

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-12-07

The Equivalence of Reduction
and Translation Semantics of

Java Simple Closures
(Extended Version)

Marco Bellia and M. Eugenia Occhiuto

May 21, 2012
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

The paper is an Extended Version of the one to be published in Fundamenta Informaticae.

The Equivalence of Reduction and Translation

Semantics of Java Simple Closures

(Extended Version)

Marco Bellia and M. Eugenia Occhiuto

May 21, 2012

Abstract

FGCJ is a minimal core calculus that extends Featherweight Generic Java, FGJ,
with lambda expressions for Java Simple Closures. It has been introduced to study, in a
reduction semantics framework, properties of Java Simple Closures, including type safety
and abstraction property. F is a source-to-source, translation rule system from Java 1.5
extended with lambda expressions, back to ordinary Java 1.5. It has been introduced
to study, in a translation semantics framework, the design and the implementation
features of lambda expressions, including simple closures, this transparency, non local
variables and relations with anonymous class objects. In this paper we prove that the
reduction semantics and the translation semantics commute in FGACJ. Where FGACJ
is a minimal core calculus that extends FGCJ, by adding Java interfaces and anonymous
class objects and that allows a restricted definition of translation semantics F .

1 Introduction

Java Simple Closures, S-closure for short, were introduced in [Rei09, Buc10, Goe10] in
order to extend Java primary expressions with lambda expressions and invocation of
functions. The evaluation of a lambda expression defines a function (object), i.e. an
S-closure, specifying a, possibly empty, list of formal parameters and a body. The body
is either an expression, including a lambda expression or a function invocation, or a
block statement and may contain occurrences of this and of local and nonlocal identi-
fiers (including variables and parameters). In S-closures, this has the non transparent
property[BO11b]: Any occurrence of this within a lambda expression is a self-reference
of the S-closure resulting from the lambda expression evaluation. In contrast, closures
having this with the transparent property are studied in [BO10]: These closures are
such that this within a lambda expression is a self-reference of the object for which the
instance method (res. instance initializer, res. constructor), in whose body the lambda
expression occurs, was invoked. Nonlocal variables, occurring in a S-closure, are bound
according to static (lexical) scope: The binding is that of the nearest enclosing block
which contains the lambda expression that computes the closure. Lambda expressions
have function types that specify the list of types of the closure arguments, the type of the
computed object, if any, and the list of checked exceptions that a closure invocation can

1

throw. These types extend the Java type system: They may be parameterized with type
arguments and may be used in type expressions for Java terms. In S-closures, function
types have contra-covariance sub-typing: A closure of a type that is a contra-covariant
of the expected type can be used instead of a closure of the exact type. Eventually, with
the aim of simplifying programming with Java APIs, lambda expressions are provided
of a conversion mechanism, called lambda conversion: It converts from function types
into descriptors of abstract methods of a SAM (Single Abstract Method) type.

In [BO10, BO11b], we extend Featherweight Java [IPW01] with S-closures with-
out closure conversion. In that paper we define a minimal core (i.e. compact and
complete) calculus FGCJ to study properties of S-closures in Java: We provide a re-
duction semantics, →, and prove type safety and abstraction property for S-closures.
In [BO09], we extend Java 1.5 with various form of lambda expressions including S-
closures without closure conversion and closure sub-typing. In that paper we define a
source-to-source translation [AeA80] to study implementations of lambda expressions
in Java: We provide a translation semantics, F , and obtain an implementation of Java
1.5, extended with S-closures, which maps, possibly at preprocessing time, S-closures
into objects of anonymous classes, built from single method interfaces, a restricted form
of SAM. A translation semantics of a programming language is a transformational se-
mantics [Pep79] where the kernel is a fixed subset of the language whose semantics is
already defined. Accordingly, the semantics is defined by reducing, through rules, called
definitional transformations, the constructs of the (non kernel) language to the more
elementary constructs of the kernel language.

In this paper, we prove that the reduction semantics and the translation semantics
commute in the calculus FGACJ. As a consequence, we have that: (a) S-closures
modelled in FGCJ are those considered in the translation system F ; (b) S-closures
implemented in [BO09] satisfy the properties proved in [BO10, BO11b]; (c) FGCJ and
F form a framework to study (design and properties) and to implement closures in
Java in the form of S-closures and possibly, variants of them [Goe07]. Point (c) is
even more relevant in view of the last JSR [BS11] which plans a deep revision of some
features currently considered, in the previous JSR [Buc10], for Java simple closures,
as discussed in Section 5. In order to prove the equivalence of the two semantics, we
extend, in Section 2.2, Featherweight Generic Java, FGJ, to cope with interfaces and
anonymous classes, obtaining FGAJ as a minimal core calculus for Java 1.5. We do the
same for FGCJ obtaining, in Sections 2.2-2.3, FGACJ as a minimal core calculus for
Java 1.5 extended with S-closures. We extend, in Section 2.4, the reduction semantics
→ on the new constructs and prove type safety and other properties for such extended
calculi, Section 3. We restrict the translation semantics F , given in [BO09], to translate
from FGACJ onto FGAJ and prove that the diagram in Fig. 1, commutes, Section 4.
The proofs of the main theorems are deferred in Appendixes. Conclusions, in Section
5, summarize the main paper results, discuss future developments (including closure
conversion) and open problems (including contra-covariance sub-typing).

2 Featherweight GACJ

2.1 Notation and General Conventions

In this paper we adopt the notation used in [IPW01], accordingly f is a shorthand for a
possibly empty sequence f1, . . . , fn (and similarly for T, x, etc.) and M is a shorthand for

2

e∈ FGACJ
→

→

- e’∈ FGACJ

F F

? ?
F [[e]] ∈ FGAJ F [[e’]] ∈ FGAJ-

Figure 1: Commutation diagram

M1 . . . Mn (with no commas) where n is the size |f|, respectively |M|, i.e. the number of
terms of the sequence. The empty sequence is ◦ and symbol ”,” denotes concatenation
of sequences. Operations on pairs of sequences are abbreviated in the obvious way C f

is C1 f1, . . . , Cn fn and similarly C f; is C1 f1; . . . Cn fn; and this.f = f; is a short-
hand for this.f1 = f1; . . . this.fn = fn; Sequences of field declarations, parameters
and method declaration cannot contain duplications. Cast, () , and closure definition,
, have lower precedence than other operators, and cast precedes closure definition.
Hence #()(this!()) can be written as #()this!(). The, possibly indexed and/or primed,
metavariables T, V, U, S, W range over type expressions; T ranges over type expressions
which are not closures; X, Y, Z range over type variables; N, P, Q range over class types;
C, D, E range over class names; f, g range over field names; e, v, d range over expres-
sions; x, y range over variable names and M, K, L and m range respectively, over methods,
constructors, classes, and method names. [x/y]e denotes the result of replacing y by x
in e. Eventually FV (T) denotes the set of type variables in T.

2.2 Syntax

The abstract syntax of FGJ is at the beginning of Table1, followed by the syntactic
rules that extend FGJ with (generic) interfaces and anonymous class object creation,
defining language FGAJ. A type interface I〈T〉 is an interface name I and a list T of the
type expressions that bind the type variables X of the interface declaration (see, rules
TFGAJ and LFGJ). In Java, a type interface may have subtypes, moreover classes may
implement interfaces: We omit such features in FGAJ , since we consider interfaces only
in combination with the mechanism of anonymous class object creation. Analogously,
we omit the use of classes in anonymous class object creation and restrict it to only
interfaces (see, rule eFGAJ). The use of classes, instead of interfaces, in anonymous class
object creation, is more heavy since it involves method overriding: whose formalization
requires additional rules. On the other hand, such a complication is unnecessary for
the aim of the paper, since translation F does not use such a feature, The syntax of
S-closures is the one adopted in [Rei09], it includes lambda expressions and function
types, it is reported in the third box of Table1 and extends FGJ in FGCJ defining
the calculus studied in [BO10, BO11b]. Lambda expressions consist of closures whose
body is an expression and of closures whose body is a block: Since sequencing and
assignment are omitted in FGJ as well as in FGCJ, the body of a closure can only
be an expression (see rule FFGCJ). Closure types extend types as rule TFGAJ shows. A
closure type #T(T) specifies the type sequence (T), possibly empty (standing for the

3

type unit), of the arguments and the type T of the result. An example of closure is
#(Integer x, Integer y) (x+y) which has two arguments x and y, has body x+y, and
type #Integer(Integer, Integer). No new generic variables can be introduced when
defining a closure (reasons can be found in [Buc10]) but of course generic variables
(introduced in class or method declarations) can occur in the type expressions of the
arguments or be used inside closure body.

Table 1 : Syntax

FGJ

T ::= X | N (TFGJ)
N ::= C〈T〉 (NFGJ)
L ::= class C〈XC N〉C N {T f; K M} (LFGJ)
K ::= C(T f){super(f); this.f = f; } (KFGJ)
M ::= 〈XC N〉T m(T x){↑ e; } (MFGJ)
e ::= x | e.f | e.m〈T〉(e) | new N(e) | (N)e (eFGJ)

IA: Extensions for Interfaces and Anonymous Class Objects

T ::= I〈T〉 (TFGAJ)
L ::= interface I 〈XC N〉{H} (LFGAJ)
H ::= 〈XC N〉T m(T x) (HFGAJ)
e ::= new I〈T〉() {M} (eFGAJ)

Cl: Extensions for Closures

T ::= #T(T) (TFGCJ)
e :: F | e ! (e) (eFGCJ)
F ::= #(T x)e (FFGCJ)

FGAJ = FGJ + IA
FGACJ = FGJ + IA + Cl
FGCJ = FGJ + Cl

Eventually, at the bottom of Table1, the syntactic structure of the various calculi,
considered in the paper, is resumed. For space convenience, the reduction rules of
the semantics as well as the typing rules are not given in separate tables for each
calculus. In fact, since compositionality of the semantics (we use), the rules of the various
constructs are the same in all calculi containing such a construct. However, for the reader
convenience, in all tables, but Table 3, the rules for each calculus, FGJ, FGAJ, FGCJ,
FGACJ, have a label which is indexed by the name of the minimal calculus including
the construct, involved in the rule. Note that C〈T〉 include Object(since T may be the
empty sequence and C may be Object) hence generic variables in classes and methods
can be instantiated with types T that include interfaces or closures.

