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Abstract


In this report we provide the fundamental results for applying a formal
performance modeling of distributed parallel computations described as
computation graphs of parallel modules. In our approach parallelism is
expressed inside each module (based on structured parallelism schemes)
and between different modules that can compose general graph structures.
Our methodological approach, based on Queueing Theory and Queueing
Network Theory foundations, provides the necessary tools for predicting
the steady-state behavior of a parallel computation.


1 Introduction


From a general point of view, a parallel application can be represented as
a directed application graph (work-flow) of independent modules cooperating
by exchanging typed messages1. Modules can exchange single values or, as in
stream-based computations, a sequence of messages, by means of communication
channels. In this context we can distinguish between two different levels of
parallelism:


� intra-module parallelism : the module computation is activated by re-
ceiving messages (i.e. tasks) from a set of source modules, according to a
non-deterministic or data-flow semantics. For each activation the module
starts either a sequential or a parallel computation. In the latter case the
internal parallelization follows a specific structured paradigm: i.e. intra-
module parallelism is expressed by instantiating well-known structured
parallelization schemes for which the parallel organization and the prop-
erties of the parallelization approach are known and clearly identified.
This aspect represents a fundamental characteristic of our methodology;


� inter-module parallelism : modules can be composed in computation
graphs of general structure. Modules can represent different subjects tak-
ing part of the whole application (e.g. as in a client-server system), or can


1In the rest of this report we will assume a classical local environment model (also called
message-passing) for parallel computations.
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correspond to different application phases involving complex and time-
consuming processing.


The methodology that we are introducing is aimed to completely model the
performance at any level, formalizing the internal behavior of a single module
and the performance of the entire computation graph.


In[1] a performance modeling for steam-based parallel computations is ex-
pressed in terms of fundamental results in the area of Queueing Theory and
Queueing Networks. These theories are a starting point that allow us to for-
malize important issues related to:


� how to evaluate the performance of a graph computation starting from
the knowledge of the theoretical performance of each module;


� how to evaluate the effective performance of a module based on its the-
oretical performance and the performance behavior of the other modules
of the computation graph;


� how to detect bottlenecks in a parallel computation, that is modules that
seriously limit the performance of the entire application.


A basic point consists in modeling the performance of a module M (e.g
either sequential or internally parallel) by abstracting its behavior as a queueing
system, as shown in Figure 1. This scheme is a logical one, not necessarily


MTA


TS


ρ


queue


Tp


Figure 1: A computation module modeled as a queueing system.


corresponding to the real implementation. However, it is aimed at capturing
the essential elements of the problem at hand. For example, in same real cases
there are distinct communication channels between modules in both directions:
a single queue in front of M could not exist physically, however it is emulated
by a set of channel buffers in the source and destination nodes. The behavior
of a queueing system is characterized by expressing five different parameters:


1. The service discipline: if not explicitly defined the FIFO policy is assumed;


2. The queue size, that is the number of buffer positions available for storing
the in-coming requests to the module;


3. The probability distribution of a random variable inter-arrival time ta (i.e.
time interval between two consecutive arrivals of requests), with average
value TA and variance σA;
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4. The probability distribution of a random variable service time ts, which
represents the theoretical time passing between the beginning of the exe-
cutions on two consecutive stream elements. This parameter depends only
on the internal features of the module in isolation, not considering the in-
teractions with other modules of the computation graph. We denote with
TS and σS the average value and the variance of this random variable;


5. The probability distribution of a random variable inter-departure time tp
(with average value Tp and variance σP ), which indicates the time between
two successive result departures from the module.


A central parameter for our performance evaluation is the utilization factor
ρ of the queueing system, defined by the following ratio:


ρ =
TS
TA


(1)


It expresses a global, average measure of the congestion degree, or traffic inten-
sity, of requests to the queueing system. Large values represent high congestion
degrees whereas small utilization factors consist in a more limited workload
condition to the node.


With the modeling introduced above, each application module can be ab-
stracted as a queueing system and the computation graph can be described as
a network of queues[2], where the departures of some nodes form the arrivals of
others. From the network topology viewpoint, queueing networks can be cate-
gorized into two broad classes namely open queueing networks and closed
queueing networks. In an open queueing network a possibly infinite number
of requests are generated by source nodes, go through several nodes or even
revisit a particular node more than once and finally leave the system. On the
other hand, in a closed queueing network requests neither arrive at nor depart
from the system, but a fixed number of requests circulate through the nodes of
the network. Open and closed networks are powerful modeling tools that have
been applied for realistically formalizing the performance behavior of different
classes of systems. Open networks have been used for modeling flows as in traffic
models and notably in data networks. Closed networks are considered a valuable
tools for modeling systems where there exists a finite input population. CPU
scheduling[3], supply-chain manufacturing systems[4] and window-type network
flow control[5] are typical examples in this sense.


Several classes of stream-based parallel computations can be modeled us-
ing queueing network models. In this section we will use different modeling
techniques for two general computation graph structures:


Acyclic computation graphs describe complex distributed applications in-
volving several computing phases. A large set of tasks is generated by
source modules in the computation graph. Each task passes through the
module following a certain routing strategy: each module performs a spe-
cific elaboration for each received task. For modeling the performance of
such applications we will use acyclic open queueing networks: i.e. a re-
quest in the network can pass through any particular node at most once.
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Cyclic computation graphs describe parallel computations exhibiting a request-
reply behavior. Notable examples are client-server applications in which
client modules transit requests and then wait for the corresponding re-
sults from a server module. In this case the performance behavior will be
studied by using cyclic closed queueing network models.


Based on the previous distinction in the rest of this section we will describe the
performance modeling of these two classes of computation graphs. The following
considerations will be completely independent w.r.t the internal behavior of each
computation module, i.e. if it is sequential or internally parallel. In fact, the
only thing that we need to know is the theoretical service time of each module
that composes a graph. The behavior of intra-module parallelism will be based
on the very same results provided in the following sections for general application
graphs.


