

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-11-17

Beyond canonical DC
programs: the single
reverse polar problem

Giancarlo Bigi Antonio Frangioni Qinghua Zhang

December 31, 2011

ADDRESS: Largo B.Pontecorvo, 3, 56127 Pisa, Italia.

TEL: +39 050 2212700 FAX: +39 050 2212726

Beyond canonical DC programs:
the single reverse polar problem

Giancarlo Bigi1 Antonio Frangioni1 Qinghua Zhang2

1Dipartimento di Informatica, Università di Pisa

Largo B.Pontecorvo, 3, 56127 Pisa, Italia.

{giancarlo.bigi, frangio}@di.unipi.it

2Wuhan University, School of Mathematics and Statistics

Wuchang, Luojia Hill, 430072 Wuhan, China.

Qinghuazhang@whu.edu.cn

Abstract

We propose a novel generalization of the canonical DC problem (CDC),
and we study the convergence of outer approximation algorithms for its
solution which use an approximated oracle for checking the global opti-
mality conditions. Although the approximated optimality conditions are
similar to those of CDC, this new class of problems is shown to signifi-
cantly differ from its special case. Indeed, outer approximation approaches
for CDC need be substantially modified in order to cope with the more
general problem, bringing to new algorithms. We develop a hierarchy of
conditions that guarantee global convergence, and we build three different
cutting plane algorithms relying on them.

Keywords: Single reverse polar problems, approximate optimality condi-
tions, cutting plane algorithms

1 Introduction

In this paper we study the following type of global optimization problem

(SRP) min{f(x) + g(w) | x ∈ Ω, w ∈ Γ, wx ≥ α}

where f : Rn → R̄ = R ∪ {+∞} and g : Rn → R̄ are convex extended-valued
functions, Ω,Γ ⊂ Rn are full-dimensional compact convex sets and wx denotes
the scalar product of the vectors w and x. Without loss of generality, we suppose
Ω ⊆ dom f and Γ ⊆ dom g. Up to scaling, one can always assume α ∈ {−1, 0, 1}.

1

Problem (SRP) arises as a generalization of the canonical DC problem

(CDC) min{dx | x ∈ Ω \ int Γ∗}

where d ∈ Rn and Γ∗ := {y ∈ Rn | yw ≤ 1, ∀w ∈ Γ} is the polar set of Γ.
All DC optimization problems can be transformed to the canonical form [1, 2],
and a large number of nonconvex optimization problems can be reduced to DC
optimization problems [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], hence (CDC) has a wide
set of applications. In turn, (CDC) can b rewritten as

min{dx | x ∈ Ω, w ∈ Γ, wx ≥ 1}, (1)

i.e., a convex program with a nonconvex constraint [3, 13]. Thus, (CDC) can be
considered a special case of (SRP) with α = 1, f(x) = dx and g(w) = 0. This
is why we consider the single “complicating” constraint wx ≥ α in (SRP) a
reverse polar constraint, and we name the problem as the Single Reverse Polar
problem. As demonstrated in Section 2, one can equivalently assume that the
constraint is an equality one, i.e.,

wx = α. (2)

The rationale behind the definition of (SRP) is that, as it will be shown in
Section 2, the “optimization form” of the optimality conditions for (SRP) is
a minimal modification of the ones for (CDC). Both these entail the solution
of an optimization problem with a non-convex objective function and a convex
feasible region; only, x and w are separable in (CDC), and (in general) not
so in (SRP). However, the “difficult” part (the objective function) of both
is the same, while the “easy” part (the feasible set) is very similar; hence, it
is likely that the difference does not substantially impact the practical cost of
the problems. Thus, outer approximation approaches to (CDC) and (SRP)
should have similar cost per iteration. This explains our interest in extending
oracle-based algorithms for (CDC) to the (SRP) case.

The advantage of dealing with (SRP) is that it allows to directly address
a host of different problems of practical interest other than all the applications
that can be formulated as DC programs (see, for instance, [14, 2, 15]). In
particular, Separable Linear Complementarity Programs of the form

(SLCP) min{f(x) + h(y) | (x, y) ∈ Ω× Y, (q +My)x = 0},

where Ω, Y ⊂ Rn are full-dimensional compact convex sets and M ∈ Rn×n is
full-rank, can be easily converted into the (SRP) format by defining

Γ = {q +My | y ∈ Y }

(which is full-dimensional since Y is and M is full-rank) and

g(w) = min{h(y) | y ∈ Y, w = q +My}

(which is convex and extended-valued). Thus, the complementary constraint
can be brought in the reverse polar form (2). Separable linear complementarity

2

programs have many practical applications. For instance, the l0-norm could
be easily reformulated as a linear complementarity form [16], thus convex pro-
grams with an additional l0 constraint [17, 18, 19], such as compressed sensing
problems, can be easily formulated as (SLCP). Many other structures, such
as value-at-risk minimization problem in portfolio selection, also admit a linear
complementarity reformulation (see, for instance, [20, 16, 21] and the references
therein). Furthermore, separable bilevel problems, where leader and follower
variables are only “tied” in the objective function, are also easily reduced to
(SLCP); in turn, these can be used to reformulate several families of Mixed-
Integer (Non)Linear Programs along the lines of [22].

In this paper we extend the outer approximation algorithms for (CDC) of
[3] to the new class of problems. These algorithms are based on an approximated
oracle for solving the optimization problem related to checking the global op-
timality conditions, which is the most computationally demanding part of the
approach; therefore, allowing not to solve it to proven global optimality can
substantially improve the efficiency of the overall cutting-plane method. Yet,
this also requires to properly characterize the impact of approximations in the
oracle on the quality of the obtained solution. After that is done, one can devise
different ways to exploit the information produced by the oracle to construct
globally convergent algorithms; indeed, this analysis gives rise to three different
implementable algorithms, and we also discuss possible strategies to improve
their practical performances. Our analysis of (SRP) shows that, despite the
similarities, the problem have markedly different properties than the canoncial
DC problem, which substantially impact on the way in which algorithms can be
constructed, thereby shedding some new light on the algorithms for the original
problem too.

The paper is organized as follows. In Section 2 we describe and analyze
the main properties of (SRP) and contrast them with those of its special case
(CDC). Then, in Section 3 we extend our approximate optimality conditions
for the canonical DC problem [3] to the (SRP) case. In Section 4, we develop
a hierarchy of conditions that guarantee the convergence of cutting plane algo-
rithms; relying on these conditions, in Section 5 we build three cutting plane
algorithms for solving (SRP), and we discuss possible strategies to enhance
their effectiveness in practice. Finally, Section 6 draws some conclusions.

2 The Single Reverse Polar Problem

In order to avoid that (SRP) could be reduced a convex minimization problem,
we also suppose that the set

Aα = {(x,w) ∈ Rn × Rn | wx ≥ α}

provides an essential constraint, i.e.,

min{f(x) + g(w) | (x,w) ∈ Ω× Γ} < γ∗ (3)

3

where
γ∗ = min{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩Aα}.

Assumption (3) can be equivalently stated as the existence of a “low point”
(x̄, w̄) ∈ Ω× Γ satisfying

f(x) + g(w) > f(x̄) + g(w̄) = γ̄ ∀(x,w) ∈ (Ω× Γ) ∩Aα. (4)

Clearly, any pair minimizing f + g over Ω × Γ provides such a point if (3)
holds. Since the interiors of Ω and Γ are not empty, then there exists also some
(x̄, w̄) ∈ int Ω × int Γ satisfying (4). Therefore, we suppose also this further
condition throughout all the paper. These assumptions guarantee that any
feasible solution (x,w) ∈ (Ω × Γ) ∩ intAα provides a better feasible solution
taking the unique intersection between the segment with (x̄, w̄) and (x,w) as
end points and the boundary of Aα, i.e., (x′, w′) ∈ conv ({(x̄, w̄), (x,w)})∩ ∂Aα
satisfies f(x′)+g(w′) < f(x)+g(w). As a consequence, the nonconvex constraint
wx ≥ α is active at every optimal solution (x,w) of (SRP), i.e., (2) holds.

Notice that the boundedness of Ω and Γ guarantees the existence of an op-
timal solution and therefore, due to (4), that γ∗ > γ̄ always hold: this property
will be useful later on. Although optimal solutions must lie in the boundary of
Aα, they don’t necessarily belong to the boundary of Ω × Γ, as the following
example shows.