2.3 Programs

A program defines a mutually recursive scope for a collection of classes and interfaces
that are: (1) well formed according to the syntax in Table 1, (2) well typed according

4

to the typing rules GT-ClassFGJ and GT-InterfFGAJ of Tables 4a. The reduction
semantics, Red, of a program is the set of all pairs (e,e’) such that e is any closed and
well typed expression (i.e. ∅, ∅ ` e : T, for a type T, using the typing rules) that can be
expressed using classes and interfaces of the program, and e′ is such that e −→ e′,

Table 2: Computation

Computation
fields(N) = T f

(new N(e)).fi −→ ei
(GR-FieldFGJ)

mbody(m〈V〉, N) = x.e

(new N(e)).m〈V〉(d) −→ [d/x, new N(e)/this]e
(GR-InvkFGJ)

∅ ` N<:P

(P)(new N(e)) −→ new N(e)
(GR-CastFGJ)

#(T x)e!(d) −→ [d/x,#(T x)e/this]e (GR-Inv-ClosFGCJ)

mbody(m〈V〉, new I〈T〉(){M}) = x.e

(new I〈T〉(){M}).m〈V〉(d) −→ [d/x, new I〈T〉(){M}/this]e
(GR-Invk-AnonymFGAJ)

Congruence
e0 −→ e

′
0

e0.f −→ e
′
0.f

(GRC-FieldFGJ)

e0 −→ e
′
0

e0.m〈T〉(e) −→ e
′
0.m〈T〉(e)

(GRC-T-InvFGJ)

ei −→ e
′
i

e0.m〈T〉(. . . , ei, . . .) −→ e0.m〈T〉(. . . , e′i . . .)
(GRC-Inv-ArgFGJ)

ei −→ e
′
i

new N(. . . , ei, . . .) −→ new N(. . . , e′i, . . .)
(GRC-NewFGJ)

e −→ e
′

(N)e −→ (N)e′
(GRC-CastFGJ)

e −→ e
′

#(T x)e −→ #(T x)e′
(GRC-Clos-ValFGCJ)

e −→ e
′

e!(e) −→ e
′!(e)

(GRC-Inv-ClosFGCJ)

ei −→ e
′
i

e!(. . . , ei, . . .) −→ e!(. . . , e′i, . . .)
(GRC-Clos-ArgFGCJ)

using the reduction semantic below: Formally, Let P be a program (in FGJ, FGAJ,
FGACJ), then Red(P) = {(e −→ e′) | ∅, ∅ ` e : T for T ∈ P}.

5

2.4 Semantics: Reduction

The reduction semantics is given through the inference rules in Table 2, which define
the reduction relation e −→ e′ that says that “expression e reduces to expression e′ in
one step”. The set of expressions which cannot be further reduced is the set of normal

Table 3: Classes and Interfaces

Subclassing

CE C
CE D DE E

CE E

class C〈XC N〉C D {S f; K M}
CE D

Auxiliary functions
fields(Object) = ◦ (F-Object)

class C〈XC N〉C N {S f; K M} fields([T/X]N) = U g

fields(C〈T〉) = U g, [T/X]S f
(F-Class)

class C〈XC N〉C N {S f; K M} 〈YC P〉U m (U x){↑ e; } ∈ M

mtype(m, C〈T〉) = [T/X](〈YC P〉U→ U)
(MT-Class)

class C〈XC N〉C N {S f; K M} m 6∈ M

mtype(m, C〈T〉) = mtype(m, [T/X]N)
(MT-Super)

interface I〈XC N〉 {H} 〈YC P〉U m(U x) ∈ H

mtype(m, I〈T〉) = [T/X](〈YC P〉U→ U)
(MT-Interface)

class C〈XC N〉C N {S f; K M} 〈YC P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, C〈T〉) = x.[T/X, V/Y]e
(MB-Class)

class C〈XC N〉C N {S f; K M} m 6∈ M

mbody(m〈V〉, C〈T〉) = mbody(m〈V〉, [T/X]N)
(MB-Super)

interface I〈XC N〉 {...} 〈YC P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, new I〈T〉(){M}) = x.[T/X, V/Y]e
(MB-Interface)

Auxiliary predicates
override(m, Object, 〈YC P〉T→ T0) (Over-Object)

mtype(m, N) = 〈ZC Q〉U→ U0 implies

((P, T) = [Y/Z](Q, U) and Y<:P ` T0<:[Y/Z]U0)

override(m, N, 〈YC P〉T→ T0)
(Over)

DCast

dcast(C, D) dcast(D, E)

dcast(C, E)

class C〈XC N〉C D〈T〉 {. . .} X = FV (T)

dcast(C, D)
(DCast)

forms and constitute values of the calculus. In FGACJ values are objects, constructed
out of an anonymous or named class, and of closures. Hence the grammatical category

6

v defines the syntactic form of the values (domain) of the calculus FGACJ:

v ::= new N(v)
| new I〈T〉(){M}
| #(T x)e

This structure of values results from the reduction rules of the calculus. The rules
indexed by FGJ are the same as those of calculus FGJ introduced in [IPW01], and
those

Table 4: Typing Rules

∆; Γ ` x : Γ(x) (GT-VarFGJ)

∆; Γ ` e0 : T0 fields(bound∆(T0)) = T f

∆; Γ ` e0.fi : Ti
(GT-FieldFGJ)

mtype(m, bound∆(T0)) = 〈YC P〉U→ U

∆; Γ ` e0 : T0 ∆ ` V ok ∆ ` V<:[V/Y]P
∆; Γ ` e : S ∆ ` S<:[V/Y]U

∆; Γ ` e0.m〈V〉(e) : [V/Y]U
(GT-InvFGJ)

mtype(m, I〈T〉) = 〈YC P〉U→ U

∆; Γ ` e0 : I〈T〉 ∆ ` V ok ∆ ` V<:[V/Y]P
∆; Γ ` e : S ∆ ` S<:[V/Y]U

∆; Γ ` e0.m〈V〉(e) : [V/Y]U
(GT-AnonymInvFGAJ)

∆ ` N ok fields(N) = T f

∆; Γ ` e : S ∆ ` S<:T

∆; Γ ` new N(e) : N
(GT-NewFGJ)

∆ ` I〈T〉 ok ∆; Γ ` M OK IN I〈T〉
∆; Γ ` new I〈T〉(){M} : I〈T〉

(GT-AnonymNewFGAJ)

∆; Γ ` e0 : T0 ∆ ` bound∆(T0)<:N

∆; Γ ` (N)e0 : N
(GT-UCastFGJ)

∆; Γ ` e0 : T0 ∆ ` N ok ∆ ` N <: bound∆(T0)
N = C〈T〉 bound∆(T0) = D〈T〉 dcast(C, D)

∆; Γ ` (N)e0 : N
(GT-DCastFGJ)

∆; Γ ` e0 : T0 ∆ ` N ok

N = C〈T〉 bound∆(T0) = D〈U〉 C 6E D D 6E C

∆; Γ ` (N)e0 : N
(GT-SCastFGJ)

∆ ` T ok ∆; Γ, x : T, this : #T(T) ` e : T

∆; Γ ` #(T x) e : #T(T)
(GT-ClosureFGCJ)

∆; Γ ` e : #T(T) ∆; Γ ` e : S ∆ ` S<:T

∆; Γ ` e!(e) : T
(GT-Closure-InvFGCJ)

7

indexed by FGCJ are the same as those of the calculus FGCJ introduced in [BO11b]. In
particular, they include rule GR-Invk-Clos that reduces a closure invocation replacing
it by the closure body in which the formal parameters are replaced by the corresponding
actual ones, and this is replaced by the closure itself, thus allowing recursive closures.
We have only one new rule, GR-Invk-AnonymFGAJ, which is indexed by FGACJ and
gives the semantics of invocation with anonymous class objects. The rule is similar to
the one of method invocation with object of named classes. In fact, the two kinds of
invocation may be formulated similarly provided that the auxiliary functions mtype and
mbody, introduced in Table3, are suitably extended to select the type and the body of
anonymous class objects (see rules MT-Interface and MB-Interface). Moreover,
since anonymous class object creation is formulated as a new expression that extends the
calculus FGJ (resp. FGCJ), the rules of congruence of [IPW01] (resp. [BO10, BO11b])
are unchanged.

2.5 Semantics: Typing

The typing rules are given through inference rules that use two different kinds of en-
vironment, ∆ (for type variables) and Γ (for value variables), and five different typing
judgements: one for each different term structure of the language. A (well formed) type

Table 4a: Typing Rules

Classes, Interfaces, Methods

∆ = X<:N, Y<:P ∆ ` T, T, P ok

∆; x : T, this : C〈X〉 ` e0 : S ∆ ` S<:T
class C〈XC N〉C N{...} override(m, N, 〈YC P〉T→ T)

〈YC P〉T m(T x){↑ e0; } OK IN C〈XC N〉
(GT-MethodFGJ)

Y<:P, X<:N ` T, T, P ok

〈YC P〉T m(T x) OK IN I〈XC N〉
(GT-HeaderFGAJ)

∆′ = ∆, X<:N, Y<:P ∆′; Γ, x : T, this :I〈V〉 ` e0 : S
∆′ ` T, T, P ok ∆′ ` V<:[V/X]N ∆′ ` S<:T
interface I〈XC N〉{H} 〈YC P〉T m(T x) ∈ H

∆; Γ ` 〈YC P〉T m(T x){↑ e0; } OK IN I〈V〉
(GT-AnonymFGAJ)

X <: N ` N, N, T ok M OK IN C〈XC N〉
fields(N) = U g K = C(U g, T f){super(g); this.f = f; }

class C〈XC N〉C N{T f; K M} OK
(GT-ClassFGJ)

