

Università di Pisa


Dipartimento di Informatica


Technical Report: TR-12-05


Getting Close Without


Touching


Linda Pagli Giuseppe Prencipe Giovanni Viglietta


April 12, 2012


ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726











Getting Close Without Touching∗


Linda Pagli Giuseppe Prencipe Giovanni Viglietta


April 12, 2012


Abstract


In this paper we study the Near-Gathering problem for a set of
asynchronous, anonymous, oblivious and autonomous mobile robots with
limited visibility moving in Look-Compute-Move (LCM) cycles: In this
problem, the robots have to get close enough to each other, so that every
robot can see all the others, without touching (i.e., colliding) with any
other robot. The importance of this problem might not be clear at a first
sight: Solving the Near-Gathering problem, it is possible to overcome
the limitations of having robots with limited visibility, and it is therefore
possible to exploit all the studies (the majority, actually) done on this
topic, in the unlimited visibility setting. In fact, after the robots get close
enough, they are able to see all the robots in the system, a scenario similar
to the one where the robots have unlimited visibility. Here, we present a
collision-free algorithm for the Near-Gathering problem, the first to our
knowledge, that allows a set of autonomous mobile robots to nearly gather
within finite time. The collision-free feature of our solution is crucial in
order to combine it with an unlimited visibility protocol. In fact, the
majority of the algorithms that can be found on the topic assume that all
robots occupy distinct positions at the beginning. Hence, only providing
a collision-free Near-Gathering algorithm, as the one presented here, is
it possible to successfully combine it with an unlimited visibility protocol,
hence overcoming the natural limitations of the limited visibility scenario.
In our model, distances are induced by the infinity norm. A discussion on
how to extend our algorithm to models with different distance functions,
including the usual Euclidean distance, is also presented.


1 Introduction


Consider a distributed system whose entities are a set of robots or agents that
can freely move on a two-dimensional plane, operating in Look-Compute-Move
(LCM) cycles. During a cycle, a robot takes the snapshot of the position of
the other robots (Look); executes the protocol, the same for all robots, using
the snapshot as an input (Compute); and moves towards the computed desti-
nation, if any (Move). After each cycle, a robot may be inactive for some time.


∗This work has been partially supported by MIUR of Italy under project MadWeb.
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With respect to the LCM cycles, the most common models used in these stud-
ies are the fully synchronous (FSYNC), the semi-synchronous (SSYNC), and
the asynchronous (ASYNC). In the asynchronous (ASYNC) model, each robot
acts independently from the others and the duration of each cycle is finite but
unpredictable; thus, there is no common notion of time, and robots can compute
and move based on obsolete observations. In contrast, in the fully synchronous
(FSYNC) model, there is a common notion of time, and robots execute their
cycles synchronously. In particular, time is assumed to be discrete, and at each
time instant all robots are activated, obtain the same snapshot, compute and
move towards the computed destination; thus, no computation or move can be
made based on obsolete observations. The last model, the semi-synchronous
(SSYNC), is like FSYNC where, however, not all robots are necessarily acti-
vated at each time instant.


In the last few years, the study of the computational capabilities of such
a system has gained much attention, and the main goal of the research efforts
has been to understand the relationships between the capabilities of the robots
and their power to solve common tasks. The main capabilities of the robots
that, to our knowledge, have been studied so far in this distributed setting
are visibility, memory, orientation, and direct communication. With respect to
visibility, the robots can either have unlimited visibility, by sensing the positions
of all other robots, or have limited visibility, by sensing just a portion of the
plane, in particular up to a given distance V [1, 8]. With respect to memory, the
robots can either be oblivious, by having access only to the information sensed
or computed during the current cycle (e.g., [13]), or non-oblivious, by having the
capability of storing the information sensed or computed since the beginning of
the computation (e.g., [2, 14, 15]). With respect to orientation, the two extreme
settings studied are the one where the robots have total agreement, and agree
on the orientation and direction of their local coordinate systems (i.e., they
agree on a compass), e.g., [9], and the one where the robots have no agreement
on their local coordinate axes, e.g., [14, 15]; in the literature, there are studies
that tackle also the scenarios in between; for instance, when the robots agree
on the direction and orientation just of the y coordinate, or there is agreement
just on the chirality of the coordinate system, e.g., [6]. With respect to direct
communication, the direction so far has been towards the use of external signals
or lights to enhance the capabilities of mobile, first suggested in [11], and also
referenced in [7], which provided the earliest indication that incorporating in the
robot model some simple means of signalling might positively affect the power
of the team. Recently, a study that tackles more systematically this particular
capability has been presented in [3].


