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Abstract

Data flow techniques have been around since the early ’70s when they
were used in compilers for sequential languages. Shortly after their intro-
duction they were also considered as a possible model for parallel comput-
ing, although the impact here was limited. Recently, however, data flow
has been identified as a candidate for efficient implementation of various
programming models on multi-core architectures. In most cases, however,
the burden of determining data flow “macro” instructions is left to the
programmer, while the compiler/run time system manages only the ef-
ficient scheduling of these instructions. We discuss a structured parallel
programming approach supporting automatic compilation of programs to
macro data flow and we show experimental results demonstrating the fea-
sibility of the approach and the efficiency of the resulting “object” code
on different classes of state-of-the-art multi-core architectures. The ex-
perimental results use different base mechanisms to implement the macro
data flow run time support, from plain pthreads with condition variables
to more modern and effective lock- and fence-free parallel frameworks.
Experimental results comparing efficiency of the proposed approach with
those achieved using other, more classical parallel frameworks are also
presented.

Keywords: macro data flow, structured programming, multi-core, shared mem-
ory, lock-free queues

1 Introduction

Data flow is a computing model that has been around since the earliest days of
computer science research activities [1, 2, 3, 4]. In classical imperative models
the instruction to execute is determined by the value of a special register–the
program counter–which is normally incremented each time an instruction is
executed or updated in the case of branch instructions. By contrast, in data
flow the instruction(s) to be executed is (are) identified as those having all their
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input data available. Therefore data flow programs are graphs of data flow
instructions.

Each instruction has a function code (the “program” to be executed on
the input data), one or more input tokens (the input data to be processed,
expressed as data plus a boolean flag stating whether the data is available or
not) and one or more destinations (expressed as instruction and token identifiers
where the computed data will be stored/delivered). A macro data flow program
execution proceeds by assigning the input data to the graph input tokens and
then executing a cycle where:

1. fireable instructions are located in the graph (a fireable instruction is a
data flow instruction with all input tokens available, that is, with the
boolean flags of all the input tokens set to true).

2. fireable instructions are scheduled for execution on a functional unit. Nor-
mally, it is assumed that a number of functional units are available, each
capable of executing any of the “programs” represented by the data flow
instruction code. Ideally, scheduling of a data flow instruction to a func-
tional unit implies that the corresponding input tokens are also delivered
to the functional unit.

3. the results of the execution of the fireable instructions are stored in the
locations denoted by the instruction destinations. This activity again
involves transmission of computed result tokens from the functional units
to the data flow graph storage.

The cycle is run until no more fireable instructions exist–de facto the program
termination.

It is clear that properly programmed data flow graphs represent programs
with minimal execution time, as the only dependencies preventing execution of
an instruction are those representing true data dependencies, which are the only
ones that cannot be ignored, suppressed or reduced (without actually changing
the algorithm).

The possibility of executing fireable data flow instructions according to arbi-
trary scheduling on multiple functional clearly presents the possibility of parallel
execution of data flow programs for free. In fact, in the ’80s a number of ac-
tivities have been undertaken aimed at designing and implementing data flow
processors [5, 6, 7, 8]. Those processors were usually build of a matching unit
associated with the data flow graph storage and responsible for the scheduling of
fireable data flow instructions on functional units, and of a number of functional
units, computing fireable instructions and returning to the matching unit the
data flow instruction output tokens along with their destinations in the data
flow graph.

Those architectures turned out to be quite expensive, however, and unable
to deliver significant performance improvements over existing imperative archi-
tectures. The available technology (at that time we were still far behind VLSI
integration as we know it today) required huge investments for the development
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and the marketing of these unconventional architectures. In particular, data
communications to and from functional units turned out to be far less efficient
than those needed to implement the Von Neumann bottleneck communications
associated with conventional imperative programming models. Moreover, the
difficulty of extracting data flow programs from existing applications or provid-
ing high level data flow programming languages suitable for the development of
new applications without incurring huge overheads prevented their wide-scale
adoption and contributed also to their downfall.