2 Acyclic Computation Graphs: analytical treat-
ment


For acyclic graphs, Queueing Networks theory is a sufficiently powerful
methodology for our modeling purposes. It does not utilize an explicit ana-
lytical treatment in terms of probability distributions, instead the performance
modeling is expressed in terms of some basic results about the information flow
in the network, the presence of bottlenecks and the average values of inter-arrival
and service time variables 2. In the rest of the discussion we will assume that
each computation module produces exactly one output stream value for each re-
ceived task. This assumption simplifies the model construction without limiting
its scope, since many stream-based computations can be described as a graph
following this behavior (or semantically reducible to it).


In order to evaluate acyclic graphs of computation modules we consider two
interrelated phases:


� Transient analysis consists in a formal studying of the network behavior
in the initial transient phase of the execution. For transient phase we
intend the initial situation in which the mean inter-departure time from
each node can significantly change at relatively short time periods due to
the starting conditions of the network (e.g. the theoretical service time
of the nodes and their maximum queue size). This analysis is aimed to
evaluate for each node its utilization factor and to discover the presence of
bottlenecks: when ρ > 1 a node represents a bottleneck, since it is not able
to process the in-coming requests at their arrival rate but the information
flow is delayed by the node presence;


� Steady-State analysis provides results for evaluating the effective per-
formance (i.e. the mean inter-departure times) of each node in the network


2For the acyclic graph modeling if not specifically expressed we intend service time and
inter-arrival time values as average measurements.
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during the steady-state phase. For steady-state we intend the situation in
which the mean inter-departure times are completely stabilized and the
network behavior is no longer influenced by the initial conditions.


Both during the transient and the steady-state phase, the mean inter-departure
time from each node may be higher than its theoretical mean service time. In
particular Tp = TS+∆ where ∆ ≥ 0 is a delay induced by two possible situations
that may happen:


� a node M may receive service requests with an average inter-arrival time
higher than its service time. This means that after the completion of the
service on a stream element, the node must wait (it is blocked) for the
reception of the next one before starting the successive service;


� in real systems queues have a fixed maximum size in terms of in-coming
tasks received by other nodes. If a task attempts to enter a full capacity
destination queue upon completion of a service at node M , it is forced
to wait in this node until the destination node has a free position in its
queue. During this phase the source module M stops processing tasks (it
is blocked) until destination node completes a task service. This behav-
ior is known as blocking-after-service[6] and is an effective modeling for
computing modules that asynchronously exchange messages onto channels
with a limited buffer size.


Let us suppose that during our graph analysis we discover a node M :


� if the mean inter-arrival time to M is greater than its service time (i.e.
during the transient phase its utilization factor is less than 1), the inter-
departure time from M equals its inter-arrival time and the node is not a
bottleneck (at steady-state its utilization factor ρ keeps to be lower than
1);


� if the mean inter-arrival time is lower than the mean service time, M is a
bottleneck and during the transient phase its utilization factor is greater
than 1. When its input queue becomes full, upstream nodes start to be
blocked and the effect is that at steady-state the effective inter-arrival
time to M will be increased in such a way as to coincide with its average
service time. This means that the condition ρ > 1 is only a transient one.


Therefore the following proposition is verified by flow conservation at each node
of a queueing network:


Proposition 2.1 (Steady-State behavior of a node). At steady-state for each
node its effective mean inter-arrival time is equal to its mean inter-departure
time. If the inter-arrival time also coincides with the average service time of the
node, the node is a bottleneck and its utilization factor stabilizes to 1. Otherwise,
if a node is not a bottleneck, its utilization factor stabilizes to a value less than
1.


5







In the rest of this section we will provide the basic results for studying
acyclic computation graphs of any form. In particular we are interested in some
analytical results that allow us to study the graph behavior during the transient
phase, identify the bottleneck nodes and their blocking effects on the other nodes
in such a way as to determine the long-term, steady-state behavior of the graph.


In the following discussion we will start by considering deterministic arrivals
and service times: i.e. initially we will suppose constant service times (with zero
variance) for each node of the network. Later in this report we will describe the
impact of randomness on the provided results.


2.1 Analysis of Tandem Queueing Systems


We start from a first situation in which two nodes are joined in series as
depicted in Figure 2. Requests are generated by the first node S1 and will join
the next one S2. In other words the departing requests from the first node
form the arrivals to the second one. Let us suppose that these two nodes are


S S1 2


Ts1 Ts2


Tp2
Tp1


Figure 2: Two-queue tandem system.


characterized by theoretical service times TS1 and TS2 respectively. During the
transient phase the utilization factor of the second node is determined by the
following ratio:


ρS2
=
TS2
TA


=
TS2
TS1


At the beginning of the system execution, for the second node its inter-arrival
time TA corresponds to the service time of the first node of the network. At this
point we need to evaluate what nodes are bottlenecks in this simple graph and
the effective behavior of each node at steady-state, that is the inter-departure
times Tp1 and Tp2 from the two nodes.


According to the utilization factor definition, the second node is a bottleneck
iff its utilization factor is greater than 1 (i.e. if TS2 > TS1). Let us consider the
case in which this is not true, so the service time of the first node is not smaller
than the second one: TS1 ≥ TS2. This scenario is simulated in Figure 3. In this
case the bottleneck node of the graph is the first one. As we have seen if a node is
a bottleneck, at steady-state its service time coincides with its inter-departure
time (and also to its fictitious inter-arrival time) because the node is never
blocked due to communications with other nodes in the network. Therefore we
have that Tp1 = TS1. For the second node its utilization factor is less than 1
(the node is under-utilized) and it is periodically blocked for receiving a new
request from S1. From Figure 3 we can see that S2 is delayed by a waiting
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waiting bubble waiting bubble


inter-departure time from S2


TS1


TS2


TS1 TS1


TS2


Figure 3: Two-queue tandem analysis: first node is the bottleneck.


bubble ∆ equals to TS1 − TS2. Thus the inter-departure time from S2 is given
by:


Tp2 = TS1 + ∆ = TS2 + (TS1 − TS2) = TS1


This means that during the transient phase (and also during the steady-state
phase too) the inter-departure time from the second node equals the service
time of the first one, if S1 is the bottleneck node of the tandem network.


