UNIVERSITA DI Pisa

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT. TR-11-10

PROGRAMMING THE KDD PROCESS USING
XQUERY

Andrea Romei and Franco Turini
University of Pisa, Department of Computer Science, LargBdditecorvo 3, 56127 Pisa (PI), Italy
{romei, turini}@di.unipi.it

July 14, 2011

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

PROGRAMMING THE KDD PROCESS USING XQUERY

Andrea Romei and Franco Turini

University of Pisa, Department of Computer Science, LargBd®tecorvo 3, 56127 Pisa (PI), Italy
{romei, turini}@di.unipi.it

Keywords: Data Mining, Query Language, Inductive Databases, KDD ggecMining constraints, XML, XQuery

Abstract: XQuake is a language and system for programming data minimgepses over native XML databases in the
spirit of inductive databases. It extends XQuery to supp@D tasks. This paper focuses on the features
required in the definition of the steps of the mining proc@$se main objective is to show the expressiveness
of the language in handling mining operations as an extarsidasic XQuery expressions. To this purpose,
the paper offers an extended application in the field of aadyweb logs.

1 INTRODUCTION e the possibility ofprogrammingdifferent data min-

ing processes in an expressive way.

Since the introduction of XML as a standard for rep- The first issue is addressed by specifying constructs
resenting semistructured data, the amount of infor- for binding data to mining models and for knowledge
mation coded according to such standard is steadilyfiltering. The second issue is addressed by extending
growing. Systems for retrieving information out of the language witmining functionsthat may exploit
such collections of XML data have been developed, typical functional language constructs, including re-
up to the point that a number of implementations for cursion. The paper aims at highlighting the capability
handling native XML databases has been proptsed of the language of specifying data mining tasks in an
XQuery is probably the most widely accepted lan- €legantand expressive way. The basic ideas for the ar-
guage in this area (W3C, 2010). Many authors main- chitecture of the system are coherent with the design
tain that the process of data mining can be seen as &0f XQuake and can be found in (Romei and Turini,
sophisticated way of querying the database, and, as2010).
a consequence, it is a good idea to extend query lan- ~ Section 1 provides background material, that is a
guages with features supporting data mining. description of an XML database used in the examples,
According to this point of view the XQuake sys- and some highlights on XQuery. Section 2 contain_s a
tem has been developed as an extension of XQueryPresentation of XQuake and the proposed extensions
designed to support data mining tasks (Romei and Py providing its syntax and its semantics, and by ex-
Turini, 2010). Besides being designed for mining na- €mPplifying its use for coding typical mining subtasks.
tive XML databases, XQuake takes advantage of the Section 3 offers the description of a concrete applica-
XML philosophy also for representing the results of tion by discussing the implementation of two mining
the mining process, according to the PMML standard Processes in detail. The last two sections degl with
(The Data Mining Group, 2011). The uniformity of rglated work, future work, and some final considera-
the representation of all the levels of information al- tion.

lows the full compliance with the closure principle of
inductive databases. 1.1 Thexnark database

XQuake provides a good basis for mining XML))
data, but it still offers opportunities for extensions. Through the paper, we adopt an easily accessible

Two of them are presented in this paper: source of XML documents, namelyrar k (Schmidt
et al.,, 2002). It models an Internet auction site,

o specification of constraints on the mining process; defining entities such apeopl e, open_aucti ons,
cl osed_auctions, i tens andcat egori es. For the

1Seeht t p: // waw. wW3. or g/ XML/ Query/ for an exhaus- purpose of this paper, we report below a brief descrip-
tive list of XML XQuery implementations. tion (and the XML fragment in fig. 1) for the first

three entities.

Specifically, the<peopl e> tag is made up of a se- <gegf!s(e); i d="per son27" >
guence okper son> elements encoding profiling in- gphone>+39. p . </ phone>
formation and the history of the visited auctions. The <profile i ncome="96497. 12" >
former has a (eventually empty) list &f nt erest > <interest category="categoryll"/>...
elements indicating the item categories interesting for <education>H gh School </ educati on>
the user. It also includes other personal information, ~ <gender>mal e</ gender >

such as age, gender and education. The latter contains ~ <PUS! ness>Yes</busi ness>
<age>29</ age>

a sequence ofwat ch> elements, each containing the profiles
reference to an open auction. Open auctions (tag <yat ches>

<open_aucti ons>) are auctions in progress. Their <wat ch open_auct i on="open_auction29"/>. ..
properties are the initial price, the bid history along </ wat ches>
with references to the bidders (i.e. thger son> ele- </person>. ..

ments), a reference to the item being sold and a refer-</ Peop! &>
ence to the seller, among.others. Fmglly, each cIosed<0pen_aucti ons>
auction (tag<cl osed_aucti on>) contains the refer- _oen auction i d="open_auction29">
ence to the seller, buyer and item, the price and date < ti al >26. 60</i ni ti al >
of the closed transaction and the type of transaction <bi dder >
(regular or featured). <dat e>03/ 28/ 1998</ dat e>
From now on, all the examples will refer the <personref person="personl7"/>
xmar k data source, that is stored in BaseX (Holupirek <i ncrease>3. 00</i ncr ease>

. - </ bi dder>. .
et al., 2009), that is the native XML database of <CUrrent >220. 10</ cur rent >

XQuake. <itenref itemF"iten55"/>
<sel |l er person="personl361"/>
1.2 Background on XQuery </ open_aucti on>. ..