In this paper, we solve the Near-Gathering problem: The robots are re-
quired to get close enough to each other, without touching or colliding during
their movements. Here, the team of robots under study executes the cycles
according to the ASYNC model, the robots are oblivious and have limited vis-
ibility. The importance of this problem might not be clear at a first sight: With
a solution to the Near-Gathering problem it would be possible to overcome
the limitations of having robots with limited visibility, and it would be possible
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to exploit all the studies (the majority, actually) done in the unlimited visibil-
ity setting. In fact, after the robots get close enough, they are able to see all
the robots in the system, a scenario similar to the one where the robots have
unlimited visibility. Since most of the solutions to the unlimited visibility case
assume a starting configuration where no two robots touch (i.e., they do not
share the same position in the plane), it is of crucial importance to ensure that
no collision occurs during the near gathering.


A problem close to Near-Gathering is the gathering problem, where the
robots have to meet, within finite time, in a point of the plane not agreed
in advance. This problem has been studied in the literature in all models;
in particular, a study in SSYNC with limited visibility has been presented
in [1]: Actually, this solution could be easily modified to solve also the Near-


Gathering problem, just imposing a termination condition; however, it has
been shown that this solution does not work in ASYNC [12]. Another solution
for the limited visibility case is in [13], where the coordinate systems are assumed
to be consistent only after a period of instability (i.e., the robots agree on
the coordinate system only after an arbitrary long period); however, also this
solution is designed for the SSYNC model. In [10] a convergence protocol that
works with a very limited form of asynchrony (called 1-bounded asynchrony) has
been presented. In the asynchronous model, the only solution to the gathering
problem with robots having limited visibility has been presented in [8]: This
protocol, however, is not collision-free; hence, it cannot be used to solve our
problem. We note that, as in the protocol in [8], we also assume that the robots
have total agreement. Also, we remark that, since the algorithm presented here
is for the ASYNCmodel, it solves the problem also in the SSYNC and FSYNC


models.
As stated above, solutions to problems studied in the unlimited visibility


setting can be potentially used to solve the same problems in the limited vis-
ibility setting, by exploiting the Near-Gathering protocol presented in this
paper. Among these, we can cite for instance the Arbitrary Pattern Formation
Problem [9, 6, 14, 15], or the Uniform Circle Formation (e.g., [4, 5]).


The organization of the paper is as follows: In Section 2 the formal definition
of the robot model is presented; in Section 3 the collision-free algorithm that
solves the Near-Gathering problem is presented; in Section 4 the correctness
of the protocol is shown. In this paper, we thoroughly discuss only the sce-
nario in which distances are induced by the infinity norm; some extensions of
our algorithm to models with different distance functions, including the usual
Euclidean distance, are also briefly discussed in Section 5.


2 The Model


The system is composed of a team of mobile entities, called robots, each modeled
as a computational unit provided with its own local memory and capable of
performing local computations. The robots are (viewed as) points in the plane.
Let r(t) denote the absolute position of robot r at time t (i.e., with respect to an
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absolute reference frame); also, we will denote by r(t).x and r(t).y the abscissa
and the ordinate value of position r(t), respectively. When no ambiguity arises,
we shall omit the temporal indication; also, the configuration of the robots at
time t is the set of robots’ positions at time t.