The situation is radically different today. As we shall discuss in Sec. 2,
technology advances, in particular those related to the new shared memory
multi-core architecture models and to the implementation of thread/lightweight
processes, allow the data flow programming model to be reconsidered as an
efficient model to support pervasive parallel programming models.

A number of different programming frameworks (e.g.[9, 10, 11]) have already
been developed using (aspects of) data flow concepts to support the implemen-
tation of compilers and run time systems whose main aim is to keep busy the
increasing number of cores–per socket and per system–sharing the same memory
hierarchy. Most of these frameworks heavily rely on the programmer’s ability to
identify data flow instructions, or independent tasks in modern parlance, while
providing limited support for automatic derivation of data flow graphs (with no-
table exceptions in the area of stream processing) from some high level, possibly
declarative descriptions of algorithms/applications.

In this paper we propose a new dataflow-based methodology targeting shared
memory multi- and many-core architectures and we show experimental results
demonstrating the feasibility and the efficiency of the proposed approach. The
methodology is build on two distinct pillars: i) the efficient implementation of
generic parallel macro data flow interpreters, where the term macro refers to the
possibility to have task-level data flow instructions [12], and ii) the automatic
compilation of macro data flow graphs from structured parallel programming
environments based on parallel design pattern/algorithmic skeleton concepts.

The remainder of the paper is structured as follows: Sec. 2 discusses how
efficient parallel macro data flow interpreters may be implemented on top of
modern multi-core architectures. Sec. 3 details how applications may be com-
piled to macro data flow graphs to feed these parallel macro data flow inter-
preters. Sec. 4 presents results obtained with three parallel macro data flow
interpreter implementations on different target architectures and with different
kinds of synthetic and real application kernels. Finally, Sec. 5 discusses related
work and outlines the main differences with the proposed approach and Sec. 6
assesses the main features of our approach and discusses future activities.

2 Macro data flow targeting multi-cores

Modern multi-core architectures are characterized by the following key features:
i) the availability of an increasing number of independent cores sharing part of
the levels of memory hierarchy; ii) different kinds of hardware support for multi-
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Figure 1: Architectural design of the parallel macro data flow interpreter

threading and/or lightweight multi-tasking; and iii) different kinds of hardware
support for automatic cache coherency.

These features match quite well the typical needs of a macro data flow in-
terpreter. First, data movement between logical matching unit and functional
units may exploit the shared memory hierarchy: input and output token point-
ers may be moved around rather than actual, possibly large, data segments.
Second, the availability of increasingly many efficient multi-threading facilities
may be exploited to implement, in software rather than in hardware, efficient
matching and functional units with an increased degree of flexibility and cus-
tomizability of the interpreter. Third, the memory hierarchy can be exploited
to realize token circulation without incurring significant implementation com-
plexity and run-time overheads thanks to cache-coherent shared data (token)
accesses, as these accesses are natively regulated by the correct implementation
of the macro data flow interpreter computing the macro data graph (program).
Last but not least, macro data flow graphs of parallel applications may provide
a number of simultaneously fireable data flow instructions suitable for feeding
a large number of software functional units implemented on the available cores.

Following these principles, we designed a parallel macro data flow interpreter
targeting multi-cores as follows:

• Macro data flow instructions are represented as tuples

〈gid, iid, fid, T ∗, D∗〉

where gid is a graph identifier, iid is the instruction identifier, fid is the
function identifier, T ∗ is the set of input tokens and D∗ is the set of output
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destinations. In turn, input tokens are represented as

〈pointer, boolean presence bit〉

pairs, and output tokens as

〈graph id, instruction id, input token number〉

tuples.

• A global instruction pool hosting macro data flow graphs is defined. Each
time an input data set is available, a copy of the application macro data
flow graph with a fresh graph id is inserted into the pool, with input data
placed in the appropriate input tokens by the input manager thread.