</ open_aucti ons>

_XQuery is typed and functional language for query- ., osed_aucti ons>
ing XML data that allows to select the data of in- .| osed auction id="cl osed auction9">
terest, reorganize them, and return the results as an «<sel | er person="person964"/ >
XML structure. In the next, we explore path expres- <buyer person="person1650"/>
sions and-LWOR clauses, that are two common ways <itemef itenme"iten232"/>
of writing queries. <price>162. 44</price>

Path expressions are used to traverse an XML <date>01/23/1999</dat e>

. . <quantity>1</quantity>

tree. They consist of a series of steps, separated by <type>Requl ar </ t ype>. .
slashes, that traverse the elements and attributes in < ¢| osed auctions. . .
the XML documents. For example, the path expres- </ cl osed_aucti on>. ..
siondoc(" xmark")// peopl e/ per son selects all the :
<per son> elements from themar k document by us- Figure 1: Three XML fragments ofmar k
ing the following three steps: (Joc(" xmar k") calls
an XQuery function named doc, with the name of the

database to open (jieopl e selects thepeopl e> tag nipulate, transform, and sort results. As an example,
(the double slash/%” returns elements that appear the query below shows a simgteWWOR that returns the

anywhere in the document), (iii) the outermost ele- ![Jhug/ne&gjos' of all closed auctions having a price greater

ment selects all theper son> children of<peopl e>. for $auc in doc("xmark")//closed_auction

The values of path expressions can also be attributes; o $huyer := Sauc/ buyer/ @erson_

referred using the special@ symbol. In addition, where $auc/ price > 100

a path expression (included in square brackets) canreturn $buyer

contain predicates that filter out elements or attributes The FLWOR above is made up of four parts:

that do not meet a particular criterion. For example,

the path expressiof person[profil e/ @nconme > !

100]p selecth) only thgseper[s%m elements whose f:losed auction nodes, and the rest Of. EIAOR

i ncone attribute value is greater than 100. IS evaluate(_:i once for each qf the auctions. _Each
The basic structure of XQuery is tH&WR ex- time, a variable nameflauc is bound to a dif-

pression that is the acronym or, let, where, order ferent element. Dollar signs are used to indicate

by, return”. Unlike path expressions, it allows to ma- variable names in XQuery.

1. thefor clause sets up an iteration through the

2. Thel et clause, is used to set the value of a vari- functions. The concepts reported in the sections 2.1.3,
able. Specifically, the second line of the query 2.1.4 and 2.3 are new, and they are the main contribu-
above assigns the buyer’s id to a variable called tion of this paper.
$buyer. Such a variable is then used in the

return clause. 2.1 Mining constructs
3. Thewher e clause has the same effect as the pred-
icate[price > 100] in a path expression. Each mining operator is made up of a combination of
4. Finally, ther et ur n clause indicates that the buy- base constructs. As shown in Figure 2, six operators
ers should be returned. have been considered as guidelines for the design of

XQuake. Specifically, they serve to locate XML data
and PMML models, to bind new data to an extracted
set of patterns and to specify mining constraints or the
format of the output result. After presenting a simple
running example, we describe each constructin turn.

Multiple for clauses are permitted, which set up
nested iterations in order to easily join data from mul-
tiple sources. In addition, complex expressions can be
used in any of the clauses in order to satisfoapo-
sitionality principle.

Besides path and FLWOR expressions, XQuery at$ <varnames
3.0 supports a large number of other functionalities. _ o, gatas <war-names [_] in <exprs ,

Specifically: (i) it defines XML constructors used to @)

create elements and attributes in the query results; “e” cint>

(i) it includesupdat es, group by, switch andtry active J_—_I—

cat ch statements; (iii) it extends XQuery Full Text — Ieug ecicted Y $ <var-names := <expr> —
features, supporting stemming, stop word lists, fuzzy eroup

querying, etc.; (iv) it permits the assembling of a)

itemset

query from one or more modules. Last, but not least, rale [at$<var-name>]
—for pmml $ <var-name> in <expr>—»
()

XQuery allows the declaration of user-defined func- tree
tions (and variables), with a name, the names and (op-
tional) datatypes of the parameters, and the (optional) model -
datatype Of the result An example Of functlon ac- —“5i"€~|: dota :|—$ <var-name> in <expr> bind $ <var-name> := <expr>—l——>
cepting the decimal parametgpr i ce and returning) <expr>

a boolean value is reported below: having <expr> —» — return—'r]_>
modul e namespace xmark = "http..."; @ _:fau"
decl are function xmark:auctionPrice(Figure 2: Syntax of the six basic clauses. Tle data
$price as xs:decimal) as xs:bool ean { clause (a). Théet clause (b). Thdéor PMWL clause (c).
sonme $i in doc("xmark")//open_auction Theusi ng clause (d). Théavi ng clause (e). Theeturn
satisfies $i/initial > $price clause (f).

|3
Inits body, it defines a quantified expressions, namely
some, to determine whether some of the open auc-
tions have an initial price greater th&price. A)))
similar quantified expression &very. The firstline 10 take confidence with the language philosophy, we

in the example is a module declaration that identifies Introduce a “classical” example taken fr(?”j the induc-
xmerk as a library module with its target namespace. tive database theory. Specifically, we ainfrining
The query fragmentnar k: auct i onPri ce(1000) is association rules from a dataset; on such a result, we

a call to theauctionPrice function in thexmar k find all the given instances that satisfhe rules; fi-
namespace. nally, we induce a classification tree from those in-
stances” XQuake offers three operators to solve this
task.
Below, a set of association rules is extracted to
find frequent correlations among the bidders in all

Th tion i ized as foll We first tthe open auctions. The output model contains pat-
€ seclion IS organized as Tollows. YVe Tirst presen ternslike{Mark} — {John}, which states that when
the syntax and the meaning of six clauses, that are

used as a basis to construct mining operators. Then, 2y definition, a transaction satisfies an association rule
such operators are introduced through simple exam-|,...1, — In.1...Im if every iteml; for i € [1,m] occurs in
ples. Finally, we show how to specify special mining the transaction.

