∈ L(A)⇔ ∃ substitution m̄.η ∈ L(Am)

Proof. ⇒
If η ∈ L(A) then there exists a correspondence m : ResW → (Ress ∪X ∪ {y})
with m(_) = y such that m(η) = s for some s ∈ L(A). By definition m is
injective on Ress ∪ X, then we take the inverse m̄ = (m �(Ress ∪X))

−1. We
note that:
If m(α(a)) = α(v), v 6= y and (q, α(v), q′) ∈ δ then (q, α(a), q′) ∈ δ∗ by construc-
tion.
If m(α(a)) = α(y) and (q, α(y), q′) ∈ δ then by construction and by the fact
that m is a correspondence we have (q, α(a), q′) ∈ δ∗.
Hence if η ∈ L(A) then there exists a path in A for s leading to a final state.
This path can be reproduced in L(Am̄).
⇐
The proof is the same as above, using an extension of m̄−1 as correspondence.

Theorem. Proof of 2.15
Let U be an initial usage on the resources Res = Resd ∪Ress; let
A = 〈Act, Res,Ress, X ∪ {y}, A〉 be a VFA; and let W be a set of wit-
ness such that |W| = |X|. Then U � A if and only if:

∀ substitution m̄ : X ∪Ress → Ress ∪W. L(BW) ∩ L(Am̄W W NW) = ∅

Proof. • (correctness)⇐
We prove the contrapositive:
Let us assume η′ ∈ JUK with η ∈ L(A)

– By the properties of VFAs:
By Theorem 2.13 there exists a collapsing k with κ(Resd) = W∪{_}
such that κ(η) ∈ AW. By Theorem 2.14 there exists a substitution
m̄ such that k(η) ∈ Am̄W.

– By the properties of Usages: By Theorem 2.12, given the collapsing
κ above, κ(η) ∈ L(BW(U))

Since η is well-formed κ(η) ∈ L(NW).
Thesis follows since then κ(η) ∈ L(BW(U)) ∩ L(Am̄WWNW).

• (completeness)⇒
Let η ∈ L(BW(U)) and η ∈ Am̄W and η /∈ NW.

– By the properties of Usages:
Let κ be an injective collapsing such that κ(Resd) = W ∪ {_}. By
Theorem 2.12 there exists η′ such that η = κ(η′) and η′ ∈ JUK.

30

– By the properties of VFAs:
By Theorem 2.14 η ∈ AW. By Lemma 2.13, since the collapsing
above is such that κ(Resd) = W ∪ {_}, we obtain that η′ ∈ A

Hence we have proven that U 2 A since η′ ∈ JUK ∩ L(A).

31

