
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-11-10

PROGRAMMING THE KDD PROCESS USING
XQUERY

Andrea Romei and Franco Turini
University of Pisa, Department of Computer Science, Largo B. Pontecorvo 3, 56127 Pisa (PI), Italy

{romei, turini}@di.unipi.it

July 14, 2011
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

PROGRAMMING THE KDD PROCESS USING XQUERY

Andrea Romei and Franco Turini
University of Pisa, Department of Computer Science, Largo B. Pontecorvo 3, 56127 Pisa (PI), Italy

{romei, turini}@di.unipi.it

Keywords: Data Mining, Query Language, Inductive Databases, KDD process, Mining constraints, XML, XQuery

Abstract: XQuake is a language and system for programming data mining processes over native XML databases in the
spirit of inductive databases. It extends XQuery to supportKDD tasks. This paper focuses on the features
required in the definition of the steps of the mining process.The main objective is to show the expressiveness
of the language in handling mining operations as an extension of basic XQuery expressions. To this purpose,
the paper offers an extended application in the field of analyzing web logs.

1 INTRODUCTION

Since the introduction of XML as a standard for rep-
resenting semistructured data, the amount of infor-
mation coded according to such standard is steadily
growing. Systems for retrieving information out of
such collections of XML data have been developed,
up to the point that a number of implementations for
handling native XML databases has been proposed1.
XQuery is probably the most widely accepted lan-
guage in this area (W3C, 2010). Many authors main-
tain that the process of data mining can be seen as a
sophisticated way of querying the database, and, as
a consequence, it is a good idea to extend query lan-
guages with features supporting data mining.

According to this point of view the XQuake sys-
tem has been developed as an extension of XQuery
designed to support data mining tasks (Romei and
Turini, 2010). Besides being designed for mining na-
tive XML databases, XQuake takes advantage of the
XML philosophy also for representing the results of
the mining process, according to the PMML standard
(The Data Mining Group, 2011). The uniformity of
the representation of all the levels of information al-
lows the full compliance with the closure principle of
inductive databases.

XQuake provides a good basis for mining XML
data, but it still offers opportunities for extensions.
Two of them are presented in this paper:

• specification of constraints on the mining process;

1Seehttp://www.w3.org/XML/Query/ for an exhaus-
tive list of XML XQuery implementations.

• the possibility ofprogrammingdifferent data min-
ing processes in an expressive way.

The first issue is addressed by specifying constructs
for binding data to mining models and for knowledge
filtering. The second issue is addressed by extending
the language withmining functions, that may exploit
typical functional language constructs, including re-
cursion. The paper aims at highlighting the capability
of the language of specifying data mining tasks in an
elegant and expressive way. The basic ideas for the ar-
chitecture of the system are coherent with the design
of XQuake and can be found in (Romei and Turini,
2010).

Section 1 provides background material, that is a
description of an XML database used in the examples,
and some highlights on XQuery. Section 2 contains a
presentation of XQuake and the proposed extensions
by providing its syntax and its semantics, and by ex-
emplifying its use for coding typical mining subtasks.
Section 3 offers the description of a concrete applica-
tion by discussing the implementation of two mining
processes in detail. The last two sections deal with
related work, future work, and some final considera-
tion.

1.1 Thexmark database

Through the paper, we adopt an easily accessible
source of XML documents, namelyxmark (Schmidt
et al., 2002). It models an Internet auction site,
defining entities such aspeople, open auctions,
closed auctions, items andcategories. For the
purpose of this paper, we report below a brief descrip-
tion (and the XML fragment in fig. 1) for the first

three entities.
Specifically, the<people> tag is made up of a se-

quence of<person> elements encoding profiling in-
formation and the history of the visited auctions. The
former has a (eventually empty) list of<interest>
elements indicating the item categories interesting for
the user. It also includes other personal information,
such as age, gender and education. The latter contains
a sequence of<watch> elements, each containing the
reference to an open auction. Open auctions (tag
<open auctions>) are auctions in progress. Their
properties are the initial price, the bid history along
with references to the bidders (i.e. the<person> ele-
ments), a reference to the item being sold and a refer-
ence to the seller, among others. Finally, each closed
auction (tag<closed auction>) contains the refer-
ence to the seller, buyer and item, the price and date
of the closed transaction and the type of transaction
(regular or featured).

From now on, all the examples will refer the
xmark data source, that is stored in BaseX (Holupirek
et al., 2009), that is the native XML database of
XQuake.

1.2 Background on XQuery

XQuery is typed and functional language for query-
ing XML data that allows to select the data of in-
terest, reorganize them, and return the results as an
XML structure. In the next, we explore path expres-
sions andFLWOR clauses, that are two common ways
of writing queries.

Path expressions are used to traverse an XML
tree. They consist of a series of steps, separated by
slashes, that traverse the elements and attributes in
the XML documents. For example, the path expres-
siondoc("xmark")//people/person selects all the
<person> elements from thexmark document by us-
ing the following three steps: (i)doc("xmark") calls
an XQuery function named doc, with the name of the
database to open (ii)people selects the<people> tag
(the double slash “//” returns elements that appear
anywhere in the document), (iii) the outermost ele-
ment selects all the<person> children of<people>.
The values of path expressions can also be attributes,
referred using the special “@” symbol. In addition,
a path expression (included in square brackets) can
contain predicates that filter out elements or attributes
that do not meet a particular criterion. For example,
the path expression//person[profile/@income >
100] selects only those<person> elements whose
income attribute value is greater than 100.