2.1.1 Running example

2 XQUAKE EXTENDED

Mar k appeared as bidder, aldohn was a bidder with
a certain support and confidence. A condition re-

quires that the size of the extracted rules is equal to

2 (i.e. exactly one item in the body and one item in
the head of the rule).

for data $auc in doc("xmark")//open_auction
let group $pers := $auc/ bi dder// @erson
havi ng xquake:rule-size() =2

return default

In the above query, the set of involved transactions .

(i.e. the <open_auction> elements) is specified
through thef or data clause. Items of each trans-
action (i.e. the person identifiers for eadbi dder >
element) are defined in tHet group clause. Both
the havi ng andret urn clauses operate on the out-
put result. The former is evaluated for each rule. It
uses therul e-si ze() built-in function, defined in
the reservedquake namespace, to get the size of that
rule and to implement the constraint. Notice that the
parameter of ul e-si ze() is implicitly an associa-

tion rule. As soon as constraints are evaluated, the

return clause is evaluated once to return a PMML

document. Assume that the output rules are stored in

my-rul es. xm .
In the next XQuake fragment, we filter out a set
of instances (i.e. the sequence<of osed_auct i on>

elements) that do not satisfy at least ten association

rules inny-rul es. xm . To test whether an item (i.e.
a person identifier) occurs in a transaction, we chec

whether that person has been either buyer or seller

in the closed auction. Now, theet ur n statement is

evaluated for each input data. The result, stored in

my-tupl es. xm , is a sequence afi nst > tags, each
encoding acl osed_auct i on> if it satisfies the con-
straint.

for data $d in doc("xmark")//cl osed_auction

usi ng nodel $r in doc("ny-rules")/PML

bind $pers := $d/[seller|buyer]// @erson

return <inst>{if (xquake:rule-satisfy($r) > 9)
then $d else () }</inst>

Finally, a dummy PMML classification tree is in-
duced fromny-t upl es. xm . It is built on the price

and quantity properties of each closed auction to pre-

dict the type of the auction (i.e. regular or featured).

for data $auc in doc("ny-tuples")
let active $price := $auc//price
let active $qty := $auc//quantity
let predicted $type := $auc//type
return default

sect. 2.3 we cover these aspects, and a more elegant
way to combine mining results is presented.

2.1.2 Constructs for locating XML data

The first step in specifying a data mining task is the
selection of the relevant data as input of the analysis.
Relevant XML elements and attributes are selected by
means of the clauses depicted in fig. 2 (a),(b).
The syntax of théor dat a expression (fig. 2 (a))
is similar to thef or clause of XQuery. It sets-up an
iteration over the sequence returned by the expression
after thei n keyword. Each item of the sequence is
bound to a variable that can be used in the rest of the
expression. The optionat clause allows for a po-
sitional variable, which is bound to an integer repre-
senting the iteration number.

The l et clause (fig. 2 (b)) is used to bind a
variable to a mining field. The keyword after the
l et refers to the role of such an attribute in the
mining activity of interest. More specifically, the
active keyword specifies that the field is used as
input to the mining task:pr edi ct ed specifies that
it is a predicted attribute (e.g. in a classification
task),suppl enent ary states that it holds additional
descriptive information, and finallygr oup groups
atomic values (e.g. in an association or sequence anal-
ysis). Moreover, additionas clauses (not shown in

kthe Figure 2) are used to specify a type to the

dat a clause variable and to eatht clause variable.
More importantly, mining fields in input to the min-
ing tasks are required to be atomic (e.g. string, nu-
meric or date), except for a supplementary field that,
in principle, can assume any complex XML type. It
can be used to hold background knowledge informa-
tion useful, for example, to evaluate constraints. Ac-
tive fields also admit a special (and optional) syntax
to express an atomic sequence of an explicit size in
al et active specification. This facility is particu-
larly useful when a large number of XML fields are
used in the analysis.

2.1.3 Constructs for locating PMML models and
binding new data

As far as the mining models are concerned, a simi-
lar syntax may be used to locate (parts of) a (new or
extracted) pattern, represented via PMML.

As shown in fig. 2 (c), a variable is bound to each
item of the sequence resulting from the evaluation of

As a general comment, we have supposed in thisthe expression that follows then clause. Unlike a
simple example to store the result of a step to be usedf or dat a clause, each item of the sequence is now
as input in the next step. Moreover, we have not yet a single mining model or a set of homogeneous pat-
specified neither the kind of knowledge to extract, nor terns (i.e. either a set of classification tree or fre-
the mining algorithm to use in the query fragments. In quent itemsets or association rules) sharing the same

mining schem&a The kind of knowledge is speci- apply constraints. As an example, to filter out uninter-
fied by means of a special keyword following the esting itemsets, a built-in library offers special func-
pn expression. Importantly, since the structure of tions to get their size, support and other interesting
a PMML model is fixed, the user has to specify only measures, the complete list of the items belonging to
the root of the model(s) (i.e. the®MVL> element(s)). the itemset as well as the background knowledge re-
Often, new data has to be used in a model context. lated to these items.
Consider, for example, the case in which a confusion A similar strategy is used to offer to the user the
matrix is constructed from a predictive model in clas- capability of defining its own output, both for data and
sifying a test set, or, vice-versa, association rules aremining models. The basic idea is to use built-in func-
used to determine which instances violate them. Thetions inside an XQuery expression (fig. 2 (f)), that en-
usi ng clause of fig. 2 (d) accomplishes both tasks. A capsulate the main parts of the result. However, since
keyword after thaisi ng distinguishes between “eval- the output may have a very complex structure (e.qg. in
uating a model over a dataset” (we say in this case the case of mining models), a default output can be
thatthe data is bound to the modeind “evaluatinga specified by means of theeturn defaul t clause,
dataset over a model” (i.¢he model is bound to the which is a PMML document for mining models.
datad). Theusing data andusing nodel clauses
are used in the first and second case, respectively. In2.2 Mining operators
the former, the idea is to set-up an iteration over a

