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Abstract. Traditional process calculi usually abstract away from net-
work details, modeling only communication over shared channels. They,
however, seem inadequate to describe new network architectures, such
as Software Defined Networks [1], where programs are allowed to manip-
ulate the infrastructure. In this paper we present a network conscious,
proper extension of the π-calculus: we add connector names and the
primitives to handle them, and we provide both an interleaving and a
concurrent semantics. The extension to connector names is natural and
seamless, since they are handled in full analogy with ordinary names. In
the interleaving case, observations are the routing paths through which
sent and received data are transported, while in the concurrent case we
allow to observe multisets of paths. However, restricted connector names
do not appear in the observations, which thus can possibly be as ab-
stract as in the π-calculus. Finally, for the concurrent semantics we show
that bisimilarity is a congruence, and this property holds also for the
concurrent version of the π-calculus.


1 Introduction


The trend in networking is going towards more “open” architectures, where the
infrastructure can be manipulated in software. This trend started in the nineties,
when OpenSig [2] and Active Networks [3] were presented, but neither gained
wide acceptance due to security and performance problems. More recently, Open-
Flow [4, 1] or, more broadly, Software Defined Networking has become the lead-
ing approach, supported by Google, Facebook, Microsoft and others. Software
defined networks (SDNs) are networks in which a programmable controller ma-
chine manages a group of switches, by instructing them to install or uninstall
forwarding rules and report traffic statistics.


Traditional process calculi, such as π-calculus [5, 6], CCS [7] and others, seem
inadequate to describe these kinds of networks, because they abstract away from
network details. In fact, two processes are allowed to communicate only through
shared channels and it is not possible to express explicitely the fact that there is
some complex connector between them. To give better visibility to the network
architecture, in recent years network-aware extensions of known calculi have
been devised, most importantly: DπF [8], based on the distributed π-calculus
[9], and tKlaim [10], based on Klaim [11].


This paper focuses on the π-calculus, and aims at equipping it with a nat-
ural notion of network: nodes and connectors are computational resources, so
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it is reasonable to represent them as (structured) names. We call the resulting
calculus Network Conscious π-calculus (NCPi). We consider networks without
hierarchies (e.g. administrative domains), where some parts may be private to a
process and the public part is shared, as in CHARM [12]. Networks can be used
by many processes at the same time, but we impose some restrictions on how
resources can be accessed. The calculus has the following features:


– We distinguish two types of names: sites, which are the nodes of the network,
and links, named connectors between pairs of sites. Sites are just atoms, e.g.
a, links have the form lab, meaning that there is a link named l between a
and b. The syntax has new primitives for handling links and, since it is no
more required for processes to communicate on shared channels, an extended
output primitive is introduced that specifies not only the emission site but
also the destination one.


– We provide two semantics: an interleaving one, inspired by the π-calculus
early semantics, where an observation is a sequence of links representing the
observable part of a routing path, and a concurrent one, where concurrent
transmissions can be observed in the form of a multiset of paths.


– The behavioural equivalence in the interleaving case is not preserved by the
input prefix, as in the π-calculus, but in the concurrent case it is preserved
by all operators, hence it is a congruence. This is because the concurrent
semantics provides more observations than the interleaving one, resulting in
a finer, compositional bisimilarity. A first evidence of this fact is the classical
counterexample not applying in the concurrent case: a | b and a.b+b.a, which
are bisimilar according to the interleaving semantics, are distinguished, be-


cause (using an intuitive syntax) a | b a | b−−→ 0 while a.b+ b.a 6 a | b−−→.


We choose to have labelled connectors, instead of anonymous ones as in [8] and
[10], for two main reasons. First of all, they are intended to model transportation
services with distinct features (cost, bandwidth . . . ), which could be encoded in
the label type, as we already do for the connectors’ source and target. In any
case, NCPi allows one to recover anonymous connectors through the restriction
operator. Second, this allows us to reuse most of the notions of the π-calculus
(renaming, α-conversion, extrusion . . . ), suitably extended.


The main result of our paper is that bisimilarity on the concurrent semantics
is a congruence. This is a desirable property for a process calculus, because it al-
lows for the compositional analysis of systems. The authors of [8] and [10] follow
another approach to compositionality: they start from a reduction semantics,
guess a suitable notion of barb, define barbed congruence by closing w.r.t. all
the contexts, and then characterize it as a bisimulation equivalence on a labelled
version of the transition system. In general, this approach leads to a labelled
semantics with very succint observations, but may resort to non-standard no-
tions of bisimilarity, where the closure under contexts is “hardwired”. Instead,
we show that we can gain the congruence property through a concurrent ex-
tension of the semantics while keeping the notion of bisimilarity as standard as
possible. We emphasize that interleaving semantics is far from being natural in
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this distributed setting. In fact, it is based on a mutual exclusion mechanism
between remote actions which is simpler from a formal point of view, but not
realistic for modelling concurrent systems.


Bisimilarity not being a congruence for the π-calculus depends on the inter-
leaving nature of the semantics, and not on the language itself. In fact, we will
show that, if we equip π-calculus with a concurrent semantics, the congruence
property holds. This has already been shown in [13, 14], but the semantics pre-
sented there allows observing the channel where a synchronization is performed,
whereas our concurrent semantics is closer to the π-calculus, in the sense that
we adopt a synchronization mechanism that hides such channel.


Synopsis. In section 2 we show a motivating example. In section 3 we present
the syntax of the language. In section 4 we describe its interleaving semantics.
In section 5 we model a simple routing protocol in the interleaving setting. In
section 6 we present the concurrent semantics and we show that its bisimilarity
is a congruence. An informal proof of the latter property is in the appendix.