Each robot has its own local coordinate system, and we assume that the local
coordinate systems of the robots are consistent with each other: In other words,
they agree on where the North, South, East and West are. A robot is endowed
with sensorial capabilities and it observes the world by activating its sensors,
which return a snapshot of the positions of all other robots with respect to its
local coordinate system. The visibility radius of the robots is limited: Robots
can sense only points in the plane within distance V . This setting, referred in
the literature as limited visibility, is understandably more difficult; for example,
a robot with limited visibility might not even know the total number of robots
nor where they are located if outside its radius of visibility. Also, combined with
the asynchronous behavior of the robots, introduces a higher level of difficulty
in the design of collision-free protocols. For instance, in the example depicted in
Figure 1.a, robot s, in transit towards its destination, is seen by r; however, s is
not aware of r’s existence and, if it starts the next cycle before r starts moving,
s will continue to be unaware of r; hence, since r does not see s when s starts
its movement, it must take care of the “potential” arrival of s when computing
its destination.


All robots are identical: They are indistinguishable from their appearance
and they execute the same protocol. Robots are autonomous, without a central
control. Robots are silent, in the sense that they have no means of direct
communication (e.g., radio, infrared) of information to other robots. Each robot
is endowed with motorial capabilities, and can move freely in the plane. A
move may end before the robot reaches its destination, e.g., because of limits
to its motion energy. The distance traveled in a move is neither infinite nor
infinitesimally small. More precisely, there exists a constant δ > 0 such that, if
the destination point is closer than δ, the robot will reach it; otherwise, it will
move towards it of at least δ. Note that, without this assumption, an adversary
would make it impossible for any robot to ever reach its destination, following a
classical Zenonian argument. The quantity δ might not be known to the robots.


The robots do not have persistent memory, that is, memory whose content
is preserved from one cycle to the next; they are said to be oblivious. The only
available memory they have is used to store local variables needed to execute
the algorithm at each cycle.


At any point in time, a robot is either active or inactive. When active, a
robot r executes a Look-Compute-Move (LCM) cycle performing the following
three operations, each in a different state: (i) Look: The robot observes the
world by activating its sensor, which returns a snapshot of the positions of all
robots within its radius of visibility with respect to its own coordinate system
(since robots are viewed as points, their positions in the plane are just the set of
their coordinates); (ii) Compute: The robot executes its algorithm, using the
snapshot as input. The result of the computation is a destination point; (iii)
Move: The robot moves towards the computed destination; if the destination
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Figure 1: (a) When s starts moving (the left end of the arrow), r and s do
not see each other. While s is moving, r Looks and sees s; however, s is still
unaware of r. After s passes the area of visibility of r, it is still unaware of r.
(b) The area above and to the right of s defines the Move Space of s. The fat
line is the Contour of r∗. (c) Computation of the length of the movement in the
algorithm.


is the current location, the robot stays still (performs a null movement). When
inactive, a robot is idle. All robots are initially inactive. The amount of time
to complete a cycle is assumed to be finite, and the Look is assumed to be
instantaneous. We will denote by W(t), L(t), C(t), M(t) the sets of robots that
are, respectively, inactive, in a Look phase, in a Compute phase and in a Move
phase at time t.


In the following, we will assume that all distances are induced by the infinity
norm: ‖p‖∞ = max{p.x, p.y}. Different distance functions, including the usual
Euclidean distance, will be briefly discussed in Section 5.


2.1 Notation


We will denote by R = {r1, . . . , rn} the set of robots in the system. First note
that, in order to achieve explicit termination, it is necessary that all robots
share the knowledge of n. In Section 4.5 we will show how to overcome this by
making use of visible bits [3].


We will denote by G(t) = (N,E(t)) the distance graph at time t ≥ 0, where
N is the set of the input robots and, for any two distinct robots r and s,
(r, s) ∈ E(t) iff 0 ≤ ‖r(t) − s(t)‖∞ ≤ V . In [8] it was proved that the initial
distance graph G(0) must be connected for the gathering problem to be solvable;
the same result clearly holds also for the Near-Gathering problem. Thus, in
the following we will always assume that G(0) is connected.