sequence to bind each item to a variable. Such a vari-|n this section we integrate the running example of
able can be used in the followirl nd expression. sect. 2.1.1 with additional examples of the mining
Here, each (non supplementary) field belonging to the gperators, according to the aformentioned specifica-

mining schema of given mining models is bound to tion. Preprocessing, model extraction, filtering and
new data, by evaluating the expressions after the as-deploying tasks are briefly discussed.

signment symbol. Such binding is by hame and type,
i.e. each variable of thigi nd clausemustcoincide, in 2.2.1 Preprocessing
name and type, with a field of the mining schema. The

usi ng model clause is similar, but it specifies mining Several preprocessing and data preparation tasks for
models after then keyword and it binds such models sorting, selecting and filtering XML data can be di-

to new given data in thii nd statement. rectly obtained throughout the use of XQuery con-
structs. However, since the data preprocessing is
2.1.4 Constructs for constraints and output a time consuming phase, ad-hoc constructs have to
specification be designed for cleaning, discretization, aggregation,
sampling and many others.
Inspired by the study on mining views on relational ~ The syntax of a preprocessing operator admits a

data (Blockeel et al., 2008), we offer a simple, ele- for data clause followed by a combination bgt _
gant yet comprehensible way to express constraintsclauses (whose number and order depend on the kind
useful to filter an inferred mining model. As shown Of task), and by aeturn clause. In the following

in fig. 2 (e), a simple XQuery predicate following €xample, the value of theprice> element in each
the keyworchavi ng is used. In contrast with (Block- <cl osed_auction> is discretized. The result is en-
eel et al., 2008), that use a “virtual” output on which coded in a sequence efiri ce- d> XML tags.
constraints are expressed, we define a library of built- f or data $auc in doc("xmark")//cl osed_auction

in functions to refer (the main parts of) such output |et predicted $price := $auc/price

inside the XQuery predicate. This solution has two return <price-d>{xquake: bi n($price)}</price-d>

main advantages. First of all, it avoids specialized Notice the usage of the built-in functidin(.) in
constructs and constraints are expressed more (_jeCIarfheret urn clause, that returns the discretized value
atively*. Second, the user has to know only the signa-

. o i of its numeric argument.
ture and meaning of the external built-in functions to

S 2.2.2 Model extraction
3The mining schema lists the fields used by the model

specifying their usage type, outlier treatment, missing va . : .
ues replacement policy and so on. Mining models are directly inferred from one or more

40n the other hand, physical optimization, such as fil- XML_ documents. _The specification of a model ex-
tering patterns at “mining time” (i.e. directly during the-e traction operator includes for data statement to

ploitation of the search space), is more difficult to achieve Specify input XML nodes followed by a combination
However, this aspect is out of the scope of this paper. of | et clauses, to specify the field (active, predicted

or group) as input to the mining algorithm or the back-
ground information. The latter can be used, for ex-
ample, to specify, by means of an optiomali ng

in order to apply the model. The first query below fil-
ters out those trees having a training confidence lower
than 50% fortype = "regul ar" in the root node,

clause, domain-based constraints on the output resultwhere the path expression in thet clause returns

A return statement closes the statement.
As an example, we can extend the first query of
the running example by introducing a more complex

constraint to reduce the number of generated rules.
Below, the query also specifies that, in each rule, ev-
ery person in the antecedent bought at least two items

in the closed auction history.

for data $auc in doc("xmark")//open_auction

let group $pers := $auc/ bi dder// @erson

I et supplenmentary $count-buy := count(
for $i in doc("xmark")//closed_auction
where $i/buyer/ @erson eq $xquake:item
return $i)

having every $j in xquake:antecedent-context()

satisfies §j > 1
return defaul t

Here, after selecting the transactions (i.e. the auc-

tions) and the items (i.e. the person’s identifiers),
the count - buy variable holds, for each distinct per-
son, the number of items bought by that person.
To this purpose, a join of the person identifier (re-
ferred by the special variab$xquake: i t em) and the
set of <cl osed_aucti on> elements has been used.
For each mined association rule, the built-in func-
tion ant ecedent - cont ext () in the havi ng clause

returns the context information (i.e. a sequence of int

values) related to the antecedent items of that rule.

2.2.3 Model filtering, application and evaluation

the PMML <ScoreDi stribution> element of the
root node (see (The Data Mining Group, 2011) for
details).

for pmm tree $t in doc("ny-trees")/PML
having let $d := $t//Node/ ScoreDi stribution
[@alue eq "regul ar"]
return $d/ @onfidence > 0.5
return $t

Given new XML data compliant with the mining
schema above, the next two queries return the set of
PMML confusion matrixes (one for each tree) con-
structed on such data and the predicted values of the
target field, respectively.

for pomi tree $t in doc("ny-trees")/PM\L
using data $d in doc("xmark")//closed_auction
bind $price := $d/price

$qty = $d/quantity

$type .= $d/type
return <tree>{xquake:conf-matrix()}</tree>

for data $d in doc("xmark")//closed_auction
using model $t in doc("ny-trees")/PML

bind $price := $d/price
$qty = $d/quantity
$type := $d/type

return <cl asses>{xquake: cl ass($t)}</cl asses>

Observe that the two queries above have a similar syn-
tax, but different semantics. The first one evaluates
the expression in theeturn clause for each input
tree. At each iteration, it sets-up a cycle over the