2 Motivating example


We consider the system made of a network manager M , using a reserved site
m, and two processes p and q, which access the network respectively through
the sites a and b. The manager is the only entity that can create new links and
grant access to them. The process p wants to send a message to q, but we assume
that there are no links between a and b allowing p and q to communicate. The
processes are


M = m(x).m(y).(lxy)(mxlxy.M) q = b(x).q′


p = ama.amb.a(l(xy)).(L(lxy) | abc.p′) L(lxy) = lxy.L(lxy)


M receives two sites at m, creates a new link between them and sends this
link from m to the first of the received sites. The process p sends a and b from
a to m, waits for a link at a and then evolves to the parallel composition of
two components: the first component activates a transportation service over the
received link, which can be used by the other component; the second component
sends c from a to b. The process q simply waits for a datum at b. Finally, the
process L repeatedly activates a transportation service over its argument: this
is necessary, because transportation services can only be used once. The whole
system is S = p |M | q |L(lam) |L(l′ma), where lam and l′ma are the links that p
and M use to interact.


We have that p, L(lam) and M can do the following transitions


p
•;ama−−−−→ amb.a(l(xy)).(L(lxy) | abc.p′)


L(lam)
a;lam;m−−−−−→ L(lam)


M
mma;•−−−−→ m(y).(lay)malay.M
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where •; ama represents the beginning of transmission as a path of length zero,
analogous to the π-calculus output action: the • on the left side indicates that
the path can only extend rightward, i.e. subsequent hops will be listed after •
from left to right in the form of a sequence of links; the string ama describes
the path, telling (from left to right) the site where the datum is available, the
destination site and the datum. Symmetrically, mma; • means that a, which has
destination m, is received at m and then goes through a path of length zero; it
is analogous to the π-calculus input action. The label a; lam;m represents the
activation of a transportation service over lam.


When these processes are put in parallel in S, the above paths can be con-
catenated, resulting in a path that represents a complete transmission over lam


S
•;lam;•−−−−→ amb.a(l(xy)).(L(lxy) | abc.p′) |m(y).(lay)(malay.M) | q |L(lam) |L(l′ma) .


As in the π-calculus, the transmitted datum, namely a, is not observable. Then,
a sequence of possible transitions after this one is:


· · · •;lam;•−−−−→ a(l(xy)).(L(lxy) | abc.p′) | (lab)(malab.M) | q |L(lam) |L(l′ma)
(transmission of b)


•;l′ma;•−−−−→ (lab)(L(lab) | abc.p′ |M) | q |L(lam) |L(l′ma)
(lab scope extension, lab /∈ fn(p′))


•;•−−→ (lab)(L(lab) | p′ |M) | q′[c/x] |L(lam) |L(l′ma) (transmission of c)


Notice that the last transition hides the link used for transmission, namely lab,
because it is restricted. We just observe •; •, analogous to the π-calculus τ -action.


The concurrent semantics allows observing in parallel all the pieces of a path.
For instance, we may observe S doing •; ama | a; lam;m |mma; •, which repre-
sents a three-element multiset. These kinds of observations are exactly those
making the behavioural equivalence on the concurrent semantics finer and com-
positional.


3 Syntax


We assume to have an enumerable set of site names S (or just sites) and an
enumerable family of enumerable, disjoint sets of link names {La,b}a,b∈S (or just
links). We let


La =
⊎
b∈S
La,b ] Lb,a L =


⊎
a,b∈S


La,b


and we denote by lab the element in L corresponding to l ∈ La,b. Notice that
we cannot have two links lab and lcd unless a = c and b = d. In the following we
will use n(x) to denote the set of names occurring in any syntactic structure x,
including also a and b whenever lab ∈ n(x).
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Definition 1 (NCPi processes). The NCPi processes are defined as follows:


p ::= 0 | π.p | p+ p | p | p | (r)p | A(r1, r2, . . . , rn)


r ::= a | lab s ::= a | l(ab) π ::= abr | a(s) | lab | τ


A(s1, s2, . . . , sn)
def
= p i 6= j ⇒ n(si) ∩ n(sj) = ∅


where a, b ∈ S, lab ∈ L.


We have the usual inert process, nondeterministic choice and parallel composi-
tion. For the recursive definition, we require that formal parameters do not have
names in common, because otherwise we might have type dependencies between
parameters, e.g. in A(a, l(ab)) one of the second parameter’s endpoints depends
on the first parameter. Prefixes can have the following forms:


– The output prefix abr: abr.p can send the datum r from a addressed to b
and continue as p. Notice that, unlike π-calculus, the destination site can be
different than the emission one.


– The input prefix a(s): a(s).p can receive at a a datum to be bound to s
and continue as p. The intended meaning of c(l(ab)).p is an atomic, polyadic
version of c(a).c(b).c(lab).p. Here a monadic link input prefix c(lab).p is not
allowed, since it would introduce a matching capability we prefer not to
provide. Consequently, a and b are not free in c(l(ab)).p.


– The τ prefix : τ.p can perform an internal action and continue as p.
– The link prefix lab: lab.p can offer to the environment the service of trans-


porting a datum from a to b through l and then continue as p.


Finally, we have the restriction (r): r is private in (r)p, i.e. it cannot be observed
as free name in a communication. Notice that a and b are free in (lab)p. Sequences
of restrictions will be denoted by capital letters (R) and will be manipulated
using set operations.


