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Abstract


A central issue for parallel applications executed on heterogeneous dis-
tributed platforms (e.g. Grids and Clouds) is assuring that performance
and cost parameters are optimized throughout the execution. A solution
is based on providing application components with adaptation strategies
able to select at run-time the best component configuration. In this pa-
per we will introduce a preliminary work concerning the exploitation of
control-theoretic techniques for controlling the Quality of Service of paral-
lel computations. In particular we will demonstrate how the model-based
predictive control strategy can be used based on first-principle perfor-
mance models of structured parallelism schemes. We will also evaluate
the viability of our approach on a first experimental scenario.


1 Introduction


The last years have been characterized by the arising of highly distributed
computing platforms composed of a heterogeneity of computing and communica-
tion resources including centralized high-performance computing architectures
(e.g. clusters or large shared-memory machines), as well as multi-/many-core
components also integrated into mobile nodes and network facilities. The emerg-
ing of computational paradigms such as Cloud Computing, provides potential
solutions to integrate such platforms with data systems, natural phenomena
simulations, knowledge discovery and decision support systems responding to a
dynamic demand of remote computing and communication resources and ser-
vices.


One of the main issues for customers that use Cloud environments is the
necessity to optimize the utilization of the infrastructure layer, through a proper
dynamic selection of resources and services (e.g. optimizing operational costs),
and the application layer, that may require to meet precise Quality of Service
(QoS) constraints (e.g. in terms of performance at which computing results are
provided to users). These objectives may be in opposition to each other: e.g.
optimizing the application performance often requires a more powerful (and
more expensive) configuration of the Cloud infrastructure. This is especially
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true in the case of parallel computations, where the efficient platform utilization
plays a decisive role.


In this context it is of great importance the definition of adaptation strate-
gies for distributed applications featuring proper levels of self-adaptation, self-
management and self-optimization. Nowadays research works face with this
problem following different methodologies. A widely used approach is based
on defining policy rules, usually based on logic languages, that express system
adaptation actions in response to events about current QoS measurements. An
example of this approach for parallel programs is explained in[1]. Other works
try to exploit control-theoretic techniques for controlling computing systems. In
these works (as in[2]), the most challenging problem is the definition of proper
mathematical models of the controlled systems, used for applying classical con-
trol techniques (as PID controllers as in[2]) but also more advanced predictive
approaches (as in[3]).


Nevertheless the research results are far from being mature and further re-
search efforts are required, especially with the emerging of Cloud environments
in which the problem of adaptation and optimization is much more stressed. In
this paper we will describe our preliminary work for applying control-theoretic
techniques to adapt distributed parallel systems. Our approach is based on
a fundamental basic point: in our vision high-performance computations are
instances of well-known structured parallelism schemes[4] (e.g. data- and task-
parallelism schemes) for which a formal modeling of their QoS behavior can be
studied analytically. Starting out from this we will present the application of a
formal predictive control technique and we will discuss the exploitation of this
approach for Cloud environments.


This paper is organized as follows. In Section 2 we will provide a brief
overview about existing research works focusing on run-time adaptation of par-
allel computations. In Section 3 the basic description of our approach will be
presented, discussing the concept of adaptive parallel module and introducing
a control approach that is practical for our purposes. In Section 4 we will show
a first real experiment concerning a distributed emergency management system
on which we have evaluated the viability of our work.