The opposite case considers the situation in which the utilization factor of
the second node is greater than 1, thus TS2 > TS1. After an initial transient
phase the queue of the second node becomes full and the steady-state behavior
is depicted in Figure 4. Upon the completion of the current service, S1 is not


S1


S2


waiting bubble waiting bubble waiting bubble


inter-departure time from S


TS2 TS2 TS2


TS1 TS1 TS1


1


Figure 4: Two-queue tandem analysis: second node is the bottleneck (steady-
state behavior).


able to transmit the next request to the second node S2 until this node frees a
position in its queue. This means that the first node is delayed by the remaining
service time in the second node, which is equal to ∆ = (TS2 − TS1). Hence at
steady-state the inter-departure time from the first node becomes:


Tp1 = TS1 + ∆ = TS1 + (TS2 − TS1) = TS2


Therefore the inter-departure time from the first node equals the theoretical
service time of the second node. Moreover, since the second node is the bot-
tleneck of the graph, also its inter-departure time equals its service time: i.e.
Tp2 = TS2.
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We can summarize the previous results concerning a two-queue tandem sys-
tem:


Tp1 = Tp2 = max{TS1, TS2} (2)


At steady-state the effective behavior of the two nodes, that is their inter-
departure times, are equal to the maximum theoretical service time of the two
nodes of the network.


S S SS1 2 N
. . .


N+1TpN
inductive hypothesis


TpN+1


Figure 5: Performance analysis of a pipeline graph.


The previous results can be generalized to a tandem system of an arbitrary
number of nodes (see Figure 5), also known as the pipeline graph. In this case
the following proposition holds:


Proposition 2.2 (Pipeline). In a pipeline graph of any length the bottleneck is
the node with the largest theoretical service time. Moreover, the inter-departure
time from each node of the graph is equal to that theoretical service time.


Proof. The proposition can be proved by induction on the pipeline length. The
two-queue tandem system is the base case which has been already demonstrated
earlier. Hence we can directly consider the inductive case: we have a pipeline of
N nodes and we know from the inductive hypothesis that the inter-departure
time Tpi from each node is equal to the maximum theoretical service time of
the N nodes in the graph: i.e. ∀i = 1, 2, . . . N Tpi = TSZ


= maxNj=1{TSj
},


where SZ , with 1 ≤ z ≤ N , is the bottleneck node. Now, in order to complete
the inductive reasoning, we consider the presence of a further node SN+1 with
theoretical service time TSN+1


, which is added at the end of the pipeline graph
(see Figure 5). We have two possible situations:


� If TSN+1
≤ TSZ


the inter-arrival time to SN+1 (which is equal to the inter-
departure time from SN i.e. TpN = TSZ


) is greater than the service time
of the new node. We are in the very same scenario as the one depicted in
Figure 3. The new node is periodically blocked to wait for the reception
of the next request from node SN . This means that the inter-departure
time from SN+1 equals its inter-arrival time (both during the transient
and the steady-state phase), that is TpN+1


= TpN = TSZ
. Therefore the


proposition is verified;


� Let us consider the case TSN+1
> TSZ


. During the transient phase the
inter-arrival time to the new node is equal to the inter-departure time
from the last node of the pipeline (i.e. TpN = TSZ


) and it is lower than
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the theoretical service time TSN+1
of the new node. This means that we


are in the case depicted in Figure 4. Since TSN+1
> TSZ


= maxNj=1{TSj},
SN+1 becomes the new bottleneck of the graph and its inter-departure
time equals its service time, i.e. TpN+1


= TSN+1
. At steady-state the node


SN is periodically blocked for transmitting a new request to SN+1, and
for Proposition 2.1 its inter-departure time adapts to the service time of
the new bottleneck node TpN = TSN+1


. The reasoning can be repeated
for node SN−1 up to node S1, proving that the inter-departure time from
each node of the pipeline equals the service time of SN+1 (i.e. the new
bottleneck of the graph).


2.2 Analysis of a Queueing System with Multiple Desti-
nations


Let us consider the case of a node with multiple out-going communications
with other nodes (Figure 6). Let us suppose to have a graph composed of a
source node S and a set of destination nodes D1, D2, . . . , DN . In general desti-
nation nodes are able to provide distinct services: each request from S is routed
to a specific destination node according to a certain probability distribution.
Let pi the probability that a request from S is directed to the destination node
Di, where:


N∑
i=1


pi = 1


If TDi is the service time of any Di, a crucial point is to determine the inter-
arrival time TAi to each destination node and thus if they are bottlenecks or
not. If we denote with TpS the inter-departure time from the source node S,


S


TD1


TS
.
.
.


D1


TDN


DN


p
1


p
N


Figure 6: Example of a queueing system with multiple destinations.


9







we can determine the inter-arrival time to each destination during the initial
transient phase:


Proposition 2.3 (Inter-arrival time during the transient phase). During the
initial transient phase, the inter-arrival time TAi


to each destination Di is given
by:


TAi
=
TpS
pi


(3)


Proof. Node S transmits requests to a particular destination node Di with prob-
ability pi and to the set of the other destination nodes with probability 1− pi.
For this reason the inter-arrival time tAi


is a random discrete variable with the
following distribution:


tAi
Probability


TpS pi
2 · TpS pi · (1− pi)
. . . . . .