We define the set fn(p) of free names in p as:


fn(0) = ∅ fn(τ.p) = fn(p)


fn(abr.p) = {a, b} ∪ n(r) ∪ fn(p) fn(lab.p) = {lab, a, b} ∪ fn(p)


fn(b(a).p) = {b} ∪ (fn(p) \ ({a} ∪ La)) fn(a(l(bc)).p) = {a} ∪ fn(p) \ ({b, c} ∪ Lb ∪ Lc)
fn((a)p) = fn(p) \ ({a} ∪ La) fn((lab)p) = {a, b} ∪ fn(p) \ {lab}


fn(p+ q) = fn(p | q) = fn(p) ∪ fn(q) fn(A(r1, . . . , rn)) = n(r1) ∪ · · · ∪ n(rn)


where A(s1, . . . , sn)
def
= p implies fn(p) ⊆ n(s1)∪· · ·∪n(sn). Notice the definition


of fn((a)p): if a link having a as one of its endpoints appears in p, then it is
considered bound. Similarly for b(a).p and a(l(bc)).p. This intuitively means that
a global link cannot have private endpoints, analogously to what happens for free
processes in a well-formed state of a CHARM [12]: their variables must belong
to the global part.


The notion of renaming is defined as follows.
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α-equivalence


(a)p ≡ (a′)p[a
′
/a] b(a).p ≡ b(a′).p[a′/a] a′ /∈ fn((a)p)


(lab)p ≡ (l′ab)p[l
′
ab/lab] ∀a′, b′ : l′a′b′ /∈ fn((lab)p)


a(l(bc)).p ≡ a(l′(b′c′)).p[l
′
b′c′/l(bc)] b′, c′ /∈ fn(a(l(bc)).p) ∧


∀b′′, c′′ : l′b′′c′′ /∈ fn(a(l(bc)).p)


Unfolding law


A(r1, . . . , rn) ≡ p[r1/s1, . . . , rn/sn] if A(s1, . . . , sn)
def
= p


Fig. 1: Structural congruence axioms for well-formed processes.


Definition 2 (Renaming). A renaming σ is a pair of functions 〈σS : S →
S, σL : L → L〉 such that σL(lab) = l′a′b′ implies σS(a) = a′ and σS(b) = b′. We
denote by rσ the result of applying the appropriate component of σ to r.


The condition relating σS and σL ensures that σ acts as a graph homomorphism,
i.e. each link is renamed by σL to a link whose endpoints are the image through
σS of the original link’s endpoints. Some notation: we write [r


′
1/r1, r


′
2/r2, . . . , r


′
n/rn]


to indicate the function mapping r1 to r′1, r2 to r′2 . . . rn to r′n, and we write
[l
′
a′b′/l(ab)] as a shorthand for [a


′
/a, b


′
/b, l


′
a′b′/lab]. Notice that [a


′
/a] does not uniquely


characterize a renaming. In fact, while surely abc[a
′
/a] = a′bc, a /∈ {b, c}, for


lab[a
′
/a] we only know that it must belong to La′b. Thus we should avoid applying


such renaming to a link lab, since the result would be undefined. A special case
(see below) is when lab is bound.


Now we introduce well-formed NCPi processes. Informally, a process is well-
formed if each bound link it contains is bound explicitely, and not as a side-effect
of binding a site, and if two links with the same label but different endpoints do
not appear free in any of its suprocesses. For instance: a(b).lbc.p and (lab)lab.lcd.p
are not well-formed: the former because lbc is implicitly bound by a(b), the latter
because l labels two links between different sites.


Definition 3 (Well-formed NCPi processes). A NCPi process p is well-
formed if for every subterm q:


(i) q = (a)p′ implies fn(q) = fn(p′) \ {a};
(ii) q = b(a).p′ implies fn(q) = {b} ∪ fn(p′) \ {a};


(iii) q = c(l(ab)).p
′ implies fn(q) = {c} ∪ fn(p′) \ {a, b, lab};


(iv) lab, l
′
cd ∈ fn(q) and ab 6= cd implies l 6= l′.


A first consequence of this definition is that we do not need to subtract La in
fn(b(a).p) and fn((a)p), and Lb, Lc in fn(a(l(bc))).p if p is well-formed.


Well-formedness also allows us to say how a generic substitution can act on
processes as a proper renaming. This is needed in order to define α-conversion,
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which in fact is given in Fig. 1 for well-formed processes only. α-conversion
for a restricted process is simply (a)p ≡ (a′)p[a′/a], with a′ /∈ fn((a)p), where
[a
′
/a] is never applied to a link lab, since such link cannot be free in p. If it


is bound, i.e. if (lab)p
′ is a subprocess of p, then we simply have inductively


((lab)p
′)[a′/a] ≡ (l′a′b)(p


′[l′ab/lab])[a
′
/a], with l′ab[a


′
/a] = l′a′b, for any l′ab that can


replace lab through α-conversion; this preserves property (iv) of well-formedness,
since this property for l′a′b is inherited from the same property for l′ab. Moreover,
in order to mantain this property, capture must be avoided not only in the
presence of l′ab ∈ fn(p), but also of l′a′b′ ∈ fn(p), for every a′ and b′. A similar
restriction holds also when α-converting a(l(bc)).p. Notice that we can α-convert
it also with respect to b,c or lbc separately. In the following we will consider only
well-formed processes.


4 Interleaving Semantics


A path, denoted by α, represents the observable part of the routing path of a
single datum. Paths are the observations for the interleaving semantics.


Definition 4 (Paths). Paths are defined as follows:


α ::= a;W ; b | •;W ; • | •;W ; abr | abr;W ; •
| ab(s);W ; • | (r)α n(s) ∩ (n(W ) ∪ {a, b}) = ∅


r ::= a | lab s ::= a | l(ab) W ::= lab | W ;W | ε


where a, b ∈ S and lab ∈ L. The structural congruence ≡α is given by the
monoidal axioms for strings, where ; and ε are the multiplication and the identity,
and by (r)(r′)α ≡α (r′)(r)α, n(r) ∩ n(r′) = ∅.