The basic structure of XQuery is theFLWOR ex-
pression that is the acronym of“for, let, where, order
by, return”. Unlike path expressions, it allows to ma-

<people>
<person id="person27">
<phone>+39....</phone>
<profile income="96497.12">
<interest category="category11"/>...
<education>High School</education>
<gender>male</gender>
<business>Yes</business>
<age>29</age>

</profile>
<watches>
<watch open_auction="open_auction29"/>...

</watches>
</person>...
</people>
...
<open_auctions>
<open_auction id="open_auction29">
<initial>26.60</initial>
<bidder>
<date>03/28/1998</date>
<personref person="person17"/>
<increase>3.00</increase>

</bidder>...
<current>220.10</current>
<itemref item="item255"/>
<seller person="person1361"/>
</open_auction>...
</open_auctions>
...
<closed_auctions>
<closed_auction id="closed_auction9">
<seller person="person964"/>
<buyer person="person1650"/>
<itemref item="item232"/>
<price>162.44</price>
<date>01/23/1999</date>
<quantity>1</quantity>
<type>Regular</type>...
</closed_auction>...
</closed_auction>...

Figure 1: Three XML fragments ofxmark

nipulate, transform, and sort results. As an example,
the query below shows a simpleFLWOR that returns the
buyer ids of all closed auctions having a price greater
than 100.
for $auc in doc("xmark")//closed_auction
let $buyer := $auc/buyer/@person
where $auc/price > 100
return $buyer

The FLWOR above is made up of four parts:

1. the for clause sets up an iteration through the
closed auction nodes, and the rest of theFLWOR
is evaluated once for each of the auctions. Each
time, a variable named$auc is bound to a dif-
ferent element. Dollar signs are used to indicate
variable names in XQuery.

2. Thelet clause, is used to set the value of a vari-
able. Specifically, the second line of the query
above assigns the buyer’s id to a variable called
$buyer. Such a variable is then used in the
return clause.

3. Thewhere clause has the same effect as the pred-
icate[price > 100] in a path expression.

4. Finally, thereturn clause indicates that the buy-
ers should be returned.

Multiple for clauses are permitted, which set up
nested iterations in order to easily join data from mul-
tiple sources. In addition, complex expressions can be
used in any of the clauses in order to satisfy acompo-
sitionalityprinciple.

Besides path and FLWOR expressions, XQuery
3.0 supports a large number of other functionalities.
Specifically: (i) it defines XML constructors used to
create elements and attributes in the query results;
(ii) it includesupdates, group by, switch andtry
catch statements; (iii) it extends XQuery Full Text
features, supporting stemming, stop word lists, fuzzy
querying, etc.; (iv) it permits the assembling of a
query from one or more modules. Last, but not least,
XQuery allows the declaration of user-defined func-
tions (and variables), with a name, the names and (op-
tional) datatypes of the parameters, and the (optional)
datatype of the result. An example of function ac-
cepting the decimal parameter$price and returning
a boolean value is reported below:
module namespace xmark = "http...";

declare function xmark:auctionPrice(
$price as xs:decimal) as xs:boolean {

some $i in doc("xmark")//open_auction
satisfies $i/initial > $price

};

In its body, it defines a quantified expressions, namely
some, to determine whether some of the open auc-
tions have an initial price greater than$price. A
similar quantified expression isevery. The first line
in the example is a module declaration that identifies
xmark as a library module with its target namespace.
The query fragmentxmark:auctionPrice(1000) is
a call to theauctionPrice function in thexmark
namespace.

2 XQUAKE EXTENDED

The section is organized as follows. We first present
the syntax and the meaning of six clauses, that are
used as a basis to construct mining operators. Then,
such operators are introduced through simple exam-
ples. Finally, we show how to specify special mining

functions. The concepts reported in the sections 2.1.3,
2.1.4 and 2.3 are new, and they are the main contribu-
tion of this paper.

2.1 Mining constructs

Each mining operator is made up of a combination of
base constructs. As shown in Figure 2, six operators
have been considered as guidelines for the design of
XQuake. Specifically, they serve to locate XML data
and PMML models, to bind new data to an extracted
set of patterns and to specify mining constraints or the
format of the output result. After presenting a simple
running example, we describe each construct in turn.

Figure 2: Syntax of the six basic clauses. Thefor data
clause (a). Thelet clause (b). Thefor PMML clause (c).
Theusing clause (d). Thehaving clause (e). Thereturn
clause (f).

2.1.1 Running example

To take confidence with the language philosophy, we
introduce a “classical” example taken from the induc-
tive database theory. Specifically, we aim at“mining
association rules from a dataset; on such a result, we
find all the given instances that satisfy2 the rules; fi-
nally, we induce a classification tree from those in-
stances”. XQuake offers three operators to solve this
task.

Below, a set of association rules is extracted to
find frequent correlations among the bidders in all
the open auctions. The output model contains pat-
terns like{Mark} → {John}, which states that when

2By definition, a transaction satisfies an association rule
I1 . . . In → In+1 . . . Im if every itemIi for i ∈ [1,m] occurs in
the transaction.