N · TpS pi · (1− pi)N−1


Thus the average inter-arrival time TAi
is given by3:


TAi =


∞∑
n=0


nTpS pi (1−pi)n−1 =
pi TpS


(1− pi)


∞∑
n=0


n (1−pi)n =
pi TpS


(1− pi)
· (1− pi)


p2i
=
TpS
pi


The previous result allows us to determine the utilization factor for each
destination node, and thus to establish if some of them are bottlenecks or not.
If no destination node is a bottleneck, its inter-arrival time is greater than its
service time, i.e. TAi ≥ TDi . Therefore in this case the inter-departure time
Tpi from each destination node (both during the transient and the steady-state
phase) equals its inter-arrival time: i.e. Tpi = TAi


.
On the other hand, if at least one destination node is a bottleneck, all the


inter-arrival times can no more be derived independently each other: i.e. the
bottlenecks influence the inter-arrival times to the other destination nodes of
the network. Fortunately we can prove that only the worst bottleneck node,
that is that with the highest utilization factor influences the inter-arrival times.
In fact the following proposition holds:


Proposition 2.4 (Steady-State analysis of a multiple-destination queue). If
at least one destination node is a bottleneck (∃i : ρi > 1), let us denote DZ


the node with the highest utilization factor: i.e. ρz = maxNi=1 ρi. The effective


3We use the general property:
∑∞


n=0 nx
n =


x


(1 − x)2
for x < 1.
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(steady-state) inter-arrival time to any destination node Di with i = 1, . . . , N is
obtained by correcting the result of Proposition 2.3 due to the bottleneck presence.
The effective inter-arrival time is determined by the following expression:


T
′


Ai
= TDZ


· pz
pi


(4)


Proof. The bottleneck existence introduces a delay in the S activity with prob-
ability pz, i.e. the steady-state inter-departure time from S is increased w.r.t
the transient one TpS . This influences the steady-state inter-arrival times to
the other destination nodes. From Proposition 2.1 the new inter-departure time
from S is a value such that:


T
′


pS


pz
= TDz =⇒ T


′


pS = pz · TDz ≥ pz · TAz = pz ·
TpS
pz


= TpS


The inequality holds since DZ is a bottleneck (i.e. ρz > 1).
At this point we can show that, after the correction of the inter-departure


time from S, no destination node can have an utilization factor higher than
1. This can be proved by absurd. Suppose that exists a destination node
Dj different from DZ which remains a bottleneck after correcting the inter-
departure time from S. This means that the following inequality is verified:


TDj


T
′
Aj


> 1


where T
′


Aj
is the corrected inter-arrival time to Dj . By expanding the expression


we have:
TDj


T ′
pS


· pj =
TDj


TDZ
· pz
· pj > 1


That can be transformed into:


TDj
· pj > TDZ


· pz ⇒
TDj
· pj


TpS
>
TDZ


· pz
TpS


⇒ ρj > ρz


which is absurd since by initial hypothesis we have assumed that DZ was the
destination node with the highest utilization factor. The consequence of this
fact is that, as steady-state, no further destination node is a bottleneck anymore.
Therefore at this point we can apply Proposition 2.3 in order to find the effective
inter-arrival time to the destination nodes, which is given by:


T
′


Ai
=
T


′


pS


pi
= TDz ·


pz
pi


11







With the previous results, only Dz is the real bottleneck of the graph that
influences the steady-state behavior of all the other nodes. This means that its
theoretical service time coincides with its inter-departure time (and also with its
corrected inter-arrival time). For all the other destinations instead, their steady-
state inter-arrival times are higher than their service times and they coincide
with their inter-departure times: i.e. Tpi = T


′


Ai
.


2.3 Analysis of a Queueing System with Multiple Sources


Let us consider a node S that accepts service requests from a set of sources
(clients) C1, C2, . . . , CN (see Figure 7). Let us denote with TS the service time
of S and with Tpi the inter-departure time from each client Ci. We can note


C1


Ts


CN


.


.


.
STA


T 1p


T Np


T
Sp


Figure 7: Example of a queueing system with multiple sources.


that this graph does not contain cycles: the node S starts a service whenever
a request is present in its queue and the results are transmitted outside the
depicted network, e.g. to further destination nodes. The total inter-arrival time
TA to S can be determined by applying the proposition:


Proposition 2.5 (Aggregate inter-arrival time). If a node S has multiple sources
each one with an inter-departure time Tpi to S, the total inter-arrival time to S
is given by:


TA =
1


N∑
i=1


1


Tpi


(5)


Proof. As it is known the inverse of the inter-arrival time is the arrival rate
(or frequency), that is the number of requests received in a time unit. In the
previous graph structure the arrival rate from each client is equal to:


λi =
1


Tpi
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The total number of requests received by S in a time unit can be simply
determined by summing the individual arrival rates from each clients: i.e.
λtot =


∑N
i=1 λi. Thus we have:


TA =
1


λtot
=


1
N∑
i=1


λi


=
1


N∑
i=1


1


Tpi


Once the aggregate inter-arrival time to S has been determined, we can
calculate its utilization factor. if ρS ≤ 1 the inter-departure time from S (both
during the transient and the steady-state phase) equals its inter-arrival time (the
node is periodically blocked for receiving the tasks from clients), i.e. TpS = TA
and client inter-departure times continue to be equal to Tpi .


On the other hand if ρS > 1, the node is a bottleneck and its inter-departure
time equals its theoretical service time: i.e. TpS = TS . In this case we need to
determine the steady-state inter-departure times from clients that will certainly
be greater than the original ones. In function of the specific probability dis-
tributions of service times (e.g. deterministic and exponential distributions are
notable cases), this problem can be studied in a ”stand-alone” fashion, proving
approximated results based on queueing theory. Instead in the next section we
will provide an elegant and effective approach for determining the performance
analysis of acyclic graphs which is valid for a broad range of graph structures.


2.4 An algorithm for the Performance Analysis of Single-
Source graphs


With the previous results we have the basic tools for evaluating the perfor-
mance of acyclic graphs modeling complex application work-flows. An impor-
tant problem that we need to study is how we can apply the previous results in
order to define an automatic procedure for exploiting the performance analysis
of acyclic graphs. In particular we need an algorithm designed for solving the
following problem:


Problem 2.6 (Steady-State analysis of acyclic computation graphs). Given an
acyclic computation graph G = (V,E) in which each node represents a compu-
tation module, we need a procedure that determines the inter-departure times,
that is the effective performance behavior at steady-state, of each node in the
graph.


In Figure 8 is depicted an example of an acyclic computation graph of seven
modules working asynchronously and cooperating by exchanging messages. In
the graph each node is labeled with its theoretical service time (let us consider
t as a standardized time unit) and when a node has multiple in-coming edges,
they are labeled with the corresponding probability of reception. We need an
algorithm that has the following features:
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Figure 8: An acyclic computation graph labeled with the service times of each
node.