A path can be: a service path a;W ; b, representing a transportation service from
a to b that employs the resources listed in W and possibly other private, unob-
servable resources, or a sequence starting and/or ending with •, which represents
an actual transmission over W . In the latter case, it can be:


– a free output path, if abr is on the right, representing the emission of r, whose
destination is b, at a;


– an input path, if abr or ab(s) is on the left. In the former case, it is called
free input path and means that r, whose destination is b, is received at a; in
the latter case, it is called bound input path and s is a placeholder for the
received name;


– a complete path, if • is on both sides, meaning that the transmission has
already been completed;


– an extrusion path if it is of the form (r)α, meaning that r is being extruded
through α.


We will use Wα to denote the sequence of links of α and |Wα| to denote the set
of links appearing in Wα. The set of free names fn(α) of a free path α is n(α)
and the set of its bound names bn(α) is empty; for the other paths we have


fn(ab(s);W ; •) = {a, b} ∪ n(W ) fn((a)α) = fn(α) \ ({a} ∪ La) fn((lab)α) = fn(α) \ {lab}
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and bn(α) = n(α) \ fn(α). The objects obj(α) are


obj(abr;W ; •) = obj(•;W ; abr) = {b} ∪ n(r) obj((a)α) = obj(α) \ ({a} ∪ La)


obj(a;W ; b) = obj(•;W ; •) = ∅ obj((lab)α) = obj(α) \ {lab} obj(ab(s);W ; •) = {b}


which correspond to the free objects in the π-calculus. We write objin(α) for
n(r) when α = (R) abr;W ; •. We call interaction sites of α, denoted by is(α),
those sites in α where an interaction with other processes may happen, namely
α’s endpoints if α is a service path and the emission or reception site if it is an
input or output path. These correspond to subjects of the π-calculus.


Anologously to what happens for processes, in (a)α the restriction may im-
plicitely bind some elements of La occurring free in α. This does not happen for
well-formed paths.


Definition 5 (Well-formed paths). A path α is well-formed if α = (r)α′


implies fn(α) = fn(α′) \ {r}.


Now we introduce the hiding operation, which we will use in the SOS rules to
implement the effects that restricting a name of a process has on its paths.


Definition 6 (Hiding operation). The hiding operation / acts on sequences
of links as follows


ε/r = ε (W ;W ′)/r = (W/r); (W ′/r) lab/r =


{
ε r ∈ {a, b, lab}
lab otherwise


Its extension to paths α/r is obtained by replacing Wα with Wα/r in α.


This operation simply removes each occurrence of the no longer observable site
or link from its argument.


We will require that paths inferred through the rules satisfy the following
property.


Definition 7 (Simple path). A path α is simple if Wα = W1;W2 implies
|W1| ∩ |W2| = ∅, for any W1 and W2.


A path is simple if it does not use the same link twice, e.g. •; lab; l′bc; lab; bdr is
not simple. By restricting to simple paths we formalize the fact that links stand
for consumable resources, so they must be employed in a mutually exclusive way
during a communication. We can now define the NCPi interleaving transition
system.


Definition 8 (NCPi interleaving transition system). Consider the rules
in Fig.2, where observations are up to ≡α. The NCPi transition system is the
smallest transition system obtained from these rules and closed under the equiva-
lence relation ≡I obtained by extending ≡ with the commutative monoidal axioms
for |. Explicitely: if p


α−→ q, p ≡I p′ and q ≡I q′ then p′
α−→ q′.
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(free-input) a(s).p
aar;•−−−→ p[r/s] r=lab⇒∀a′b′:la′b′ /∈fn(a(s).p)


(bound-input) a(s).p
aa(s);•−−−−→ p


(output) abr.p
•;abr−−−→ p


(link) lab.p
a;lab;b−−−−→ p a 6=b


(internal) τ.p
•;•−−→ p


(res)
p
α−→ q


(r)p
α/r−−→ (r)q


r/∈obj(α)∪bn(α)∪is(α)


(open)
p
α−→ q


(r)p
(r)(α/r)−−−−−→ q


r∈obj(α)\(is(α)∪objin(α))


(sum-l)
p
α−→ p′


p+ q
α−→ p′


(par)
p1


α−→ q1


p1 | p2
α−→ q1 | p2


bn(α) ∩ fn(p2) = ∅
lab ∈ bn(α) ∪ objin(α)⇒
∀a′b′ 6= ab : la′b′ /∈ fn(p2)


(com)
p1


(R) •;W ;abr−−−−−−−−→ q1 p2
(R′) abx;W ′;•−−−−−−−−−→ q2


p1 | p2
•;W ;W ′;•−−−−−−→ (R) (q1 | q2σ)


b ∈ R ⇐⇒ b ∈ R′


x, σ =


{
[r/s], (s) r ∈ R
id, r r /∈ R


lab ∈ R⇒
∀a′b′ 6= ab : la′b′ /∈ fn(p2)


(srv-out)
p1


(R) •;W ;abr−−−−−−−−→ q1 p2
a;W ′;c−−−−→ q2


p1 | p2
(R) •;W ;W ′;cbr−−−−−−−−−−→ q1 | q2


R ∩ fn(p2) = ∅
lab ∈ R⇒
∀a′b′ 6= ab : la′b′ /∈ fn(p2)