Let r be a robot, and let us divide its visible area into four quadrants,
denoted by NW(r), NE(r), SE(r), and SW(r) (see the example depicted in
Figure 1.b). For technical reasons, the vertical and the horizontal segment of
length V starting from r and going South and West, respectively (including the
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location of r itself), are part of SW(r); the vertical (resp. horizontal) segment
of length V passing through r and going North (resp. East) is part of NW(r)
(resp. SE(r)). When not necessary, the reference to r will be dropped. Similarly,
a reference to time may be added.


Next, we define the Move Space of a robot (refer to the example depicted in
Figure 1.b):


Definition 1 (Move Space). The Move Space of a robot r at time t, denoted
by MS(r, t), is the set


{


(x′, y′) ∈ R2 | x′ ≥ r(t).x ∧ y′ ≥ r(t).y
}


.


Based on the previous definition, we introduce the Contour of a robot (refer
again to Figure 1.b):


Definition 2 (Contour). The Contour of a robot r at time t, denoted by
CT (r, t), is the boundary of the set


⋃


s
MS(s, t), where s ranges through all


the robots in NW(r, t) ∪NE(r, t) ∪ SE(r, t).


We will call a peak of the contour any convex corner of CT (r); the concave
corners will be called valleys. An easy property of CT (r, t) is stated in the
following


Observation 1. If there are robots in both NW(r) and in SE(r), and no robot
in NE(r), then CT (r) has exactly one valley in NE(r).


3 The Near-Gathering Problem and Its Solu-


tion


In the Near-Gathering problem, at the beginning a set of n robots is arbi-
trarily placed in the plane, on distinct positions such that G(0) is connected: We
will call this the initial configuration, denoted by I. In finite time, the robots
are required to move within distance ε from each other, for a given 0 < ε < V/4:
We will call this the final configuration, denoted by F .


In our solution (reported in Figure 2), a robot moves only when it sees
robots in NW ∪ NW ∪ SE . Informally, at each cycle, robot r∗ first computes
the direction of movement according to the following rules:


• If r∗ can see robots only in SW , then it will not move; that is, in this case
the destination point is the point of coordinates (0, 0).


• If r∗ can see robots only in NW ∪SW , then its direction of movement is
given by the half-line l starting in r∗ and going North.


• If r∗ can see robots only in SW ∪ SE , then its direction of movement is
given by the half-line l starting in r∗ and going East.


• Otherwise, the direction of movements of r is decided based on the shape
of the Contour of r∗. In particular, if in NE there is at least a robot,
the direction of movement is given by the half-line l starting from r∗ and
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passing through robot in NE closest to r∗. Otherwise, there must be
robots in both NW and SE ; in this case, the direction of movement is
given by the half-line l starting from r∗ and passing through the only
valley in CT (r∗).


In order to establish the length of the movements along l, r∗ checks two
main factors: First, it must not enter the Move Space of any robot it can see
(this contributes to guarantee collision avoidance); second, the new position
must be within distance V/2 from any of the robots it is currently seeing (this
contributes to guarantee both collision avoidance and the connectedness of the
initial distance graph). In order to ensure these two factors, first, for each
r ∈ NW ∪ NE ∪ SE , it computes the intersection pr between l and MS(r)
(notice that robots move only upward and rightward). Second, for each visible
robot r, the intersection qr between the visible area of r∗ and the line parallel
to l and passing through r is computed: The distance dr between r and qr is
the maximum distance r∗ is allowed to move in order to not lose visibility with
r (assuming r does not move). Thus, if p is the point closest to r∗ among the
points in {pr} ∪ {dr}, the destination point of r∗ is the median point dp on the
segment between r∗ and p.