X <: N ` N ok H OK IN I〈XC N〉
interface I〈XC N〉{H} OK

(GT-InterfFGAJ)

environment ∆ is a mapping from type variables to (well formed, in ∆) types written
as a list of X<:T, meaning that type variable X must be bound to a subtype of type T:
∆(X) = T if ∆ contains X<:T, undefined otherwise (i.e. X /∈ dom(∆)). An environment
Γ is a mapping from variables to types written as a list of x : T meaning that “x has
type T”: Γ(x) = T if Γ contains x : T, undefined otherwise (i.e. x /∈ dom(Γ)). When
needed and without loss of generality, variable renaming is used to avoid name collision
among environment bindings. The judgement for a (generic) type T (see Table 5) has

8

the form

Table 5: Subtypes

Subtypes
bound∆(X) = ∆(X) (B-VarFGJ)

bound∆(N) = N (B-ClassFGJ)

∆ ` T <: T (S-ReflFGJ)

∆ ` S <:T ∆ ` T<:U

∆ ` S <: U
(S-TransFGJ)

∆ ` X<:∆(X) (S-VarFGJ)

class C〈XC N〉C N{. . .}
∆ ` C〈T〉 <: [T/X]N

(S-ClassFGJ)

Well-formed types
∆ ` Object ok (WF-ObjectFGJ)

X ∈ dom(∆)

∆ ` X ok
(WF-VarFGJ)

class C〈XC N〉C N{. . .} ∆ ` T ok ∆ ` T<:[T/X]N

∆ ` C〈T〉 ok
(WF-ClassFGJ)

interface I〈XC N〉{. . .} ∆ ` T ok ∆ ` T<:[T/X]N

∆ ` I〈T〉 ok
(WF-InterfFGAJ)

∆ ` T ok ∆ ` T ok

∆ ` #T(T) ok
(WF-ClosureFGCJ)

∆ ` T ok meaning that “T is a well-formed type in the (well formed) type environ-
ment ∆”. The typing judgements for subtyping (see Table 5) has the form ∆ ` S<:T
meaning that “S is a subtype of T in ∆”. The judgement for classes (see rule GT-
ClassFGJ in Table 4a) has the form C OK meaning that “C is well typed”. The typing
judgements for methods (see GT-MethodFGJ in Table 4a) has the form M OK IN C

meaning that “M is well typed when its declaration occurs in class C”1. The judge-
ment for expressions (see the rules of Table 4) has the form ∆; Γ ` e : T meaning

1For methods in instances, the judgement is the same than for classes but the inference has to consider
that these methods are defined for interface instantiations instead of interfaces. These instances may
be defined within other methods [hence the presence of Γ for non local variables] that are in classes
[hence the presence of ∆ for the type variables of the class or of the method in which the instance is
defined]). In particular, GT-AnonymFGAJ is introduced for rule GT-AnonymNewFGAJ that defines
the type of new I〈T〉(){M}) in a way that checks that all the methods in M are well defined and correctly
typed: Not the only methods on which the object is invoked. In the different choice in which we limit
correctness to the only methods on which the object is invoked, then rules GT-AnonymInvFGAJ and
GT-AnonymNewFGAJ have to be modified to check correctness only for the method involved in the
invocation.

9

that expression e has type T in the typing environment ∆ and in the (variable) en-
vironment Γ. The typing rules are contained in Table 4 and extends those of FGJ.
Two rules have been added for closure construction and closure invocation. Such rules
simply assert the correctness of the involved types. Four rules have been added for
typing (GT-AnonymInvFGAJ), judgement OK (GT-InterfaceFGAJ), judgement OK
IN (GT-InterfFGAJ, GT-AnonymFGAJ). The rules for subtypes and wellformed types
are reported in Table 5.

3 Properties

Semantics is useful to prove language properties: We extend to FGACJ type soundness
and backward compatibility already proved for FGJ [IPW01] and for FGCJ [BO10].
Then, we extend to FGACJ the closure abstraction property already proved for FGCJ
[BO11b]. All Lemma and Theorem proofs are deferred to the Appendix A.

Theorem 1 (Progress) Suppose e is a well-typed expression. If e includes as a subex-
pression:

1. new N(e).f then fields(N) = T f, for some T and f, and f ∈ f.

2. new N(e).m〈V〉(d) then mbody(m〈V〉, N) = x.e0, for some x and e0, and |x| = |d|.

3. new I〈T〉(){M}.m〈V〉(d) then mbody(m〈V〉, new I〈T〉(){M}) = x.e0, for some x and e0,
and |x| = |d|.

4. F!(d) then F = #(T x) e0, for some T, x and e0, and |x| = |d|. �

Theorem 2 (Type Soundness) If ∅; ∅ `FGACJ e : T and e →∗FGACJ e′ with e′ a

normal form, then e′ is a value w with ∅; ∅ `FGACJ w : S and ∅ `FGACJ S<:T. �

Theorem 3 (Abstraction Property) Let ∆ `FGACJ T ok, H[•] be any context, G[•]
be any context of type (Γ, T)2 and with no free occurrences of this. Let e2 be any
expression such that its free variables are not bound in e1 ≡ G[e2] (but possibly, in H[•]).
Then H[(#(T x)G[x])!(e2)] ≈ H[e1], for any fresh variable x. �

Theorem 4 (Backward compatibility) If an FGACJ program is well typed under
the FGCJ rules it is also well typed under the FGACJ rules. Moreover, for all FGCJ
programs e and e′ (whether well typed or not) e→FGACJ e′ ⇐⇒ e→FGCJ e′. �

4 The Translation Semantics of Java Simple Closures

The translation semantics F [[]]τ of S-closures has been defined in [BO11a], it is based
on the structures of interfaces, anonymous classes, and classes (of variable objects) and
translates S-closures into a composition of such structures. In this paper, we simplifies
F [[]]τ in order to apply it to FGACJ, instead of Java 1.5 extended with S-closures and

2A context of type (Γ, T) is any context H[•], in FGCJ, such that ∆; Γ, x : T ` H[x] : S for some
∆ ` T ok and type S, and fresh variable x[BO11b]. The self reference this occurs bound, in a context
(or an expression), only when it occurs inside a closure or a method defined in such a context (or
expression). In all the other cases, this occurs free.

10

e∈ Java1.5E
F

F

- e’∈ Java1.5

J J

? ?
J(e)∈ FGACJ J(e’)∈ FGAJ-

Figure 2: FGACJ is a Minimal Core Calculus for Translation F on Java 1.5 with S-
Closures

to translate onto FGAJ instead of ordinary Java 1.5. FGACJ (resp. FGAJ) is used as
a minimal core calculus for Java 1.5 extended with closures (resp. ordinary Java 1.5),
to formalize the translation semantics of closures with anonymous class objects. It is
shown in Fig. 2, where J is a syntactic projection of Java 1.5 onto FGAJ.

A first and most evident simplification, is the elimination of parameter τ . In the
original translation τ contained bindings for Java variables, which are not present in
FGACJ 3. In Table 6 we report the definition of F [[]] restricted to FGACJ.

Table 6: F [[]] Translation Semantics

Translation Rules
1t. F [[T]] = T with T ≡ X

2t. F [[T]] = I$n〈F [[S]]F [[S]]〉 with T ≡ #S(S), n = |T|
3t. F [[T]] = A〈F [[T]]〉 with T ≡ A〈T〉, (A ≡ C or A ≡ I)

1l. F [[L]] = class C〈XC F [[N]]〉C F [[N]] { with L ≡ class C〈XC N〉C N {T f; K M}
F [[T]] f;F [[K]]F [[M]]}

2l. F [[L]] = interface I〈XC F [[N]]〉{F [[H]]} with L ≡ interface I 〈XC N〉{H}

k. F [[K]] = C(F [[T]] f){super(f); this.f = f; } with K ≡ C(T f){super(f); this.f = f; }

m. F [[M]] = 〈XC F [[N]]〉 F [[T]] m(F [[T]] x){↑ F [[e]]} with M ≡ 〈XC N〉T m(T x){↑ e}

h. F [[H]] = 〈XC F [[N]]〉 F [[T]] m(F [[T]] x) with H ≡ 〈XC N〉T m(T x)

1e. F [[e]] = x with e ≡ x

2e. F [[e]] = F [[e0]].f with e ≡ e0.f
3e. F [[e]] = F [[e0]].m〈F [[T]]〉(F [[e]]) with e ≡ e0.m〈T〉(e)
4e. F [[e]] = new F [[N]](F [[e]]) with e ≡ new N(e)
5e. F [[e]] = (F [[N]])(F [[e0]]) with e ≡ (N)e0

6e. F [[e]] = F [[e0]].invoke(F [[e]]) with e ≡ e0!(e)
7e. F [[e]] = new I$n〈F [[T]]F [[T]]〉(){ with e ≡ #(T x)e0, n = |T|

F [[T]] invoke(F [[T]] x){↑ F [[e0]]}} and ∆; Γ ` e : #T(T)
8e. F [[e]] = new I〈F [[T]]〉(){F [[M]]} with e ≡ new I〈T〉(){M}
Translation Structures

interface I$n〈X, XC Object, Object 〉{X invoke(X x)} with n = |X|

3FGACJ contains parameters and class fields whose life cycle is different from the one of non-local
variables [BO11a]

11

The inference rules of the definition are written following the compact notation used
in [BO11a], however:

F [[U]] = L′ with U ≡ L and C1, ..., Cn stands for:
C1, ..., Cn, Z1, ..., Zk

L →F L′Z

where: U ranges over the syntactic domains of the language, L ∈ UFGACJ (i.e. syntactic
domain U of FGACJ), L′ ∈ UFGAJ (i.e. domain U of language FGAJ), premises Ci
are judgments (possibly including typing judgments), →F is the translation judgement.
Eventually, let F [[l1]],..,F [[lk]] be all the translated forms occurring in L′ (with k=0
when none occurs). Then, L′Z is L′ where F [[li]] is replaced by l′i, for each i ∈ [1..k], and
Zi ≡ li →F l′i.

Translation F [[]] assigns meaning to closures by mapping closures of FGACJ into
method objects of FGAJ (F-rule 7e), type closures of FGACJ into FGAJ interfaces for
method objects (F-rule 2t), and closure invocation of FGACJ into FGAJ invocations
of the method wrapped in the method object associated to the closure (F-rule 6e). The
remaining F-rules express a sort of congruence of the F-rules above and allow to apply
such F-rules in each subterm of the FGACJ program.