Example 2.1 Consider (SRP) with n = 2, α = 3,

Ω = {x ∈ R2 | (x1 − 1)2 + (x2 − 1)2 ≤ 2}, f(x) = 3(x1 − 1)2 + 2(x2 − 1)2,

Γ = {w ∈ R2 | (w1 − 1)2 + (w2 − 1)2 ≤ 2}, g(w) = 2(w1 − 1)2 + 5(w2 − 1)2.

The point (x̄, w̄) ∈ int Ω × int Γ with x̄ = w̄ = (1, 1) satisfies (4) and therefore
γ̄ = 0. All the other points (x,w) ∈ Ω× Γ satisfy f(x) + g(w) > 0, thus γ∗ > γ̄
and condition (3) holds. If x ∈ ∂Ω, then

f(x) = 2
(
(x1 − 1)2 + (x2 − 1)2

)
+ (x1 − 1)2 = 4 + (x1 − 1)2 ≥ 4.

Similarly, if w ∈ ∂Γ, then g(w) ≥ 4. Therefore, the objective value of all the
feasible points (x,w) /∈ int Ω× int Γ is not less than 4. However, the point (x,w)
with x = w = (1.5, 1.5) is feasible and f(x) + g(w) = 3. Therefore, the set of all
the optimal solutions is contained into int Ω× int Γ.

Example 2.1 relies on the strict convexity of f and g. Indeed, when the
objective function of (SRP) is linear, then there has to be some optimal solution
lying in the boundary of Ω× Γ.

Theorem 2.1 Suppose that f and g are linear, i.e., f(x) = dx and g(w) = ew
for some d, e ∈ Rn. If n ≥ 2, then at least one optimal solution of (SRP) belongs
to ∂Ω× ∂Γ.

4

Proof. Take any optimal solution (x∗, w∗). Suppose x∗ ∈ int Ω: the compact-
ness of Ω implies

{x ∈ Rn | w∗x = α} ∩ ∂Ω 6= ∅.

Take two points x1 and x2 in the above intersection such that x∗ ∈ [x1, x2]: we
have min{dx1, dx2} ≤ dx∗, so either (x1, w∗) or (x2, w∗) is optimal. The thesis
can be proved analogously in case w∗ ∈ int Γ. 2

The level set

R(γ) := {(x,w) ∈ Ω× Γ | f(x) + g(w) ≤ γ},

which is bounded due to the compactness assumptions on Ω and Γ, is helpful
to check whether or not a feasible value, i.e., a value γ ≥ γ∗ is optimal. In fact,
it is straightforward that γ = γ∗ implies the inclusion

R(γ) ∩ int Aα = ∅. (5)

The optimality condition (5) will be proved in Section 3.2 in a more general
form, and it is equivalent to

v(OCγ) = max{vz − α | (z, v) ∈ R(γ)} ≤ 0. (6)

This is analogous to the “optimization form” of the optimality condition

{z ∈ Rn | z ∈ Ω, v ∈ Γ, dz ≤ γ} ⊆ Γ∗

of the canonical DC problem, which becomes sufficient under mild assumptions
(see [3, 2]). Similarly, the necessary optimality condition (5) is also sufficient
when (SRP) is regular, i.e.,

γ∗ = inf{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩ intAα}. (7)

Furthermore, regularity will be exploited to relate approximations in the stop-
ping criteria with the quality of the corresponding approximate optimal solu-
tions, as discussed in the following section.

3 Approximate Optimality Conditions

In this section we study the global optimality conditions (5) and (6) for (SRP),
introducing their approximated forms and comparing the results with those
available for the canonical DC problem.

3.1 Optimality Conditions and (Approximate) Oracles

As in the (CDC) case, we plan to approach the “geometrical” optimality condi-
tion (5) via its optimization counterpart (6). Since the latter’s objective function
is not concave, the problem is a difficult one. Yet, the advantage of employing

5

it is that one can at least easily define a computationally relevant concept of
approximate optimality conditions.

The first step towards this aim is to consider the relaxation of (6)

v(OCγ) = max{vz − α | z ∈ S, v ∈ Q, f(z) + g(v) ≤ γ} (8)

where Ω and Γ are replaced by two convex sets S and Q, respectively, satisfying

Ω ⊆ S, Γ ⊆ Q. (9)

The idea is to start with some “rough estimate” of the original sets, e.g. where
S and Q are polyhedra with few vertices or facets, and iteratively refine it as
needed. Any choice of S and Q satisfying (9) ensures that v(OCγ) ≥ v(OCγ)
(cf. (6)); thus, the inequality v(OCγ) ≤ 0 provides a convenient sufficient op-
timality condition for (SRP). Assuming that (8) is significantly easier to solve
than (6), one can then devise iterative schemes that check that condition, and
then either discover that S and Q are not appropriate approximations of (re-
spectively) Ω an Γ, and improve them, or find that γ is not the optimal value
and improve it. This is what has been done in [3] for (CDC), and is repeated
here for (SRP). Our analysis will show that the different structural character-
istics of the latter problem over the former imply that the strategies by which
the information produced by an “oracle” for (8) can be used to devise a conver-
gent algorithm for (SRP) are rather different from those that work for (CDC).
However, what remains very similar is the actual form of the oracle, and there-
fore the appropriate notion of “approximate solution” that can be employed.
Indeed, in the following we will make the following assumption about the ap-
proximate oracle for (8), which are taken almost verbatim from [3]: a procedure
Θ is available which, given S, Q, γ, and two positive tolerances ε and ε′,

• either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (10)

• or produces a pair

(z̄, v̄) feasible for (8) such that v̄z̄ − α ≥ εv(OCγ) > ε′. (11)

This clearly is a pretty weak requirement about the way in which (8) need
be solved; that is, one has either to compute a feasible solution (z̄, v̄) that
is “sufficiently close” to the optimal one, or prove that any such solution is
uninteresting by computing an upper bound l ≥ v(OCγ) that demonstrates
that the optimal value is “small”. Algorithmically, the two parts of (10)—
(11) usually even correspond to two entirely different classes of approaches:
feasible solutions are produced by heuristics, while upper bounds are produced
by solving suitable relaxations. We direct the interested reader to the discussion
in [3, 13], which applies with relatively little changes to the current environment.

What does need a specific discussion, instead, is the fact that condition (10)
requires the lower bound to be “small enough”, but allows it to be positive. This

6

means that when (10) holds, and the algorithm is (as we shall see) stopped, the
obtained solution is not guaranteed to be optimal. Thus, as in [3] a study of the
relationships between the tolerances ε and ε′ and the quality of the obtained
solution (actually, of the current upper bound γ on the true optimal value γ∗)
is required. This turns out to be significantly different from the the canonical
DC case, as the next Section will show.

3.2 Approximate Optimality Conditions

We are interested in characterizing the values γ for which the stopping crite-
rion (10) holds, which is better analyzed when rewritten as v(OCγ) ≤ δ in
terms of the single parameter δ = ε′/ε. These values are strictly related to the
approximated problem

(SRPδ) min{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩Aα+δ}

obtained by perturbing the right-hand side of the reverse-polar constraint in
(SRP) by the critical parameter δ. In particular, it is convenient to consider
the value function

φ(δ) := inf{f(x) + g(w) | (x,w) ∈ (Ω× Γ) ∩ intAα+δ}, (12)

which involves a further restriction of the feasible region to the interior of the
nonconvex set Aα+δ. Clearly, φ(δ) can be greater than the optimal value of
(SRPδ) as no regularity assumption is required in our analysis.

Proposition 3.1 For any δ ≥ 0, the following statements are equivalent:

(i) v(OCγ) ≤ δ;

(ii) R(γ) ∩ intAα+δ = ∅;

(iii) γ ≤ φ(δ).

Proof. The equivalence between (i) and (ii) readily follows from the defini-
tion of v(OCγ). Analogously, (ii) implies (iii) by the definition of φ(γ). We
prove that (iii) implies (ii) by contradiction: if (ii) does not hold, there exists
some (x,w) ∈ R(γ) ∩ intAα+δ. Take any (x1, w1) in the intersection between
intAα+δ and the open line segment with (x,w) and (x̄, w̄) as its end points.
Since (x1, w1) ∈ Ω × Γ, we get φ(δ) ≤ f(x1) + g(w1) < f(x) + g(w) ≤ γ in
contradiction with (iii). 2

As an immediate consequence of the proposition, we also have

φ(δ) = sup{γ | R(γ) ∩ intAα+δ = ∅}.