• A matching unit thread is started. It accepts notifications of new to-
kens available from either the input manager thread (input data) or by
the interpreter threads (output tokens from computed macro data flow
instructions–see below). It checks whether the destination instruction of
the tokens has completed its input token sets, and if so, inserts a descriptor
of these new fireable instructions in a fireable instruction queue.

• A number of interpreter threads are started, usually as many as there are
available cores, each pinned to one of the cores. Each interpreter thread
fetches a fireable instruction from the fireable instruction queue, executes
it, stores the output tokens in the appropriate destinations and notifies
the matching unit thread with the id(s) of the updated instruction(s).

The general schema of this parallel macro data flow interpreter is outlined in
Fig. 1.

This parallel macro data flow interpreter adheres to a quite standard master-
workers schema, which is quite typical for this kind of interpreter (see e.g. [13]).
However:

• Communications between matching unit/thread and functional units/threads
are much more efficient, as data is not actually moved: only pointers are
moved, resulting in smaller size memory copies.

• The notification mechanism of new tokens available avoids continuous
scanning of the instruction pool by the matching thread.

• The adoption of a macro data flow model succeeds in mitigating the ef-
fects of communications and synchronizations between matching unit and
functional unit threads, as the amount of work to be performed to execute
a fireable macro data flow instruction is large, significantly different from
the amount of work considered in the ’80s when simple arithmetic oper-
ations were considered as “programs” to be executed when computing a
data flow instruction.
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• Similarly, the adoption of a macro data flow model allows efficient use of
the cache hierarchy, as long instruction computations succeed in making
good use of local caches (i.e., long computations successfully amortize the
time spent to load data into local caches, which is not the case when
simple, very short computations are performed). This positive effect may
be further enhanced by collapsing entire data flow subgraphs into a single
macro data flow instruction in a completely automated and autonomic
way upon observing that the grouped instructions have too fine a grain to
be efficiently executed as separate instructions.

• Exploitation of the memory subsystem may be enhanced by adopting suit-
able affinity scheduling policies, such that instructions using “huge” input
tokens are possibly scheduled to places where those tokens had been pre-
viously consumed/produced, in the hope that copies still exist in local
caches, suitably updated through hardware cache coherence protocols.

We implemented three different versions of this interpreter, differing mainly
in the communication mechanisms used, namely i) shared memory data struc-
tures, protected with Pthread condition variables and mutexes, ii) Unix pipes
and iii) FastFlow lock-free communication mechanisms [14]. All three versions
use pthreads to implement the matching unit and the functional units. Follow-
ing extensive experimentation, we observed that the three versions demonstrate
almost identical behaviour and performances on typical use cases on the ar-
chitectures used for the experiments, and we concluded that the performance
figures obtained are due mainly to the model chosen rather than to the mecha-
nisms used to implement the distributed interpreter.

The scheduling policy used to fetch fireable instructions from the pool may be
programmed in the three cases. The results shown here all use a simple FIFO
policy to deliver fireable instructions to functional units. A macro data flow
program execution ends when no more fireable instructions exist and the policy
chosen to implement the fireable instruction “queue” actually does not impact
the completion time of the application, while it still impacts the service time in
the case of streaming applications, that is, where the application is computed on
a stream of input tasks. In streaming applications, a mechanism is implemented
to guarantee the ordered delivery of results onto the output stream. Tokens with
special “output” destination are routed to an output manager thread that in
this case reorders results according to their graph id, in such a way that the
input/output order is preserved.

3 Compiling to macro data flow graphs

The efficient implementation of the parallel macro data flow interpreter con-
tributes to the efficient execution of the applications, but there still remains the
problem of how to produce suitable macro data flow graphs from an application’s
high level specification.
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Within the project, we chose to adopt two distinct and complementary ap-
proaches:

• A structured parallel programming approach, deriving instructions from
application code written according to a parallel design pattern model.
The application is expressed as a composition of parallel patterns chosen
from a set of pre-defined patterns provided to the programmer by means
of an algorithmic skeleton library. The application code is automatically
compiled to a macro data flow graph in this case.