� it needs to perform an ordered graph traversal: to correctly establish for
each node its inter-arrival time and thus its utilization factor, each node
should be visited only when all its in-coming neighbors have been visited
and their inter-departure times correctly determined;


� for each node of the graph it is necessary to calculate its inter-arrival time
and its utilization factor in order to discover if it is a bottleneck or not.
We have two possible situations. (1) The currently visited node is not a
bottleneck: its service time is equal or less than its inter-arrival time and
substantially the node does not influence the inter-departure times neither
of the already visited nodes nor of the nodes that are still to be explored.
(2) The current node is a bottleneck: as we have seen the condition ρ > 1
is only a transient one because the bottleneck presence influences the inter-
departure times of the previously explored nodes (they will be properly
incremented).


The first requirement implies that the nodes of the graph should be visited
according to a specific ordering. As it is known from basic notions in Graph
Theory, every directed acyclic graph has at least one topological ordering, i.e. an
ordering of its nodes such that the starting vertex of every edge occurs earlier in
the ordering than the ending vertex. It can also be shown that an acyclic graph
can have multiple admissible topological orderings whereas, as a very special
case, pipeline graphs admit only a unique ordering (i.e. they can be mapped
onto a total ordering relation). Therefore let us suppose to have one of these
topological orderings as input of the algorithm. We can observe that if the
algorithm visits the nodes following this ordering, the first requirement will be
achieved: each node will be visited iff all its in-coming neighbors have already
been explored. An example of a topological ordering of the graph in Figure 8 is
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depicted in Figure 9.


S1 S2 S3 S5 S6 S7S4


Figure 9: A topological ordering of the graph depicted in Figure 8.


We need a data-structure that represents each node of the graph. Each node
n has four numerical attributes that describe: (1) its inter-arrival time; (2) its
service time; (3) its inter-departure time; (4) its utilization factor. Moreover the
node maintains a list OUT of references to out-going neighbors and a list IN
of pairs (n


′
, p), where n


′
is a reference to one of its in-coming neighbors which


transmits to n with probability p.


Function of a node data-structure


Class Node {1


double TA;2


double TS ;3


double Tp;4


double ρ;5


ListNode OUT ;6


ListPair IN ;7


}8


This data-structure is properly initialized when the algorithm starts. For
each node the service time variable and the IN and OUT lists are properly ini-
tialized according to the structure of the input graph. The inter-arrival and the
inter-departure times will be calculated by the algorithm. For each sink node we
assume the presence of a fictitious out-going edge such that the inter-departure
time can always be defined. For each source node (although in-coming edges do
not exist), the inter-arrival time is kept to be equal to the inter-departure time
from that node (and furthermore at the beginning of the execution it coincides
with the service time of the node too).


The algorithm evolves as follows:


1. The inputs are a directed graph G = (V,E) and one of its topological
ordering S (represented as an array of |V | nodes);


2. The algorithm performs the graph traversal by visiting each node following
the ordering S. For each explored node its inter-arrival time and its actual
utilization factor are determined. Therefore we are able to identify if the
node is a bottleneck or not;
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3. If the currently explored node is not a bottleneck (ρ ≤ 1), its inter-
departure time equals its inter-arrival time and the graph traversal con-
tinues with the next node in the topological ordering S;


4. If the explored node is a bottleneck (ρ > 1), its inter-departure time coin-
cides with its service time. At this point the algorithm needs to update the
inter-departure times of the nodes already visited in the graph ordering;


5. The algorithm ends when all the nodes have been explored and bottlenecks
are not discovered anymore (i.e. all nodes have an utilization factor less
or equals to 1).


The fourth point is the most critical one. An elegant approach can be formulated
for input acyclic graphs in which there is exactly one source node . In this
case we are able to define an efficient algorithm whose correctness can be proved
by introducing the following invariant property:


Invariant 2.7. When the i-th node in the input topological ordering S is visited,
all the previously explored nodes (from the first one to the (i − 1)-th of the
ordering) will have an utilization factor less or at most equals to 1.


The invariant is satisfied at the beginning of the execution. Every topological
ordering of a single source graph starts with the source node which is the first
vertex. As stated before, for the source node its inter-arrival time is initialized
to its service time, thus its utilization factor is initially equal to 1. If, during
the graph traversal, no bottleneck node is discovered, the algorithm will end
when the last node is visited. In this case for each node its inter-departure time
equals its inter-arrival time and the graph analysis is trivially completed.


On the other hand let us suppose that when the i-th node of ordering is
visited, its utilization factor is greater than 1. This situation is depicted in
Figure 10. Let us consider the currently discovered bottleneck the node Sb at


S


B
Tp
S Tb


TA


π


π


'


Figure 10: Bottleneck discovery.
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position i of the topological ordering. Its service time is Tb which is greater than
its actual calculated inter-arrival time TA (i.e. ρb > 1). Since, by the invariant,
every previous node in the ordering has already been visited and its utilization
factor is less (or equal) to 1, the inter-arrival time to Sb can be expressed in
function of the actual inter-departure time TpS from the unique source node of
the graph. To this end we take the set P(Sb) of all the paths in the graph
starting from the source node and ending to the current bottleneck node Sb. A
path π is an ordered sequence of edges such that the origin of each is equal to
the destination of its predecessor edge. E.g:


π =
〈


(N1, p1, N2), (N2, p2, N3), . . . , (Nk−1, pk−1, Nk)
〉


Where a directed edge is represented as a triple e = (N, p,N
′
) where the first


and the third element are the two end-point vertices of the edge and the second
element is the probability that the first node transmits to the second one. For
brevity we indicate with e.p the probability corresponding to the edge e. By
invariant all the nodes preceding Sb in the ordering have ρ ≤ 1, thus we can
determine the inter-arrival time to Sb by taking all the paths starting from
the source node and ending to Sb, and iteratively applying Proposition 2.3 to
calculate the inter-arrival time.