Considering the optimal value of (SRPδ) as γ in Proposition 3.1, we get that (ii)
is a necessary optimality condition for (SRPδ). Furthermore, the condition is
also sufficient if (SRPδ) is regular, i.e., φ(δ) is actually the optimal value. When

7

δ = 0, (SRPδ) coincides with (SRP) and therefore Proposition 3.1 provides op-
timality conditions for (SRP), too. In particular, (ii) provides the necessary
condition (5) and (i) its equivalent “optimization form” v(OCγ) ≤ 0, while
regularity, if it holds, guarantees that they are also sufficient. Therefore, inclu-
sion (ii) can be considered as an approximate optimality condition for (SRP),
and condition (iii) provides the adequate tool to evaluate the quality of the
approximation. In fact, if (SRP) is regular, i.e., φ(0) = γ∗,then

0 ≤ γ − γ∗ ≤ φ(δ)− γ∗ = φ(δ)− φ(0)

holds for any feasible value γ which satisfies (i). The following result guarantees
that the approximation approaches the optimal value as δ goes to 0.

Proposition 3.2 The value function φ is right-continuous at 0, i.e.

lim
δ↓0

φ(δ) = φ(0).

Proof. Clearly φ is nonincreasing, that is φ(δ1) ≥ φ(δ2) whenever δ1 ≥ δ2 ≥ 0.
As it is also bounded below by φ(0), there exists γ̃ = limδ↓0 φ(δ) and γ̃ ≥ φ(0).
Since γ̃ ≤ φ(δ) for any δ > 0, Proposition 3.1 implies v(OCγ̃) ≤ δ for any
δ > 0. Since v(OCγ̃) does not depend upon δ, we get v(OCγ̃) ≤ 0. Therefore,
Proposition 3.1 guarantees γ̃ ≤ φ(0). 2

Although the approximation always converges to the optimal value, the rate
of convergence may be less than linear. Indeed, the following example shows
that not even regularity is enough to achieve a linear rate of convergence.

Example 3.1 Consider (SRP) with n = 2, α = 1,

Ω = {(x1, x2) ∈ R2 × R2 | x2
1 + (x2 − 1)2 ≤ 4}, f(x) = x2,

Γ = conv {(0, 1), (0,−1/2), (1/2, 0), (−1/2, 0)}, g(w) = w1.

A standard computation shows Γ∗ = {(−2,−2), (2,−2), (−2, 1), (2, 1)}. Since
any feasible solution (x,w) must satisfy x /∈ int Γ∗, which implies x2 ≥ 1, then
x∗ = (−2, 1) and w∗ = (−1/2, 0) provide the unique optimal solution and the
optimal value is γ∗ = 1/2. Therefore, (02, 02) ∈ int Ω × int Γ satisfies (4) and
thus the problem satisfies assumption (3). The problem is regular. In fact,
choosing x(δ) = (−

√
4− δ2, 1 + δ) and w(δ) = (−0.5 + δ, 2δ) with 0 ≤ δ ≤ 1/2,

we have (x(δ), w(δ)) → (x∗, w∗) as δ ↓ 0 (x(δ), w(δ)) ∈ Ω × Γ, w(δ)x(δ) > 1 if
δ > 0 and moreover

lim
δ↓0

f(x(δ)) + g(w(δ)) = lim
δ↓0

1/2 + 2δ = 1/2 = γ∗.

Given any δ > 0, any feasible solution (x,w) to problem (SRPδ) satisfies
wx ≥ 1 + δ and therefore x2 ≥ 1 + δ. Since (x̂, ŵ) with x̂ = (−|x1|, x2) and
ŵ = (−|w1|, |w2|) is also feasible and f(x)+g(w) ≥ f(x̂)+g(x̂), then any optimal

8

solution (x,w) to (SRPδ) satisfies x1 ≤ 0, w2 ≥ 0 and −1/2 ≤ w1 ≤ 0. By
Theorem 2.1 there exists an optimal solution that satisfies also x2

1+(x2−1)2 = 4,
and w2 = 2w1 +1. Taking into account (2), we get w1 = (1+δ−x2)/(x1 +2x2).
Therefore, we have

φ(δ) ≥ min{x2 +
1 + δ − x2

x1 + 2x2
| 1 + δ ≤ x2 ≤ 3, x2

1 + (x2 − 1)2 ≤ 4}

≥ min{x2 +
1 + δ − x2

2x2 − 2
| 1 + δ ≤ x2 ≤ 3}

≥ min{ 1 + τ +
δ − τ

2τ
| δ ≤ τ ≤ 2}

≥ 1 +
√
δ/2 +

δ −
√
δ/2

2
√
δ/2

= 1/2 +
√

2δ.

Thus, the rate of convergence is not linear, i.e., the value function φ is not
locally Lipschitz at 0, since

lim
δ→0

φ(δ)− φ(0)

δ
≥ lim
δ→0

1/2 +
√

2δ − γ∗

δ
= lim
δ→0

√
2δ

δ
= +∞.

In the canonical DC problem both regularity and the locally Lipschitz conti-
nuity of the value function φ at 0 are guaranteed by the existence of an optimal
solution x∗ such that the following relationship

T (Ω, x∗) * T (Γ∗, x∗) (13)

holds between the (Bouligand) tangent cones of Ω and Γ at x∗ [23, Theorem 3.7].
Besides, condition (13) is actually equivalent to regularity if Γ∗ (or equivalently
Γ) is a polyhedron [23, Theorem 3.8]. These relevant properties are lost in
(SRP). In fact, Example 3.1 provides a case in which φ is not locally Lipschitz
at 0 although (SRP) is regular and (13) holds. The following example provides
a case in which the problem is not regular while (13) holds, though both Ω and
Γ are polyhedra.

Example 3.2 Consider (SRP) with the same data of Example 3.1 except for

Ω = conv {(0, 3), (0,−1), (2, 1), (−2, 1)}.

A standard computation shows Ω∗ = {(−1,−1), (1,−1), (−1/3, 1/3), (1/3, 1/3)}.
Since the feasible region is included in the one of the previous example and
(x∗, w∗) with x∗ = (−2, 1) and w∗ = (−1/2, 0) keeps being feasible, then it is
the unique optimal solution and the optimal value is γ∗ = 1/2. Again, the point
(02, 02) ∈ int Ω×int Γ satisfies (4) and thus the problem satisfies assumption (3).

The problem is not regular. In fact, (x,w) ∈ (Ω × Γ) ∩ intA1 implies both
x /∈ Γ∗ and w /∈ Ω∗ and therefore x2 > 1 and w1 > −1/3. As a consequence, we
have φ(0) ≥ 1 − 1/3 = 2/3 > γ∗. On the contrary, condition (13) holds since
T (Γ∗, x∗) = R+ × R− while T (Ω, x∗) = {∈ R2 | x1 ≥ 0, −x1 ≤ x2 ≤ x1}.

9

When recast in the format (1), the canonical DC problem has a very peculiar
structure: the variables w do not appear in the objective function. This feature
is reflected also by condition (13), in which the role played by the sets Ω and Γ is
not symmetric. Therefore, it is reasonable to expect (SRP) to call for additional
conditions in order to guarantee regularity and the Lipschitz property.

Theorem 3.1 If there exists an optimal solution (x∗, w∗) to (SRP) such that
at least one of the following conditions

{x∗ + λu | λ > 0} ∩ Ω 6= ∅ and w∗u > 0 (14)

{w∗ + λu | λ > 0} ∩ Γ 6= ∅ and ux∗ > 0 (15)

holds for some direction u ∈ Rn, then the problem is regular and the value
function φ is locally Lipschitz at 0, i.e., there exist L > 0 and δ̄ > 0 such that

φ(δ)− φ(0) ≤ Lδ ∀ δ ∈ [0, δ̄].