• A reverse engineering approach, deriving instructions from a high level im-
perative description of the application, consisting of control flow statements–
typically loops–calling library functions such as those provided by classical
BLAS library implementations.

Both approaches are discussed in the following Sections.

3.1 Parallel pattern based languages

Applications are expressed as compositions of well-known parallel programming
patterns specialized by sequential portions of code specifying the application
“business logic”. This approach builds on the huge range of results from the al-
gorithmic skeleton community and from the more recent parallel design pattern
community [15].

We provide the programmer with a set of patterns, including classical pat-
terns such as pipelines, expressing staged computations, farms, expressing em-
barrassingly parallel, master worker style computations, map and reduce, ex-
pressing data parallel computation. The pattern set is completely modular.
Each pattern has parameters specifying the orchestrated computations. As an
example, the pipeline pattern has parameters to specify the component stages.
Such parameters may recursively be other patterns or wrappings of sequential
code chunks.

In this case, a parallel computation may be expressed as a pattern nesting
such as

pipe(seq(f), farm(seq(g)), seq(h))

representing a streaming computation (because of the outer pipeline pattern)
with three stages computing a sequential code wrapping as the first stage (f),
passing partial results to an embarrassingly parallel second stage with sequential
workers (farm(seq(g))) which eventually delivers its results to a third stage
computing the sequential code wrapping h.

Currently, such an application is represented by code that:

• declares three sequential wrapper objects transforming the code comput-
ing f , g, and h into nestable patterns;

• declares a farm object, using the g wrapper as worker code parameter;
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• declares a pipeline object and adds the f pattern, this farm pattern and
the h pattern as stages; and

• associates an input stream and an output stream to the pipeline skeleton,
and calls a compute method on the pipeline skeleton to start computation
via the parallel interpreter.

The overall result is similar to what happens in other skeleton frameworks [11,
16].

Algorithmic skeleton approaches, and those based on parallel design pat-
terns, have often been criticized for their lack of flexibility in expressing com-
plex or non-standard parallel computation patterns. If the parallel pattern for
the application at hand cannot be expressed with a composition of the existing
patterns, it usually cannot be implemented in the parallel structured program-
ming framework. This is because the structured programming frameworks do
not provide APIs to access the implementation detail of the patterns available
to the application programmer. In turn, this is due to the desire to prevent the
inexpert application programmer from impairing the efficient implementation
and optimizations of the natively provided patterns. Due to our macro data
flow based implementation, however, we can adopt a more flexible approach
such as that discussed in [17]:

• We provide a suitable API to access internal macro data flow instructions
and graph implementations.

• The application programmer may express the pattern he/she has in mind
as a macro data flow graph, provided the graph has only a single input
and a single output token, that is, there is a single instruction with one
input token and no other instructions directing results to this token, and
a single instruction with a single output token directed to the special
“output” destination.

• Finally, suitable API calls exist to name this graph as a parallel pattern,
in such a way that it can be used where any other, predefined pattern may
be used.

Programmers needing a pattern not natively provided by the library may thus
introduce new patterns into the system by providing their macro data flow com-
piled code. It is worth pointing out that such new patterns may have parameters
modelling nested computations. In this case, the instructions directing tokens
to the nested graphs may simply invoke API macros directing tokens to the
input arcs of the nested pattern macro data flow graph or getting results from
the output arcs of the nested pattern graph.

Although this is not a completely new technique (macro data flow implemen-
tation of skeleton frameworks was introduced in the late 90’s [18] and adopted
in different frameworks targeting COW/NOW architectures [19, 20], and ex-
pandability has already been proposed through macro data flow in [17]), to
the best of our knowledge, this is the first attempt to migrate these techniques
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FOR k = 0..TILES-1

FOR n = 0..k-1

A[k][k] := CHERK(A[k][n], A[k][k])

A[k][k] := CPOTF2(A[k][k])

FOR m = k+1..TILES-1

FOR n = 0..k-1

A[m][k] := CGEMM(A[k][n], A[m][n], A[m][k])