TA =


 ∑
∀π∈P(Sb)



∏
∀e∈π


e.p


TpS


−1 (6)


As we have seen the presence of the new discovered bottleneck node Sb in-
fluences the inter-departure times of all the previously explored nodes: i.e. they
must be properly corrected. In particular after these corrections, the new inter-
arrival time T


′


A to Sb must be equal to its service time Tb (see Proposition 2.1).
Moreover after the corrections the utilization factors of all the previously ex-
plored nodes will decrease, since their inter-arrival times are higher than the
ones before the discovery of the bottleneck Sb. Thus, similarly to the previous
case, we can express the new inter-arrival time to Sb in function of the corrected
inter-departure time from the source node T


′


ps :


T
′


A =


 ∑
∀π∈P(Sb)



∏
∀e∈π


e.p


T ′
pS


−1 = Tb (7)


In order to understand how we can correct the inter-departure time from the
source, we can express the following relation: T


′


ps = Tps · α where α is a mul-
tiplicative factor greater than 1 (since the corrected inter-departure time needs
to be greater than the previous one). At this point we can study how α can be
determined: ∑


∀π∈P(Sb)



∏
∀e∈π


e.p


α TpS


−1 =
αTpS∑


∀π∈P(Sb)


( ∏
∀e∈π


e.p


) = Tb
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From which we obtain the right expression for the coefficient α:


TpS∑
∀π∈P(Sb)


( ∏
∀e∈π


e.p


) =
Tb
α


We can observe that the first element of the equation is the original inter-arrival
time TA, thus we can write:


TA =
Tb
α


=⇒ α =
Tb
TA


= ρb


Therefore, when a new bottleneck node is discovered, we can correct the inter-
departure time from the source node by multiplying the old inter-departure time
by the utilization factor of the bottleneck node.


Proposition 2.8 (Invariant preservation). During the algorithm execution, if
the i-th node of the topological ordering is a bottleneck (ρi > 1), we need to
correct the inter-departure time from the source by multiplying this value by the
utilization factor ρi. Then the algorithm is re-started from the beginning and,
this time, when the i-th node is reached its utilization factor will be equal to 1
and all the previous nodes will continue to have an utilization factor less than
1.


Proof. This proposition proves the correctness of the algorithm. Multiplying
the inter-departure time of the source by the utilization factor of the discovered
bottleneck is the only way to achieve a new corrected inter-arrival time T


′


A to Sb
equals to its service time Tb. Since ρb > 1 this means that the corrected inter-
departure time T


′


ps is greater than the original one Tps , and thus the nodes
preceding Sb in the ordering will continue to have an utilization factor less than
1.


The algorithm 2 presents an automatic procedure for single source acyclic
graph analysis. The algorithm proceeds in the following fashion. All the nodes
are visited according to an input topological ordering. For each node is cal-
culated its inter-arrival time by accessing its IN neighbor list (row 4). After
that the utilization factor of the node is determined (row 5) and the bottleneck
and non-bottleneck cases are examined. The most simply situation is when no
bottleneck is discovered: in this case (from row 9 to 11) the inter-departure time
of the current node is equal to the calculated inter-arrival time. Otherwise, if a
bottleneck is discovered (from row 6 to 8), the inter-departure time of the source
(first node in the ordering) is corrected as we have said and the visit re-starts
from the first node.


Proposition 2.9 (Time complexity of Steady-State analysis). At the worst
case the time complexity of steady-state analysis is O(|V |2) for sparse graphs
and O(|V |3) for dense graphs.
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Algorithm 2: Steady-State Analysis(G, S)


Data: a single-source acyclic graph G = (V,E) and one of its topological
ordering S.


Result: at the end of the execution the attribute Tp of each node
corresponds to its inter-departure time at steady-state.


begin1


i ← 1;2


while i ≤ |V | do3


S[i].TA =


( ∑
(u,p)∈S[i].IN


p


u.Tp


)−1
;


4


S[i].ρ =
S[i].TS
S[i].TA


;
5


if S[i].ρ > 1 then bottleneck case6


S[1].Tp = S[1].Tp × S[i].ρ;7


i ← 1;8


else not bottleneck case9


S[i].Tp = S[i].TA;10


i ← i+ 1;11


12


end13


Proof. The cost in terms of time complexity of a graph traversal (without any
restart) is O(|V | + |E|), since for each node its list IN is visited once (see
row 4). The traversal of the graph needs to be re-started whenever a bottleneck
node is discovered. Let us consider B the number of bottleneck nodes that
are discovered during the algorithm execution, where 0 ≤ B ≤ |V |. For each
bottleneck node the source inter-departure time is corrected and the traversal
re-starts from the beginning. Thus the complexity of Steady-State analysis is
O (B · (|V |+ |E|)) where at the worst case B = |V | (i.e. whenever a node is
explored for the first time it results a bottleneck). Therefore for sparse graphs
(where |E| = O(|V |)) the time complexity is O(|V |2) whereas for dense graphs
(where |E| = O(|V |2)) is O(|V |3). We can also notice that if no bottleneck node
is never discovered (i.e. B = 0), the time complexity of the algorithm is the
same of a simple graph traversal.


For completeness we can observe that the algorithm needs as input the
acyclic graph G but also one of its topological ordering S. As it is known
the time complexity for finding a topological ordering is the same of a DFS
(depth-first search) traversal[7] of the graph, i.e. O(|V |+ |E|). Thus the cost of
Algorithm 2 certainly dominates the overall time complexity for the steady-state
analysis.


Example. In Figure 11 it is provided an example of steady-state analysis of
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S1


S3


S4


S2


S7


S6
30t


40t


25t 200t


27t


150t


25t


50t


75t
75t


~166t


~54t


S5


(a) The graph traversal starts from the node S1. It is the unique source so its inter-arrival time is initially equal to
its service time. Next, node S2 is explored: the node is not a bottleneck since its inter-arrival time (50t) is greater
than its service time. The same thing happens for nodes S3 (with inter-arrival time 75t) and for S4 with inter-arrival
time ∼ 166t. When S5 is discovered, its is a bottleneck: its inter-arrival time ∼ 54t is less than its service time
150t and its utilization factor is ρ5 =∼ 2.79. Therefore we update the inter-departure time of the source node that
passes from 30t to 30t · ρ5 =∼ 84t.