Proof. Suppose (14) holds. Therefore, there exists some λ̄ > 0 such that
x(λ) := x∗ + λu ∈ Ω for all λ ∈ [0, λ̄] due to the convexity of Ω. Up to scaling
the direction u, we can suppose λ̄ = 1. Since

w∗(x∗ + λu) = w∗x∗ + λw∗u > α,

we have (x(λ), w∗) ∈ (Ω×Γ)∩intAα and therefore (SRP) satisfies the regularity
condition (7) as x(λ) → x∗ for λ ↓ 0. Thus, φ(0) = f(x∗) + g(w∗). Choosing
any positive δ ≤ w∗u/2, we have λδ := 2δ/w∗u ∈ (0, 1] and moreover

w∗(x∗ + λδu) = w∗x∗ + (2δ/w∗u)w∗u = α+ 2δ > α+ δ.

Therefore, (x∗ + λδu,w
∗) ∈ (Ω× Γ) ∩ intAα+δ. If δ is small enough, we have

φ(δ)− φ(0) ≤ f(x∗ + λδu) + g(w∗)− f(x∗)− g(w∗)

≤ f(x∗ + λδu)− f(x∗)

≤Mλδ

for some suitable M > 0 due to the locally Lipschitz continuity of the convex
function f . Setting L = 2M/w∗u, we get φ(δ)− φ(0) ≤ Lδ.

The proof is analogous in case (15) holds, just exchanging the roles of the
variables x and w. 2

Remark 3.1 Relying on the reverse polar constraint, condition (14) can be
equivalently formulated as (Ω × {w∗}) ∩ intAα 6= ∅ while condition (15) as
({x∗} × Γ) ∩ intAα 6= ∅.

Notice that condition (14) cannot hold at any optimal solution (x∗, w∗) if
f ≡ 0. Otherwise, (x(λ), w∗) would be an optimal solution for any λ > 0
sufficiently small too and w∗x(λ) > α would contradict the property that all

10

the optimal solutions satisfy (2). Similarly, condition (15) cannot hold at any
optimal solution if g ≡ 0.

Since (14) and (13) are equivalent in the case of the canonical DC problem
[23, Proposition 3.6], i.e., essentially (SRP) with α = 1 and g ≡ 0, then Theorem
3.7 in [23] follows from Theorem 3.1. Notice that if α = 1 but g 6≡ 0 (14) implies
(13) but not vice versa as shown in Example 3.2.

4 Convergence Conditions and the Basic Sub-
procedure

In this section we first establish abstract conditions ensuring global (approxi-
mate) convergence of oracle-based algorithms for (SRP), and then present a
generic subprocedure which is crucial for building actual implementable algo-
rithms, discussing its properties.

4.1 General Convergence Conditions

The algorithms we will develop follow the generic cutting plane scheme sketched
in Subsection 3.1. A non increasing sequence of feasible values {γk} is produced,
and the oracle Θ is called for each γk, providing either a value lk such that
condition (10) holds or points zk and vk satisfying conditions (11). By calling
the oracle, repeatedly if needed, we can build a procedure which either proves
that γk satisfies condition (10) or produces a better feasible value γk+1 < γk.
In the latter case, γk+1 is produced (directly or indirectly) by points xk and wk

such that
(xk, wk) ∈ (Ω× Γ) ∩ ∂Aα. (16)

The rationale for (16) is that any optimal solution must satisfy this condition,
due to feasibility and (2). A pair (xk, wk) may provide (potentially) different
feasible values (see Subsection 5.5). Anyway, in the following we will always set
γk+1 = f(xk) + g(wk) for the sake of simplicity.

With the above notation, we can introduce the prototype of our algorithms.

Algorithm 1 Prototype algorithm

0. γ1 = +∞; k = 1;
1. If the optimality condition (5) holds, then stop (γk is the optimal value);
2. Select (xk, wk) satisfying (16) such that γk+1 = f(xk) + g(wk) < γk;

set k = k + 1; goto 1.

Clearly, if at the initialization Step 0 a feasible pair (x0, w0) is known, one
can alternatively set γ1 = f(x0) + g(w0). An important feature of Algorithm 1
is that {γk} is a decreasing sequence bounded below:

γ̄ < γ∗ ≤ γ∞ = lim
k→∞

γk < · · · < γk < γk−1 < · · · < γ1.

11

Therefore, { R(γk) } is a “non-increasing sequence”, i.e.,

R(γ∞) ⊆ · · · ⊆ R(γk+1) ⊆ R(γk) ⊆ · · · ⊆ R(γ1).

Obviously, Algorithm 1 is too general to deduce any meaningful property. In-
deed, something more has to be said about how exactly optimality condition
(5) is checked, and how (xk, wk) such that f(xk) + g(wk) < γk is selected once
one knows that (5) is not fulfilled. Clearly, the two points are strictly interwo-
ven, in that finding (xk, wk) such that f(xk) + g(wk) < γk immediately proves
that γk is not optimal. Vice versa, assume that we have any constructive pro-
cedure that produces a point (zk, vk) ∈ R(γk) such that vkzk > α when γk

is not optimal. Pick (xk, wk) in the intersection between ∂Aα and the seg-
ment with (x̄, w̄) and (zk, vk) as the end points: clearly, (xk, wk) ∈ R(γk) and
f(xk) + g(wk) < f(zk) + g(vk) ≤ γk. Not surprisingly, without further quali-
fication such a method does not provides a convergent algorithm ([3, Example
4.1]).

Thus some care is needed in choosing the sequences xk and wk. Indeed, the
most general assumptions under which we can prove convergence are not stated
in terms of xk and wk, but rather in terms of the two corresponding sequences
zk and vk produced by (6), out of which xk and wk are constructed:

lim inf
k→∞

vkzk ≤ α, (17)

vkzk − α ≥ εmax{vz − α | (z, v) ∈ R(γk)}. (18)

Condition (18), where ε ∈ (0, 1), basically says that vk and zk must be produced
by some process attempting to solve the non-concave problem (6) with γ = γk,
although the process may be “terminated early” due to the optimality tolerance
ε. Condition (17) rather requires the two sequences to be asymptotically jointly
feasible, and, as we will see, there are several different implementable ways for
ensuring that this holds. Anyway, as far as abstract conditions go, (17) and
(18) are already sufficient to guarantee convergence to the optimal value.

Proposition 4.1 If (17) and (18) hold, then the sequence of feasible values
{γk} in Algorithm 1 converges to the optimal value γ∗.

Proof. Since each γk is a feasible value, we have γ∗ ≤ γ∞, i.e. γ∞ is a feasible
value, too. Hence, (18) implies that

vkzk − α ≥ εmax{vz − α | (z, v) ∈ R(γ∞)}

for all k. Taking the limit, (17) implies

max{vz − α | (z, v) ∈ R(γ∞)} ≤ 0,

and therefore γ∞ is the optimal value. 2

When developing a “concrete” algorithm for (SRP), the abstract condition
(17) can not be directly imposed on the sequences {zk} and {vk}. In fact, these

12

are the results of “complex” optimization process, i.e. approximately solving
(6), upon which we want to impose as few conditions as possible, in order to
leave as much freedom as possible to different implementations of this critical
task. Therefore, we seek alternative ways for obtaining (17). However, given
zk and vk as produced by the oracle we have full control on how xk and wk

are constructed, provided that (16) is satisfied; we can use this to enforce (17)
through either one of the following two pairs of conditions:{

lim supk→∞ vk(zk − xk) ≤ 0 (a)

lim supk→∞ vkxk ≤ α (b)
(19)

{
lim supk→∞(vk − wk)zk ≤ 0 (a)

lim supk→∞ wkzk ≤ α (b)
(20)

Lemma 4.1 If either (19) or (20) hold, then (17) holds.

Proof. Joining (19a) and (19b) we get lim supk→∞ vkzk − α ≤ 0, whence (17);
the proof for (20) is analogous. 2

Therefore, we can define the two sets of conditions which, separately, guar-
antee convergence for Algorithm 1:

B1 ≡ (18) and (19) B2 ≡ (18) and (20).

Indeed, all the implementable algorithms we propose in the following imply at
least one of these, and therefore provably solve (SRP) to optimality.