The extracted knowledge can be filtered according to data sequence to construct the confusion matrix and

a condition, that, in principle, can be applied to every
model. The general syntax begins with the clause
pmm , in which one has to specify the kind of model,
followed by ahaving andreturn clause. Similar

to compute the evaluation metrics. The second one
returns a<cl asses> element for each item of the in-
put data sequence. Easti asses> tag encapsulates
the predicted values, so that its size coincides with the

operators are used to apply an extracted model on newnumber of input trees. Given a set of association pat-
data, to predict features, to select data accordingly to terns (resp. rules), similar operators can be used to get
the knowledge stored in the model, or to evaluate the the contingency tables of each itemset (resp. rule), or
model itself. In these casespsi ng clause is useful to predict the instances that violate/satisfy those item-
to bind data to the knowledge. sets (resp. rules).

As an example, consider the third query of the run-
ning example and let suppose that we have induced a2.3 Putting it all togheter
set of trees, stored iny-trees. xm . Below, their

mining schema is shown: At this point, one should note that in the simple

queries above, we haven't yet defined neither the kind
of knowledge mined, nor the mining algorithm used,
nor, and more importantly, how to deploy a min-
</ M ni ngSchena> ing operator insid_e a KDD process. From this latter
T perspective, two important aspects have to be mod-
Here, the PMML<M ni ngSchena> lists the fields elled: iteration andinteraction The KDD is an in-
(i.,e. name and usage) which a user has to provideteractive, iterative and multi-step process in the sense

<M ni ngSchema>

<M ni ngFi el d name="price" usage="active"/>
<M ni ngFi el d name="qty" usage="active"/>

<M ni ngFi el d nanme="type" usage="predicted"/>

that, at any stage, the user should have the possi-group of persons (about 50%) do not provide any per-

bility to choose different algorithms/parameters, to sonal information. However, for them, the web server

evaluate a condition that selects a “then” branch or stores their behaviour, for example registering the his-

an “else” branch, or to iteratively repeat some step tory of the open auctions that such users are interested

to achieve better results. Also, a language support-in or get notification about{at ches> tag). We de-

ing a KDD process should include constructs encour- note these persons aaregistered user

aging the reuse of (parts of) the process previously

defined to easily integrate this sub-query (i.e., sub- 3.1 Estimate the age of registered users

process) inside a more complex one, without specify-

ing it again. Among registered users, only a subset provides per-
To make the KDD process modular and reusable, sonal information on the age (about 45%). The idea

XQuake adds to XQuery the capability of defining is to use the other personal information to predict that

special mining user-defined functions whose body is missing information. To this purpose, we aim at ex-

made up of a mining operator. Below, an example of tracting a classification tree able to discriminate age

mining function declaration is shown:

declare mning function
ny- nmspace: my-f un($ny- param as xs:int) {
< mining operator >

As for standard functions and variables, user-
defined mining functions can be called either from
almost any place in a query or in an external min-
ing module. For example, they can be invoked in-
side aFLWOR, conditional, switch or quantified ex-
pression, as well as in mining functions themselves.
The syntax of a mining function call is the same of
any other function, except for the first argument that
is an algorithm specification with relative parameters.
For example, to call the function above by using the
apriori algorithm with a minimum support and con-
fidence of 10%, one mights use:

my- nnspace: ny-fun(rul es:apriori(0.10,0.10), 1)

Therul es namespace indicates the kind of knowl-
edge to be mined, in this case association rules. Cur-
rently, XQuake supports discretizatiadi,scr, sam-
pling, sanmpl, the generation of frequent itemsets,
itensets, rulesrul es, classification treesrees

and their filtering, evaluation and usage.

3 APPLICATION SCENARIO

based both on the other personal information and on
the specified interests. The knowledge of the miss-
ing information of the registered user will allow to
offer, at time of accessing, personalized banners, pro-
motions or news, according to the estimated age. The
overall process is schematized in fig. 3.

Tree Composer ! P
$ t t l ——
Tree Filter P Evaluator
__*__ __F_ __*__ Confusion Matrix

Lift ...

Inducer Inducer

PN Is the tree Y

" accurate?

Sampler Sampler Sampler

Discretizer Data
set

Figure 3: A sample KDD process based on classification.

==
Training
set

Discretization. In order to use a classification algo-
rithm, theage information is discretized into three
distinct intervals,young, m d andol d. The overall
data is then partitioned into two samples for training
and testing. At this stage, we do not use a sampling
algorithm, but rather the users are selected among

This section reports two concrete usages of XQuake.those having provided a phone number (about 50%)

The goal is to present two simple (but also taken from and the others. The use of the phone information

our real-experience in data mining) KDD processes offers a quite randomized partition.

to show how XQuake is particularly suitable for sup-

porting an inductive database framework. Bagging classification. Accuracy can be increased
In xmar k, we can distinguish between two groups via a bagging classification More specifically, a

of users. Theegistered userare those who providea classifier is trained on a sample of instances taken

profile with personal information (see thpr of i | > with a replacemenstrategy from the training set.

tag in the first XML fragment of fig. 1). Also, they This task is repeatddtimes and, at each iteration, the

specify their categories of interest (e.g. music or sport sample size is equal to the size of the original training

auctions) during the registration process. A second set. The output is a set &finducers:T = {t1,...,t&}.