2 Related Works


Adaptivity for high-performance applications is mainly intended as the dy-
namic reconfiguration of parallel programs (e.g. run-time modification of their
parallelism degree). Structured parallel programming[4] has lead to optimized
solutions[5] w.r.t. approaches based on general parallel programming models
(e.g. MPI and OpenMP). Although several research works[5, 6] focus on effi-
cient and highly optimized implementation of run-time support for autonomic
high-performance applications (e.g. minimizing the reconfiguration overhead),
they do not pay sufficient attention to the decision process (adaptation strat-
egy): i.e. how reconfiguration decisions are taken by the application control
logic.
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In[1] a distributed hierarchical control of parallel components based on al-
gorithmic skeletons[4] has been introduced, focusing on the possibility to mod-
ify the parallelism degree according to a reactive strategy expressed as event-
condition-action policy rules. Adaptivity for compute-intensive applications has
been also targeted in[7], but it is only discussed for adapting the computational
load in large-scale simulations, and the possibility to express customized strate-
gies is very limited. We claim that the knowledge of the structure of parallel
computations should be used in a better way in order to define more power-
ful adaptation strategies, featuring several properties as the predictability of
adaptation cost, the optimization of the entire system execution and the stabil-
ity degree of a reconfiguration, i.e. selecting an adaptation action based on a
reasonable expectation of how long this choice will be useful for the execution.


To this end we have investigated control-theoretic techniques for controlling
the QoS of structured parallel computations. The exploitation of Control The-
ory foundations for controlling computing systems is rarely used. In[8] the prob-
lem of managing resource utilization for web servers has been studied providing
queueing models and PID controllers used to regulate the system response time.
In[9] the control of multiple QoS measurements has been presented for the IBM
Lotus Domino Server: both CPU consumption and memory requirements are
simultaneously controlled by exploiting a statistical system model and a PID
controller. Furthermore an interesting approach has been introduced in[10]. In
this work the performance level and the power consumption of a CPU have been
adjusted by tuning its clock rate. The proposed approach exploits a well-known
predictive control technique which has also been used in[3] for optimizing the
power consumption of a server farm. Although this predictive control approach
is a valuable starting point also for our work, in these researches its application
is limited to ad-hoc systems (e.g. queueing models modeling the CPU behav-
ior). Inheriting from these past experiences, in this paper we will introduce our
formalization for controlling structured parallel computations.


3 Formalization and Control of a Parallel Mod-
ule


The basic element of our approach is the concept of adaptive parallel module,
shortly ParMod, an independent and active unit executing a parallel computa-
tion and an adaptation strategy for responding to changing execution conditions.
ParMods, interconnected through data streams1, can be composed into directed
graphs representing distributed applications.


From an abstract standpoint a ParMod can be structured in two intercon-
nected parts (see Figure 1), following the general closed-loop (i.e. feedback)
interaction scheme:


� Operating Part: this part performs a parallel computation that instanti-
ates a certain structured parallelism scheme. The computation is activated


1For stream we intend a sequence, possibly of unlimited length, of typed elements.
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at each task reception from input data streams (input interfaces), and the
results transmission is exploited onto output data streams (output inter-
faces) to other parallel modules. From a control-theoretic viewpoint the
operating part is the observed plant of the closed-loop architecture;


� Control Part: this part represents the controller, i.e. an entity able to
observe the operating part execution and modify its behavior exploiting
reconfiguration activities.


ParMod


Operating 
Part


Control
Part


input 
streams


output 
streams


observed 
outputs


control 
inputs


Application 
ParMods


Application 
ParMods


Figure 1: Operating Part and Control Part structure of a ParMod.


The information exchange between plant and controller in the two directions is
exploited through a pair of:


� observed outputs from operating part to control part, i.e. all the inter-
esting measurements that describe the computation behavior: e.g. the
average throughput in terms of completed tasks per time unit, the mean
computation latency and the current memory usage;


� control inputs from control part to operating part, i.e. commands that
correspond to run-time reconfiguration activities of the current operating
part configuration.


For structured parallel computations we can classify the set of adaptation pro-
cesses in two categories namely non-functional and functional reconfigurations.
Non-functional reconfigurations are activities involving the modification
of some implementation aspects of a parallel computation, such as its current
degree of parallelism, e.g. increasing the number of parallel activities (e.g. pro-
cesses or threads) in such a way as to achieve a better performance level.