4.2 A Generic Outer Approximation Subprocedure

As already discussed in Subsection 3.1, one key idea to make (6) more tractable
is to replace Γ and Ω by two “simpler” approximating convex sets Q and S.
Clearly, this requires some appropriate machinery to update S and Q in order
to make them “good enough” approximations of Ω and Γ as required. Convex-
ity of both sets allows to rely on cutting plane procedures based on standard
separation tools [24]. Given some point x ∈ S \Ω, we assume to be able to find
an hyperplane strictly separating x from Ω. If the constraining function for Ω
is known, for instance, this requires finding s ∈ (x̄, x) ∩ ∂Ω for some x̄ ∈ int Ω
and a subgradient of the constraining function at s. It is worth noting that the
condition x̄ ∈ int Ω, which implies x̄ ∈ intS due to (9), is needed to ensure that
s 6= x, and therefore that the hyperplane actually separates S and x strictly.
Obviously, we make analogous assumptions for Γ.

Exploiting the above separation tools and relying on an approximate or-
acle Θ, we can build a generic outer approximation procedure which allows
implementations of Algorithm 1 satisfying the sufficient convergence conditions
introduced in Subsection 4.1. We call this procedure “generic” because it does
not provide any specific rule for selecting xi and wi from zi and vi. In the next
section we will discuss different rules which lead to implementable algorithms.

13

Subprocedure 1 Outer approximation subprocedure

Input: S and Q, closed convex sets satisfying (9), a feasible value γ
0. S1 = S; Q1 = Q; i = 1;
1. call the oracle Θ on Si, Qi, and γ, with tolerances ε̄ (> ε) and ε′;

if Θ produces an upper bound li satisfying (10)
then stop.
else Θ produces (z̄i, v̄i) satisfying v̄iz̄i − α ≥ ε̄v(OCγ);

2. if z̄i /∈ Ω then use Si and z̄i to produce Si+1 63 z̄i;
else Si+1 = Si;

3. if v̄i /∈ Γ then use Qi and v̄i to produce Qi+1 63 v̄i;
else Qi+1 = Qi;

4. let (zi, vi) = (1− βi)(z̄i, v̄i) + βi(x̄, w̄) for the smallest βi ≥ 0
such that zi ∈ Ω and vi ∈ Γ.

5. if vizi − α < εv(OCγ) then i = i+ 1 and goto 1.
6. select xi ∈ Ω and wi ∈ Γ such that wixi = α relying on zi and vi; stop.

Output: Qi and Si; either li, or xi, wi, zi, vi.

The following properties are independent of the selection rule for xi and wi:

1. We assume (9) for S1 and Q1: adding cutting planes at steps 2 and/or 3
ensures (9) for any i, i.e., we get “non-increasing” sequences

Ω ⊆ · · · ⊆ Si+1 ⊆ Si ⊆ · · · ⊆ S1, (21)

Γ ⊆ · · · ⊆ Qi+1 ⊆ Qi ⊆ · · · ⊆ Q1. (22)

2. The choice of (zi, vi) at step 4 guarantees

f(zi) + g(vi) ≤ max{ f(z̄i) + g(v̄i), f(x̄) + g(w̄) } ≤ γ,

i.e., zi and vi are also feasible for the maximization problem which is
approximately solved by the oracle. Note that the step βi can be 0: this
happens when (z̄i, v̄i) ∈ Ω× Γ.

3. The choices of (zi, vi) and (xi, wi) guarantee they belong to Ω × Γ and
thus they have a finite value of the objective function since Ω × Γ ⊆
dom f × dom g. This may not happen for (z̄i, v̄i), but it has no influence
on the algorithm.

4. The condition “vizi − α < εv(OCγ)” at step 5 may be difficult to check
directly, as the value of v(OCγ) is not known (although a suitable upper
bound must be computed by the oracle Θ). A stronger condition that can
be surely checked is the following:

vizi − α ≥ (v̄iz̄i − α)(ε/ε̄).

Indeed, if it holds, then we are guaranteed that (zi, vi) satisfies (11) and
therefore (18), and the algorithm can advance to step 5, otherwise it loops.

14

5. If the algorithm loops at step 5, then at least one between Qi 6= Qi+1 and
Si 6= Si+1 holds. In fact, if z̄i ∈ Ω and v̄i ∈ Γ then zi = z̄i and vi = v̄i,
so that the condition at step 5 cannot be true.

In the algorithm, we are forced to require a “stricter” tolerance ε̄ to the
oracle Θ in order to be able to guarantee convergence to a solution that is
optimal only to within δ = ε′/ε for the “looser” tolerance ε < ε̄; the exact role
of this assumption will be discussed in details later on. However, nothing is
required to the ratio ε/ε̄ except being smaller than one, so the two tolerances
can be taken arbitrarily close to each other.

It is clear from the previous discussion that the subprocedure will never
repeat the same iterates: if it does not stop, then at least one between the
inclusions Si \ {z̄i} ⊃ Si+1 and Qi \ {v̄i} ⊃ Qi+1 holds, so at least one between
z̄i+1 6= z̄i and v̄i+1 6= v̄i holds. We now prove the basic properties of the
subprocedure, which lead to finite termination under ε′ > 0.

Lemma 4.2 If the subprocedure never ends, then all the cluster points of {z̄i}
and {v̄i} belong to Ω and Γ, respectively.

Proof. Consider the sequence {z̄i}: either z̄i ∈ Ω for all large enough i, and
therefore the thesis follows from the closeness of Ω, or z̄i ∈ Si \ Ω for infinitely
many indices. In the latter case, the general Basic Outer Approximation The-
orem [24, Theorem II.1] ensures that all the cluster points of {z̄i} belong to Ω.
The same reasoning works for {v̄i}. 2

It is crucial to ensure that the sequences {z̄i} and {v̄i} do indeed have cluster
points. Since both Ω and Γ are compact, then it is natural to assume that the
sequences {z̄i} and {v̄i} are bounded; in view of (21) and (22), this holds e.g. if
S1 and Q1 are compact. We therefore assume both sequences to be bounded
in all the following development. Besides, all the other sequences are bounded;
in fact they belong to the bounded sets Ω and Γ. We can now prove that the
“original” sequence {(z̄i, v̄i)} and the “modified” one {(zi, vi)} share the same
set of cluster points.

Lemma 4.3 If infinitely many iterates i are produced, then there is a one-to-
one correspondence between the cluster points of {(z̄i, v̄i)} and those of {(zi, vi)}.

Proof. It is enough to prove that 0 is the only cluster point of {βi}. Assume
by contradiction that βi → β̄ ∈ (0, 1]. By taking subsequences, if needed, let
(z̄i, v̄i)→ (z̄, v̄). Then, we have (zi, vi)→ (ẑ, v̂) = (1− β̄)(z̄, v̄) + β̄(x̄, w̄). Since
β̄ > 0, (x̄, w̄) ∈ int Ω×int Γ and (z̄, v̄) ∈ Ω×Γ, then we get (ẑ, v̂) ∈ int Ω× int Γ.
Therefore, we have (zi, vi) = βi(x̄, w̄) + (1− βi)(z̄i, v̄i) ∈ int Ω× int Γ for suffi-
ciently large i, and thus the segment with (zi, vi) and (z̄i, v̄i) as end points has a
nonempty intersection with the set (int Ω× int Γ). This contradicts the assump-
tion that βi is the smallest non-negative value such that zi ∈ Ω and vi ∈ Γ. 2

Hence, the subprocedure cannot loop infinitely many times as step 5.

15

Proposition 4.2 If ε′ > 0, then the subprocedure finitely stops.

Proof. If the subprocedure never ends, then

(vizi − α)/ε < v(OCγ) ≤ (v̄iz̄i − α)/ε̄

holds for all the indices i. Take any common cluster point (z̄, v̄) of {(zi, vi)}
and {(z̄i, v̄i)} . Therefore, we get the contradiction

1 =
v̄z̄ − α
v̄z̄ − α

≤ ε

ε̄
< 1,

just taking the limit in the above chain of inequalities for the subsequence
providing the cluster point. 2

The above proof shows the need for requiring ε′ > 0, since the subprocedure
may never stop for ε′ = 0: it can not finitely prove that the optimal value
is optimal. That is why it is important to clarify the relationship between
approximated optimal values and the optimal value. Furthermore, the proof
also shows that requiring the “tighter” tolerance ε̄ on (z̄i, v̄i) is needed in order
to ensure that the “looser” tolerance ε is attained on the modified iterates
(zi, vi), and therefore to guarantee finite termination.