(srv-in)
p1


a;W ;b−−−−→ q1 p2
(R) bcx;W ′;•−−−−−−−−→ q2


p1 | p2
(R) acx;W ;W ′;•−−−−−−−−−−→ q1 | q2


(R ∪ bn(x)) ∩ fn(p1) = ∅
lab ∈ n(x)⇒
∀a′b′ 6= ab : la′b′ /∈ fn(p1)


(srv-srv)
p1


a;W ;b−−−−→ q1 p2
b;W ′;c−−−−→ q2


p1 | p2
a;W ;W ′;c−−−−−−→ q1 | q2


The paths inferred by (COM) and (SRV-*) must be simple


Fig. 2: NCPi interleaving operational rules. The rule (sum-l) also has a sym-
metric version.
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The rules (free-input) and (bound-input) treat the reception of a global and
a private name, respectively, while (output) treats the emission of a global
name. These actions are represented as paths of length zero. As in the early
π-calculus, a renaming must be applied to the continuation in the free input
case; by well-formedness, such renaming can always be extended to act as a
proper graph homomorphism. The reception of a global link should be treated
carefully: the rule forbids it whenever another link with the same label, but
different endpoints, already occurs free in the process, because the renaming
would break well-formedness.


The rule (link) is used to provide a transportation service to the environ-
ment, but we forbid services from a site to itself.


The rule (internal) infers a transition labelled with the empty path •; •,
representing an internal action.


The rule (res) infers a transition of (r)p from the transitions of p, but it
considers only those transitions such that r is not an interaction site and is not
sent or received. This side condition reflects that of the π-calculus rule, where r
must not be the subject or the object of the premise’s action, and its purpose
is to avoid captures: e.g. if (a)b(c).p is such that c ∈ fn(p) and it is allowed to
perform bba; •, then a would be captured in the continuation (a)p[a/c].


The rule (open) infers the scope extrusion of a restricted name r by turning
a path of p into an extrusion path of (r)p, provided that r is an object in the
original path, but not the datum of an input or an interaction site. Notice that
the rule allows us to “extrude” the destination site: the intuition is that we
can use global resources to send or receive a datum to/from a local site, which
becomes global if the communication is not complete.


The rule (sum-l) is an obvious extension of the corresponding π-calculus
rule.


The rule (par) is similar to the π-calculus one, with the usual side condition
on the label’s fresh names, but in addition we require that, whenever α represents
the reception or the extrusion of a link, no other links with the same label but
different endpoints occur free in p2, because otherwise the continuation may not
be well-formed.


The rules (com) is used to complete a transmission, covering both free and
bound names communication. In the case of bound names communication, a
renaming is applied and the extruded names become restricted in the continu-
ation. The side conditions ensure that input and output paths always have the
same destination site, even when this is bound, and that received links do not
break well-formedness.


The rules (srv-in) and (srv-out) state that a process can use a transporta-
tion service, provided by another process running in parallel, if their paths meet,
the bound names transmitted are fresh with respect to the service provider and
link labels in the resulting transition do not break well-formedness. The rule
(srv-srv) is used to compose two services.


The transition system satisfies the following property.
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Proposition 1. If p
α−→ q then α is simple and well-formed, and q is well-


formed.


Now we introduce the interleaving behavioural equivalence.


Definition 9 (Interleaving network conscious bisimilarity). A binary,
symmetric and reflexive relation R is an interleaving network conscious bisim-
ulation if (p, q) ∈ R and p


α−→ p′, with:


(i) bn(α) ∩ fn(q) = ∅;
(ii) lab ∈ bn(α) ∪ objin(α)⇒ ∀a′b′ 6= ab : la′b′ /∈ fn(q)


implies that there is q′ such that q
α−→ q′ and (p′, q′) ∈ R. The bisimilarity is the


largest such relation and is denoted by ∼NCI .


Condition i is standard, while ii rules out the transitions of p that q may not be
able to simulate due to well-formedness. Notice that a consequence of defining
the semantics up to structural congruence is that ≡I⊆∼NCI .


Theorem 1. ∼NCI is a congruence w.r.t all NCPi operators except the input
prefix.


Finally, we can establish a relation between a subcalculus of the interleaving
NCPi and the π-calculus.


Proposition 2. Let linkless NCPi be the subcalculus of NCPi such that no links
appear in processes and the output prefix is of the form aab. Then there is a
one-to-one correspondence between processes and transitions of π-calculus and
linkless NCPi.


This enconding maps ab to aab or •; aab, depending on whether it is used as
prefix or as action; the other cases are obvious. By homomorphic extension we
get the encoding for processes and transitions, which is one-to-one because the
rules in Fig.2, if we restrict syntax as described, can be expressed in terms of
simpler rules matching the π-calculus ones. This proposition explains why ∼NCI
is not a congruence.


5 Example: routing protocol


In this section we model a simple routing protocol, similar to BGP [15]. This
protocol assumes that the network is composed of disjoint groups of networks,
each referring to a single administrative authority, called Autonomous Systems
(AS). Some of the ASs’ routers act as gateways between the AS they belong to
and other networks. The protocol takes care of the routing mechanism between
ASs in a distributed manner: each gateway has a routing table, filled by the
protocol, whose entries specify which is the next hop along the “best” path
towards some destination; this information will be used to forward the incoming
data.
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lit de


ASit


ASde


ASen


it en


de


ab msg.p b(x).q


b


l′de en


l′′it en


c


a


Fig. 3: Example network.