Our final goal here is to prove that the two semantics (reduction and translation
semantics) commute. This is expressed primarily by Theorem 7 and also by Theorem
5. For technical convenience, we extend F to the environments Γ and ∆: for each Γ
(resp. ∆), F [[Γ]] (resp. F [[∆]]) is the environment such that for each variable x (resp. X),
F [[Γ]](x) = F [[Γ(x)]] (resp. F [[∆]](x) = F [[∆(X)]]. Moreover, we write `FGAJ if derivation
` uses only rules of the calculus FGAJ. We write `FGACJ if derivation uses, in addition,
rules of the calculus FGCJ.

Theorem 5 (Expression Typing Preservation) Let ∆; Γ `FGACJ e : T in a program.
Then, F [[∆]];F [[Γ]] `FGAJ F [[e]] : F [[T]] in the F-program. �

Theorem 6 (Program Typing Preservation) Let P be any well typed FGACJ pro-
gram, i.e. A OK for each class and interface A of P. Then, F [[P]] is a well typed program
in FGAJ. �

Theorem 7 (Execution Preservation) Let ∆; Γ `FGACJ e : T and e →FGACJ e′ in a
program. Then, F [[e]]→FGAJ F [[e′]] in the F-program. �

Theorem 8 (Semantics Equivalence) Let P be any well typed FGACJ program. Then,
if (e, e′) ∈ Red(P) then (F [[e]],F [[e′]]) ∈ Red(F [[P]]). �

Theorem 9 (F [[]] Preserves Methods) Let M be a method in a class C (resp. inter-
face I) of a program in FGACJ. If M OK IN C (resp., M OK IN I) then F [[M]] OK IN F [[C]]
(resp. F [[M]] OK IN F [[I]]) in the F-program. Moreover, if H OK IN I in the program then
F [[H]] OK IN F [[I]] in the F-program.

Theorem 10 (F [[]] is Complete and preserves classes and interfaces) (a) Let u ∈
FGACJ be any term, including types, classes, interfaces, expressions, then F [[u]] ex-
ists and F [[u]] ∈ FGAJ. (b) If ∆ ` #T(T) ok for some T, T, then ∆ ` A OK for
A ≡interface I$n〈X, XC O, O〉{X invoke(X x)}. (c) If ∆ ` u OK, then F [[∆]] ` F [[u]] OK

Theorem 11 (F [[]] is Idempotent) Let u ∈ FGACJ. Then F [[F [[u]]]]=F [[u]]

12

Example 1 Consider a program with two classes (of FGAJ, for simplicity):

class A {Object x; A (Object x){super(x); this.x=x;}}
class B {Object x; B (Object x){super(x); this.x=x;}}

Let e ≡ (#(B x)(new A(x)))!(new B(new Object())) be an expression (of FGACJ)
for the program.: Reducing e and then translating, elsewhere translating e and then
reducing, yield the same term.

reduction e→FGACJ

e→GR−Inv−Clos
FGCJ

[new B(new Object())/x,#(B x)(new A(x))/this] new A(x)

≡ new A(new B(new Object()))

translation F [[e]]
F [[#A(B x)(new A x)!(new B(new Object))]]
=F [[#A(B x)(new A x)]].invoke(F [[new B(new Object())]]
=new I$1<B, A>(){F [[A invoke(B x){new A(x)}]].invoke(F [[new B(new Object())]])
=new I$1<B, A>(){F [[A invoke(B x){new A(x)}]]}.invoke(new B(new Object()))
=new I$1<B, A>(){A invoke(B x){↑ new A(x)}}.invoke(new B(new Object ()))

reduction F [[e]]→FGAJ

new I$1<B, A>(){A invoke(B x){↑ new A(x)}}
.invoke(new B(new Object ()))→GR−Invk−AnonymFGAJ

[new B(new Object())/x)]new A(x)
≡ new A(new B(new Object()))

where interface I$1〈XC Object, YC Object〉{X invoke(Y x); } is defined.

5 Conclusions

We proved that the reduction semantics defined in [BO11b] for studying properties of
S-closures [Rei09], and the translation semantics F [[]] defined in [BO09] for implement-
ing S-closure as interface based callbacks, commute in the calculus FGACJ preserving
typing and computation. The translation semantics required interfaces and anonymous
objects hence FGACJ has been obtained as the minimal calculus that extends the calcu-
lus FGCJ with such features. We have proved that the semantic properties, type safety
and abstraction, are also preserved in the new calculus FGACJ. Future developments
and interesting questions that deserve further investigation are concerned with: (i) clo-
sure conversion, (ii) contra-covariant closures, (iii) closures with this transparency.

(i) Closure Conversion: It is an expression cnv(e, T) which specifies an expression e,
which must compute a closure, and a type T, which must be a Single Abstract Method
type [Buc10]. It converts the value of e into an object of type T. The interest for
this kind of mechanism resides in the re-use [Rei09, Buc10, Goe10], in callback pro-
gramming, of Java APIs by passing closures in method invocations, instead of class or
interface object creators. The treatment requires to extend FGACJ, hence both the
reduction semantics and the translation semantics, to cope with this kind of expressions
and with a satisfactory characterization of SAM types.

(ii) Contra-covariant Closures: The closures in the calculus FGACJ have reflection
sub-typing [Rei09, Goe10] which means that: Let ∆ ` #T(T),#S(S) ok. Then, by

13

S-ReflFGJ, ∆ ` #T(T)<:#S(S) if and only #T(T) and #S(S) are the same type, i.e.
T = S and T = S. Instead, contra-covariant closures have the following more general
sub-typing rule:

∆ ` T<:S ∆ ` S<:T

∆ ` #T(T)<:#S(S)

In [BO11b], we proved type soundness in FGCJ for contra-covariant S-closures [Buc10].
Contra-covariant sub-typing greatly extends the programs applicability by recognizing
the type soundness of programs running on closures having types which are contra-
covariant of the program expected types. However, contra-covariance is an implicit
sub-typing relation (which depends only on the types involved in the type expression)
and contrasts with the inheritance sub-typing of Java objects which is an explicit sub-
typing relation (which depends only on the classes and interfaces explicitly declared,
through the inheritance mechanism extends-implements, for the class of the object).
Hence, the implementation of contra-covariant closures with Java (anonymous class)
objects requires additional work and further investigation. Actually, the most recent
JSR[BS11], presented at the World Java Conference, held in San Francisco, October
1-6, 2011, weakens the type system provided for closures and does not mention the use
of contra-covariance sub-typing for closures.

(iii) This Transparency: In Java, the self-reference this may occur in an object ini-
tializer, constructor or instance method. Its meaning is a reference to the object being
constructed or respectively, to the object for which the instance method is invoked. Ac-
cordingly, such a meaning of this is preserved in FGJ [IPW01] and, in FGAJ, in this
paper, where the occurrence of this is restricted to (instance) method bodies (since
initializers are not present in the calculus FGJ, while constructors have a stylized use of
this). What is the meaning of this when it occurs within a S-closure? Since S-closures
can occur only in method bodies we have two possibilities: A transparent use of this
which is not affected from the presence of closures enclosing it [Rei09, Goe10, BO10] or
a non transparent use [Buc10, BO11b]. In the first case, the meaning of this is always
the object for which the method, where this occurs, is invoked, regardless whether this
is within a closure or not. In [BO10] we proved type safety of FGJ extended with S-
closures having this transparency. In the second case, the meaning relies on the closure
in which this occurs: In terms of the reduction semantics, given in this paper, this
means a self-reference to the closure itself. In terms of the translation semantics, this
means a self-reference to the anonymous class object in which the closure is mapped
[Buc10]. In this paper we have considered the latter one: Hence all the properties proved
in the paper, are for S-closures with non transparent this.

A Property, Lemma and Theorem Proofs

Theorem 1: proof The proof is based on the analysis of all well typed expressions
that either are in normal form or fall in one of the above 4 cases and need be further
reduced to obtain a normal form. As already stated in section 2.4, in FGACJ there are
3 possible normal forms i.e. values. They are: new N(w) (Object in FGJ), new I〈T〉(){M}
(Object of anonymous class in FGAJ) and #(T x)e (Closure in FGCJ). �

14

Theorem 2: proof Immediate from Theorem 1, and Theorem 12 (on subject re-
duction, see Appendix B). �

Theorem 3: proof The set e[•] of expression contexts of FGACJ is the same of
FGCJ (see Definition 4.1 [BO11b]) extended with contexts for the new expression
new I〈T〉(){M}. But this expression cannot contain bullet since it is a value (see def-
inition of v in Section 2.4), hence the set e[•] is:

e[•] ::= • | x | e[•].f | e[•].m〈T〉(e[•]) | new N(e[•]) | (N)e[•] | F[•] | e[•]!(e[•])
| new I〈T〉(){M}

F[•] ::= #(T x)e[•]
and the proof follows immediately from the Abstraction Property theorem on FGCJ
([BO11b] pp.251-252). �

Theorem 4: proof All FGACJ sets of rules (from Table 2 to Table 5) include FGCJ
rules. �

Theorem 5: proof By induction on typing derivation and case analysis on the last rule
used. Two are the most intriguing cases: GT-closureFGCJ and GT-Closure-InvFGCJ.
Case GT-VarFGJ: if ∆; Γ `FGACJ x : Γ(x) then F [[∆]];F [[Γ]] `

FGJ
x : F [[Γ(x)]] since by

definition F [[Γ]](x)=F [[Γ(x)]], for each variable x and derivation uses only rules of FGJ.
Case GT-FieldFGJ: e ≡ e0.fi T ≡ Ti

∆; Γ `FGACJ e0 : T0 and fields(bound∆(T0)) = T f

By induction hypothesis, F [[∆]];F [[Γ]] `FGAJ F [[e0]] : F [[T0]], and by F-rule k and by
F-Class, fields(boundF [[∆]](F [[T0]])) = F [[T]] f. Then, by GT-FieldFGJ

F [[∆]];F [[Γ]] `FGAJ F [[e0.fi]] : F [[Ti]].
Case GT-InvFGJ: e ≡ e0.m〈V〉(e) ∆; Γ `FGACJ e : T