As we will prove in the following, a consequence of the computation of dp
as described above is that the distance graph never gets disconnected; also,
collisions are avoided. Termination is achieved using the knowledge of n that
the robots are assumed to have. In fact, it is easy to see that, since the robots
operate in a totally asynchronous environment, without knowledge of n, explicit
termination would not be possible. In particular, in our solution, a robot ter-
minates its execution as soon as it sees n robots at distance less than a given
tolerance ε.


4 Correctness


In this section, we will prove that the Algorithm reported in Figure 2 correctly
solves the Near-Gathering problem. In particular, the proof will be artic-
ulated in three parts: First, we will prove that the initial distance graph is
preserved during the execution; second, we will prove that no collision occurs
during the movements of the robots; finally, the correctness proof concludes by
showing that the algorithm terminates.


4.1 Preliminary Definitions and Observations


Before presenting the correctness proof, we will introduce a few preliminary
definitions and observations. First, by construction, it is easy to observe the
following:


Observation 2. Each robot can only move rightward and upward. Furthermore,
the robots on the rightmost vertical axis never move right, and the robots on the
topmost horizontal axis never move up.
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State Look
Take the snapshot of the positions of the visible robots, which returns, for each
robot r ∈ R within distance V , Pos[r], the position in the plane of robot r


(according to my coordinate system); (Note: I am robot r∗)


State Compute


Zε = Robots in Pos[] within distance ≤ ε;
If |Zε| = n Then Terminate.
l, p1, . . . , pn, p


′


1, . . . , p
′


n
, b = nil;


Let NW, NE , SE , and SW be the quadrants of my visible area;
CT = Contour of the robots in NW ∪NE ∪ SE ;
If I see robots only in SW Then dp = (0, 0);
Else


If I see robots only in NW ∪ SW Then


l = Half-line from me going North;
Else If I see robots only in SE ∪ SW Then


l = Half-line from me going East;
Else


If There is at least one robot in NE Then


l = Half-line from me to the closest robot in NE ;
Else


l = Half-line from me to the only valley of CT in NE ;
For Each robot r ∈ NW ∪NE ∪ SE Do


pr = Intersection between l and MS(r);
For Each visible robot r Do


lr = Line parallel to l and passing through r;
qr = Lowest or leftmost intersection between lr and my visible area;
dr = Distance between r and qr;
p′
r
= Point on l at distance dr from me;


b = Point on l at distance V from me;
p = Point closest to me among points in {pr} ∪ {p′


r
} ∪ {b};


dp = Median point on the segment between my position and p.


State Move


Move(dp).


Figure 2: The Near-Gathering Protocol


Observation 3. During each cycle, a robot travels a distance of at most V/2.


Definition 3 (First and Last). Given a robot r, let First(r , t) = min{t′ > t|r ∈
L(t′)} be the first time, after time t, at which r performs a Look operation. Also,
let Last(r , t) = max{t′ ≤ t|r ∈ L(t′)} be the last time, from the beginning up
to time t, at which r has performed a Look operation; if r has not performed a
Look yet, then Last(r , t) = 0.


Now, we define the Destination Point of a robot at a time t as follows:
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Definition 4 (Destination Point). Given a robots r, we define the Destination
Point DP(r, t) of r at time t as follows:


• If r ∈ W(t), then: if r is in its first cycle, then DP(r, t) = r(0) (i.e., the
starting position of r); otherwise, DP(r, t) is the point p as computed in
the last Compute state before t (in the previous cycle).


• If r ∈ L(t), then DP(r, t) is the point p as computed in the next Compute
state after t (in the current cycle).


• If r ∈ C(t), then DP(r, t) is the point p as computed in the current Compute
state.


• If r ∈ M(t), then DP(r, t) is the point p as computed in the last Compute
state before t (in the current cycle).


From the previous definition, we can state the following:


Lemma 1. Let r be a robot. During the time strictly between two consecutive
Looks, the Destination Point of r does not change.