If the subprocedure stops at step 1, then γ is approximately optimal with
positive tolerances ε̄ and ε′; if it stops at step 6, the existence and convergence
properties of (xi, wi) would depend on the exact choice of the selection rule. A
detailed discussion on this issue and the corresponding convergence proofs will
be given in the following sections.

We end this section with a further result which greatly simplifies the analysis
of convergence of the algorithms. For several of them, it is necessary to impose
a further condition (other than γ1 ≥ γ∗) on the initial value, i.e.,

γ1 ≤ min{γx̄, γw̄}, (23)

where
γx̄ = f(x̄) + min{g(w) | w ∈ Γ, wx̄ ≥ α},

γw̄ = g(w̄) + min{f(x) | x ∈ Ω, w̄x ≥ α}.

Note that γx̄ and γw̄ are the optimal values of two convex problems, hence
“easily” available. Furthermore, if (23) holds at the first iteration, then it
automatically holds at all subsequent ones since {γk} is a decreasing sequence.
However, it has to be remarked that either one (and even both) can be +∞,
as there is no guarantee that the corresponding feasible regions are nonempty.
This surely happens if α > 0 and (x̄, w̄) = (0, 0), which can always be assumed
without loss of generality in the (CDC) case [3].

Lemma 4.4 If (23) holds, then g(vi) ≥ g(w̄) implies w̄zi ≤ α and f(zi) ≥ f(x̄)
implies vix̄ ≤ α.

16

Proof. We only prove the first implication, as the proof of the other is sym-
metric. By contradiction, suppose that both g(vi) ≥ g(w̄) and w̄zi > α hold.
Since w̄x̄ < α, the mean value theorem implies that there exists some x̃ ∈ (x̄, zi)
such that w̄x̃ = α. Hence, we have f(x̄) + g(w̄) < γ ≤ γw̄ ≤ f(x̃) + g(w̄) and
therefore f(x̄) < f(x̃) < f(zi). Thus, we have the chain of inequalities

γw̄ ≤ f(x̃) + g(w̄) < f(zi) + g(vi) ≤ γ ≤ γw̄,

which is contradictory. 2

5 Implementable Algorithms

The results of Section 4 can be exploited to define implementable versions of
the prototype Algorithm 1, as described in Algorithm 2.

Algorithm 2 Implementable outer approximation algorithm

0. γ1 = +∞; Select S1 ⊇ Ω, Q1 ⊇ Γ; k = 1;
1. Call subprocedure 1 with Sk, Qk, and γk;
2. If subprocedure 1 stops at Step 1, then stop.
3. Set xk, wk, zk and vk as the output of subprocedure 1;
4. Set Qk+1 and Sk+1, possibly using the output of subprocedure 1;
5. Set γk+1 = f(xk) + g(wk) < γk; set k = k + 1; goto 1.

At Step 4 the obvious possibility for Qk+1 and Sk+1 is to choose the sets Qi

and Si produced by subprocedure 1. However, this leads to accumulation of all
the cutting planes generated along the iterates in Qk and Sk so that one may
want to “purge” some of the accumulated cutting planes. This can always be
done since only (9) needs to be satisfied.

In order for Algorithm 2 to work, at least one between the set of conditions
B1 and B2 must hold. This requires appropriate ways of constructing xk and
wk out of zk and vk, which have not been specifed in the subprocedure. In all
the concrete algorithms below xk and wk are obtained from zk and vk moving
along the directions which “lead towards the low point” (x̄, w̄) with appropriate
non-negative stepsizes, i.e.,

xk = zk − λk1yk, wk = vk − λk2uk

with λk1 , λ
k
2 ≥ 0 and

yk = N(zk − x̄), uk = N(vk − w̄), (24)

where N(q) denotes the normalized direction associated to any q ∈ Rn, i.e.,
N(q) = q/‖q‖ if q 6= 0 while N(q) = 0 if q = 0. The algorithms differ just by the
selection of the stepsizes. Anyway, all the selection rules impose λk1 ∈ [0, ‖zk−x̄‖]
and λk2 ∈ [0, ‖vk − w̄‖] so that

xk ∈ [x̄, zk], wk ∈ [w̄, vk] (25)

17

hold. In this way the required conditions xk ∈ Ω and wk ∈ Γ are guaranteed by
the convexity of the sets Ω and Γ.

Thanks to (11), (21) and (22), condition (18) is always satisfied by all possi-
ble variants of Algorithm 2. Therefore, B1 and B2 actually reduce to (19) and
(20), respectively. Indeed, a sufficient condition for them to hold is that the
steps vanish, i.e.,

λk1 → 0, λk2 → 0, (26)

provided wkxk = α. In fact, (26) implies vk(zk − xk) = vkλk1y
k → 0, and

therefore, vkxk = (wk + λk2u
k)xk = α + λk2u

kxk → α, i.e., condition (19).
Analogously, it ensures also (20). Notice that convergence is achieved if either
condition B1 or B2 hold, while (26) implies both. Of course, if steps vanish so
does the difference in objective function value, i.e., (26) implies

(f(zk) + g(vk))− (f(xk) + g(wk))→ 0 (27)

while the converse need not be true. In the next subsections we discuss different
stepsize rules which guarantee the existence of (xk, wk) satisfying wkxk = α
and the vanishing step condition (26), therefore ensuring the convergence of
Algorithm 2.

5.1 Algorithm R1

The first implementable algorithm we propose employs the stepsizes

λk1 = λk‖zk − x̄‖, λk2 = λk‖vk − w̄‖, (28)

where λk ∈ (0, 1). The rationale of (28) is that we want to reduce the relative
distance between zk and vk and their respective low points (x̄ and w̄) at the same
rate; in fact, λk is the fraction of the distance that is travelled, and it must be
the same in the x-space and in the w-space.

The existence of (xk, wk) satisfying wkxk = α is obvious: in fact, we get
wkxk = vkzk > α if λk = 0 while wkxk = w̄x̄ < α if λk = 1, and the result
follows by continuity. An explicit formula can be easily derived for the correct
value of λk, but it has no relevance in the analysis of convergence.

Lemma 5.1 If (24) and (28) hold, then (26) holds.

Proof. The assumptions guarantees

(xk, wk) = λk(x̄, w̄) + (1− λk)(zk, vk)

and therefore

γ̄ = f(x̄) + g(w̄) < f(xk) + g(wk) ≤ f(zk) + g(vk) ≤ γk (29)

follows from the convexity of f and g. Since γk ≤ f(xk−1) + g(wk−1), then
{f(xk) + g(wk)} is a non-increasing sequence bounded below and hence conver-
gent. As a consequence, we have (f(xk−1)+g(wk−1))−(f(xk)+g(wk))→ 0 and
thus (27) follows from (29). Furthermore, the convexity of f and g implies

f(zk)− f(xk) + g(vk)− g(wk) ≥ λk[f(zk)− f(x̄) + g(zk)− g(w̄)] ≥ λk(γ∗ − γ̄).

18

Thus, (27) implies λk → 0 and (26) follows immediately from (28) since the
sequences {‖zk − x̄‖} and {‖vk − w̄‖} are bounded. 2

5.2 Algorithm R2

“Abstract” conditions ensuring (26) are the following

λk1 > 0 =⇒ f(zk)− f(xk) ≥ τ‖zk − xk‖, (30)

λk2 > 0 =⇒ g(vk)− g(wk) ≥ τ‖vk − wk‖, (31)

where τ is a small enough positive value.

Lemma 5.2 If (30) and (31) hold, then (26) holds.

Proof. Conditions (30) and (31) imply that f(zk) ≥ f(xk) and g(vk) ≥ g(wk),
which in turn guarantee f(zk)+g(vk) ≥ f(xk)+g(wk) and therefore (27) follows
just arguing as in the proof of Lemma 5.1. Since both terms are non-negative,
we have f(zk) − f(xk) → 0 and g(vk) − g(wk) → 0. Therefore, (30) and (31)
imply λk1‖yk‖ → 0 and λk2‖uk‖ → 0, which guarantee (26). 2

At first glance, it is not obvious how the rather abstract conditions (30) and
(31) can be guaranteed. However, any stepsize rule providing (25) ensures that
at least a suitable τ exists.

Lemma 5.3 If (25) holds, then there exists τ > 0 such that at each iteration
either f(zk)− f(xk) ≥ τ‖zk − xk‖ or g(vk)− g(wk) ≥ τ‖vk − wk‖ holds.