Then, T is filtered according to a condition. Specif- Thei nducer (.) function extracts a classification
ically, for eacht;, i € [1,k], these conditions must tree given a sequence gfer son> elements (i.e. the
hold: (i) the overall number of nodes &fis below training set). Active fields of the task are the sub-
a certain thresholdy, and (ii) the accuracy of each element<busi ness>, <education> as well as the
leaf that classifies agoung in t; is greater than a top-five interests specified by each user. For the sake
parameterf. The result of this phase is a new set of of brevity, we suppose a user-defined XQuery func-
inducersT’ = {ti,...,tn}, with h < k. Notice thatthe tionsel ect-interests($p, $n) (notshown in fig.
first condition above tries to reduce the complexity 4) is defined. Given an XMisper son> element$p,

of the trees avoiding those subject averfitting and the number of required categorigs, that func-
The second one permits to consider only those treestion returns a sequence of boolean values of $ize
that are more precise (at least in the training set) in Each boolean value indicates whether the pefgon
predicting young users. The survived classifiers are has an interest on th& category, with € [1,n].

composed to generate a bagged classifier, that . The filtering_ modulg is implemented in the
returns the class that has been predicted most ofterfilter(.) function. It yields a sequence of PMML
by means of a voting method amotge T trees and thex and B parameters. It also uses a

built-in function, namelyxquake: | eaves($t), in

Evaluation. Once the composed treg,, has been thehavi ng clause, to get the list of leaves as PMML
' elements.

constructed, it can be applied to a test set to evaluate , . e
its performance in terms of an accuracy error. If the _Finally, the composition, classification and eval-
resulting accuracy is greater than a given threshold, Yation are performed by means of the function

y, thent, is returned. Otherwise, the filtering task baggi ng(.). It takes a set of PMML trees and a
. / . . test set as a sequence of (discretizeghr son> el-
is repeated off by using a more stringent value of

4 o> . ements. Then, it sets-up an iteration in which, for
thea parameter, to the aim of filtering out additional

ith hiah b f nod Th ved each<per son>, the predicted values of thage> el-
trees with an high number of nodes. The survived g ant are collected for each classification tree. This

treesT" = {t1,....tj}, with j <h are composed and 5 achieved via thel assi fier(.) mining function
the procedure is repeated until the condition on the that returns a sequence of predicted classes (contain-
accuracy is fulfilled o = 0. ing one value for each tree) for each item of the input
sequence. Such single predictions are used to predict
The KDD process just described can be imple- the target attribute, according to a majority strategy
mented in XQuake as reported in fig. 4. In the (XQuery functionmgjority-class(.) notshownin
regi stered-users module a set of mining and fig. 4). A sequence of misclassified values is returned,
XQuery functions is defined. as shown in the following XML fragment:
Thedi scretizer () functionimplementsthe dis- <pj s>nid young</ni s>
cretization task, in which theage> XML element is <mi s>ol d young</ ni s>
discretized for each person having specified a value <ni s>ol d ni d</nis>...
for the age. In the result, we append, to each Thg gyerall process is assessed in then(.)
<profile> element, a<age-di scr> tag containing fynction. It yields as parameters the number of itera-
tha_t discretized value. Theanpl er (.) functlon_gets tions, k, and thea, B andy thresholds. We omit the
as input a sequence gfer son> elements and it Uses getajls, but observe that it uses the recursive XQuery
the built-in functioncount - sanpl e($i) to get the fynetiontester(.) to filter, compose and evaluate
number of times the current item (i.e. person) of the {he induced trees until the condition on the accuracy
sequence belongs to the sample of in@exwe re- s ragpected or no more trees survive to the filter. This

call that, in this case, we have a single sample with 5 g, glegant way to simulate iterations depending on
index 1 and a replacement strategy is used). Below, a5 congition. The final output is a sequence of PMML

fragment of the output is shown: trees.
<per son> . . .
p<profi|e i ncome="96497. 12"> 3.2 Estimate the interest of unregistered
<interest category="categoryll"/>. .. users

<educat i on>Hi gh School </ educati on>

<busi ness>Yes</ busi ness>
<age>29</ age> Unregistered users navigate the auctions site, but they

<Iprofile> do not specify neither a profile nor a category of inter-
<age- di scr >young</ age- di scr> est. However, their behaviour is monitored through-
</ person>., .. out the site. The encoded information is useful to

m ni ng nodul e nanespace reg = "registered-users"

declare mning function reg:discretizer() {

for data $pers in doc("xmark")/sitel/peopl e/ person[not (enpty(profilel/age))]
let predicted $age := $pers/profilelage

return <pers> {($pers, <age-discr>{xquake: bi n($age)}</age-discr>)} </ pers>

b

declare mning function reg: sanpl er ($dataset as node()*) {
for data $person in $dataset
return (for $i in (1 to xquake:count-sanple(1)) return $person)

b

declare mning function reg:inducer($training-set as node()*) {
for data $person in $training-set

let active $education := $person//profile/education

let active $is-business := $person//profilelbusiness

| et active<5> $interests := reg:sel ect-interests($person, 5)
| et supplementary $age = $person//age-discr

return default

b

declare mining function reg:filter($trees as node()*, $alpha, $beta) {
for pmm tree $t in $trees
having (count ($t//Node) <= $al pha) and
(every $i in xquake:leaves() satisfies $i/@alue eq "young" and $i/ @onfidence > $bheta)
return $t

b

declare function reg: baggi ng($trees, $test-set) {

for $pers in $test-set

let $pred :=reg:majority-class(reg:classifier(trees:apply(), $trees, $person))

return if ($pred != $pers/age-discr) then <nis>{(S$pers/age-discr,$pred)}</ms> else ()

b

declare mining function reg:classifier($trees, $test-set) {
for data $person in $test-set using nodel $t in $trees/ PMVL
bi nd $education := $person//profileleducation