In our model, both routers and hosts are represented as sites, and network
connections are represented as links. Autonomous systems are generic processes
whose links are all restricted, because these links represent local services. Routing
tables are modelled as functions RTg, one for each gateway g, such that RTg(a)
is a link lgh to some other gateway h, representing the next hop of the best path
towards a. The forwarding is implemented at the SOS level by employing the
following rule for gateways


(route)
p1


(R)•;W ;gar−−−−−−−→ p′1 p2
g;lgh;h−−−−→ p′2 RTg(a) = lgh


p1 | p2
(R)•;W ;lgh;har−−−−−−−−−−→ p′1 | p′2


Now, consider the network depicted in Fig.3. We have three ASs: an Italian
one, a German one and an English one, whose gateways are respectively the
sites it, de and en; and we have two processes willing to communicate from
site a in ASit to site b in ASen


1. Suppose there is a path from a to it in ASit,
the routing tables are such that RTit(b) = lit de and RTde(b) = l′de en, and that
there is a path in ASen from en to b. Let C denote L(lit de) |L(l′de en) |L(l′′it en),


where L(l(xy))
def
= lxy.L(lxy), modelling the connections between the ASs. Then


(route) yields


ASit |ASen |ASde |C
•;lit de;l


′
de en;•−−−−−−−−−→ AS′it |AS′en |ASde |C .


Notice that only the part of the path between the gateways is observable.


6 Concurrent semantics


Interleaving semantics can be considered inadequate for distributed system with
partially asynchronous behaviour, since it implicitely assumes the existence of a


1 For the sake of brevity, the roles played by sites, such as “gateway of a given AS”,
are stated informally here, but they could be formalized through a type system.
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Commutative monoid laws
for |


Scope extension laws


Λ1 |Λ2 ≡Λ Λ2 |Λ1


(Λ1 |Λ2) |Λ3 ≡Λ Λ1 | (Λ2 |Λ3)


Λ |1 ≡Λ 1 |Λ ≡Λ Λ


(r)(r′)Λ ≡Λ (r′)(r)Λ r /∈ n(r′), r′ /∈ n(r)


Λ1 | (r)Λ2 ≡Λ (r)(Λ1 |Λ2) r /∈ Fn(Λ1)


Singleton concurrent path
β1 ≡α β2 ⇒ β1 ≡Λ β2


Fig. 4: Structural congruence of concurrent paths.


central arbiter who grants access to resources. This criticism is particularly rele-
vant for our network-conscious calculus. Here we present a concurrent semantics
where we can observe multisets of paths covered at the same time, instead of
single paths. These are denoted by Λ and called concurrent paths.


Definition 10 (Concurrent paths). Concurrent paths are defined as follows:


Λ ::= 1 | β | Λ1|Λ2 | (r)Λ


where β is a path without extrusion restrictions (see definition 4).


Concurrent paths can have the following forms:


– The empty concurrent path 1 indicates that no activity is performed.
– The singleton concurrent path β is a concurrent path made of a single path.
– The union Λ1 |Λ2 means that the paths in Λ1 and Λ2 are being traversed at


the same time.
– The extrusion restriction (r)Λ indicates that r is being extruded through


one or more paths in Λ.


The free names Fn(Λ) and bound names Bn(Λ) of a concurrent path Λ are
defined by an obvious induction on the syntax, where the base cases are fn(β)
and bn(β); as usual, we have to be careful with the following cases


Fn((a)Λ) = Fn(Λ) \ ({a} ∪ La) Bn((a)Λ) = Bn(Λ) ∪ {a} ∪ (La ∩ n(Λ))


The sets Obj(Λ), Is(Λ) and Objin(Λ) are defined as Fn(Λ), considering respec-
tively obj(β), is(β) and objin(β) as base cases. In Fig.4 the axioms defining the
structural congruence ≡Λ for concurrent paths are shown: the operator | defines
a commutative monoid with 1 as identity, there are axioms for extending the
scope of a restriction and finally an axiom saying that if two paths are struc-
turally congruent, so are the singleton concurrent paths containing them.


The notion of well-formedness for concurrent paths is defined as follows.


Definition 11 (Well-formed concurrent paths). A concurrent path Λ is
well-formed if for every subterm Λ′ of the form (a)Λ′′ we have fn(Λ′) = fn(Λ′′) \
{a}.
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For instance, the concurrent path (c)(•; abc | a; lac; c) is not well-formed, since
(c) implicitely binds lac.


We specify a canonical form for concurrent paths.


Definition 12 (Concurrent paths in canonical form). A concurrent path Λ
is in canonical form if it has the form (R)Θ, where R is a sequence of restrictions
and Θ does not contain extrusion restrictions.


Notice that binders of the form ab(s) are still allowed in Θ.
Now we extend the hiding operation and the notion of simple path to con-


current paths.


Definition 13 (Hiding operation). We denote by // the extension of / to
concurrent paths:


1//r = 1 (Λ1 |Λ2)//r = (Λ1//r) | (Λ2//r) β//r = β/r ((r′)Λ)//r =


{
(r′)(Λ//r) if r 6= r′


(r′)Λ otherwise


Definition 14 (Simple concurrent path). A concurrent path is simple if
each β ∈ Λ is simple and, for any other β′ ∈ Λ, |Wβ | ∩ |Wβ′ | = ∅.


Here, besides the simplicity of all the paths in Λ, we also require that these paths
do not share links.


The NCPi concurrent transition system is defined as follows.


Definition 15 (NCPi concurrent transition system). Consider the rules
in Fig.5, where observations are up to ≡Λ. The concurrent NCPi transition
system is the smallest transition system obtained from these rules and closed
under ≡.


The rules (res) and (open) are extensions of the corresponding interleaving
rules.


The rule (idle) infers a “no-op” transition, enabling the parallel composition
of processes to behave in an interleaving style.


The rule (par) subsumes its interleaving counterpart, because it implements
the interleaving behaviour together with (idle). It also gives rise to the concur-
rent behaviour by making the union of the paths in the premise, while (com),
(srv-in), (srv-out) and (srv-srv) take care of concatenating them, without
modifying the source process.