Mark appeared as bidder, alsoJohn was a bidder with
a certain support and confidence. A condition re-
quires that the size of the extracted rules is equal to
2 (i.e. exactly one item in the body and one item in
the head of the rule).

for data $auc in doc("xmark")//open_auction
let group $pers := $auc/bidder//@person
having xquake:rule-size() = 2
return default

In the above query, the set of involved transactions
(i.e. the <open auction> elements) is specified
through thefor data clause. Items of each trans-
action (i.e. the person identifiers for each<bidder>
element) are defined in thelet group clause. Both
the having andreturn clauses operate on the out-
put result. The former is evaluated for each rule. It
uses therule-size() built-in function, defined in
the reservedxquake namespace, to get the size of that
rule and to implement the constraint. Notice that the
parameter ofrule-size() is implicitly an associa-
tion rule. As soon as constraints are evaluated, the
return clause is evaluated once to return a PMML
document. Assume that the output rules are stored in
my-rules.xml.

In the next XQuake fragment, we filter out a set
of instances (i.e. the sequence of<closed auction>
elements) that do not satisfy at least ten association
rules inmy-rules.xml. To test whether an item (i.e.
a person identifier) occurs in a transaction, we check
whether that person has been either buyer or seller
in the closed auction. Now, thereturn statement is
evaluated for each input data. The result, stored in
my-tuples.xml, is a sequence of<inst> tags, each
encoding a<closed auction> if it satisfies the con-
straint.

for data $d in doc("xmark")//closed_auction
using model $r in doc("my-rules")/PMML
bind $pers := $d/[seller|buyer]//@person
return <inst>{if (xquake:rule-satisfy($r) > 9)

then $d else () }</inst>

Finally, a dummy PMML classification tree is in-
duced frommy-tuples.xml. It is built on the price
and quantity properties of each closed auction to pre-
dict the type of the auction (i.e. regular or featured).

for data $auc in doc("my-tuples")
let active $price := $auc//price
let active $qty := $auc//quantity
let predicted $type := $auc//type
return default

As a general comment, we have supposed in this
simple example to store the result of a step to be used
as input in the next step. Moreover, we have not yet
specified neither the kind of knowledge to extract, nor
the mining algorithm to use in the query fragments. In

sect. 2.3 we cover these aspects, and a more elegant
way to combine mining results is presented.

2.1.2 Constructs for locating XML data

The first step in specifying a data mining task is the
selection of the relevant data as input of the analysis.
Relevant XML elements and attributes are selected by
means of the clauses depicted in fig. 2 (a),(b).

The syntax of thefor data expression (fig. 2 (a))
is similar to thefor clause of XQuery. It sets-up an
iteration over the sequence returned by the expression
after thein keyword. Each item of the sequence is
bound to a variable that can be used in the rest of the
expression. The optionalat clause allows for a po-
sitional variable, which is bound to an integer repre-
senting the iteration number.

The let clause (fig. 2 (b)) is used to bind a
variable to a mining field. The keyword after the
let refers to the role of such an attribute in the
mining activity of interest. More specifically, the
active keyword specifies that the field is used as
input to the mining task:predicted specifies that
it is a predicted attribute (e.g. in a classification
task),supplementary states that it holds additional
descriptive information, and finally,group groups
atomic values (e.g. in an association or sequence anal-
ysis). Moreover, additionalas clauses (not shown in
the Figure 2) are used to specify a type to thefor
data clause variable and to eachlet clause variable.
More importantly, mining fields in input to the min-
ing tasks are required to be atomic (e.g. string, nu-
meric or date), except for a supplementary field that,
in principle, can assume any complex XML type. It
can be used to hold background knowledge informa-
tion useful, for example, to evaluate constraints. Ac-
tive fields also admit a special (and optional) syntax
to express an atomic sequence of an explicit size in
a let active specification. This facility is particu-
larly useful when a large number of XML fields are
used in the analysis.

2.1.3 Constructs for locating PMML models and
binding new data

As far as the mining models are concerned, a simi-
lar syntax may be used to locate (parts of) a (new or
extracted) pattern, represented via PMML.

As shown in fig. 2 (c), a variable is bound to each
item of the sequence resulting from the evaluation of
the expression that follows thein clause. Unlike a
for data clause, each item of the sequence is now
a single mining model or a set of homogeneous pat-
terns (i.e. either a set of classification tree or fre-
quent itemsets or association rules) sharing the same

mining schema3. The kind of knowledge is speci-
fied by means of a special keyword following thefor
pmml expression. Importantly, since the structure of
a PMML model is fixed, the user has to specify only
the root of the model(s) (i.e. the<PMML> element(s)).

Often, new data has to be used in a model context.
Consider, for example, the case in which a confusion
matrix is constructed from a predictive model in clas-
sifying a test set, or, vice-versa, association rules are
used to determine which instances violate them. The
using clause of fig. 2 (d) accomplishes both tasks. A
keyword after theusing distinguishes between “eval-
uating a model over a dataset” (we say in this case
thatthe data is bound to the model) and “evaluating a
dataset over a model” (i.e.the model is bound to the
data). The using data and using model clauses
are used in the first and second case, respectively. In
the former, the idea is to set-up an iteration over a
sequence to bind each item to a variable. Such a vari-
able can be used in the followingbind expression.
Here, each (non supplementary) field belonging to the
mining schema of given mining models is bound to
new data, by evaluating the expressions after the as-
signment symbol. Such binding is by name and type,
i.e. each variable of thebind clausemustcoincide, in
name and type, with a field of the mining schema. The
using model clause is similar, but it specifies mining
models after thein keyword and it binds such models
to new given data in thebind statement.