S1


S3


S4


S2


S7


S6


40t


25t 200t


27t


150t


25t


~465t


~150t


S5


~84t


~140t


~209t
~209t


~266t
~266t


~123t


(b) At this point the graph traversal re-starts from node 1. When S5 is reached, it is not a bottleneck anymore (i.e.
ρ5 = 1). Now the node S6 is explored and it is not a bottleneck (its inter-arrival time is ∼ 266t). Then the last
node S7 is visited and its inter-arrival time ∼ 123t is less than its service time 200t. So this node is a bottleneck
and its utilization factor is ρ7 =∼ 1.62. Hence we update the inter-departure time of the source node that passes
from ∼ 84t to 84t · ρ7 =∼ 136t.


S1


S3


S4


S2


S7


S6


40t


25t 200t


27t


241t


25t


~755t


~943t


S5


~136t


~226t


~340t
~340t


~427t
~427t


~200t ~200t


(c) The graph traversal re-starts from node 1. At this point no bottleneck node is identified: i.e. for every node
in the graph its utilization factor is now lower or equal to 1. The algorithm terminates correctly providing the
steady-state behavior of the acyclic graph.


Figure 11: An example of steady-state analysis of an acyclic graph.
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Node Service time Inter-departure time Utilization factor


S1 30t ∼ 136t ∼ 0.22
S2 40t ∼ 226t ∼ 0.174
S3 25t ∼ 340t ∼ 0.0736
S4 25t ∼ 755t ∼ 0.0326
S5 150t ∼ 241t ∼ 0.62
S6 27t ∼ 427t ∼ 0.063
S7 200t 200t 1


Table 1: Results of steady-state analysis.


an acyclic graph. Let us consider the input graph depicted in Figure 8 labeled
with the service times for each of its nodes and the routing probabilities for
each edge. Figure 11 depicts the different phases of the execution following the
topological ordering shown in Figure 9. Gray nodes represent explored vertices,
white nodes correspond to vertices that are still to be explored whereas a point-
based black node is the currently discovered bottleneck. The final results are
also shown in Table 1.


2.4.1 Impact of the randomness on the Performance Analysis of
acyclic computation graphs


We conclude the analysis of acyclic computation graphs by providing a brief
discussion about the impact of the randomness on the accuracy of the results
achieved with the steady-state analysis algorithm. In the previous sections we
have assumed deterministic service times for each node of the graph: i.e. for
each node its theoretical service time is a fixed constant value. In this case the
accuracy of the algorithm has been evaluated on several example graphs through
a Queueing Network simulator (Java Modelling Tool [8]). The simulation results
demonstrate an absolute precision of the algorithm which is able to quantify the
steady-state behavior for each node.


Things can become different if we introduce randomness, i.e. if we suppose
stochastic random variables that model the service time of each node. Here, the
service time assumes stochastic values following a probability density function
with a known average value. A valuable modeling for our purposes is assuming
that the service processes of each node follow an exponential distribution. With
this assumption each node in the network is modeled as a M/M/1 queue (instead
of D/D/1 queues as in the previous discussion). As it is known the main property
of this distribution is memoryless: if we assume that each service request (task)
is independent from the others, the service time for completing a task does
not depend on the service times spent for the previous tasks calculated by
the node. This property is simple enough for solving the steady-state analysis
analytically in closed form. Moreover, for stream-based parallel computations,
the independence among tasks is a reasonable approximation of many real cases.


All the previously introduced propositions for pipeline graphs and for multiple-
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destination and multiple-source queues still remain valid assuming that, instead
of having service times that assume constant values, we have a mean value for
each service time of a node in the graph. W.r.t the deterministic case, in the
exponential case the size of each queue plays an important role for attenuating
the impact of the randomness. In fact we expect that the results of the steady-
state analysis approximates well the behavior of a M/M/1 network if, for each
node, the queue size is large enough (but still bounded). For this reason we have
simulated the behavior of the network shown in Figure 8, in which the service
time values are assumed to be the average values of corresponding exponential
random variables. The simulations have been performed by using Java Mod-
elling Tools and by varying the size of each queue. Tests for 50, 25, 12, 6, 3, 2
and 1 buffer positions are depicted in Table 2.


Node Er %.(25) Er %.(12) Er %.(6) Er %.(3) Er %.(2) Er %.(1)


S1 .5014 .2314 2.4086 7.1857 10.2389 18.0247
S2 .7897 .7922 2.4254 7.1375 10.3436 18.3095
S3 .6359 .3814 2.8383 6.9518 10.1564 17.6470
S4 .3411 .1071 1.8848 6.8147 9.46308 18.2592
S5 .7325 .2265 2.2014 6.6678 9.77189 17.8800
S6 .1996 .3984 2.6694 6.8376 9.64912 17.3708
S7 .0820 .0820 .9448 6.4509 9.43553 17.6844


Table 2: Accuracy of the steady-state analysis in function of the queue size of
each node.


In the table are reported for each queue node, the percentage errors of the
simulation inter-departure times w.r.t the ones obtained by the algorithm execu-
tion. As we can expect if we decrease the size of each queue the errors increase.
For this example we can observe that for large enough queue size (up to 12
buffer positions), the errors are less than 1% for each node. For very limited
queue size (i.e. 3, 2 and 1 positions), the errors are less than 8, 11 and 19%
for each node. Therefore we can conclude that steady-state analysis gives quite
precise results w.r.t the simulations for queue size large enough.


3 Cyclic Computation Graphs: analytical treat-
ment


In the previous section we saw that Queueing Networks are a sufficiently
powerful methodology in order to determine the performance modeling of acyclic
computation graphs. The analytical treatment of Queueing Systems, in terms of
probability distributions of inter-arrival and service times, is mainly necessary
for cyclic graph computations exhibiting a request-reply behavior.