∆; Γ `FGACJ e0 : T0 and ∆ `FGACJ V ok and ∆; Γ `FGACJ e : S
mtype(m, bound∆(T0)) = 〈YC P〉U→ U

∆ `FGACJ S <:[V/Y]U and ∆ `FGACJ V <:[V/Y]P and T ≡ [V/Y]U
By induction hypothesis, F [[∆]];F [[Γ]] `FGAJ F [[e0]] : F [[T0]]. By Lemma 6
mtype(m,F [[bound∆(T0)]]) = 〈YCF [[P]]〉F [[U]]→ F [[U]], and since Lemma 3 and Lemma 4
on V, S, U, and by GT-InvFGJ

F [[∆]];F [[Γ]] `FGAJ F [[e0]].m〈F [[V]]〉(F [[e]]) : F [[T]].
Case GT-AnonymInvFGAJ: e ≡ e0.m〈V〉(e) ∆; Γ `FGACJ e : T

interface I〈XC N〉 {H} OK and 〈YC P〉U m(U x) ∈ H

∆; Γ `FGACJ e0 : I〈T〉 and ∆, X<:N `FGACJ V<:[V/Y]P and ∆; Γ `FGACJ e : S
∆ `FGACJ T<:[T/X]N, S <:[V/Y]U and ∆ `FGACJ V ok

Hence, T=[V/Y]U. By induction, F [[∆]];F [[Γ]] `FGAJ F [[e0]] : I〈F [[T]]〉 and, F [[∆]];F [[Γ]] `FGAJ

F [[e]] : F [[S]]. By Lemma 3 and Lemma 4 on V, S, U, and using GT-AnonymInvFGAJ

F [[∆]];F [[Γ]] `FGAJ F [[e0]].m〈F [[V]]〉(F [[e]]) : F [[T]].
Case GT-NewFGJ: e ≡ new N(e) T ≡ N

∆ ` N ok and fields(N) = T f and ∆; Γ `FGACJ e : S and ∆ `FGACJ S<:T
By induction hypothesis, F [[∆]];F [[Γ]] `FGAJ F [[e]] : F [[S]], and by F-rule k and by
F-Class, fields(F [[N]]) = F [[T]] f. Then, by Lemma 3 and GT-NewFGJ

F [[∆]];F [[Γ]] `FGAJ new F [[N]](F [[e]]) : F [[N]].
Case GT-AnonymNewFGAJ: e ≡ new I〈T〉(){M} T ≡ I〈T〉

∆ ` I〈T〉 ok and ∆; Γ `FGACJ M OK IN I〈T〉
By Lemma 3, F [[∆]] `FGAJ I〈F [[T]]〉 ok. By Theorem 10, F [[∆]];F [[Γ]] `FGAJ F [[M]] OK IN I〈F [[T]]〉.

15

Then, by GT-AnonymNewFGAJ on the transformed terms:
F [[∆]];F [[Γ]] `FGAJ new I〈F [[T]]〉(){F [[M]]} : I〈F [[T]]〉.

Case GT-UCastFGJ: e ≡ (N)e0 T ≡ N

∆; Γ ` e0 : T0 and ∆ ` bound∆(T0)<:N
By induction hypothesis, F [[∆]];F [[Γ]] `FGAJ F [[e0]] : F [[T0]]. By Lemma 3, letting C〈S〉 =
bound∆(T0) for some C〈S〉, F [[∆]] ` F [[bound∆(T0)]]<:F [[N]]. Then, using GT-UCastFGJ

on the transformed terms concludes the case.
Case GT-DCastFGJ: e ≡ (C〈T〉)e0 T ≡ C〈T〉

∆; Γ ` e0 : T0 and bound∆(T0) = D〈T〉 and ∆ ` C〈T〉 ok and
∆ ` C〈T〉<:D〈T〉 and dcast(C, D)

By induction hypothesis, F [[∆]];F [[Γ]] `FGAJ F [[e0]] : F [[T0]]. By Lemma 3, F [[∆]] `
C〈F [[T]]〉 ok and F [[∆]] ` C〈F [[T]]〉<:D〈F [[T]]〉. By DCast, dcast(C, D) holds in the trans-
formed program. Then, using GT-DCastFGJ on the transformed terms concludes the
case.
Case GT-SCastFGJ: e ≡ (C〈T〉)e0 T ≡ C〈T〉

∆; Γ ` e0 : T0 and bound∆(T0) = D〈T〉 and ∆ ` C〈T〉 ok and
∆ ` C〈T〉<:D〈U〉 and C 6ED and D 6EC

By induction hypothesis, F [[∆]];F [[Γ]] `FGAJ F [[e0]] : F [[T0]]. By Lemma 3, F [[∆]] `
C〈F [[T]]〉 ok and F [[∆]] ` C〈F [[T]]〉<:D〈F [[U]]〉. By subclassing, see Table 3, C 6ED, D 6EC
hold also in the transformed program. Then, using GT-SCastFGJ on the transformed
terms concludes the case.
Case GT-closureFGCJ: e ≡ #(T x) e0 T ≡ #T0(T)

∆0 ` T ok and ∆0; Γ0, x :T, this :#T0(T) ` e0 : T0

By Lemma 3, F [[∆0]] ` F [[T]] ok. By induction, F [[∆0]];F [[Γ0]], x :F [[T]], this :F [[#T0(T)]] `
F [[e0]] : F [[T0]], where, by F-rule 2t, F [[#T0(T)]]=I$n〈F [[T]]F [[T0]]〉. Using GT-AnonymFGAJ

and letting, ∆ ≡ ∆0, Γ ≡ Γ0, N ≡ Object (Y ≡ ◦ ≡ P be the empty sequence),
V ≡ F [[T]]F [[T0]], m ≡ invoke, I ≡ I$n (as defined in Table 6 - translation Structures),
we obtain: F [[∆0]];F [[Γ0]] ` M OK IN I〈F [[T]]F [[T0]]〉,
for M ≡ F [[T0]] invoke(F [[T]] x){↑ F [[e0]]; }. Using GT-AnonymNewFGAJ and letting,
M ≡ M, we obtain: F [[∆0]];F [[Γ0]] ` new I〈F [[T]]F [[T0]]〉(){M}: I〈F [[T]]F [[T0]]〉
By F-rule 7e, new I〈F [[T]]F [[T0]]〉(){M} = F [[#(T x) e0]], and by F-rule 2t, I〈F [[T]]F [[T0]]〉 =
F [[#T0(T)]]: This concludes the case.
Case GT-Closure-InvFGCJ: e ≡ e0!(e) T ≡ T0

∆0; Γ0 ` e0 : #T0(T0) and ∆0; Γ0 ` e : S0 and ∆0 ` S0<:T0

By induction, F [[∆0]];F [[Γ0]] ` F [[e0]] : F [[#T0(T0)]], and, F [[∆0]];F [[Γ0]] ` F [[e]] :
F [[S0]], where, by F-rule 2t, F [[#T0(T0)]]=I$n〈F [[T0]]F [[T0]]〉. By Lemma 3, F [[∆0]] `
F [[S0]]<:F [[T0]]. Using GT-InterfFGAJ (and GT-HeaderFGAJ of Table 4a) and letting
I ≡ I$n, X ≡ X0X0, with n=|X|, N ≡ Object, we have:

interface I〈XC N〉{H} OK and H ≡ X0 invoke(X0 x)
and by MT-Interface, letting m ≡ invoke, T ≡ F [[T0]]F [[T0]], X0 ≡ U ≡ F [[T0]] and
X0 ≡ U ≡ F [[T0]],

mtype(invoke, I$n〈F [[T0]]F [[T0]]〉) = F [[T0]]→ F [[T0]].
eventually, by GT-AnonymInvFGAJ and letting, ∆ ≡ ∆0, V be the empty sequence,
S ≡ F [[S0]] we have F [[∆0]] ` F [[S0]]<:T0 holds and also: F [[∆0]];F [[Γ]] ` F [[e0]].m(e0) :
F [[T0]]. It concludes the case and the proof. �

Theorem 6: proof. By case analysis on the typing rules on classes and instances
of Table 4a.

16

Case GT-ClassFGJ: A ≡ class C〈XC N〉C N{T f; K M}
X <: N ` N, N, T ok M OK IN C〈XC N〉

fields(N) = U g K = C(U g, T f){super(g); this.f = f; }
By Lemma 3, let ∆ ≡ X <: N. Then, F [[∆]] ` F [[N]],F [[N]],F [[T]] ok;
By Theorem 9, F [[M]] OK IN C〈XC F [[N]]〉 (since, F [[C〈XC N〉]] reduces to C〈XC F [[N]]〉);
By F-Class of Table 3, on F [[A]], and:
− by F-rule 1l, fields(F [[N]]) = F [[U]] g
− by F-rule k, F [[K]] = C(F [[U]] g,F [[T]] f){super(g); this.f = f; }.

Hence, by GT-ClassFGJ, F [[A]] OK.
Case GT-InterfFGAJ: A ≡ interface I〈XC N〉{H}

X <: N ` N ok H OK IN I〈XC N〉
By Lemma 3, X <: F [[N]] ` F [[N]] ok, and by Theorem 9, F [[H]] OK IN I〈XCF [[N]]〉 in the
F-program, hence by GT-InterfFGAJ, F [[A]] OK holds too in the F-program. �

Theorem 7: proof. By case analysis on the last rule used in the computation. The
most intriguing case is GR-Inv-ClosFGCJ.
Case GR-FieldFGJ: e ≡ (new C〈S0〉(e)).fi e′ ≡ ei

fields(C〈S0〉) = S f

By F-Class and F-rule 1l, let L ≡ class C〈XCN〉CN {T f; ...} then F [[L]] ≡ class C〈XC
F [[N]]〉C F [[N]] {F [[T]] f; ...}, and fields(C〈F [[S0]]〉) = F [[S]] f, hence by GR-FieldFGJ:

new C〈F [[S0]]〉(F [[e]])).fi −→ F [[ei]].
Case GR-InvkFGJ: e ≡ (new C〈S0〉(e)).m〈V〉(d) e′ ≡ [d/x, new C〈S0〉(e)/this]e0

mbody(m〈V〉, C〈S0〉) = x.e0

By MB-Class (or MB-Super, if m /∈ M) and F-rule 1l, let L ≡ class C〈XCN〉CN {...; ..M}
and m ∈ M, then F [[L]] ≡ class C〈XCF [[N]]〉CF [[N]] {...; ..F [[M]]}, and mbody(m〈F [[V]]〉, C〈F [[S0]]〉)
= x.F [[e0]], hence by GR-InvFGJ:
new C〈F [[S0]]〉(F [[e]])).m〈F [[V]]〉(F [[d]]) −→ [F [[d]]/x, new C〈F [[S0]]〉(F [[e]])/this]F [[e0]].