2.1.4 Constructs for constraints and output
specification

Inspired by the study on mining views on relational
data (Blockeel et al., 2008), we offer a simple, ele-
gant yet comprehensible way to express constraints
useful to filter an inferred mining model. As shown
in fig. 2 (e), a simple XQuery predicate following
the keywordhaving is used. In contrast with (Block-
eel et al., 2008), that use a “virtual” output on which
constraints are expressed, we define a library of built-
in functions to refer (the main parts of) such output
inside the XQuery predicate. This solution has two
main advantages. First of all, it avoids specialized
constructs and constraints are expressed more declar-
atively4. Second, the user has to know only the signa-
ture and meaning of the external built-in functions to

3The mining schema lists the fields used by the model
specifying their usage type, outlier treatment, missing val-
ues replacement policy and so on.

4On the other hand, physical optimization, such as fil-
tering patterns at “mining time” (i.e. directly during the ex-
ploitation of the search space), is more difficult to achieve.
However, this aspect is out of the scope of this paper.

apply constraints. As an example, to filter out uninter-
esting itemsets, a built-in library offers special func-
tions to get their size, support and other interesting
measures, the complete list of the items belonging to
the itemset as well as the background knowledge re-
lated to these items.

A similar strategy is used to offer to the user the
capability of defining its own output, both for data and
mining models. The basic idea is to use built-in func-
tions inside an XQuery expression (fig. 2 (f)), that en-
capsulate the main parts of the result. However, since
the output may have a very complex structure (e.g. in
the case of mining models), a default output can be
specified by means of thereturn default clause,
which is a PMML document for mining models.

2.2 Mining operators

In this section we integrate the running example of
sect. 2.1.1 with additional examples of the mining
operators, according to the aformentioned specifica-
tion. Preprocessing, model extraction, filtering and
deploying tasks are briefly discussed.

2.2.1 Preprocessing

Several preprocessing and data preparation tasks for
sorting, selecting and filtering XML data can be di-
rectly obtained throughout the use of XQuery con-
structs. However, since the data preprocessing is
a time consuming phase, ad-hoc constructs have to
be designed for cleaning, discretization, aggregation,
sampling and many others.

The syntax of a preprocessing operator admits a
for data clause followed by a combination oflet
clauses (whose number and order depend on the kind
of task), and by areturn clause. In the following
example, the value of the<price> element in each
<closed auction> is discretized. The result is en-
coded in a sequence of<price-d> XML tags.

for data $auc in doc("xmark")//closed_auction
let predicted $price := $auc/price
return <price-d>{xquake:bin($price)}</price-d>

Notice the usage of the built-in functionbin(.) in
the return clause, that returns the discretized value
of its numeric argument.

2.2.2 Model extraction

Mining models are directly inferred from one or more
XML documents. The specification of a model ex-
traction operator includes afor data statement to
specify input XML nodes followed by a combination
of let clauses, to specify the field (active, predicted

or group) as input to the mining algorithm or the back-
ground information. The latter can be used, for ex-
ample, to specify, by means of an optionalhaving
clause, domain-based constraints on the output result.
A return statement closes the statement.

As an example, we can extend the first query of
the running example by introducing a more complex
constraint to reduce the number of generated rules.
Below, the query also specifies that, in each rule, ev-
ery person in the antecedent bought at least two items
in the closed auction history.

for data $auc in doc("xmark")//open_auction
let group $pers := $auc/bidder//@person
let supplementary $count-buy := count(
for $i in doc("xmark")//closed_auction
where $i/buyer/@person eq $xquake:item
return $i)

having every $j in xquake:antecedent-context()
satisfies $j > 1

return default

Here, after selecting the transactions (i.e. the auc-
tions) and the items (i.e. the person’s identifiers),
the count-buy variable holds, for each distinct per-
son, the number of items bought by that person.
To this purpose, a join of the person identifier (re-
ferred by the special variable$xquake:item) and the
set of <closed auction> elements has been used.
For each mined association rule, the built-in func-
tion antecedent-context() in the having clause
returns the context information (i.e. a sequence of int
values) related to the antecedent items of that rule.

2.2.3 Model filtering, application and evaluation

The extracted knowledge can be filtered according to
a condition, that, in principle, can be applied to every
model. The general syntax begins with the clausefor
pmml, in which one has to specify the kind of model,
followed by ahaving and return clause. Similar
operators are used to apply an extracted model on new
data, to predict features, to select data accordingly to
the knowledge stored in the model, or to evaluate the
model itself. In these cases, ausing clause is useful
to bind data to the knowledge.

As an example, consider the third query of the run-
ning example and let suppose that we have induced a
set of trees, stored inmy-trees.xml. Below, their
mining schema is shown:

<MiningSchema>
<MiningField name="price" usage="active"/>
<MiningField name="qty" usage="active"/>
<MiningField name="type" usage="predicted"/>
</MiningSchema>...