A[m][k] := CTRSM(A[k][k], A[m][k])

Figure 2: Pseudo code for Left-looking block Cholesky factorization algorithm
for complex matrix

seq vecMat in(float v[N], m[N][N])

out(float r[N])

$C++{

for(int i=0; i<N; i++)

for(int k=0; k<N; k++)

r[i]+=a[k]*b[k][i];

}

}C++$

end seq

map in(float A[N][N], B[N][N])

out(float C[N][N])

vecMat in(A[*i][], B[][]) out(C[*i][])

end map

Figure 3: Skeleton code for MM

onto multi-cores. Incidentally, the adoption of a structured parallel program-
ming approach based on patterns has been advocated as a means to program
multi/many-core machines and to inform a new generation of parallel program-
mers in the well-know Berkeley report [21].

3.2 “Well-formed” numerical code

In a number of cases, programmers wish to implement in parallel numerical code
whose numerical algorithm is known and expressed in pseudo code with loops
and calls to library functions. We define well-formed code as code containing
only loops and function calls. This notion captures a large number of significant
numerical kernels used in a wide range of algorithms. Fig. 2 shows an example of
such well-formed pseudo code for block Cholesky matrix factorization, hosting
calls to standard BLAS and LAPACK functions.

To compile such code to macro data flow graphs we apply the following
algorithm:

• We assume each BLAS function call is represented by a macro data flow
instruction.
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• Each macro data flow instruction has a number of input tokens equal to
the number of arguments of the corresponding BLAS function call and a
number of destinations equal to the number of results of the BLAS call
(respectively one, two or three and one, in this simple case).

• we substitute the calls in the pseudo code with calls to the macro data
flow instruction generation code API from our library, and we run the
program in such a way that the macro data flow graph is generated.

The program generating the macro data flow graph looks like that in Fig. 4.
Currently this code is hand written but we are implementing a compiler accept-
ing as input pseudo code such as that in Fig. 2 and automatically generating
the code needed to compile the pseudo code to macro data flow code.

Portions of macro data flow code derived using this automatic procedure may
be wrapped in such a way that they become “standard” patterns exploiting
the pattern set expandability procedure discussed in Sec. 3.1. As a result,
our pattern based programming framework will eventually allow application
programmers to use both standard parallel patterns (e.g. pipelines, farms and
maps) and ad hoc patterns encapsulating well-known numerical kernels.

4 Experiments

To validate our approach we ran a number of experiments using synthetic ap-
plications and standard application benchmarks on various target architectures.
In particular:

• The standard applications (kernels) used were in part derived from pattern-
based, structured parallel code (e.g. matrix multiplication, with integer,
float or complex elements, compiled from a stream parallel map pattern
such as that shown in Fig. 3 in P3L syntax [22]) and in part compiled
through our prototype macro data flow compiler processing well-formed
pseudo code such as that in Fig. 2 (block Cholesky factorization).

• The compiled macro data flow code was run on various state-of-the-art
multi-core architectures, including Intel and AMD multi-cores. In partic-
ular we had available two machines: a dual quad core with Intel Xeon
E5520 Nehalem and a quad 12 core AMD Opteron 6174 Magny-Cours.
Both platforms run the Linux x86 64 operating system and all software
was compiled into 64-bit executables using the GNU C compiler with the
-O3 compilation flag. For the remainder of the paper, we refer to these
two architectures as Nehalem and Magny-Cours, respectively.

We report results on three different kinds of experiment aimed at i) validating
the general impact of our data flow framework, ii) evaluating the efficiency of
our framework when processing streams of data parallel tasks and iii) comparing
the efficiency of our framework w.r.t. state-of-the-art data parallel frameworks
on single item (i.e. non-stream parallel) data parallel computations.
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for(k=0;k<=(tiles-1);k++) {

for(n=0;n<=(k-1); n++) {

// A[k][k] := CHERK(A[k][n], A[k][k])

VAR * rv1 = newVar(’a’,k,n);

VAR * rv2 = newVar(’a’,k,k);

SET * rs = newSet(rv1);

addToSet(rs,rv2);

SET * ls = newSet( newVar(’a’,k,k) );

ASSIGN * a =

newAssign(instrNo++,ls,"cherk",rs);

pgm = addToProgram(pgm, a);

// END A[k][k] := ...