Moreover, in[11, 12] functional reconfigurations have also been intro-
duced as an effective approach for dealing with heterogeneous computing en-
vironments. In real scenarios (e.g. Emergency Management Systems[11]), it
is worth noting to be able to alternatively deploy the ParMod computation at
run-time onto very different classes of resources, such as distributed-memory
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architectures as clusters, or multi-core components or next-generation mobile
nodes. In this case it is of great importance to provide distinct versions of
the ParMod computation, featuring different sequential algorithms (e.g. opti-
mized for the efficient exploitation of specific memory hierarchies) or different
parallelism schemes (e.g. ensuring a better scalability on a particular class of
architectures). Nevertheless these versions need to preserve the input and out-
put interfaces of the ParMod: i.e. without modifying the global behavior of the
application graph.


The design and the development of an adaptive ParMod requires to study
two important and correlated aspects. The first one deals with the efficient im-
plementation of run-time support mechanisms for applying adaptation actions
with a minimum reconfiguration cost. In our past works (see[11]) we have dis-
cussed optimized reconfiguration protocols for structured parallel computations.
The second aspect is instead an opened and challenging research issue that con-
cerns how reconfiguration actions are decided by the control part. In[12] we have
proposed a reactive control approach based on a control automaton semantics.
In this paper, in order to improve the outcome of an adaptive execution, we
will discuss the exploitation of more advance techniques starting from a novel
modeling of the operating part behavior.


3.1 A Hybrid modeling of the Operating Part behavior


We need to model the QoS temporal evolution of a parallel computation.
The final aim of a system model is to determine a mathematical relationship
between reconfigurations and their impact on QoS variables. System models
can be expressed empirically, based on statistical techniques over experimental
data, or by exploiting first-principle relations. Although the model definition is
often the most critical issue to apply control-theoretic approaches for controlling
computing systems[2], we will show how the adoption of the structured parallel
programming methodology plays a central role for simplifying such modeling
effort. In our vision a ParMod features a multi-modal behavior:


Definition 3.1. (Multi-modal behavior of ParMod Operating Part). At each
point of time the operating part behaves adopting a certain active configuration
Ci, belonging to a finite set C of alternative operating modes:


C = {C0, C1, . . . , Cν−1}


We have a finite and discrete set of statically known alternative con-
figurations, corresponding to a precise choice of: computational version (i.e.
parallelism scheme and parallelized algorithm), parallelism degree and execution
platform.


We can identify two classes of transitions that characterize the operating
part execution:


� continuous transitions: when a configuration has been fixed, the evolution
of continuous-valued QoS parameters can be predicted applying a specific
model corresponding to the currently used configuration;
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� discrete transitions: according to the adopted control law the current
configuration can be changed passing from a configuration Ci to a different
configuration Cj .


The presence of discrete and continuous transitions suggests to model the oper-
ating part behavior as a special class of hybrid systems[13] in which these two
dynamics are modeled in a unique and refined mathematical structure.


Although the term hybrid may also be associated to the time-domain of sys-
tem evolution, in this paper we refer to the domain in which model variables take
their values and we fix the time domain to be discrete: i.e. we use a discretized
time notion of control step of length τ . The beginning of each step represents a
decision point, that is the plant-controller interaction and the adaptation strat-
egy evaluation are performed periodically, at equally spaced time points (we
speak about time-driven controller). With this assumption the ParMod model
is expressed through the definition of three classes of variables:


� internal state variables: x(k) is the value of state variables at the
beginning of control step k. They represent state-ful measurements, e.g.
the number of queued tasks and the number of completed input elements;


� measured disturbance inputs: disturbance inputs d(k) are uncon-
trolled exogenous signals that can affect the relationship between control
inputs and state variables. Examples are platform-dependent parameters
(e.g. network behavior, CPU usage) and application-dependent parame-
ters as the mean computational grain of tasks;


� control inputs: control part decides the actual configuration that should
be used for the entire duration of each control step. Thus each configura-
tion is uniquely identified by a proper control input u(k) taking discrete
values.