4.2 Preservation of Mutual Awareness


We will now prove that the connectedness of the initial distance graph is pre-
served during the entire execution of the algorithm. We do so by first introducing
the notion of mutual awareness.


Definition 5 (Mutual Awareness). Two distinct robots r and s are mutually
aware at time t iff both conditions hold:


1. ‖r(tr)− s(tr)‖∞ ≤ V , with tr = Last(r , t), and


2. ‖r(ts)− s(ts)‖∞ ≤ V , with ts = Last(s , t).


Since initially all robots are inactive, then by definition of mutual awareness
we have


Lemma 2. All the pairs of robots that are within distance V from each other
at time t = 0 are initially mutually aware.


In the following lemma, we will prove that two robots that are mutually
aware at the beginning of the computation keep the awareness during the exe-
cution.


Lemma 3. If robots r and s are mutually aware at time t, they are mutually
aware at any time t′ > t.


Proof. Let {ti}i≥0 be the weakly increasing sequence of time instants at which
either r or s execute a Look; if both r and s Look simultaneously, then such
time instant appears twice in the sequence. Without loss of generality, we may
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assume that r and s first become mutually aware at time tm, when r starts a
Look state, whereas s started a Look at time tm−1.


We will prove by induction that, for any i ≥ m, the following conditions
hold:


1. ‖r(ti)− s(ti)‖∞ ≤ V ,


2. ‖DP(r, ti)− s(ti)‖∞ ≤ V ,


3. ‖r(ti)− DP(s, ti)‖∞ ≤ V ,


which will clearly imply our claim.
Observe that Condition 1 holds for i = m − 1 and i = m, by definition of


mutual awareness. Moreover, by the algorithm, Condition 2 holds for i = m
and Condition 3 holds for i = m−1. To show that Condition 3 holds for i = m,
recall that


r(tm−1).x ≤ r(tm).x ≤ DP(r, tm−1).x ≤ r(tm−1).x + V,


s(tm−1).x ≤ s(tm).x ≤ DP(s, tm−1).x ≤ s(tm−1).x+ V.


By Condition 1 (for i = m), it follows that


r(tm).x ≤ s(tm).x+ V ≤ DP(s, tm−1).x+ V,


and by Condition 3 (for i = m− 1)


DP(s, tm−1).x ≤ r(tm−1).x+ V ≤ r(tm).x+ V,


which are collectively equivalent to |r(tm).x− DP(s, tm−1).x| ≤ V . A similar ar-
gument holds for the y coordinates, implying that ‖r(tm)−DP(s, tm−1)‖∞ ≤ V .
This yields Condition 3 for i = m, since, by Lemma 1, DP(s, tm) = DP(s, tm−1).
Thus the base of the induction holds.


Let i > m, and let the three conditions hold at time ti−1. Again, without
loss of generality, we may assume that r starts a Look at time ti, and therefore
Condition 2 holds by the algorithm.


By indcutive hypothesis, observe that


r(ti).x ≤ DP(r, ti−1).x ≤ s(ti−1).x+ V ≤ s(ti).x+ V


s(ti).x ≤ DP(s, ti−1).x ≤ r(ti−1).x+ V ≤ r(ti).x+ V,


which yields |r(ti).x − s(ti).x| ≤ V . A similar argument holds for the y coordi-
nate, thus proving Condition 1.


Since Condition 1 holds, then Condition 3 also holds by the same argument
used for i = m.


Based on the previous lemma, we can state the following


Corollary 1. The connectedness of G(0) is preserved during the execution of
the algorithm.
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Figure 3: Proof of Lemma 5. Each empty circle represents a convergence point.


4.3 Collision Avoidance


In this section, we will prove that no collision occurs during the execution of
the algorithm.


Lemma 4. No collision ever occurs between any pair of robots during the exe-
cution of the algorithm.