}

// A[k][k] := CPOTF2(A[k][k])

SET * l = newSet(newVar(’a’,k,k));

SET * r = newSet(newVar(’a’,k,k));

ASSIGN * a =

newAssign(instrNo++,l,"cpotf2",r);

pgm = addToProgram(pgm, a);

// END A[k][k] := ...

for(m=(k+1); m<=(tiles-1); m++) {

for(n=0; n<=(k-1); n++) {

// A[m][k] := CGEMM(A[k][n], A[m][n], A[m][k])

SET * l = newSet(newVar(’a’,m,k));

SET * r = newSet(newVar(’a’,k,n));

addToSet(r, newVar(’a’,m,n));

addToSet(r, newVar(’a’,m,k));

ASSIGN * a =

newAssign(instrNo++,l,"cgemm",r);

pgm = addToProgram(pgm, a);

// END A[m][k] := ...

}

// A[m][k] := CTRSM(A[k][k], A[m][k])

SET * ll = newSet(newVar(’a’,m,k));

SET * rr = newSet(newVar(’a’,k,k));

addToSet(rr,newVar(’a’,m,k));

ASSIGN * aa =

newAssign(instrNo++,ll,"ctrsm",rr);

pgm = addToProgram(pgm, aa);

// END A[m][k] := ...

}

}

Figure 4: Code generating macro data flow graph from block Cholesky pseudo
code of Fig. 2
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Validating the general impact Scalability of our macro data flow inter-
preter was measured using synthetic applications and the results obtained are
outlined in Figs. 5 and 6. The synthetic applications in this case were compiled
from i) a generic macro data flow graph application hosting instructions with
varying numbers of input tokens compiled from well-formed pseudo code, ii) a
skeleton application using a pipeline with a large number of stages and iii) a
skeleton application using a map skeleton (such as that in Fig. 3). The time
spent computing the single macro data flow instructions in the three cases is
in the range of milliseconds and the applications process streams of input data
to produce streams of output results with the input streams having hundreds
of items. Fig. 5 shows the different performances resulting from the different
kinds of graphs used. The pipeline compilation compiles to a linear chain of
macro data flow instructions. The map compilation produces a graph with a
single split and a single merge macro data flow instruction plus a large number
of macro data flow instructions fired by the execution of the split instruction
and directing results to the merge instruction. The generic graph application,
instead, compiles to more irregular macro data flow instruction sub-graphs.
Fig. 6 demonstrates how different weights in the macro data flow instruction
computations determine efficiency.

We also compared performance figures obtained with those achieved when
executing the same benchmarks with standard multi-core programming tech-
niques. We compared the performance of matrix multiplication (naive algo-
rithm) using our framework with that achieved using OpenMP. Fig. 7 shows
the results. Our map pattern implementation in macro data flow performs bet-
ter than the OpenMP implementation of the same algorithm (parallelization on
the external for i loop of the three used to implement the naive matrix mul-
tiplication algorithm, with no particular optimizations/pragma clauses) on the
Nehalem dual quad core. With careful use of the parallel for options–e.g.
those affecting scheduling–and with larger core numbers (NUMA architectural
characterization gets stronger, in this case), OpenMP performance is closer to
that of the macro data flow structured framework and actually outperforms our
framework when only a few of the available cores are used (see Fig. 8). It is
worth pointing out, however, that we are comparing code automatically derived
from parallel patterns with hand-optimized OpenMP code.