Let us consider a system in which client modules C1, C2, . . . , CN transmit
to a server module S a set of requests and need to wait for an explicit reply
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in order to continue their elaboration. An example of these graphs is shown in
Figure 12. As we can see this interaction yields to cycles in the communication
pattern. The parameters of interest in evaluating the server performance are:


� The average queue length, Lq: the average number of client requests in
the waiting queue;


� The average request number in the system, Nq: with respect to the queue
length, it includes the number of currently served requests;


� The average waiting time in queue, Wq: the average time spent by a
request in the waiting queue of the server;


� The average response time, Rq: with respect to Wq includes the time
spent on the currently served request(s). It is also called response time,
and consists in the average time needed from a client to receive the result
for the requested service.


These parameters are related each other in several ways. One of the most useful
results is the Little’s law [9]:


Lq =
Wq


TA
Nq =


Rq
TA


(8)


This law is a fundamental long-term relationship which ties together the concept
of waiting and response time and the concept of population size of the queue.
TA is the aggregate inter-arrival time to the server S, so its inverse represents
the average frequency of arrivals. Other important relations are the following:


Nq = Lq + ρs
Rq = Wq + Ls


(9)


The former holds since the average number of requests currently in the service
phase is equal to the utilization factor of the server ρs = TS/TA, where TS is
the average service time of S. The latter means that we add, to the average
time spent in the waiting queue, the average computation latency Ls of a service
phase. This aspect is very important especially if the server module is internally
parallel. As we know, several structured parallelizations of the server could be
adopted, with different impacts on the average service time and on the average
computation latency. Therefore in the response time expression is of great
importance to consider the computation latency per request, which may be
different from the average service time of the server.


The graph depicted in Figure 12 needs to be properly modeled from the
performance viewpoint in order to evaluate a meaningful parameter: i.e. the
average response time of the server. For this reason one possible approach
consists in modeling this graph as a closed queueing network. Two important
considerations emerge from the semantics of the request-reply behavior:
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Figure 12: Client-Server computation modeled by a closed queueing network.


� each client generates the next request only when the result of the previous
one of the same client has been received. This means that from a modelis-
tic point of view it is equivalent to consider a finite population of tasks,
as many as the global number of clients N , that circulate continually and
never leave the network;


� the network has a self-stabilizing behavior : i.e. a temporary increase in the
inter-arrival time has the effect of a decrease in the server response time
that tends to lower the inter-arrival time itself. In such kind of systems we
cannot speak of bottlenecks, or at least with the same meaning exposed
for acyclic graphs since ρs is always smaller than one. Anyway the stable
behavior of the server queue makes it possible the analytical studying of
the response time distribution and its average value.


Closed queueing networks are a quite complex argument of Queueing Theory
that requires further discussions and a more exhaustive description. In the fol-
lowing part we will provide the basic formulation inherited from[1] for modeling
the performance of cyclic computation graphs of parallel modules, interacting
by exchanging request-reply pairs. Notable cases of this interaction pattern are
client-server parallel applications.


3.1 Performance modeling of Client-Server parallel com-
putations


Let us assume for simplicity that all clients have an identical behavior. Let
TC be the steady-state inter-departure time from each client, TG its service time
and TS the server service time. We need a performance model which is able to
quantify the effective steady-state inter-departure time from each client module.
This inter-departure time is certainly greater than the theoretical service time:
the request-reply behavior imposes that, after the transmission of a request
(which are generated by each client with a theoretical frequency equals to 1/TG),
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the client waits for an explicit reply from the server. Only after the reception of
the reply a further request can be produced by the client. Therefore we expect
that TC is increased w.r.t TG by the response-time of the server (i.e. time spent
in the waiting queue and the time for completing the service). The following
system of equations models the performance of this class of computations:


TC = TG +Rq


Rq = Wq(ρs, TS , TA) + Ls


ρs =
TS
TA


TA =
TC
N


(10)


where the last equality is derived by applying the expression 5 in which N indi-
cates the number of clients. The solution of the system is subject to constraint
ρs < 1, as discussed in the previous section. Proper waiting time (Wq) expres-
sions, of second or higher order in ρs, can be derived by applying well-known
results in Queueing Theory[9]. These expressions depend on the particular prob-
ability distributions of the server service time and of the inter-arrival time from
clients. Formulas can be derived for different cases:


M/M/1 queue : exponential distribution of the inter-arrival time from clients
and exponential distribution of the server service time. In this case the
average waiting time in queue is given by:


Wq =
T 2
S


TA − TS
(11)


M/G/1 queue : exponential distribution of the inter-arrival time from clients
and general distribution for the server service time. The average waiting
time is given by the Pollaczek-Khinchnine formula:


Wq =
σs + T 2


S


2TA − 2TS
(12)


We can notice that σs in the M/G/1 expression indicates the service time vari-
ance. A notable case is when the service time distribution is deterministic (the
server provides a constant service time). In this case we speak about the M/D/1
queue, and the average waiting time can be obtained from (12) with a zero vari-
ance, i.e. σs = 0.


As stated in[1], by using the proper Wq expression the previous system of
equations admits one and only one real, positive solution satisfying ρs < 1,
which is an approximation of the average server response time.


The previous formulas, formally derived for infinite queues, are valid also
for finite FIFO queues with good approximation, especially for relatively large
values of the physical queue positions. When this approximation is not sufficient,
exact formulas also exist for the finite queue[6].
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4 Conclusion


This report provides performance modeling tools for parallel applications
based on basic results on Queueing Theory and Queueing Networks. Our stand-
point considers complex graph-based applications in which each module may be
internally parallel. Two classes of parallelism have been identified: (i) intra-
module parallelism, which is expressed by well-known parallelization schemes
as task-farm and data-parallel ones; (ii) modules can cooperate (inter-module
parallelism) in complex general computation graph structures. In this report we
have described a unified performance modeling approach: starting from the the-
oretical service times of notable parallelism schemes, that can be encapsulated
inside parallel application modules, we have provided an automatic procedure
for calculating the steady-state performance behavior of a general class of com-
putation graphs.
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