As we have seen input-state relationship is strictly coupled with the ParMod
configuration. We can have multiple models that describe the internal state
evolution according to the currently active configuration. For each of these a
proper set of difference equations is provided in a state-space form:


x(k + 1) = φi


(
x(k),d(k)


)
i = 0, 1, . . . , ν − 1 (1)


This multi-modal modeling is a peculiar property of a class of hybrid systems,
namely Switched Hybrid Systems[13], featuring a limited set of alternative
operating modes each one coupled with a corresponding model, and a switching
law between them. In our case this law is completely controlled by an external
entity, i.e. the ParMod control part (see Figure 2). The entire system modeling
is given by:


x(k + 1) = Φ
(
x(k),d(k),u(k)


)
= if


(
π
(
u(k)


)
= Ci


)
then φi


(
x(k),d(k)


) (2)
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Figure 2: Switched Hybrid System with controlled switching law.


where π is a bijective function that maps the discrete set of control inputs onto
the corresponding configuration indices. Formally speaking the hybrid modeling
of the ParMod operating part can be stated as follows:


Definition 3.2 (Operating Part Model). In our approach the operating part
of an adaptive parallel module is modeled as a switched hybrid system with
controlled switching law defined by the tuple (U,X,D,Φ) where: U is the
finite and discrete set of admissible control inputs corresponding to the possible
operating part configurations, X ⊆ Rs is the continuous-valued space of the
internal states and D ⊆ Rm is the continuous-valued set of exogenous inputs.
The model that describes the next state expression is provided by the following
function: Φ : U×X×D→ Rn maps a specific discrete-time model x(k + 1) =
φi(x(k),d(k)) onto a configuration Ci ∈ C such that π(u(k)) = Ci.


3.2 ParMod Optimal Control: Predictive Strategy


In this paper we are interested in describing predictive adaptation strategies
based on control-theoretic foundations. Predictive approaches are control meth-
ods where a controller tries to estimate future in some way thinking ahead of
corrective actions. A typical formulation is based on an optimal control prob-
lem, in which the controller exploits the system model in order to determine
the best control trajectory (i.e. a sequence of reconfigurations) to optimize a
properly defined objective function. Due to the static unpredictability of distur-
bances and the possible perturbations and unmodeled dynamics of the system
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model, instead of applying the optimal reconfiguration trajectory in an open-
loop fashion the optimization process is repeated iteratively at each sampling
interval, based on the current monitoring data provided by the system.


A practical method, widely used over the last decades for controlling chemi-
cal and industrial plants, is the so-called Model-based Predictive Control (MPC)[14].
At the beginning of each control step k the model state x(k) of the operating
part is measured by the controller. Then the controller predicts the QoS be-
havior through the system model and solves an optimization problem in order
to find an optimal sequence of reconfiguration decisions (i.e. a reconfiguration
plane) for each control step of a short prediction horizon of h control steps. A
plant objective function needs to be provided (e.g. an utility function as in (3)):


max U(k) =


k+h−1∑
i=k


L
(
x(i+ 1),u(i)


)
(3)


To determine the optimal plane, the controller needs to predict the values of dis-
turbances over the prediction horizon by applying proper statistical techniques
(e.g. autoregressive models and smoothing filters). After that, instead of ap-
plying the optimal reconfiguration plane step-by-step, only the first decision is
applied and afterwards the complete procedure is repeated at the next control
step. Since the prediction horizon has a fixed length but it is moved towards
the future by one control step each time, this approach is also known as receding
horizon technique.


Despite its large applicability MPC is considered a compute-intensive ap-
proach especially for hybrid systems (as a ParMod) where the set of control
inputs is discrete. In this case the on-line optimization problem, if not properly
addressed with specific techniques (e.g. branch&bound approaches) or heuris-
tics, implies an exhaustive search by testing among all the feasible combinations
of reconfigurations, thus potentially limiting its viability to systems with long
sampling intervals. Therefore the exploitation of this technique for controlling
adaptive parallel computations may require relatively short prediction horizons
and few possible reconfiguration alternatives, unless effective search space re-
duction techniques are used.