Here, the PMML<MiningSchema> lists the fields
(i.e. name and usage) which a user has to provide

in order to apply the model. The first query below fil-
ters out those trees having a training confidence lower
than 50% fortype = "regular" in the root node,
where the path expression in thelet clause returns
the PMML <ScoreDistribution> element of the
root node (see (The Data Mining Group, 2011) for
details).

for pmml tree $t in doc("my-trees")/PMML
having let $d := $t//Node/ScoreDistribution

[@value eq "regular"]
return $d/@confidence > 0.5

return $t

Given new XML data compliant with the mining
schema above, the next two queries return the set of
PMML confusion matrixes (one for each tree) con-
structed on such data and the predicted values of the
target field, respectively.

for pmml tree $t in doc("my-trees")/PMML
using data $d in doc("xmark")//closed_auction
bind $price := $d/price,

$qty := $d/quantity
$type := $d/type

return <tree>{xquake:conf-matrix()}</tree>

for data $d in doc("xmark")//closed_auction
using model $t in doc("my-trees")/PMML
bind $price := $d/price,

$qty := $d/quantity
$type := $d/type

return <classes>{xquake:class($t)}</classes>

Observe that the two queries above have a similar syn-
tax, but different semantics. The first one evaluates
the expression in thereturn clause for each input
tree. At each iteration, it sets-up a cycle over the
data sequence to construct the confusion matrix and
to compute the evaluation metrics. The second one
returns a<classes> element for each item of the in-
put data sequence. Each<classes> tag encapsulates
the predicted values, so that its size coincides with the
number of input trees. Given a set of association pat-
terns (resp. rules), similar operators can be used to get
the contingency tables of each itemset (resp. rule), or
to predict the instances that violate/satisfy those item-
sets (resp. rules).

2.3 Putting it all togheter

At this point, one should note that in the simple
queries above, we haven’t yet defined neither the kind
of knowledge mined, nor the mining algorithm used,
nor, and more importantly, how to deploy a min-
ing operator inside a KDD process. From this latter
perspective, two important aspects have to be mod-
elled: iteration and interaction. The KDD is an in-
teractive, iterative and multi-step process in the sense

that, at any stage, the user should have the possi-
bility to choose different algorithms/parameters, to
evaluate a condition that selects a “then” branch or
an “else” branch, or to iteratively repeat some step
to achieve better results. Also, a language support-
ing a KDD process should include constructs encour-
aging the reuse of (parts of) the process previously
defined to easily integrate this sub-query (i.e., sub-
process) inside a more complex one, without specify-
ing it again.

To make the KDD process modular and reusable,
XQuake adds to XQuery the capability of defining
special mining user-defined functions whose body is
made up of a mining operator. Below, an example of
mining function declaration is shown:

declare mining function
my-nmspace:my-fun($my-param as xs:int) {

< mining operator >
};

As for standard functions and variables, user-
defined mining functions can be called either from
almost any place in a query or in an external min-
ing module. For example, they can be invoked in-
side aFLWOR, conditional, switch or quantified ex-
pression, as well as in mining functions themselves.
The syntax of a mining function call is the same of
any other function, except for the first argument that
is an algorithm specification with relative parameters.
For example, to call the function above by using the
apriori algorithm with a minimum support and con-
fidence of 10%, one mights use:

my-nmspace:my-fun(rules:apriori(0.10,0.10), 1)

The rules namespace indicates the kind of knowl-
edge to be mined, in this case association rules. Cur-
rently, XQuake supports discretization,discr, sam-
pling, sampl, the generation of frequent itemsets,
itemsets, rules rules, classification treestrees
and their filtering, evaluation and usage.

3 APPLICATION SCENARIO

This section reports two concrete usages of XQuake.
The goal is to present two simple (but also taken from
our real-experience in data mining) KDD processes
to show how XQuake is particularly suitable for sup-
porting an inductive database framework.

In xmark, we can distinguish between two groups
of users. Theregistered usersare those who provide a
profile with personal information (see the<profile>
tag in the first XML fragment of fig. 1). Also, they
specify their categories of interest (e.g. music or sport
auctions) during the registration process. A second

group of persons (about 50%) do not provide any per-
sonal information. However, for them, the web server
stores their behaviour, for example registering the his-
tory of the open auctions that such users are interested
in or get notification about (<watches> tag). We de-
note these persons asunregistered user.

3.1 Estimate the age of registered users

Among registered users, only a subset provides per-
sonal information on the age (about 45%). The idea
is to use the other personal information to predict that
missing information. To this purpose, we aim at ex-
tracting a classification tree able to discriminate age
based both on the other personal information and on
the specified interests. The knowledge of the miss-
ing information of the registered user will allow to
offer, at time of accessing, personalized banners, pro-
motions or news, according to the estimated age. The
overall process is schematized in fig. 3.

Figure 3: A sample KDD process based on classification.

Discretization. In order to use a classification algo-
rithm, theage information is discretized into three
distinct intervals,young, mid andold. The overall
data is then partitioned into two samples for training
and testing. At this stage, we do not use a sampling
algorithm, but rather the users are selected among
those having provided a phone number (about 50%)
and the others. The use of the phone information
offers a quite randomized partition.

Bagging classification. Accuracy can be increased
via a bagging classification. More specifically, a
classifier is trained on a sample of instances taken
with a replacementstrategy from the training set.
This task is repeatedk times and, at each iteration, the
sample size is equal to the size of the original training
set. The output is a set ofk inducers:T = {t1, . . . , tk}.

Then,T is filtered according to a condition. Specif-
ically, for eachti , i ∈ [1,k], these conditions must
hold: (i) the overall number of nodes ofti is below
a certain threshold,α, and (ii) the accuracy of each
leaf that classifies asyoung in ti is greater than a
parameter,β. The result of this phase is a new set of
inducers,T

′
= {t1, . . . , th}, with h≤ k. Notice that the

first condition above tries to reduce the complexity
of the trees avoiding those subject tooverfitting.
The second one permits to consider only those trees
that are more precise (at least in the training set) in
predicting young users. The survived classifiers are
composed to generate a bagged classifier,tT ′ , that
returns the class that has been predicted most often
by means of a voting method amongti ∈ T

′
.