Proof. If xk = zk or wk = vk, then the thesis is obvoius. Otherwise, con-
sider M = supk{max{‖xk − x̄‖, ‖wk − w̄‖}}, which is finite since the sequence
{(xk, wk)} is bounded. Taking any positive τ ≤ (γ∗ − γ̄)/2M we have

(f(xk) + g(wk))− (f(x̄) + g(w̄)) ≥ γ∗ − γ̄ ≥ 2τM ≥ τ‖xk − x̄‖+ τ‖wk − w̄‖,

and therefore either f(xk)−f(x̄) ≥ τ‖xk−x̄‖ or g(wk)−g(w̄) ≥ τ‖wk−w̄‖ holds.
Since (25) holds, then xk = x̄+λk(zk− x̄) with λk = ‖xk− x̄‖/‖zk− x̄‖ ∈ (0, 1).
Therefore, the convexity of f implies

[f(zk)− f(xk)]/‖zk − xk‖ ≥ [f(xk)− f(x̄)]/‖xk − x̄‖.

Similarly, we can prove the corresponding inequality for vk, wk and g and there-
fore the thesis follows immediately exploiting these two inequalities. 2

Although a suitable τ exists, it remains to show how the stepsizes can be
chosen to guarantee (30) and (31). In particular, one has to detect which of the
two directions must be given a nonzero stepsize. Just arguing as in Lemma 5.3,
we can show also that f(zk) − f(x̄) ≥ τ‖zk − x̄‖ or g(vk) − g(w̄) ≥ τ‖vk − w̄‖

19

holds at each step for any small enough positive τ . Therefore, we propose the
following rule:

(λk1 , λ
k
2) =

(
0, vkzk−α

(vk−w̄)zk
‖vk − w̄‖

)
if f(zk)−f(x̄)

‖zk−x̄‖ ≤ g(vk)−g(w̄)
‖vk−w̄‖(

vkzk−α
vk(zk−x̄)

‖zk − x̄‖, 0
)

otherwise.
(32)

The positive stepsize is chosen in such a way that the corresponding (xk, wk)
satisfies wkxk = α. Under an additional condition on the initial value, the
selection rules (24) and (32) provide a convergent algorithm.

Lemma 5.4 Suppose (23) holds. If (24) and (32) hold, then also (25), (30)
and (31) hold.

Proof. Suppose [f(zk) − f(x̄)]/‖zk − x̄‖ ≤ [g(vk) − g(w̄)]/‖vk − w̄‖. Then,
we have g(vk) ≥ g(w̄) and Lemma 4.4 implies w̄zk ≤ α. Since vkzk > α, the
stepsize rule (32) implies 0 < λk2 ≤ ‖vk − w̄‖, and therefore (25) holds. The
thesis follows immediately as Lemma 5.3 guarantees g(vk)− g(w̄) ≥ τ‖vk − w̄‖
for some τ > 0 while λk2 > 0, i.e., condition (31), and λk1 = 0 guarantees (30).
The proof of the other case is analogous. 2

5.3 Algorithm R3

Yet another different choice for the stepsizes would be to take them equal, i.e.,

λk1 = λk2 = λk, (33)

which would imply λk = ‖zk − xk‖ = ‖vk − wk‖. Anyway, this choice does not
fall within the framework of Algorithm 2 as the following example shows.

Example 5.1 Consider (SRP) with n = 1, α = 1,

Ω = [−1/2, 20], f(x) = x,

Γ = [−1/2, 1/2], g(w) = −2w,

together with the low point (x̄, w̄) = (0, 0) ∈ int Ω × Γ. The optimal solution
is (x∗, w∗) = (2, 1/2), with optimal value γ∗ = 1. Take S1 = Ω and Q1 = Γ
and set ε = 0.9, ε̄ = 1 and γ1 = 19. The subprocedure gives (z1, v1) =
(z̄1, v̄1) = (20, 1/2). The directions (24) are y1 = u1 = 1 and the stepsize rule
(33) chooses λ1

1 = λ1
2 ≈ 0.44885. Then, (x1, w1) ≈ (19.55115, 0.05115) and

f(x1) + g(w1) ≈ 19.44885 > γ1, which does not satisfy the monotonicity of the
objective value required by Algorithm 2.

It is worth noting that in the above example we have g(w̄) > g(v1) and hence
moving from v1 towards w̄ cannot lead to any improvement for “g-part” of the

20

objective function. This simple remark suggests to modify the rule (33) in the
following way:

λk1 =

{
λk if f(zk) > f(x̄)
0 otherwise

, λk2 =

{
λk if g(vk) > g(w̄)
0 otherwise.

(34)

Indeed, this modification guarantees convergence.

Lemma 5.5 If (24) and (34) hold, then (26) holds.

Proof. The stepsize rule (34) guarantees f(zk) ≥ f(xk) and g(vk) ≥ g(wk).
In fact, it implies xk = zk whenever f(zk) ≤ f(x̄) and vk = wk whenever
g(vk) ≤ g(w̄) while in the other cases the inequalities follow from the convexity
of f and g in view of (25). Moreover, we have f(zk) + g(vk) > f(xk) + g(wk),
otherwise it would be f(zk) + g(vk) = γ̄ contradicting (4). Therefore, the thesis
follows just arguing as in the proof of Lemma 5.1. 2

Anyway, there is no guarantee that choosing the stepsizes according to (34)
allows to get a point (xk, wk) ∈ Γ×Ω satisfying wkxk = α. This is true taking
an initial value satisfying (23).

Lemma 5.6 If (23) holds, then there exists λk > 0 such that (24) and (34)
guarantee (25) and wkxk = α.

Proof. If f(zk) ≤ f(x̄), then λk1 = 0, i.e., xk = zk, and g(vk) > g(w̄), which
implies w̄xk = w̄zk ≤ α by Lemma 4.4. Since vkzk > α, then there exists
wk ∈ [w̄, vk) such that wkxk = α and therefore λk = ‖vk − wk‖ provides the
required stepsize. Analogously, if g(vk) ≤ g(w̄), then we have wk = vk and
λk = ‖zk − xk‖ for some suitable xk ∈ [x̄, zk).

Finally, if both f(zk) > f(x̄) and g(vk) > g(w̄) hold, consider the function
ζ(λ) = (vk − λuk)(zk − λyk). Clearly, ζ(0) = vkzk > α while ζ(λ) < α for
λ = min{‖zk − x̄‖, ‖vk − w̄‖}. In fact, ζ(λ) = wx̄ for some w ∈ [w̄, vk) or
ζ(λ) = w̄x for some x ∈ [x̄, zk) and w̄x̄ < α while Lemma 4.4 guarantees both
w̄zk ≤ α and vkx̄ ≤ α. Therefore, the continuity of ζ implies the existence of
λk such that wkxk = ζ(λk) = α. Since λk ≤ λ, then (25) follows too. 2

Remark 5.1 The idea behind the stepsize rule (34) can be applied to modify
rule (28) correspondingly, i.e.,

λk1 =

{
λk‖zk − x̄‖ if f(zk) > f(x̄)
0 otherwise

λk2 =

{
λk‖vk − w̄‖ if g(vk) > g(w̄)
0 otherwise.

Indeed, this new rule provides a convergent algorithm. Actually, it is a sort of
combination of the algorithms R1 and R3: if f(zk) > f(x̄) and g(vk) > g(w̄)
hold, then it performes the same iteration that R1 would, otherwise the one
that R3 would.

21

5.4 Numerical illustrations

The algorithms R1, R2 and R3 are indeed different, in the sense that they may
produce different optimizing sequences even if the same problem and the same
starting conditions are given. We suppose the oracle Θ to always choose the
same (z, v) when S, Q and γ are the same; nonetheless, the three algorithms
construct different optimization sequences for (SRP) with α = 1, n = 2,

Γ = {(w1, w2) | w2
1 + w2

2 ≤ 1/4}, f(x) = x2,

Ω = {(x1, x2) | −1 ≤ x1 ≤ 1, x2 ≥ −1}, g(w) = w1/2.