4 A test-bed application and Experiments


We have applied our approach to an existing distributed system for flood
risk forecasting. Emergency management systems (EMS) are developed for ad-
dressing the critical demand of computation and communication during natural
or man-made disasters (e.g. floods or earthquakes). In oder to facilitate the
decision making process of civil protection personnel, an ICT infrastructure pe-
riodically executes computationally intensive simulations and promptly spreads
the results to the user end-point devices (e.g. PDA and smart-phones).


In[11, 12] we have described an system for flood emergency prediction. This
application is composed of a Generator module, that periodically produces
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Figure 3: Task-Farm implementation of the Forecasting Model.


sensor data (e.g. water surface elevation and water speed) for each point of a
2D discretization of the emergency scenario (e.g. a river basin). Each point
is considered as an independent task by a Solver ParMod, that numerically
solves a system of differential equations describing the flow behavior (i.e. a
hydrodynamical model). Although the calculation of each point can also be
parallelized through data-parallel techniques (see[12]), in this example we have
considered a single parallel version of the computation based on a task-farm
parallelization, as described in[11].


Task-farm is a structured parallelism scheme which exploits the indepen-
dence among a large sequence of input tasks. For this scheme three classes of
parallel functionalities are defined (Figure 3): (i) an emitter (E) is responsible
for scheduling each task (represented as a data-structure of 16 MB in the solver
configuration that we have used) according to a load-balanced distribution (e.g.
tasks are scheduled only to available workers, following an on-demand policy);
(ii) the hydrodynamical model is replicated among a set of parallel workers (W),
each one applying it on different scheduled points; (iii) a collector (C) collects
the results and transmits them to a Client module performing post-processing
and visualization activities.


To provide results in real-time, as required in emergency contexts, the Solver
computation needs to be executed on sufficiently powerful computational re-
sources. In this sense Cloud Computing is a promising paradigm, since the
provision of resources as CPUs and storage is remotely provided on-demand
by a service provider (i.e. Infrastructure as a Service). Moreover we can also
consider a fluctuating demand of such resources, due to changing environmental
conditions (e.g. an emergency detection can lead to tighter QoS constraints) or
caused by the dynamic availability of the underlying computing/communication
infrastructures.


9







4.1 QoS Modeling of the Solver ParMod


For this experimental application the notion of QoS has a two-fold nature:


1. Performance: in this application context it is of extreme importance to
complete the forecasting computation for the interested area of the emer-
gency scenario until a requested time. In this way forecasting results can
be used by the system users in order to effectively plan proper response
actions in advance to potentially dangerous events. In order to do that,
a general constraint requires to complete the forecasting processing in the
minimum completion time as possible;


2. Operational Cost : we suppose a centralized cloud infrastructure that re-
motely hosts the Solver computation. Customers do not own this physical
infrastructure, but they pay a cost proportional to the amount of resources
(e.g. CPUs) they use. Additional processing elements can be allocated
by adding new CPUs to existing virtual machines, and/or by switching
on real computing nodes on-demand. In order to discourage too many
resource re-organizations, we suppose a business model in which a fixed
cost should be paid each time a new resource request will be submitted to
the cloud infrastructure.


In order to address these two requirements, the Solver ParMod is provided
with an adaptation logic able to express non-functional reconfigurations, i.e.
modifications of the current used parallelism degree. Therefore in this example
we instantiate our general model in an application context in which different
configurations of the Solver ParMod are uniquely identified by the parallelism
degree parameter (i.e. the parallel version and the execution platform are fixed
throughout the execution). Parallelism degree modifications are exploited by the
control part in order to adapt the resource utilization in response to a dynamic
workload condition: i.e. we suppose a time-varying mean arrival rate of tasks
from the Generator, due to a dynamic behavior of the underlying interconnection
network among the application modules.