Evaluation. Once the composed tree,tT ′ , has been
constructed, it can be applied to a test set to evaluate
its performance in terms of an accuracy error. If the
resulting accuracy is greater than a given threshold,
γ, thentT ′ is returned. Otherwise, the filtering task

is repeated onT
′

by using a more stringent value of
theα parameter, to the aim of filtering out additional
trees with an high number of nodes. The survived
treesT

′′
= {t1, . . . , t j}, with j ≤ h are composed and

the procedure is repeated until the condition on the
accuracy is fulfilled orT

′′
= /0.

The KDD process just described can be imple-
mented in XQuake as reported in fig. 4. In the
registered-users module a set of mining and
XQuery functions is defined.

Thediscretizer() function implements the dis-
cretization task, in which the<age> XML element is
discretized for each person having specified a value
for the age. In the result, we append, to each
<profile> element, a<age-discr> tag containing
that discretized value. Thesampler(.) function gets
as input a sequence of<person> elements and it uses
the built-in functioncount-sample($i) to get the
number of times the current item (i.e. person) of the
sequence belongs to the sample of index$i (we re-
call that, in this case, we have a single sample with
index 1 and a replacement strategy is used). Below, a
fragment of the output is shown:

<person>
<profile income="96497.12">

<interest category="category11"/>...
<education>High School</education>
<business>Yes</business>
<age>29</age>

</profile>
<age-discr>young</age-discr>

</person>...

Theinducer(.) function extracts a classification
tree given a sequence of<person> elements (i.e. the
training set). Active fields of the task are the sub-
element<business>, <education> as well as the
top-five interests specified by each user. For the sake
of brevity, we suppose a user-defined XQuery func-
tion select-interests($p, $n) (not shown in fig.
4) is defined. Given an XML<person> element,$p,
and the number of required categories,$n, that func-
tion returns a sequence of boolean values of size$n.
Each boolean value indicates whether the person$p
has an interest on theith category, withi ∈ [1,n].

The filtering module is implemented in the
filter(.) function. It yields a sequence of PMML
trees and theα and β parameters. It also uses a
built-in function, namelyxquake:leaves($t), in
thehaving clause, to get the list of leaves as PMML
elements.

Finally, the composition, classification and eval-
uation are performed by means of the function
bagging(.). It takes a set of PMML trees and a
test set as a sequence of (discretized)<person> el-
ements. Then, it sets-up an iteration in which, for
each<person>, the predicted values of the<age> el-
ement are collected for each classification tree. This
is achieved via theclassifier(.) mining function
that returns a sequence of predicted classes (contain-
ing one value for each tree) for each item of the input
sequence. Such single predictions are used to predict
the target attribute, according to a majority strategy
(XQuery functionmajority-class(.) not shown in
fig. 4). A sequence of misclassified values is returned,
as shown in the following XML fragment:

<mis>mid young</mis>
<mis>old young</mis>
<mis>old mid</mis>...

The overall process is assessed in themain(.)
function. It yields as parameters the number of itera-
tions,k, and theα, β andγ thresholds. We omit the
details, but observe that it uses the recursive XQuery
functiontester(.) to filter, compose and evaluate
the induced trees until the condition on the accuracy
is respected or no more trees survive to the filter. This
is an elegant way to simulate iterations depending on
a condition. The final output is a sequence of PMML
trees.

3.2 Estimate the interest of unregistered
users

Unregistered users navigate the auctions site, but they
do not specify neither a profile nor a category of inter-
est. However, their behaviour is monitored through-
out the site. The encoded information is useful to

mining module namespace reg = "registered-users";

declare mining function reg:discretizer() {
for data $pers in doc("xmark")/site/people/person[not(empty(profile/age))]
let predicted $age := $pers/profile/age
return <pers> {($pers, <age-discr>{xquake:bin($age)}</age-discr>)} </pers>

};

declare mining function reg:sampler($dataset as node()*) {
for data $person in $dataset
return (for $i in (1 to xquake:count-sample(1)) return $person)

};

declare mining function reg:inducer($training-set as node()*) {
for data $person in $training-set
let active $education := $person//profile/education
let active $is-business := $person//profile/business
let active<5> $interests := reg:select-interests($person, 5)
let supplementary $age = $person//age-discr
return default

};

declare mining function reg:filter($trees as node()*, $alpha, $beta) {
for pmml tree $t in $trees
having (count($t//Node) <= $alpha) and

(every $i in xquake:leaves() satisfies $i/@value eq "young" and $i/@confidence > $beta)
return $t

};

declare function reg:bagging($trees, $test-set) {
for $pers in $test-set
let $pred := reg:majority-class(reg:classifier(trees:apply(), $trees, $person))
return if ($pred != $pers/age-discr) then <mis>{($pers/age-discr,$pred)}</mis> else ()

};

declare mining function reg:classifier($trees, $test-set) {
for data $person in $test-set using model $t in $trees/PMML
bind $education := $person//profile/education,