4.4 Termination


Let us call Right the vertical axis passing throught the righmost robot(s) in I,
and Top the horizontal axis passing throught the topmost robot(s) in I; also,
let f be the intersection point between Right and Top. By Observation 2, and
by the algorithm, we can easily observe that


Observation 4. If at any time t a robot is at position f , then it never moves
from there.


Next, we introduce two definitions that will be useful to prove the conver-
gence of the algorithm.


Definition 6 (Convergence Point). Given a point a, let Ψ and Γ be the vertical
and the horizontal axes passing through it, respectively. We say that a is a
convergence point for robot r (or that r converges towards a) if, within finite
time, r passes any vertical axis to the left of Ψ and any horizontal axis below Γ,
and never passes neither Ψ or Γ.


Note that, by Observation 2, all robots that converge towards a point a are
below and to the left of a (refer to Figure 3).
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Definition 7 (Horizontal and Vertical Distances). Given two distinct robots
r and s, we define the Horizontal Distance at time t between r and s, shortly
HD(r, s, t), the distance between the vertical axes where r and s lie at t. Sim-
ilarly, we define the Vertical Distance between r and s, shortly V D(r, s, t), the
distance between the horizontal axes where r and s lie at t. The reference to t
will be dropped where not necessary.


The following lemma shows that f is the only converge point.


Lemma 5. All robots converge towards point f .


Proof. By Observation 2, the movement of each robot is monotonically increas-
ing with respect to both the x-coordinate and the y-coordinate. Also, by Obser-
vations 2 and 4, no robot can ever pass f ; that is, each robot converges towards
a point.


If all robots have the same convergence point, then, by previous observations,
this point must be f , and the lemma follows. Thus, let us assume that there is
more than one convergence point, and let a be the leftmost and bottomost of
them, and let A be the set of robots tha converge towards a. Also, let Ψa and
Γa be the vertical and the horizontal axis passing through a, respectvely. Note
that at least one robot r ∈ A must be within distance V from a robot s that is
not converging towards a. Otherwise, either all robots are converging towards
a, or the robots in A are at a distance greater than V from all the others: The
first case is not possible by hypothesis; in the second case, we would have a
contradiction by Corollary 1. We distinguish the possible cases.


1. If a is the only convergence point on Ψa (refer to the example depicted in
Figure 3.a), then, by hypothesis, there must be at least another conver-
gence point to the right of a: Let Ψ be the vertical axis passing through
the first convergence point to the right of a, and δ be the distance between
Ψa and Ψ. Let us also consider the time instant t when all robots are at
a distance closer than δ/5 from their respective convergence points; note
that, up to time t, r and s are still within distance V . Also, at this time,
let Ψ′ be any vertical axis between the rightmost robot among those in A,
and Ψa. By construction, within finite time, at least one robot in A will
pass Ψ′; let r∗ be the first one. According to the algorithm, in order for r∗


to pass Ψ′, it has to see at least a robot to its right, hence to the right of
Ψa. By construction, all robots to the left of r∗ are within distance δ5, and
the robots r∗ sees to its right are at a distance d such that δ/2 < d < δ;
that is, the movement r∗ executes towards its right is greater than δ/4,
hence r∗ passes Ψa, having a contradiction.


2. If there is another convergence point on Ψa, and there are no other conver-
gence points to the right of Ψa, let b be the closest convergence point to a
(refer to the example depicted in Figure 3.b). Then, by construction, b is
above a and, by Corollary 1, at least a robot r ∈ Amust be within distance
V from one of the robots converging towards b. In this case, the proof
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proceeds similarly to the previous case, where the rightward movements
are changed into upwards movements.


3. If there is another convergence point on Ψa, and there are other conver-
gence points to the right of Ψa, then, let b be the closest convergence point
to a on Ψa (refer to the example depicted in Figure 3.c). In this case, if
no robot in A is within distance V from any other robot to the right of
Ψa, then the lemma follows by previous Case 2.