To this end we will apply the predictive control approach to the Solver
ParMod and we will compare its results with other notable adaptation strategies.
First of all the main requirement that we need to meet is the performance
objective: we will dynamically select parallelism degree modifications in order to
optimize the number of computed tasks throughout the execution. Furthermore,
among the set of strategies able to target this requirement, we need to select
that which produces the lower long-term operational cost as possible.


4.1.1 System Model and Cost Function


According to our approach we can model the behavior of the Solver ParMod
in terms of: a discrete control input n(k) that indicates the parallelism degree
currently used at control step k; an internal state variable T (k) expressing
the number of tasks completed up to the beginning of control step k; a non-
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controllable disturbance TA(k) modeling the average inter-arrival time2 of tasks
experienced during the k-th control step of the execution.


The task-farm scheme is a structured parallelism pattern for which an analyt-
ical performance model can be expressed through basic notions of Queueing
Network Theory. Let us analyze the task-farm in isolation, i.e. supposing that
the external arrival rate of tasks is hypothetically infinite. We denote the mean
service time (calculation time) of the emitter, worker and collector with TE ,
TW and TC respectively, that are assumed to be fixed throughout the execu-
tion. The most meaningful parameter is given by the mean inter-departure3


time from the collector: i.e. its inverse indicates the average number of tasks
that the task-farm will complete in a time-unit.


Since the emitter exploits an on-demand distribution, we can suppose an
uniform distribution of probability that tasks are transmitted to any worker.
Therefore, if N indicates the current parallelism degree, the inter-arrival time
to any worker is equal to TE · N and the inter-departure time TdW from any
worker can be calculated as the maximum between its inter-arrival time and its
service time:


TdW = max
{
TE ·N, TW


}
The total inter-arrival time TA−c to the collector can be calculated by summing
all the arrival rates from each worker:


TA−c =


(
N∑
i=1


1


TdW


)−1


=
max{TE ·N, TW }


N


We can formally define the mean inter-departure time TdC from the collector
(which is also the global service time of the task-farm Tfarm) as the maximum
between the total average inter-arrival time from the worker set and the collector
service time. We can express the following relationship assuming a parallelism
degree n(k) for the k-th control step:


Tfarm(k) = TdC (k) = max


{
TE ,


TW
n(k)


, TC


}
(4)


This analytical description proves an intuitive behavior: i.e. by increasing the
parallelism degree the number of tasks that a task-farm scheme can compute
in a time unit increases until the emitter or the collector become computation
bottleneck.


At this point the task-farm performance model can be exploited in order to
predict how the number of computed tasks evolves during the execution. If we
suppose a limited buffer size for incoming tasks from the Generator (e.g. one or
two buffered elements, which is a practical situation if we use existing message-
passing parallel programming frameworks as MPI[15]), the number of completed


2For mean inter-arrival time we intend the average time between the reception of two
subsequent input tasks from the Generator.


3For average inter-departure time we intend the average time between two subsequent
result transmissions.
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tasks at the beginning of the next control step k + 1 can be approximated by:


T (k + 1) = T (k) +


⌊
min


{
1


TA(k)
,


1


Tfarm(k)


}
· τ
⌋


(5)


The increase in the number of tasks can be estimated as the minimum between
the arrival and the service rates multiplied by the length τ of the control step.
In fact, though the theoretical service rate of the task-farm can be greater than
the arrival rate from the Generator, the upper bound of the number of tasks
that will be completed in a control step can be approximated by the arrival rate
from the Generator multiplied by the control step length.


It is worth noting that this example is a starting case that treats one of the
most straightforward modeling for a ParMod. In fact in this case alternative
ParMod configurations are only identified by the used degree of parallelism and
the system model can be expressed parametrically w.r.t this parameter. In most
general cases, when multiple parallel versions are provided for the same parallel
module, each different configuration can be coupled with a proper model that
can have a different analytical formulation than the ones of the other configura-
tions (e.g. as in the case of performance models of task-parallel and data-parallel
schemes).