$is-business := $person//profile/business,
$interests := reg:select-interests($person, 5),
$age = $person//age-discr

return default
};

declare function reg:tester($trees, $test-set, $alpha, $beta, $gamma) {
let $trees := reg:filter(trees:filter(), $trees, $alpha, $beta)
return if ((count(reg:bagging($trees, $test-set)) <= $gamma) or (empty($trees)))

then $trees else reg:tester($trees, $test-set, $alpha - 5, $beta, $gamma)
};

declare function reg:main($k, $alpha, $beta, $gamma) {
let $data := reg:discretizer(discr:natural-binning(("young","mid","old")))
let $trees := for $i in (1 to $k)

let $t := reg:sampler(sampl:rand-sampl((100),true()), $data[empty(person//phone)])
return reg:inducer(trees:id3(), $t)

return reg:tester($trees, $data[not(empty(person//phone))], $alpha, $beta, $gamma)
};

Figure 4: Theregistered-user mining module implementing the KDD process of fig. 3.

understand which types of open auctions user tend
to watch frequently or for which they get a notifica-
tion. Frequent itemsets mining may help to under-
stand such correlations and the process that we design
is built around this kind of analysis (see fig. 5).

Figure 5: A sample KDD process based on frequent pattern
mining.

Sampling. Since our goal is to extract only the more
accurate frequent itemsets among the potential large
number of patterns, it is important to establish a
good criterium for evaluating the quality of such a
knowledge. Therefore, as a first step, a sampling
algorithm randomly splits the input data (i.e. the
entire set of persons) into a training (66%) and a test
set (34%).

Frequent itemset mining. The second phase
consists in extracting from the training set a list of
frequent patterns co-relating the open auctions. As
an example, the extracted patternP = {auction1,
auction2, auction3} with a support of 30% means
that, for 30% of the times, the three auctions were
watched together. Such an information may indicate
that persons that frequently tend to visit some kind of
auction also tend to visit other kinds of auctions. To
avoid the generation of a large number of patterns,
we constrain the output selecting only those patterns
having (i) a support greater than a parameter,α,
and (ii) each auction of the itemset to berelevant,
i.e. with a difference among the current price and
the initial price greater than a certain threshold,β.
Notice that the latter condition requires to incorporate
subjective knowledge into patterns evaluation and,
it needs of prior information from the domain experts.

Evaluation and selection.The survived association
patterns are evaluated on the test set, and only those
satisfying a condition are returned. As evaluation
metric, the interest factor appears to be suitable
for analyzing the patterns, since it can be easily
applicable to itemsets of any size, starting from the
multidimensional contingency table. Specifically,
given a set of transactionsT = {t1, . . . , tn} and a set
of frequent association pattersP= {p1, . . . , pm}, this

task computes, for each itemsetpi , i ∈ [1,m], the
interest factorIT

pi
, and it selects only those having

IT
pi
> γ, whereγ is an input parameter.

Fig. 6 shows how the three tasks described above
are executed in XQuake. The sampling can be per-
formed with thesampler() function. Here, the se-
quence of<watches> elements for each person are
encoded into<training> and<test> XML tags to
be used in the next statements.

The mining and filtering operation are performed
with the same mining function in XQuake. More pre-
cisely, theminer(.) function takes the<training>
XML elements as training set, and the parameterβ
used to evaluate the constraint on the extracted pat-
terns. It returns only those patterns satisfying the con-
dition expressed in thehaving clause and the condi-
tion on the minimum support. Notice that the domain-
based constraints can be inserted quite naturally in our
framework (see$inc variable holding the percentage
of increment for each distinct auction), due to the flex-
ibility of the language.

Theselector(.) mining function accomplishes
the last task. It uses the set of mined itemsets, a test
set and theγ threshold to return only the interesting
patterns. The behaviour is as follows. For a given pat-
tern, the data sequence is iterated and a contingency
table is created for such a pattern. Then, thereturn
clause is evaluated. Specifically, the latter uses the
built-in function interest-factor(.) to compute
from the contingency table the homonimous measure
for the given pattern. If the required condition is ful-
filled, then the itemset is returned. This procedure is
iterated for each given frequent itemset.

Finally, themain(.) function yields all the pa-
rameters of the analysis, and it performs the overall
KDD process by invoking the aforementioned proce-
dures in the right order.

4 RELATED WORK

The explotation of XML as a flexible and extensible
instrument for IDBs has been studied in (Euler et al.,
2006; Romei et al., 2006; Meo and Psaila, 2006).

RapidMiner (Euler et al., 2006) is an environment
for KDD and machine learning in which experiments
are described via XML files. While the graphical user
interface supports interactive design, the underlying
XML representation enables automated applications
after the prototyping phase.

KDDML (Romei et al., 2006) and XDM (Meo and
Psaila, 2006) are the most related works. In the latter,
XML has been used as the basis for the definition of a

mining module namespace unreg = "unregistered-users";

declare mining function unreg:sampler() {
for data $person in doc("xmark")/site/people/person[not(empty(watches))]
return if (xquake:count-sample(1) = 1) then <training>{$person/watches}</training>

else <test>{$person/watches}</test>
};

declare mining function unreg:miner($training-set as node()*, $beta) {
for data $watches in $training-set
let group $watch := $watches/watch/@open_auction
let supplementary $inc := (let $a := doc("xmark")//open_auction[@id eq $xquake:item]

return (($a/current * 100) div $a/initial) - 100)
having (every $value in itemsets:get-context() satisfies $value > $beta)
return default