The point (x̄, w̄) ∈ int Ω × int Γ with x̄ = w̄ = 0 satisfies (4), and therefore
γ̄ = 0. Take S1 = Ω and Q1 = Γ, and set ε̄ = 0.8, ε = 0.5 and γ1 = 4. All
the algorithms start calling the subprocedure with S1, Q1 and γ1 as input data.
Suppose the oracle outputs the solution z̄1 = (1, 2), v̄1 = (2/9, 4/9), which
indeed satisfies

ε̄v(OCγ1) = ε̄(
√

5/2− 1) = 0.8(−1 +
√

5/2) ' 0.094 ≤ 0.111 ' (v̄1z̄1 − 1).

Since z̄1 ∈ Ω and v̄1 ∈ Γ, then β1 = 0, i.e., (z1, v1) = (z̄1, v̄1). Since
εv(OCγ1) ' 0.059 ≤ (v1z1 − 1), the subprocedure immediately stops. How-
ever, the new iterates x1 and w1 and the corresponding new feasible value
γ2 are different in the three cases: algorithm R1 provides x1 = (3, 6)/

√
10

and w1 =
√

10(1/15, 2/15), and therefore γ2 = 19
√

10/30 ' 2.003; algo-
rithm R2 provides and x1 = (9/10, 9/5) and w1 = (2/9, 4/9), and therefore
γ2 = 86/45 ' 1.911; algorithm R3 provides x1 ' 0.98(1, 2) and w1 ' 0.202(1, 2),
and therefore γ2 ' 2.061. Thus, the three algorithms produce different values
γ2 starting from the same situation. Furthermore, it is possible to prove [13,
Examples 3.4.4-5] that these algorithms are also different from those for (CDC)
described in [3, 13].

5.5 Possible practical improvements

While all the algorithms proposed in this section are (approximately) globally
convergence, little is known about their actual rate of convergence. Interestingly,
a simple technique can be used to try to improve the convergence speed of γk to
the optimal value γ∗; this can be done, at each iteration, by finding a “better”
feasible value than γk+1 = f(xk) + g(wk). In fact, once xk and wk are selected,
we can fix one of the two and optimize over the other; in other words, one may
consider solving the two convex minimization problems

w̄k ∈ argmin{g(w) | w ∈ Γ, wxk ≥ α}

x̄k ∈ argmin{f(x) | x ∈ Ω, wkx ≥ α}

and set γk+1 = min{f(xk)+g(w̄k), f(x̄k)+g(wk)}. Since wkxk = α, both prob-
lems are feasible and this definition of γk+1 cannot provide a larger (hence worse)

22

value than the standard one. Therefore, it is easy to see that this modification re-
tains the global convergence of the original algorithms, although it would not in
general be easy to prove this convergence with the modified sequences. Remark-
ably, the process can be iterated: whenever, say, f(xk)+g(w̄k) < f(xk)+g(wk),
one may re-solve the second optimization problem above with wk = w̄k, and
keep doing so (alternating between the two blocks of variables) until no further
improvement is possible.

6 Conclusions

We have shown how to extend the oracle-based outer approximation solution
methods developed for the canonical DC problem to the larger class of the single
reverse polar problems, which comprises interesting problems such as separable
linear complementarity and separable bilevel ones. As this class seems to be
new, a thorough analysis (approximate) of optimality condition and properties
of optimal solutions in (SRP) has been performed, as well as the compari-
son with the corresponding features of (CDC). The concept of approximated
oracle devised for (CDC) directly extends to (SRP); this has the potential to
make oracle-based algorithms practical even for large-scale instances, in contrast
to the vertex enumeration techniques usually touted for the (CDC) case. To
this purpose we have developed a general hierarchy of conditions ensuring con-
vergence of oracle-based outer approximation algorithms for (SRP), a general
algorithmic scheme based on the hierarchy, and three different implementable
algorithms which can generate an approximate optimal value in a finite number
of steps, where the error can be managed and controlled. To the best of our
knowledge, there are no existing algorithms devoted to (SRP). Despite the fact
that (CDC) is just a special case of (SRP) with α = 1, f(x) = dx, g(w) = 0
and Γ = C∗, oracle-based outer approximation algorithms for (CDC) can not be
applied to (SRP) directly: some crucial properties of (CDC) are lost in (SRP),
which requires a significant update both for the theory and for the algorithms.

References

[1] H. Tuy. Canonical DC programming problem: outer approximation meth-
ods revisited. Oper. Res. Lett., 18:99–106, 1995.

[2] H. Tuy. D.C. optimization: theory, methods and algorithms. In R. Horst
and P.M. Pardalos, editors, Handbook of global optimization, Nonconvex
Optimization and its Applications, 2, pages 149–216. Kluwer Academic
Publishers, Dordrecht, 1995.

[3] G. Bigi, A. Frangioni, and Q.H. Zhang. Outer approximation algorithms
for canonical DC problems. J. Global Optim., 46:163–189, 2010.

[4] J. Fulop. A finite cutting plane method for solving linear programs with
an additional reverse constraint. Eur. J. Oper. Res., 44:395–409, 1990.

23

[5] M.D. Nghia and N.D. Hieu. A method for solving reverse convex program-
ming problems. Acta Math. Vietnam., 11:241–252, 1986.

[6] P.D. Tao and S. El Bernoussi. Numerical methods for solving a class of
global nonconvex optimization problems. International Series of Numerical
Mathematics, 87:97–132, 1989.

[7] P.T. Thach. Convex programs with several additional reverse convex con-
straints. Acta Math. Vietnam., 10:35–57, 1985.

[8] H. Tuy. A general deterministic approach to global optimization via d.c.
programming. In J.B. Hiriart-Urruty, editor, FERMAT days 85: mathe-
matics for optimization, North-Holland Math. Stud., 129, pages 273–303.
North-Holland Publishing Co., Toulouse, 1986.

[9] H. Tuy. Convex programs with an additional reverse convex constraint. J.
Optim. Theory Appl, 52:463–486, 1987.

[10] H. Tuy. On nonconvex optimization problems with separated nonconvex
variables. J. Global Optim., 2:133–144, 1992.

[11] H. Tuy. Convex Analysis and Global Optimization. Kluwer Academic Pub-
lishers, 1998.

[12] H. Tuy and B.T. Tam. Polyhedral annexation vs outer approximation for
the decomposition of monotonic quasiconcave minimization problems. Acta
Math. Vietnam., 20:99–114, 1995.

[13] Q.H. Zhang. Outer approximation algorithms for DC programs and beyond.
PhD thesis, University of Pisa, Pisa, Italy, 2008.

[14] R. Blanquero, E. Carrizosa, and P. Hansen. Locating Objects in the Plane
Using Global Optimization Techniques. Math. Oper. Res., 34:837–858,
2009.

[15] D. Wozabal, R. Hochreiter, and G.C. Pflug. A difference of convex formu-
lation of value-at-risk constrained optimization. OR. Spectrum., 3:377–400,
2010.

[16] J. Hu. On linear programs with linear complementarity constraints. PhD
thesis, Rensselaer Polytechnic Institute, Troy, Newyork, USA, 2008.

[17] Z.S. Lu and Y. Zhang. Penalty Decomposition Methods for l0-Norm Min-
imization. CoRR, abs/1008.5372, 2010.

[18] A. Miller. Subset Selection in Regression. Chapman and Hall, 2002.

[19] J. Tropp. Convex programming methods for identifying sparse signals in
noise. IEEE T. Inform. Theory., 52:1030–1051, 2006.

24

[20] L.S. Han, A. Tiwari, M.K. Camlibel, and J.S. Pang. Convergence of time-
stepping schemes for passive and extended linear complementarity systems.
SIAM J. Numer. Anal., 5:3768–3796, 2009.

[21] J. Hu, J.E. Mitchell, J.S. Pang, K.P. Bennett, and G.Kunapuli. On the
global solution of linear programs with linear complementarity constraints.
SIAM J. on Optim., 19(1):445–471, 2008. ISSN 1052-6234.

[22] A. Frangioni. On a New Class of Bilevel Programming Problems and its
Use For Reformulating Mixed Integer Problems. Eur. J. Oper. Res., 82:
615–646, 1995.

[23] G. Bigi, A. Frangioni, and Q.H. Zhang. Approximate optimality condi-
tions and stopping criteria in canonical DC programming. Optim. Method.
Softw., 25:19–27, 2010.

[24] R. Horst and H. Tuy. Global optimization. Springer, Berlin, 1990.

25