In order to apply the predictive control approach we introduce the following
utility function that needs to be maximized over a prediction horizon of h steps.


max U(k) = w1 T (k + h)− w2


k+h−1∑
i=k


[
Cn n(i) + Cf γ(i)


]
(6)


The coefficients w1 and w2 indicate a trade-off among performance and oper-
ational cost. Assuming that w1 >> w2, we select a plane with the minimal
operational cost such that the number of completed tasks at the end of the pre-
diction horizon is maximized. Cn and Cf represent the cost for using a node for
a single a control step and the fixed cost for each parallelism degree variation.
γ(i) is a variable equal to 1 iff the control input selected at the i-th control step
is different from the one decided at the previous step, 0 otherwise.


4.2 Implementation details and Experimental results


The entire graph depicted in Figure 3 has been implemented by a network
of distributed processes. Each ParMod consists in a separate MPI program
executed on the underlying computing architectures. Inter-ParMod communi-
cations have been exploited by using the standard POSIX socket library TCP
connections, whereas MPI send/receive primitives have been used for intra-
ParMod communications.


The most important implementation issues have been addressed for develop-
ing the Solver ParMod. The emitter and the collector processes are responsible
for monitoring the task inter-arrival time and the number of completed tasks,
providing at each sampling period to the control part the average values of
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these two measurements. The adaptation strategy is executed by a dedicated
manager process that constitutes the control part.


In order to request the reservation of a specific set of computing nodes on
a remote server architecture, the manager communicates with a remote process
that simulates the cloud provider and manages the availability of a set of ho-
mogeneous computing nodes. Once allowed, parallelism degree variations are
exploited by the manager through the MPI library function MPI COMM SPAWN,
that instantiates a new set of processes executing the same MPI program (in
our case the worker program).


In order to simulate a dynamic execution workload, we have represented
a situation in which the task inter-arrival time changes significantly due to a
time-varying network availability. In particular we suppose a non-dedicated
interconnection network among application modules (see Figure 4). The Gener-


Sirio Marte


Pianosa


WAN


Virtual 
Host 1


Virtual 
Host 2


cross 
traffic


C4


NCTUNS 
environment


Figure 4: Execution platform of the experiment.


ator and the Client modules are executed on two workstations (Sirio and Marte)
whereas the Solver is executed on a cluster (Pianosa) of 15 homogeneous pro-
duction workstations simulating a cloud architecture. In order to reproduce a
realistic network, the NCTUNS[16] network emulator/simulator is executed on
a workstation (C4), and the task traffic from Generator to Solver ParMod is
routed to this node. Inside C4 a network topology is simulated, composed of
two routers and a WAN object reproducing classical WAN delays and packet
loss probability. Furthermore, inside the simulation environment two NCTUNS
virtual hosts generate cross network traffic alternating unloaded periods and
network congestion phases.


In order to perform our simulation, we have generated many different inter-
arrival time traces, each one made up of ∼ 900 samples during a total execution
time of 130 minutes; each trace simulates a variable inter-arrival time due to a
realistic cross traffic generated by the D-ITG[17] traffic generator executed on
the two virtual hosts. A relevant trace-file example is depicted in Figure 5. In
Figure 6 inter-arrival time measurements have been averaged on a control step
of size 120 sec. The corresponding time-series exhibits two important classes
of non-stationarities: (i) Level shifts, i.e. sudden changes in the mean of the
observed values; (ii) Trends, i.e. relatively slow long-term movements in the
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Figure 6: Average inter-arrival time predictions.


time-series. In order to predict the mean values of the inter-arrival time over
a limited horizon of few control steps, a filtering technique based on a Holt-
Winters (HW) filter has been applied.