Efficiency when processing streams of data parallel tasks Ideally, when
a stream of many tasks has to be computed and both the service time and the
total completion time need to be optimized, the best solution is to use a farm
paradigm. On the other hand, when the input stream length is small or very
small (less than the available parallelism) the farm paradigm is not always able
to produce the best performance. In this latter case, we need to parallelize also
the single task of the stream hence producing a mixed stream and data-parallel
computation. We ran experiments aimed at determining if our macro data flow
framework is able to approach farm performance when the stream length is
long enough, and if it is able to produce improved performance when the input
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Figure 8: Comparing with OpenMP (MM, AMD Magny-Cours)
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stream length is small. For this purpose, we tested the block Cholesky algorithm
on a stream of relatively small complex input matrices of size 1024x1024 using
3 different stream lengths: 512, 64 and 8 items. These experiments were run
using the mdf3 implementation of the interpreter build on top of FastFlow and
a “pure FastFlow” stream parallel implementation using farm with sequential
workers. The block size was tuned and eventually set to 64x64, thus resulting in
816 data flow instructions per matrix (16 CPOTF2, 120 CTRSM, 560 CGEMM
and 120 CHERK) with a computational grain which spans the range 150–220
microseconds per instruction. We used Intel’s MKL 10.3 for the computation
of the instruction on the single block.

Figure 9 shows the speedup obtained. The farm implementation outperforms
the mdf3 version for a stream of 512 tasks. This is due mainly to the inferior
cache exploitation by the mdf3, which schedules single instructions operating on
small blocks toward the pool of executors without taking into account–for the
time being, anyway–any cache affinity. In contrast, the mdf3 implementation
outperforms the farm paradigm for smaller stream lengths where the greater
number of tasks produced by the macro data flow version is able to feed all
executors for more time.

However, a simple optimization may be introduced that makes the macro
data flow framework also competitive on long streams. It has already been
demonstrated that structured parallel programs may be automatically trans-
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Figure 10: mdf3 vs PLASMA library. Cholesky factorization for a single
1024x1024 complex matrix (Intel Nehalem).

formed into “normal form” presenting better performance and efficiency w.r.t.
the original program [23]. By applying a similar concept, we have introduced
the possibility to “group” entire macro data flow subgraphs into a (logically)
single instruction. By applying this optimization to the computation of each
single matrix in the stream, we obtained the speedup labelled as mdf3 + + in
Fig. 9, which is basically the same speedup as the pure farm implementation
(the differences are almost indistinguishable). This proves that the macro data
flow framework is able to obtain similar or better performance than the farm
paradigm for any length of input stream.

Efficiency when processing data parallel tasks Finally, to validate the
implementation of the data flow interpreter when fine-grained data-parallel
computations are considered, we tested the mdf3 implementation of the block
Cholesky algorithm operating on a single complex input matrix against the
PLASMA 2.3.1 library (Parallel Linear algebra for Scalable Multi-core Archi-
tectures) [24] version of the same algorithm. The PLASMA library, developed
at University of Tennessee, was specifically designed and optimized to target
shared cache multi-core platforms.

For the PLASMA version we tested two different scheduling policies: the
static pipeline scheduling policy (PLASMA STATIC SCHEDULING) and the
fully dynamic scheduling policy (PLASMA DYNAMIC SCHEDULING). In the
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Figure 11: mdf3 vs PLASMA library. Cholesky factorization for a single
1024x1024 complex matrix (AMD Magny-Cours).
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static pipeline version the work is partitioned in one dimension by block-rows
and jobs are assigned across all steps of the factorization in a pipeline fashion. In
order to satisfy dependencies a global progress table is maintained, with threads
performing busy-waiting if the data dependencies on a given block are not satis-
fied [25]. The dynamic version implements fully dependency-driven/data-driven
dynamic scheduling as in the macro data flow version. Single tasks, correspond-
ing to one LAPACK or BLAS operation on a single block, are scheduled as their
dependencies become satisfied and subsequently input data becomes available
[26].