$i s-business : = $person//profil el business

$interests := reg:select-interests($person, 5)

$age = $person//age-discr
return default

b

declare function reg:tester($trees, $test-set, $al pha, $beta, $gamm) {
let $trees :=reg:filter(trees:filter(), $trees, $al pha, $beta)
return if ((count(reg:bagging($trees, $test-set)) <= $gamm) or (enpty($trees)))
then $trees else reg:tester($trees, $test-set, $al pha - 5 $beta, $gamm)
b

declare function reg: mai n($k, $al pha, $beta, $gamm) {

et $data := reg:discretizer(discr:natural-binning(("young","nid", "old")))

let $trees :=for $i in (1 to $k)
et $t := reg:sampler(sanpl:rand-sanpl ((100),true()), $data[enpty(person//phone)])
return reg:inducer(trees:id3(), $t)

return reg:tester($trees, $data[not(enpty(person//phone))], $al pha, $heta, $gamm)

b

Figure 4: The egi st er ed- user mining module implementing the KDD process of fig. 3.

understand which types of open auctions user tendtask computes, for each itemspt i € [1,m], the

to watch frequently or for which they get a notifica- interest factorlgi, and it selects only those having

tion. Frequent itemsets mining may help to under- |Ti >y, whereyis an input parameter.

stand such correlations and the process that we design

is built around this kind of analysis (see fig. 5). Fig. 6 shows how the three tasks described above
are executed in XQuake. The sampling can be per-

- N formed with thesanpl er () function. Here, the se-
oot sompler ‘ o ttemsets guence of<wat ches> elements for each person are
] encoded inta<t rai ni ng> and<t est > XML tags to

g be used in the next statements.
l The mining and filtering operation are performed
Correlaton Matrx with the same mining function in XQuake. More pre-
! support... cisely, themi ner (.) function takes the&trai ni ng>
Frequent Set“ . XML elements as training set, and the paraméer

Itemsets -

used to evaluate the constraint on the extracted pat-
Figure 5: A sample KDD process based on frequent pattern terns. It returns only those patterns satisfying the con-
mining. dition expressed in thieavi ng clause and the condi-
tion on the minimum support. Notice that the domain-
based constraints can be inserted quite naturally in our
framework (seéi nc variable holding the percentage
of increment for each distinct auction), due to the flex-
ibility of the language.

Thesel ector(.) mining function accomplishes
the last task. It uses the set of mined itemsets, a test
set and they threshold to return only the interesting
patterns. The behaviour is as follows. For a given pat-
tern, the data sequence is iterated and a contingency
table is created for such a pattern. Then,rtbeur n
clause is evaluated. Specifically, the latter uses the
built-in functioninterest-factor(.) to compute
from the contingency table the homonimous measure
for the given pattern. If the required condition is ful-
filled, then the itemset is returned. This procedure is
iterated for each given frequent itemset.

Finally, themai n(.) function yields all the pa-
rameters of the analysis, and it performs the overall
' KDD process by invoking the aforementioned proce-
Sdures in the right order.

Sampling. Since our goal is to extract only the more
accurate frequent itemsets among the potential large
number of patterns, it is important to establish a
good criterium for evaluating the quality of such a
knowledge. Therefore, as a first step, a sampling
algorithm randomly splits the input data (i.e. the
entire set of persons) into a training (66%) and a test
set (34%).

Frequent itemset mining. The second phase
consists in extracting from the training set a list of
frequent patterns co-relating the open auctions. As
an example, the extracted pattédtrn= {auctionl,
auction2, auction3} with a support of 30% means
that, for 30% of the times, the three auctions were
watched together. Such an information may indicate
that persons that frequently tend to visit some kind of
auction also tend to visit other kinds of auctions. To
avoid the generation of a large number of patterns
we constrain the output selecting only those pattern
having (i) a support greater than a parameter,
and (ii) each auction of the itemset to belevant
i.e. with a difference among the current price and
the initial price greater than a certain threshdid, 4 RELATED WORK
Notice that the latter condition requires to incorporate
subjective knowledge into patterns evaluation and, The explotation of XML as a flexible and extensible
it needs of prior information from the domain experts. instrument for IDBs has been studied in (Euler et al.,
2006; Romei et al., 2006; Meo and Psaila, 2006).
Evaluation and selection. The survived association RapidMiner (Euler et al., 2006) is an environment
patterns are evaluated on the test set, and only thosdor KDD and machine learning in which experiments
satisfying a condition are returned. As evaluation are described via XML files. While the graphical user
metric, theinterest factorappears to be suitable interface supports interactive design, the underlying
for analyzing the patterns, since it can be easily XML representation enables automated applications
applicable to itemsets of any size, starting from the after the prototyping phase.
multidimensional contingency table. Specifically, KDDML (Romei et al., 2006) and XDM (Meo and
given a set of transactions = {t,...,tn} and a set Psaila, 2006) are the most related works. In the latter,
of frequent association pattéPs= {p,..., pm}, this XML has been used as the basis for the definition of a

m ni ng nodul e nanespace unreg = "unregi stered-users";

declare mning function unreg:sanpler() {
for data $person in doc("xmark")/sitel peopl e/ person[not (enpty(watches))]
return i f (xquake:count-sanple(1) = 1) then <training>{$person/wat ches}</training>
el se <test>{$person/ wat ches}</test>
¥

declare mining function unreg: mner($training-set as node()*, $heta) {
for data $watches in $training-set
et group $watch := $wat ches/ wat ch/ @pen_auction
et supplenentary $inc := (let $a := doc("xmark")//open_auction[@d eq $xquake:iteni
return (($a/current * 100) div $a/initial) - 100)
having (every $value in itensets:get-context() satisfies $value > $heta)
return defaul t