};

declare mining function unreg:selector($patterns, $test-set, $gamma) {
for pmml itemset $p in $patterns/PMML
using data $watches in $test-set bind $watch := $watches/watch/@open_auction
return if (xquake:interest-factor() > $gamma) then $p else ()

};

declare function unreg:main($alpha as xs:double, $beta, $gamma) {
let $dataset := unreg:sampler(sampl:random-sampling((0.66, 0.34), false()))
let $patterns := unreg:miner(itemsets:apriori($alpha), $dataset/training, $beta)
return unreg:selector(itemsets:evaluate(), $patterns, $dataset/test, $gamma)

};

Figure 6: Theunregistered-user mining module implementing the KDD process of fig. 5.

semi-structured data model designed for KDD. In this
approach both data and mining models are stored in
the same XML database. Similarly, in KDDML, the
KDD process is modeled as an XML document and
the description of an operator application is encoded
by means of an XML element. Both KDDML and
XDM integrate XQuery expressions into the mining
process. For instance, XDM encodes XPath expres-
sions into XML attributes to select sources for the
mining, whilst KDDML uses an XQuery expression
to evaluate a condition. XQuake does not use XML
for the process representation, but rather it directly
extends XQuery to achieve a better expressiveness in
representing the KDD process.

Mining XML data are used in an instrumental
way in (Baralis et al., 2007), to construct summarized
representations of XML data. The authors propose
to extract association rules from XML databases as
the basis for a pattern based representation of XML
datasets. The idea is to use the patterns, wherever
possible, to answer queries on the datasets.

Finally, another interesting work is (Blockeel
et al., 2008) as far as the definition of a relational-
based inductive database is concerned.

For a recent and complete review on inductive
databases see (Romei and Turini, 2011).

5 CONCLUSION

XQuake is a new implementation of an inductive
database system over XML data. In its view, native
XML databases are used to store both models and
data, while an extension of the XQuery language is
used to represent the KDD process. The scenario pre-
sented in this paper offers an idea of its potentiali-
ties and advantages. First of all, XML data is mined
where it is, in a native XML database. Second, great
attention has been paid to the closure principle: the
scenario highlights the ability of combining the re-
sults of the knowledge extraction in order to evalu-
ate certain indicators, to compose preprocessing, data
mining and post-processing, and to use background
knowledge to filter models. Finally, the KDD pro-
cess has now an integrated view and it can be easily
made modular and parametric. Tab. 1 summarizes the
main features of XQuake, according to the inductive
database principles.

Summing up, since our project aims at a com-
pletely general solution for XML data mining, there
are further extensions that need an in-depth investi-
gation. An on going work is the integration of both
further knowledge (specifically, sequential patterns)
and a rich library of mining algorithms. Also, we

Table 1: Summarization of the XQuake language.

Inductive Database requirement XQuake perspective
Data and model storage Native XML Database (models represented via PMML)

KDD process representation XQuery program + special mining functions
KDD process parametrization Parametrization of XQuery functions

Closure principle Achieved by means of the XQuery closure
Constraints & interesting measures XQuery expression + built-in function library

Output specification XQuery expression (optional) + built-in function library
Data binding Based on the PMML mining schema

are working on providing the formal semantics of
XQuake. Future work can go in two (often orthog-
onal) directions: (i) the exploitation of ontologies to
represent metadata (on the expressiveness side), and
(ii) the study of query rewriting techniques for op-
timization purposes (on the architectural side). The
study of more sophisticated high-level guis for the de-
sign of the queries is another aspect to be considered
in the future.

REFERENCES

Baralis, E., Garza, P., Quintarelli, E., and Tanca, L. (2007).
Answering XML queries by means of data summaries.
ACM Trans Info Syst, 25(3):1–10.

Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado,
A., and Robardet, C. (2008). An inductive database
prototype based on virtual mining views. InKDD,
pages 1061–1064, New York, NY, USA. ACM.

Euler, T., Klinkenberg, R., Mierswa, I., Scholz, M., and
Wurst, M. (2006). YALE: rapid prototyping for com-
plex data mining tasks. InKDD ’06, pages 935–940,
Philadelphia, PA, USA.

Holupirek, A., Grün, C., and Scholl, M. (2009). BaseX and
DeepFS - Joint Storage for Filesystem and Database.
In EDBT, pages 1108–1111, Saint Petersburg, Russia.
ACM.

Meo, R. and Psaila, G. (2006). An XML-based database for
knowledge discovery. InEDBT ’06, pages 814–828,
Munich, Germany.

Romei, A., Ruggieri, S., and Turini, F. (2006). KDDML: a
middleware language and system for knowledge dis-
covery in databases.Data Knowl. Eng., 57(2):179–
220.

Romei, A. and Turini, F. (2010). XML data mining.Softw.,
Pract. Exper., 40(2):101–130.

Romei, A. and Turini, F. (2011). Inductive database lan-
guages: requirements and examples.Knowl. Inf. Syst.,
26(3):351–384.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J.,
Manolescu, I., and Busse, R. (2002). XMark: a bench-
mark for XML data management. InVLDB, pages
974–985.

The Data Mining Group (2011). The Predictive
Model Markup Language (PMML). Version 4.0.1.
www.dmg.org/pmml-v4-0-1.html.

W3C (2010). XQuery 3.0: An XML Query Lan-
guage. W3C Working Draft 14 December 2010.
www.w3.org/TR/xquery-30/.