In Fig. 10 and Fig. 11 are sketched the completion times obtained on the
Nehalem and Magny-Cours platforms, respectively. As can be seen the mdf3

implementation is comparable with (and on the Nehalem platform better than)
the highly optimized static pipeline version of the PLASMA library. PLASMA’s
dynamic scheduling version is always slower than mdf3 and this is probably due
to the higher scheduling overhead. As expected, the PLASMA static pipeline
version is much more stable when the number of cores increases. In fact, starting
from a parallelism degree of 16, there is no performance gain due to lack of
available parallelism for the matrix size tested, and thus the greater overhead
of the dynamic scheduling policies of the mdf3 and of the PLASMA dynamic
versions result in performance degradation.

5 Related work

As we propose to combine macro data flow with structured parallel program-
ming to provide a programming framework targeting multi-core architectures,
we address several different areas when considering related work.

A number of programming environments use data flow concepts in the im-
plementation of different parallel programming models. For example, different
systems provide the programmer with the possibility to define/identify tasks
that are subsequently scheduled for parallel execution according to different ex-
ecution models and scheduling policies. Cilk provides the application program-
mer with the possibility to spawn computations (C function/procedure calls)
and to wait asynchronously for their termination [27]. The execution model for
tasks is based on the scheduling of the resulting DAG representing tasks and
task dependencies. The supporting run time library uses job-stealing to guar-
antee efficiency and appears similar to the macro data flow interpreter we have
implemented. However, application programmer responsibilities are much heav-
ier than those resulting from the use of high level patterns, as the programmer
must be completely aware of the management of the dependencies of the tasks
through suitable coding of control flow in the annotated C program representing
the Cilk source. OpenMP tasks [28] and some recent extensions of the OpenMP
task model [10] also provide tasks, identified in C or Fortran code through an-
notations, which are scheduled for execution in a fairly similar manner to that
used for our fireable macro data flow instructions. StarPU [29] supports task
graphs in essence similar to macro data flow graphs and executes these graphs
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on heterogeneous architectures (multi-core + GPU) with interesting results.
However the task of identifying tasks in the code, defining dependencies and
managing tasks is explicitly and completely the responsibility of the application
programmer. X10 [30] provides more sophisticated concurrency control state-
ments than those strictly needed to set up a task parallel computation, but again
requires quite a deep understanding of concurrency/parallelism on the part of
the application programmer.

As far as structured programming models are concerned, there are several
parallel programming environments that provide a framework similar to ours.
Among them notable systems are Muesli [11], written in C++ and running
on top of MPI with the possibility to exploit OpenMP, Skandium [31] written
in Java and targeting multi-core architectures, and SkeTo [32], written in C
and targeting the MPI virtual machine, supporting only data parallel compu-
tations. However, none of these frameworks provides the possibility to extend
the skeleton/pattern set supported, nor do they provide any API to the internal
implementation engine. In fact, they are all based on implementation template
technology [33] rather than on macro data flow. This notwithstanding, the pro-
gramming framework exposed to the application programmer is very close to
that which we provide.

6 Conclusions

We discussed a programming framework providing the application programmer
with the possibility to use either pre-defined parallel patterns or application
or domain specific new patterns programmed as parametric macro data flow
graphs. The high level programming abstractions are compiled to macro data
flow and the macro data flow code is eventually executed on multi-cores through
a parallel interpreter. The approach combines results from structured parallel
programming and multi-core programming and reuses in part experiences from
the community investigating task parallelism issues on multi-cores. Experimen-
tal results on state-of-the-art multi-core architectures equipped with different
versions of parallel macro data flow interpreters demonstrate the feasibility and
the efficiency of the approach.

We are currently investigating several improvements and optimizations for
our framework. We are looking at the possibility of removing the logical match-
ing unit thread bottleneck. In particular, we are evaluating a hierarchical,
parallel implementation of the macro data flow repository with an associated
matching unit implemented in FastFlow. Preliminary results demonstrate the
feasibility of this approach along with the possibility of implementing different
policies to ensure load balancing through macro data flow instruction stealing.

We are also looking at the extensive data flow literature to see whether data
flow graph optimization and rewriting results may be reused in our framework
to improve grain and locality in the graphs generated from the high level pro-
gramming abstractions presented to the application programmer.
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