Non-seasonal Holt-Winters is a filtering technique based on a simple EWMA
(exponentially-weighted moving average) model that attempts to capture the
trend in the underlying time series. Two different EWMA filters are used, the
first one for estimating the smooth component s of the predicted value, and the
second one for predicting the trend component t.


T̂A(k) = ŝ(k) + t̂(k)


ŝ(k + 1) = a · TA(k) + (1− a) · T̂A(k)


t̂(k + 1) = b ·
[
ŝ(k)− ŝ(k − 1)


]
+ (1− b) · t̂(k − 1)


The static gains a and b have been fixed to 0.9 and 0.2 respectively, that give
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the best prediction results for this experiment. In Figure 6 is depicted the mean
inter-arrival time of tasks (solid line) for each control step of the execution
against the corresponding predicted value (dashed line). We can observe that
predicted values are quite accurate for time-series exhibiting trends and level
shifts, providing a relative mean square relative error of about 10% for this
experiment.


The predictive control approach has been applied considering three possible
lengths of the prediction horizon (i.e. 1, 2 and 3 control steps). Hence in this case
a reconfiguration plane is a trajectory of parallelism degree variations for each
step of the considered prediction horizon. This approach has been compared
with two other reconfiguration strategies: the MAX strategy, in which we fix
the parallelism degree to maximum value (15) for the entire execution, and a
purely reactive strategy in which the parallelism degree is simply increased or
decreased by one unit if the current utilization factor (i.e. ratio between the
average task-farm service time and the average inter-arrival time) measured at
the beginning of the k-th control step is greater or less than two pre-defined
thresholds (i.e. 1.2 and 0.8 respectively).


Adaptation Strategy Completed Tasks


MAX 946
Reactive 874


MPC 1-step ahead 939
MPC 2-step ahead 936
MPC 3-step ahead 938


Table 1: Completed tasks with different adaptation strategies.


Table 1 compares the number a completed tasks by exploiting the different
strategies. As we can see the predictive approach is able to complete more tasks
than the reactive one during the same execution time and with an identical
mean inter-arrival time fluctuation. In this case the number of completed tasks
is similar to the theoretically optimal one achieved by the MAX strategy, in
which we always use the maximum number of computing resources. Moreover,
the predictive approach has also a positive impact on the stability degree of
a configuration: i.e. for every prediction horizon length, the MPC strategy
always features a lower number of reconfigurations than the reactive approach
(see Figure 7).


In Figure 8 is depicted the long-term operating cost throughout the exe-
cution. The importance of having a run-time parallelism degree adaptation is
clearly highlighted. Experiments have been exploited assuming a fixed cost per
reconfiguration (Cf ) twice as much the unitary cost for using a node for each
control step (Cn). W.r.t the MAX strategy, which is the most expensive one,
the other adaptation strategies reduce the operating cost at least of the 40%.
Moreover it emerges that the predictive strategy is able to produce a further
reduction compared to the reactive adaptation of even ∼ 16% with the MPC
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Figure 7: Number of reconfigurations.


3-step ahead, thus demonstrating how taking reconfigurations in advance to fu-
ture workload predictions is an effective adaptation technique. In this example
having a horizon length greater than three steps is not convenient, since the
disturbance prediction accuracy degrades with longer prediction horizons. In
fact we have verified that with a 4-step ahead strategy the operational cost is
higher than with 3 steps, without any additional completed task.
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Figure 8: Total long-term operating cost.


As a final consideration we discuss the approach feasibility in terms of com-
putational complexity. As stated in Section 3.2 predictive control for hybrid
systems may be difficult to be applied, especially when the search space is large.
The space can be represented as a complete tree with a depth equal to the pre-
diction horizon length and an arity that coincides with the number of ParMod
configurations. Nevertheless in practical scenarios, since the number of configu-
rations is sufficiently limited and prediction horizons are normally short due to
disturbance prediction errors, this approach can be exploited without requiring
complex search space reduction techniques. For instance in this example with
15
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