Otherwise, let Ψ be the vertical axis passing through the first conver-
gence point to the right of a, δ′ be the distance bewteen Ψa and Ψ,
δ′′ = V D(a, b), and δ = min{δ′, δ′′}. Let us also consider the time instant
t when all robots are at a distance closer than δ/5 from their respective
convergence points. Let us now consider at this time the vertical axis Ψ′


and the horizontal axis Γ′ passing through the rightmost and the topmost
robots in A, respectively. By construction, within finite time, at least one
robot in A will pass either Ψ′ or Γ′; let r∗ be the first one.


According to the algorithm, in order for r∗ to pass either Ψ′ or Γ′, it has
to see robots to the right of Ψa and/or above Γa. If r


∗ sees only robots to
the right of Ψa, then the proof continues similarly to previous Case 1. If r∗


sees only robots above Γa, then the proof continues similarly to previous
Case 2. Otherwise, r∗ sees robots both to the right of Ψa and above Γa;
according to the algorithm, r∗ chooses as direction of movement either a
peak or a valley (in NE(r∗)) of the contour of r∗. By construction, the
distance d between such a point and r∗ is such that δ/2 < d < δ; that is,
r∗ moves inside NE(r∗) of a distance greater than δ/4, thus passing either
Ψa or Γa, thus having a contradiction.


From the previous lemma, and by the termination condition of the algorithm,
we can state the following


Corollary 2. After finite time, all robots terminate their execution, being at
distance ε from each other.


By Corollaries 1 and 2, and by Lemma 4, we can state the following


Theorem 3. Algorithm 2 correctly solves the Near-Gathering problem.


4.5 On the Knowledge of n


In the solution that we presented, in order for the robots to explicitly terminate,
the knowledge of n is necessary. However, this assumption can be dropped by
using external visible bits, as recently introduced in [3]. In particular, each
robot is equipped with a visible light, whose color can be changed during the
Compute state. During the Look, a robot can retrieve, beside the position, also
the value of the light of its fellow robots, which can be stored in a local Light[]
array (the color of the light of the executing robot is stored in Light[1]).
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With this extra information, the explicit termination of the robots can be
achieved by substituting the termination check in the Near-Gathering proto-
col with the following check, where ε is an arbitrary small constant (any fraction
of V ):


If |Z \ Zε| == 0 Then


Light[r∗] = 1;
If ∀r ∈ Zε, Light[r] == 1 Then Terminate.


Else Light[r∗] = 0.


5 Conclusions


In this paper we presented the first algorithm that solves the Near-Gathering


problem for a set of autonomous mobile robots with limited visibility (where the
distance function is induced by the infinity norm); the protocol presented here
is collision-free: This allows to potentially combine our protocol with solutions
designed for the unlimited visibility setting.


We remark that our algorithm also solves the Near-Gathering problem
in the robot model that uses the Manhattan distance (i.e., the distance induced
by the 1-norm): Each robot merely has to transform each snapshot that it gets
during a Look state by rotating it clockwise by 45◦ and scaling it by a factor of√
2. Then the protocol can be applied as it is, and finally the computed point


dp has to be moved again with the inverse transformation: Scaled by 1/
√
2 and


rotated counterclockwise by 45◦.
The Near-Gathering algorithm can also be applied to models that use


distances induced by any p-norm, with p > 1, including the usual Euclidean
distance: Each robot r just “ignores” any point p such that ‖r−p‖∞ > V , thus
pretending to be in the infinity norm model. Of course, this is guaranteed to
terminate correctly only if the initial conditions given in Section 2.1 are met,
i.e., if G(0), computed with the infinity norm, is connected.


In particular, when using the Euclidean distance, our protocol and proofs
work if G(t) is constructed by connecting pairs of robots that are within Eu-
clidean distance V/


√
2, as opposed to V . Moreover, we are confident that even


this constraint on the initial distance graph can be dropped, by a simple adap-
tation of our protocol to circular visible areas. Due to space limitations, we are
unable to discuss the topic further in this paper.
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