This union is allowed only if the resulting concurrent path is simple, if we
do not lose well-formedness due to inconsistent link labels, and if the concurrent
path of each premise has bound names which are fresh w.r.t the other process and
distinct from all the names occurring in the other concurrent path. This last con-
dition avoids inferring transitions where the extruded name is free in the receiv-
ing process’s continuation even if it has not been actually received, which might
cause incorrect behaviours. For instance, consider the processes p = (b)aab.b(c).p′


and q = a(d).dde.q′, and suppose p | q (b)•;aab | aab;•
=========⇒ b(c).p′ | bbe.q′[b/d] is allowed;
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(res)
p
Λ
=⇒ q


(r)p
Λ//r
==⇒ (r)q


r/∈Obj(Λ)∪Bn(Λ)∪Is(Λ)


(open)
p
Λ
=⇒ q


(r)p
(r)(Λ//r)
=====⇒ q


r∈Obj(Λ)\(Is(Λ)∪Objin(Λ))


(idle) p
1
=⇒ p


(par)
p1


Λ1=⇒ q1 p2
Λ2=⇒ q2


p1 | p2
Λ1 |Λ2
====⇒ q1 | q2


Λ1 |Λ2 is simple


lab ∈ Bn(Λi) ∪Objin(Λi)⇒
∀a′b′ 6= ab : la′b′ /∈ n(Λ3−i) ∪ fn(p3−i)


Bn(Λi) ∩ (n(Λ3−i) ∪ fn(p3−i)) = ∅


(com)
p


(R) (•;W ;abr | ab′x;W ′;• |Θ)
==================⇒ q


p
(R′) (•;W ;W ′;• |Θ)
============⇒ (R′′) q(σb ◦ σr)


R′ = R ∩Obj(Θ)


R′′ = (R \ R′) ∩ ({b} ∪ n(r))


see tables (b) and (c)


(srv-in)
p


(R) (a;W ;b | bcx;W ′;• |Θ)
================⇒ q


p
(R) (acx;W ;W ′;• |Θ)
=============⇒ q


(srv-out)
p


(R) (•;W ;abr | a;W ′;c |Θ)
================⇒ q


p
(R) (•;W ;W ′;cbr |Θ)
=============⇒ q


(srv-srv)
p
a;W ;b | b;W ′;c |Λ
==========⇒ q


p
a;W ;W ′;c |Λ
========⇒ q


(a)


– b′ = b
– σb = id


– b, b′ ∈ R
– σb = [b/b′]


(b)


– r /∈ R
– x = r
– σr = id


– r ∈ R
– x = (s)
– σr = [r/s]


(c)


Fig. 5: NCPi concurrent operational rules: (a) shows the SOS rules (the omitted
ones are in common with the interleaving semantics); (b) and (c) are the possible
configurations for (com). Any pair of configurations, one from (b) and one from
(c), is valid (four possibilities).
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now the two components of the continuation can synchronize on b even if its
scope extension has not actually been accomplished, which is clearly incorrect.


Here it is simpler to give just one rule (com) for all kinds of communica-
tions. In the case of a bound name communication, the rule’s behaviour is quite
different from the interleaving one: when two complementary paths are turned
into a complete path, their extruded names must not necessarily be restricted in
the continuation, because there may be other paths transporting them; another
difference is that a renaming needs to be applied to the continuation if the des-
tination sites are bound, because (par) side conditions do not allow for bound
names equality.


The premises of (com), (srv-in) and (srv-out) must have their concurrent
paths in canonical form: this is always possible, thanks to (par) side conditions.
Notice that there is no need for the monoidality axioms of the parallel operator
here, because ≡Λ allows reordering the elements of concurrent paths.


We have the same result as the interleaving transition system.


Proposition 3. If p
Λ
=⇒ q then Λ is simple and well-formed, and q is well-


formed.


The interleaving and concurrent transition systems are related as expected.


Theorem 2. p
α−→ q if and only if p


α
=⇒ q.


The behavioural equivalence, denoted by ∼NC , is an obvious extension of the in-
terleaving one: bisimilar processes must perform the same concurrent paths with
fresh bound names and consistent link’s labels. However, it has the additional
property of being a congruence.


Theorem 3. ∼NC is a congruence with respect to all NCPi operators.


Proof (Hint). This is proved by considering each possible elementary context
and defining a suitable bisimulation closed under that context. The difficult case
is the input prefix, since a renaming, possibly not injective, is involved. The
key idea is that renaming a process may allow to apply more (com), (srv-in),
(srv-out) or (srv-srv) rules, but the paths these rules concatenate are already
observable in the original process, so the new transitions only depend on the
original process’ ones. In the appendix an outline of the proof of ∼NC being
closed under all renamings can be found. ut


The rules in Fig.5 generate a concurrent version of the π-calculus transition
system, via the encoding of Proposition 2.


Corollary 1. The bisimilarity on the concurrent π-calculus transition system is
a congruence.


This result is analogous to that in [14] but, as already mentioned, there the
synchronization mechanism is not faithful to the π-calculus: in [14] the synchro-


nization channel is observed unless restricted, for instance a | a τa−→ 0, while for


our calculus a | a •;•=⇒ 0, which corresponds to τ .
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7 Conclusions


In this paper we presented NCPi, an extension of π-calculus with an explicit
notion of network. To achieve this the syntax is enriched with named connectors.
From a semantic point of view, an observation is a snapshot of the traffic on
the network, represented as the paths concurrently covered by the data. The
semantics’ concurrent nature is the key feature which allows bisimilarity to be a
congruence.