b

declare mning function unreg:sel ector($patterns, $test-set, $ganmmm) {

for pmm itenset $p in $patterns/ PMML

using data $watches in $test-set bind $watch := $wat ches/ wat ch/ @pen_aucti on
return if (xquake:interest-factor() > $gamma) then $p else ()

b

declare function unreg: main($al pha as xs:double, $beta, $gamma) {

| et $dataset := unreg: sanpl er(sanpl:random sanpling((0.66, 0.34), false()))

et $patterns := unreg:mner(itensets:apriori($al pha), $dataset/training, $beta)
return unreg: sel ector(itensets:eval uate(), $patterns, $dataset/test, $gammm)

b

Figure 6: Theunr egi st er ed- user mining module implementing the KDD process of fig. 5.

semi-structured data model designed for KDD. Inthis 5 CONCLUSION
approach both data and mining models are stored in
the same XML database. Similarly, in KDDML, the XQuake is a new implementation of an inductive
KDD process is modeled as an XML document and database system over XML data. In its view, native
the description of an operator application is encoded XML databases are used to store both models and
by means of an XML element. Both KDDML and data, while an extension of the XQuery language is
XDM integrate XQuery expressions into the mining used to represent the KDD process. The scenario pre-
process. For instance, XDM encodes XPath expres-sented in this paper offers an idea of its potentiali-
sions into XML attributes to select sources for the ties and advantages. First of all, XML data is mined
mining, whilst KDDML uses an XQuery expression where it is, in a native XML database. Second, great
to evaluate a condition. XQuake does not use XML attention has been paid to the closure principle: the
for the process representation, but rather it directly scenario highlights the ability of combining the re-
extends XQuery to achieve a better expressiveness insults of the knowledge extraction in order to evalu-
representing the KDD process. ate certain indicators, to compose preprocessing, data
Mining XML data are used in an instrumental mining and post-processing, and to use background
way in (Baralis et al., 2007), to construct summarized knowledge to filter models. Finally, the KDD pro-
representations of XML data. The authors propose cess has now an integrated view and it can be easily
to extract association rules from XML databases as made modular and parametric. Tab. 1 summarizes the
the basis for a pattern based representation of XML main features of XQuake, according to the inductive
datasets. The idea is to use the patterns, wherevedatabase principles.
possible, to answer queries on the datasets. Summing up, since our project aims at a com-
Finally, another interesting work is (Blockeel pletely general solution for XML data mining, there
et al., 2008) as far as the definition of a relational- are further extensions that need an in-depth investi-
based inductive database is concerned. gation. An on going work is the integration of both
For a recent and complete review on inductive further knowledge (specifically, sequential patterns)
databases see (Romei and Turini, 2011). and a rich library of mining algorithms. Also, we

Table 1: Summarization of the XQuake language.

Inductive Database requiremen XQuake perspective
Data and model storage Native XML Database (models represented via PMML)

KDD process representation XQuery program + special mining functions

KDD process parametrization Parametrization of XQuery functions
Closure principle Achieved by means of the XQuery closure
Constraints & interesting measures XQuery expression + built-in function library

Output specification XQuery expression (optional) + built-in function library
Data binding Based on the PMML mining schema

are working on providing the formal semantics of REFERENCES

XQuake. Future work can go in two (often orthog-

onal) directions: (i) the exploitation of ontologies to Baralis, E., Garza, P., Quintarelli, E., and Tanca, L. (3007
represent metadata (on the expressiveness side), and Answering XML queries by means of data summaries.

(i) the study of query rewriting techniques for op- ACM Trans Info Sys25(3):1-10.
timization purposes (on the architectural side). The B'OC":e" Hd' gatie:js,tT.bFr%rgggt, i‘* C.;Ogthffls' %" tP{)ado
study of more sophisticated high-level guis for the de- » and Robardet, C. (2008). An inductive database

prototype based on virtual mining views. KDD,

pages 1061-1064, New York, NY, USA. ACM.

Euler, T., Klinkenberg, R., Mierswa, Il., Scholz, M., and
Wurst, M. (2006). YALE: rapid prototyping for com-
plex data mining tasks. IKDD '06, pages 935-940,
Philadelphia, PA, USA.

Holupirek, A., Griin, C., and Scholl, M. (2009). BaseX and
DeepFS - Joint Storage for Filesystem and Database.
In EDBT, pages 1108-1111, Saint Petersburg, Russia.
ACM.

Meo, R. and Psaila, G. (2006). An XML-based database for
knowledge discovery. lEDBT '06, pages 814828,
Munich, Germany.

Romei, A., Ruggieri, S., and Turini, F. (2006). KDDML: a

middleware language and system for knowledge dis-

covery in databasesData Knowl. Eng. 57(2):179—

220.

Romei, A. and Turini, F. (2010). XML data minin@&oftw.,
Pract. Exper. 40(2):101-130.

Romei, A. and Turini, F. (2011). Inductive database lan-
guages: requirements and exampkasowl. Inf. Syst.
26(3):351-384.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J,,
Manolescu, |., and Busse, R. (2002). XMark: a bench-
mark for XML data management. MLDB, pages
974-985.

The Data Mining Group (2011). The Predictive
Model Markup Language (PMML). Version 4.0.1.
www. drrg. or g/ pnm -v4-0-1. htni .

W3C (2010). XQuery 3.0 An XML Query Lan-
guage. W3C Working Draft 14 December 2010.
www. W3. or g/ TR/ xquer y- 30/ .

sign of the queries is another aspect to be considered
in the future.