Related work. The works most closely related to ours are [8] and [10] where
network-aware extensions of Dπ [9] and Klaim[11] are presented, called respec-
tively DπF and tKlaim. Klaim is quite far from the synchronous π-calculus,
because it models a distributed tuple-space modifiable through asynchronous
primitives, but an encoding to the asynchronous π-calculus exists [16]. Both
DπF and tKlaim are located process calculi, which means that processes are
deployed in locations, modelling physical network nodes. In NCPi, instead, pro-
cesses access the network through sites, possibly more than one for each process,
rather than being inside of it. However, locations can be easily introduced in
NCPi by a typing mechanism which limits the number of subject names in pro-
cesses. The network representations are quite different: in DπF locations are
explicitely associated with their connectivity via a type system, tKlaim has a
special process to represent connections, while in our calculus connections are
just names, so the available network nodes and connections correspond to the
standard notion of free names. This brings simpler primitives, but also a higher
level of dinamicity: connections can be created and passed among processes, as
shown in section 2; this example, in our opinion, is not easily implementable
in tKlaim and DπF . Finally, our calculus is more programmable: processes
explicitely activate transportation services over connections via the link prefix,
while in the cited calculi the network is always available.


We can also cite [17–19] as examples of calculi where resources carry some ex-
tra information: they explicitely associate costs with π-calculus channels through
a type system. In our case, links could also be typed in order to model services
with different features, e.g. performance, costs and access rights.


Research directions. Our calculus only captures point-to-point communication,
but a network could be used for more complex forms of interaction, e.g. multi-
cast. One possible development direction might be allowing different mechanisms
of message exchanging. Moreover, one can think of complex conditions on re-
sources regulating the coexistence of paths, e.g. restrictions on bandwidth or
costs. There is also some room for asynchronous variations, for instance each
hop of a routing path could be performed in different transitions. This would
capture the behaviour of SDNs in a more faithful way.


Network-awareness is only one form of resource-awareness, which is essential
to adequately model new computational paradigms such as cloud computing.
Future work includes also the development of an algebraic/coalgebraic categor-
ical model of resource-aware nominal calculi. In particular, the approach based
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on presheaf models has been successfuly applied to the π-calculus [20], the fu-
sion calculus [21] and the explicit fusion calculus [22]. This approach is especially
effective for nominal calculi, because it allows to model resources as a separate
index category, so to decouple the structure of resources from the syntax and
semantics of processes using them. This permits to capture many alternatives
with minimal changes. Moreover, coalgebras over a broad class of presheaves
can be implemented as HD-automata [23, 24], more concrete operational models
that allow for name deallocation and hence are suitable for verification purposes.
In our case, the resources of a process are its free sites and links, which can be
represented as a finite graph. Functors on the category of resources could allow
to create new sites and new links, and to increase their capabilities, similarly to
what happens with functor δ in the presheaf semantics of the π-calculus.
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Appendix


Outline of the proof of ∼NC being closed under all renamings. We prove that the
relation R defined by applying all renamings to all pairs of bisimilar processes
is a bisimulation.


Consider two processes (p, q) ∈ R. For the sake of simplicity we treat the
case of σ being an elementary renaming [r


′
/r], but the general case is an obvious


extension. We assume r, r′ /∈ bn(p) ∪ bn(q) (this can always obtained by α-
conversion).


Suppose pσ
Λ−→ p′ and consider a proof P for this transition: P contains some


rules “triggered” by σ, i.e. (com), (srv-in), (srv-out) and (srv-srv) that
further concatenate paths which had different interaction and/or destination
sites as performed by p, but then these sites are identified by σ. These rules can
be moved at the end of the proof by making them “jump over” their following
rules. This might require modifying the rules, e.g. if we have a (com) followed
by a (res) that restricts the objects of the two paths (com) concatenates, and
we want to invert the order of these rules, first we have to turn the (res) into
an (open), because now the two paths are separate in its premise and their
objects are observable, and then put (com) closing the scope of these objects.


It can be proved that jumping is allowed, by considering each pair of con-
secutive rules where the first one is a concatenation rule. The critical case is
when the second rule adds a new restriction, because delaying the concatena-
tion of two paths α1 and α2 causes more names to be observed (namely their
interaction and destination sites) and this in principle might violate the rule’s
side conditions. However, the violation cannot happen, because these names are
equal to r′, which we assumed not bound in p.


In the end we clearly get a transition of pσ with the same label Λ, but its
continuation may be different from p′. In fact, moving some (com) to the end
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of the proof may bring some restrictions at the top level in p′. However such a
continuation would be bisimilar to p′, since the former could be obtained from
the latter just by applying the axiom of scope extrusion, which definitely holds
for our bisimilarity.


The new proof has two parts P ′ and P ′′, where P ′′ contains only the con-
catenation steps we moved. Notice that the steps in P ′ are all and only those
applicable not only to pσ but also to p. Being p and q bisimilar, also q can per-
form a corresponding transition, with the two continuations p′′ and q′′ being in
relation R. Finally, if we apply σ to processes and paths of the latter transition,
we can apply the steps in P ′′ and thus we can simulate the transition from pσ
to p′ with a transition from qσ to q′.


Now, observe that if we apply any sequence of concatenation rules to a
transition, we get a transition whose continuation is the original one, possibly
with some additional restrictions and renamings, because the sequence may
contain some (com) rules closing the scope of some names.


Since p′ and q′ are obtained from p′′ and q′′ by applying σ and then adding
the same renamings and restrictions, and since it is easy to prove that restriction
preserves bisimilarity, we conclude that also p′ and q′ are in relation R. ut