Case GR-CastFGCJ e ≡ (P)(new N(e)) e′ ≡ new N(e)
∅ ` N<:P

By Lemma 3, ∅ ` F [[N]]<:F [[P]], hence by GR-CastFGCJ:
(F [[P]])(new F [[N]](F [[e]])) −→ new F [[N]](F [[e]]).

Case GR-Inv-ClosFGCJ: e ≡ #(T x)e0!(d) e′ ≡ [d/x,#(T x)e0/this]e0

Assuming: ∆; Γ `FGACJ #(T x)e0!(d) : T, for some ∆,Γ and T. Then:
By F-rule 6e, F [[#(T x)e0!(d)]] = F [[#(T x)e0]].invoke(F [[d]]), and by F-rule 7e,

F [[#(T x)e0]] = new I$n〈F [[T]]F [[T′]]〉(){M}
for n = |T| and ∆; Γ ` #(T x)e0 : #T′(T) and M ≡ F [[T′]] invoke(F [[T]] x){↑ F [[e0]]}
(with T′ ≡ T, since the assumption on the type of e);
By MB-Interface, letting A≡ new I$n〈F [[T]]F [[T]]〉(){M}, we have

mbody(invoke, A) = x.F [[e0]]
By GR-Invk-AnonymFGAJ, on the transformed terms:

A.invoke(F [[d]])→ [F [[d]]/x, A/this]F [[e0]]
that we can apply since, by Theorem 10, A, F [[T]], F [[T]], F [[d]], F [[e0]] are terms of FGAJ,
and by Theorem 5, are all well typed terms. This concludes the case.
Case GR-Invk-AnonymFGAJ.

e ≡ (new I〈T〉(){M}).m〈V〉(d) e′ ≡ [d/x, new I〈T〉(){M}/this]e0

mbody(m〈V〉, new I〈T〉(){M}) = x.e0

By MB-Interface and F-rule 1l, let L ≡ interface I〈XCN〉 {H} and 〈YCP〉U m (U x){↑
e′0; } ∈ M with e0 ≡ [T/X, V/Y]e′0. Then F [[L]] ≡ interface I〈XCF [[N]]〉 {F [[H]]} is defined

17

since F-rule 2l, and 〈YCF [[P]]〉F [[U]] m (F [[U]] x){↑ F [[e′0]]; } ∈ F [[M]] is defined since F-rule
m, hence by MB-Interface on the transformed terms:

mbody(m〈F [[V]]〉, new I〈F [[T]]〉(){F [[M]]}) = x.[F [[T]]/X,F [[V]]/Y]F [[e′0]]
(new I〈[F [[T]]〉(){F [[M]]}).m〈F [[V]]〉(F [[d]]) −→ F [[[d/x, new I〈T〉(){M}/this]e0]].

since [F [[T]]/X,F [[V]]/Y]F [[e′0]] = F [[e0]] and Lemma 4 �

Theorem 8: proof. Let (e, e′) ∈ Red(P). By definition of Red(P), Section 2.4, ∅, ∅ `
e : T, for a type T in P. Hence, by Theorem 5, ∅, ∅ ` F [[e]] : F [[T]]. Moreover, by Theorem
6, if e→FGACJ e

′ then F [[e]]→FGAJ F [[e′]], which proves that (F [[e]],F [[e′]]) ∈ Red(F [[P]])
and concludes the proof. �

B Auxiliary Lemmas and Theorems

Lemmas A.2.1 through A.2.5 and A.2.7 through A.2.9 in [IPW01] remain valid for
FGACJ without proof extensions and are not reported here. Proof of Lemma A.2.6
need to be extended to consider rules (WF-InterfFGAJ) and (WF-ClosureFGCJ), anal-
ogously proofs of Lemma A.2.10 and A.2.11 need to be extended to consider rules (GT-
AnonymInvFGAJ) and (GT-AnonymNewFGAJ), and cases for (GT-ClosureFGCJ) and
(GT-Closure-InvFGCJ), whose proof needs to be modified since S-closures are not
controcovariant. Furthermore, the proof of Theorem 12, on Subject Reduction, needs
to be extended to case GR-Invk-AnonymFGAJ, while cases GR-Inv-ClosFGCJ, GRC-
Clos-ValFGCJand GRC-Clos-ArgFGCJproved in [BO11b] are still valid. Eventually,
two new lemmas are necessary: Lemma 1 to assert that type substitution preserves
method signatures and Lemma 2, analogous to Lemma A.2.12, to assert correctness of
mtype and mbody defined on interfaces.

Lemma A.2.6. If ∆1, X<:N,∆2 ` T ok and ∆1 ` U<:[U/X]N with ∆1 ` U ok and
none of X appearing in ∆1, then ∆1, [U/X]∆2 ` [U/X]T ok .

Proof: The proof is given by induction on the derivation of ∆1, X<:N,∆2 ` T ok with a
case analysis on the last rule. We extend proof in [IPW01] with the analysis of the new
cases.
Case WF-InterfFGAJ. The same as case WF-Class:

T = I〈T〉, ∆1, X<:N,∆2 ` T ok

∆1, X<:N,∆2 ` T<:[T/Y] P
interface I〈YC P〉{. . .}

By induction hypothesis, ∆1, [U/X]∆2 ` [U/X]T ok. By Lemma A.2.5, ∆1, [U/X]∆2 `
[U/X]T<:[U/X][T/Y]P and, since Y<:P ` P by rule GT-InterfFGAJ, P does not include
any X as free variable. Thus [U/X][T/Y]P = [[U/X]T/Y]P, and by WF-InterfFGAJwe have
∆1, [U/X]∆2 ` I〈[U/X]T〉 ok.
Case WF-ClosureFGCJ. T = #T0(T). By induction hypothesis: ∆1, [U/X]∆2 ` [U/X]T0 ok

and ∆1, [U/X]∆2 ` [U/X]T ok hence premises of WF-Closure are satisfied. �

Lemma 1 Let ∆, Z<:V ` V ok and ∆, Z<:V ` T ok and none of Z appears in ∆. If
mtype(m, I〈T〉) = 〈YC P〉W→ W, then mtype(m, I〈[V/Z]T〉) = 〈YC [V/Z]P〉[V/Z]W→ [V/Z]W

18

Proof: By rule MT-Interface there exists interface I〈XCN〉 {H} and 〈YCP〉U m(U x) ∈
H and 〈YC P〉W→ W = [T/X](〈YC P〉U→ U). Without loss of generality X and Y and Z are
distinct, hence and by rule MT-Interface mtype(m, I〈[V/Z]T〉) = [V/Z][T/X](〈YCP〉U→
U = (〈YC [V/Z][T/X]P〉[V/Z][T/X]U→ [V/Z][T/X]U. Letting [T/X]U = W and [T/X]U = W fin-
ishes the proof. �

Lemma A.2.10. If ∆1, X<:N,∆2; Γ ` e : T and ∆1 ` U<:[U/X]N where ∆1 ` U ok

and none of X appears in ∆1, then ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S for some S such that
∆1, [U/X]∆2 ` S<:[U/X]T

Proof: As in [IPW01], the proof is given by induction and case analysis on the last rule
used to infer the type of e. We consider here, only the new cases.
Case GT-AnonymInvFGAJ: Similarly to GT-InvFGJ:

e = e0.m〈V〉(e) ∆1, X<:N,∆2; Γ ` e0 : I〈T〉
mtype(m, I〈T〉) = 〈YC P〉W→ W0

∆1, X<:N,∆2 ` V ok ∆1, X<:N,∆2 ` V<:[V/Y]P
∆1, X<:N,∆2; Γ ` e : S ∆1, X<:N,∆2 ` S<:[V/Y]W T = [V/Y]W0

By induction we have:
∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 : I〈[U/X]T〉
∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S

′

∆1, [U/X]∆2;` S′<:[U/X]S
By Lemma A.2.6, we have: ∆1, [U/X]∆2 ` [U/X]V ok. Furthermore, without loss of gen-
erality we can assume X and Y are distinct and none of Y appears in U, hence by Lemma
A.2.5 we have: ∆1, [U/X]∆2 ` [U/X]V<:[U/X][V/Y]P (= [[U/X]V/Y]P), and

∆1, [U/X]∆2 ` [U/X]S<:[U/X][V/Y]W (= [[U/X]V/Y]W), and

by transitivity, ∆1, [U/X]∆2 ` S
′
<:[U/X][V/Y]W. By Lemma 1 we have: mtype(m, I〈[U/X]T〉) =

〈Y C [U/X]P〉[U/X]W → [U/X]W0 hence by GT-AnonymNewFGAJ S = [U/X][V/Y]W0 which
finishes the case.
Case GT-AnonymNewFGAJ: e = new I〈W〉(){M} ∆ = ∆1, X<:N,∆2

∆; Γ ` M OK IN I〈W〉 ∆ ` I〈W〉ok
By Lemma A.2.6

(1) ∆1, [U/X]∆2 ` I〈[U/X]W〉ok
Moreover, we prove below, that:

(2) ∆1, [U/X]∆2; [U/X]Γ ` [U/X]M OK IN I〈[U/X]W〉
Then, from (1) and (2), by using rule GT-AnonymNewFGAJ we have:

∆1, [U/X]∆2; [U/X]Γ ` new I〈[U/X]W〉{[U/X]M} :I〈[U/X]W〉
which concludes the case since new I〈[U/X]W〉{[U/X]M} = [U/X]e and letting S ≡ I〈[U/X]W〉,
∆1, [U/X]∆2 ` S<:[U/X]I〈W〉 holds.
We prove here, that (2) holds.
Let M = 〈Y<:P〉T0 m(S x){↑ e; } be any method in M: We prove that [U/X]M is well-
formed (in ∆1, [U/X]∆2; [U/X]Γ). By GT-AnonymFGAJ: interface I〈Z<:Q〉{H} and
〈Y<:P〉T0 m(S x) ∈ H with ∆′ = ∆1, X<:N,∆2, Y<:P, Z<:Q and ∆1, X<:N,∆2 ` S, T0, P ok

and ∆′; Γ, x : S, this : I〈T〉 ` e : S0 and ∆′ ` S0<:T0. Letting ∆′2 = ∆2, Y<:P, Z<:Q, by
Lemma A.2.6 we have ∆1, [U/X]∆′2 ` [U/X]S, [U/X]T0, [U/X]P ok. By induction we have:

∆1, [U/X]∆′2; [U/X]Γ, x : [U/X]S, this : I〈 [U/X]T〉 ` [U/X]e : S′

for S′ such that ∆1, [U/X]∆′2 ` S′<:[U/X]S0, and, since Lemma A.2.5 (see [IPW01]),
∆1, [U/X]∆′2 ` [U/X]S0<:[U/X]T0 and by rule S-Trans ∆1, [U/X]∆′2 ` S′<:[U/X]T0.
Hence, by GT-AnonymFGAJ:

19

〈Y<:[U/X]P〉[U/X]T0 m([U/X]S x){↑ e; } OK IN I〈[U/X]T〉
which concludes the proof.
Case GT-ClosureFGCJ: e = #(W w) e0 T = #W(W)

∆ = ∆1, X<:N,∆2

∆; Γ, w : W, this : #W(W) ` e0 : W ∆ ` #W(W) ok
By induction: ∆1, [U/X]∆2; [U/X]Γ, w : [U/X]W, this :#[U/X]W([U/X]W) ` [U/X]e0 :S′

for a type S′ such that ∆1, [U/X]∆2 ` S′<:[U/X]W.
By GT-ClosureFGCJ: ∆1, [U/X]∆2; [U/X]Γ ` #([U/X]W w)[U/X]e0 :#S′([U/X]W)
with [U/X]W = S′ (because of this :#[U/X]W([U/X]W) in the rule premises). Hence,

([U/X]W w)[U/X]e0 = [U/X]e and ∆1, [U/X]∆2 ` #S′([U/X]W)<:[U/X](#W(W))
conclude the case.
Case GT-Closure-InvFGCJ: e = e0!(e) T = W

∆ = ∆1, X<:N,∆2

∆; Γ ` e0 : #W(W) ∆; Γ ` e : S<:W

By induction ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S
′

such that ∆1, [U/X]∆2 ` S
′
<:[U/X]S. By

Lemma A.2.5, since ∆ ` S<:W then ∆1, [U/X]∆2 ` [U/X]S<:[U/X]W and by S-TransFGJ,

∆1, [U/X]∆2 ` S
′
<:[U/X]W. By induction ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 : S′ such that

∆1, [U/X]∆2 ` S′<:[U/X]#(W(W)) = #[U/X]W([U/X]W). Since closure subtyping, S′ =
#[U/X]W([U/X](W)) by S-ReflFGJ. Hence, by rule GT-Closure-InvFGCJ ∆1, [U/X]∆2; [U/X]Γ `
[U/X]e0!([U/X]e) : [U/X]W. Letting S′′ ≡ [U/X]W, then ∆1, [U/X]∆2 ` S′′<:[U/X]W, by S-
ReflFGJ, concludes the case. �

Lemma A.2.11. If ∆; Γ, x : T ` e : T and ∆; Γ ` d : S where ∆ ` S<:T, then
∆; Γ ` [d/x]e :S for some S such that ∆ ` S<:T

Proof: As in [IPW01], the proof is given by induction and case analysis on the last rule
used to infer the type of e. We consider here, only the new cases.
Case GT-AnonymInvFGAJ: Similarly to GT-InvFGJ.

e = e0.m〈V〉(e) T = [V/Y]U

∆; Γ, x : T ` e0 : I〈T′〉 mtype(m, I〈T′〉) = 〈YC P〉U→ U

∆ ` V ok ∆ ` V<:[V/Y]P
∆; Γ, x : T ` e : S ∆ ` S<:[V/Y]U

By induction ∆; Γ ` [d/x]e0 : S′ for ∆ ` S′<:I〈T′〉 and, since interface subtyping,

∆ ` S′ = I〈T′〉 by S-ReflFGJ. Moreover, by induction ∆; Γ ` [d/x]e : W for ∆ ` W<:S.
By GT-AnonymInvFGAJ ∆; Γ ` [d/x]e : [V/Y]U. Letting S ≡ [V/Y]U, then ∆ ` S<:T, by
S-ReflFGJ, concludes the case.
Case GT-AnonymNewFGAJ: Trivial.
Case GT-ClosureFGCJ: e = #(W y)e0 T = #W(W)

∆ ` W ok ∆; Γ, y : W, this : #W(W) ` e0 :W
Without loss of generality let [d/x](#(W y)e0) = #(W y)[d/x]e0 (since variable renam-
ing). By induction, let ∆; Γ, y : W, this : #W(W) ` [d/x]e0 : W′ for some W′ such that
∆ ` W′<:W. By GT-ClosureFGCJ we have: ∆; Γ ` #(W y)[d/x]e0 : #W(W) only with
∆ ` W = W′. Letting S ≡ #W(W), ∆ ` S<:T, by S-ReflFGJ, concludes the case.
Case GT-Closure-InvFGCJ: e = e0!(e) T = W

∆; Γ ` e0 : #W(W) ∆; Γ ` e : S ∆ ` S<:W
By induction, ∆; Γ ` [d/x]e0 : S′ for some S′ such that ∆ ` S′<:#W(W) and, since closure

subtyping, ∆ ` S′ = #W(W) by S-ReflFGJ. Moreover, by induction, ∆; Γ ` [d/x]e : S
′

20

for some S
′

such that ∆ ` S
′
<:W. Hence, by GT-Closure-InvFGCJ we have: ∆; Γ `

([d/x]e0)!([d/x]e) : W. By factoring: ∆; Γ ` [d/x](e0!(e)) : W. Letting S ≡ W, ∆ ` S<:T,
by S-ReflFGJ, concludes the case. �

Lemma 2 If mtype(m, I〈T〉) = 〈Y C P〉U → U and mbody(m〈V〉, new I〈T〉(){M}) = x.e0

where ∆; Γ ` new I〈T〉(){M} :I〈T〉 and ∆ ` V ok and ∆ ` V<:[V/Y]P. Then S exists such
that ∆ ` S<:[V/Y]U and ∆ ` S ok and ∆; Γ, x : [V/Y]U, this :I〈T〉 ` e0 :S.

Proof By MB-Interface
mbody(m〈V〉, new I〈T〉(){M}) = x.e0

interface I〈X′ C N
′〉 {...} 〈Y′ C P

′〉U′ m(U
′
x){↑ e; } ∈ M

e0 = [T/X
′
, V/Y

′
]e

By GT-AnonymNewFGAJ

∆; Γ ` new I〈T〉(){M} :I〈T〉
∆ ` I〈T〉 ok ∆; Γ ` M OK IN I〈T〉

Hence, ∆; Γ ` 〈Y′ C P
′〉U′ m(U

′
x){↑ e; } OK IN I〈T〉.

By GT-AnonymFGAJ, letting Γ′ = Γ, x : U
′
, this : I〈T〉 and ∆′ = ∆, X

′
<:N
′
, Y
′
<:P
′
, we

have: ∆; Γ ` 〈Y′ C P
′〉U′ m(U

′
x){↑ e; } OK IN I〈T〉

interface I〈X′ C N
′〉{H} 〈Y′ C P

′〉U′ m(U
′
x) ∈ H

∆′; Γ′ ` e :S0 ∆′ ` T<:[T/X
′
]N
′

∆′ ` S0<:U′

By MT-Interface
mtype(m, I〈T〉) = 〈YC P〉U→ U

interface I〈X′′ C N
′′〉 {H′′} 〈Y′′ C P

′′〉U′′ m(U
′′
x) ∈ H

′′

P = [T/X
′′
]P
′′

U = [T/X
′′
]U
′′

U = [T/X
′′
]U′′.

Since unicity of the interface names in the program, and unicity of method names in
each interface, we have:

Y = Y
′

= Y
′′

X = X
′

= X
′′

P = [T/X]P
′

U = [T/X]U
′

U = [T/X]U′

(Since (X ∪ Y) ∩ (V ∪ T) = {}) From ∆′; Γ′ ` e : S0, i.e. ∆, X
′
<:N
′
, Y
′
<:P
′
; Γ′ ` e : S0, by

Lemma A.2.10 we have ∆, Y<:[T/X]P
′
; Γ, x : [T/X]U

′
, this : I〈T〉 ` [T/X]e : S′0 and, since

P = [T/X]P
′
, U = [T/X]U

′
:

(1) ∆, Y<:P; Γ, x : U, this :I〈T〉 ` [T/X]e : S′0
for S′0 such that ∆, Y<:P ` S′0<:[T/X]S0.
From ∆′ ` S0<:U′, by Lemma A.2.5 ([IPW01], pag. 429): ∆, Y<:P ` [T/X]S0<:[T/X]U′.
Since U = [T/X]U′: ∆, Y<:P ` [T/X]S0<:U. By S-TransFGJ: ∆, Y<:P ` S′0<:U. Finally,
from (1), by Lemma A.2.10:

(2) ∆; Γ, x : [V/Y]U, this :I〈T〉 ` [V/Y][T/X]e : S′′0
for S′′0 such that ∆ ` S′′0<:[V/Y]S′0. From ∆, Y<:P ` S′0<:U, by Lemma A.2.5, ∆ `
[V/Y]S′0<:[V/Y]U. Then, using S-TransFGJ and letting S = S′′0 finishes the proof. �

Theorem 12 (Subject reduction) If ∆; Γ ` e : T and e→ e′ then ∆; Γ ` e′ : T′, for
some T′ such that ∆ ` T′<:T

Proof 1 By induction on the reduction e → e′, with a case analysis on the reduction
rule used. It extends the proof, [IPW01] (pp. 435-436), of the corresponding theorem
for FGJ with the following additional case.
Case GR-Invk-AnonymFGAJ: Similarly to GR-InvkFGJ

e = new I〈T〉(){M}.m〈V〉(d) mbody(m〈V〉, new I〈T〉(){M}) = x.e0

21

e′ = [d/x, new I〈T〉(){M}/this]e0

By GT-AnonymInvFGAJ, let e′0 ≡ new I〈T〉(){M}, we have:
∆; Γ ` e′0.m〈V〉(d) :T T ≡ [V/Y]U

mtype(m, I〈T〉) = 〈YC P〉U→ U

∆; Γ ` e′0 : I〈T〉 ∆ ` V ok ∆ ` V<:[V/Y]P
∆; Γ ` e :S ∆ ` S<:[V/Y]U

By GT-AnonymNewFGAJ we have:
∆; Γ ` e′0 : I〈T〉

∆ ` I〈T〉 ok ∆; Γ ` M OK IN I〈T〉
By Lemma 2, ∆; Γ, x : [V/Y]U, this : I〈T〉 ` e0 : S for some S such that ∆ ` S<:[V/Y]U.
Then, by Lemma A.2.1 and Lemma A.2.11, ∆; Γ ` e′0 : S′ for some S′ such that
∆ ` S′<:[V/Y]U, by S-TransFGJ. �

Lemma 3 (F [[]] Preserves Types Structure) (a) If ∆ ` T <: U, then F [[∆]] ` F [[T]]<:F [[U]].
(b) If ∆ ` T ok, then F [[∆]] ` F [[T]] ok.

Proof (Part a) By case analysis on subtypes in Table 5.
Cases S-ReflFGJ, S-TransFGJ, S-VarFGJ are immediate.
Case S-ClassFGJ ∆ ` C〈T〉 <: [T/X]N for class class C〈XC N〉C N{. . .}
By F-rule 1l, class C〈XCF [[N]]〉CF [[N]]{. . .} is in the F-program and by Theorem 10,
F [[T]] is a type, and by S-ClassFGJ, F [[∆]] ` C〈F [[T]]〉 <: [F [[T]]/X]F [[N]]
(Part b) By case analysis on well-formed types, and induction on the structure of the
types.
Cases WF-ObjectFGJ and WF-VarFGJ are immediate.
Case WF-ClassFGJ, ∆ ` C〈T〉 ok for class class C〈X C N〉 C N{. . .}, ∆ ` T ok,
∆ ` T <: [T/X]N. By induction, F [[∆]] ` F [[T]] ok, and by F-rule 1l, class C〈X C
F [[N]]〉 C F [[N]]{. . .} is in the F-program, and by part (a) of this Lemma, F [[∆]] `
F [[T]] <: [F [[T]]/X]F [[N]]. This completes the case.
Case WF-InterfFGAJ can be proved simply rephrasing the previous case (using inter-
face and I, instead of class and C).
Case WF-ClosureFGCJ, ∆ ` #T(T) ok for types ∆ ` T ok ∆ ` T ok. By F-rule 2t,
F [[#T(T)]] = I$n〈F [[T]],F [[T]]〉 for A ≡interface I$n〈X, XC O, O〉{X invoke(X x)} and
n = |T| (and O standing for Object). By induction, F [[∆]] ` F [[T]] ok F [[∆]] ` F [[T]] ok.
By WF-Interf: F [[∆]] ` I$n〈F [[T]],F [[T]]〉 ok (since we can assume4, ∆ ` T<:Object,
for ∆ and T). �

Lemma 4 (F [[]] Preserves Term Substitution) F [[[e/x]e]] = [F [[e]]/x] F [[e]].

Proof By cases on the form of expression and by induction on the structure.
Case e ≡ x. Then either (a) [e/y]e = ei (case x ≡ yi), or (b) [e/y]e = x (case
x 6= yi, for all i). Hence, (a) F [[[e/y]e]] = F [[ei]] = [F [[e]]/y] F [[yi]] (by F-rule 1e); (b)
F [[[e/y]x]] = F [[x]] = [F [[e]]/y] F [[x]].
Case e ≡ e0.f. Then [e/x]e0.f = ([e/x]e0).f, since f 6= xi for all i. By F-rule

4The Java type system includes the axiom on the top class: ∆ ` T<:Object. In the type systems
of the calculi, considered in the paper, including FGJ, FGCJ, FGAJ and FGACJ, the axiom is not
included since it would be necessary only because of the simplification done in the class and interface
header structure: forced to have a superclass, i.e. ”C N”. In Java, Object is the default superclass: the
same can be in our calculi, or may not since such axiom is never used in all properties proofs.

22

2e, F [[([e/x]e0).f]] = F [[[e/x]e0]].f. By induction F [[[e/x]e0]] = [F [[e]]/x] F [[e0]],
F [[[e/x]e0.f]] = [F [[e]]/x]F [[e0]].f. Then, [F [[e]]/x]F [[e0]].f = [F [[e]]/x]F [[e0]].[F [[e]]/x]f,
since f = [F [[e]]/x]f. By factoring [F [[e]]/x]:

[F [[e]]/x]F [[e0]].[F [[e]]/x]f = [F [[e]]/x](F [[e0]].f) = [F [[e]]/x]F [[e]]
Case e ≡ e0.m〈T〉(e′). Then [e/x](e0.m〈T〉(e′)) = ([e/x]e0).m〈T〉([e/x]e′), since m and
T do not contain term variables. Hence, by F-rule 3e, F [[([e/x]e0).m〈T〉([e/x]e′)]] =
F [[[e/x]e0]].m〈T〉(F [[[e/x]e′]]), and by induction F [[[e/x]e0]] = [F [[e]]/x]F [[e0]] and F [[[e/x]e′]] =
[F [[e]]/x]F [[e′]] and by factoring [F [[e]]/x]:
F [[[e/x]e]] = [F [[e]]/x]F [[e0]].m〈T〉([F [[e]]/x]F [[e′]])

= [F [[e]]/x]F [[e0]].([F [[e]]/x]m)〈([F [[e]]/x]T)〉([F [[e]]/x]F [[e′]])
= [F [[e]]/x](F [[e0]].m〈T)〉(F [[e′]])) = [F [[e]]/x](F [[e]]

Case e ≡ new N(e′). Then [e/x](new N(e′)) = new N([e]]/x]e′), since N cannot contain
term variables. Hence, by F-rule 4e, F [[new N([e/x]e′)]] = new N(F [[[e/x]e′]]). By in-
duction F [[[e/x]e′]] = [F [[e]]/x]F [[e′]], and by factoring [F [[e]]/x], new N(F [[[e/x]e′]]) =
new N([F [[e]]/x]F [[e′]]) = [F [[e]]/x]F [[new N(e′)]].
Case e ≡ (N)e0. A rephrasing of the case above where (N), e0 and F-rule 5e are replac-
ing new N, e′ and F-rule 4e.
Case e ≡ e0!(e′). Then [e/x]e = [e/x](e0!(e′)) = ([e/x]e0)!([e/x]e′). Hence by
F-rule 6e, F [[[e/x]e]] = F [[[e/x]e0]].invoke(F [[[e/x]e′]]). By induction F [[[e/x]e0]] =
[F [[e]]/x]F [[e0]] and F [[[e/x]e′]] = [F [[e]]/x]F [[e′]], we have F [[[e/x]e]] = ([F [[e]]/x]F [[e0]])
.invoke([F [[e]]/x]F [[e′]]). By factoring [F [[e]]/x], ([F [[e]]/x]F [[e0]]).invoke([F [[e]]/ x]F [[e′]]) =
[F [[e]]/x](F [[e0]].invoke(F [[e′]]). Then by F-rule 6e,

[F [[e]]/x](F [[e0]].invoke(F [[e′]]) = [F [[e]]/x]F [[e0!(e′)]] = [F [[e]]/x]F [[e]]
Case e ≡ #(T x′)e0. Then, assumed without loss of generality, x ∩ x′ = ∅:

[e/x]e = [e/x](#(T x′)e0) = #(T x′)[e/x]e′.
Hence by F-rule 7e, with ∆; Γ ` e : #T(T) and n = |T|:

F [[[e/x]e]] = new I$n〈F [[T]]F [[T]]〉(){F [[T]] invoke(F [[T]] x′){↑ F [[[e/x]e′]]}.
By induction F [[[e/x]e′]] = [F [[e]]/x]F [[e′]]:
F [[[e/x]e]] = new I$n〈F [[T]]F [[T]]〉(){F [[T]] invoke(F [[T]] x′){↑ [F [[e]]/x]F [[e′]]}.

and by factoring [F [[e]]/x]:
[F [[e]]/x](new I$n〈F [[T]]F [[T]]〉(){F [[T]] invoke(F [[T]] x′){↑ F [[e′]]} = [F [[e]]/x](F [[e]]).

Case e ≡ new I〈T〉(){M}. Then [e/x]e = new I〈T〉(){[e/x]M}. By F-rule 8e, F [[[e/x]e]] =
new I〈T〉(){F [[[e/x]M]]}. By induction F [[[e/x]M]] = [F [[e]]/x]F [[M]]:

new I〈T〉(){F [[[e/x]M]]} = new I〈T〉(){[F [[e]]/x]F [[M]]}
and then by factoring [F [[e]]/x]:

new I〈T〉(){[F [[e]]/x]F [[M]] = [F [[e]]/x](new I〈T〉(){F [[M]]}) = [F [[e]]/x]F [[e]] �

Lemma 5 (F [[]] Preserves Overriding) If override(m, N, T) is inferred for a program
in FGACJ then, override(m,F [[N]],F [[T]]) is inferred for the F-program.

Proof Immediate since rule Over involves (type) variable renaming. �

Theorem 9: proof We prove separately, the cases of methods definitions in classes,
anonymous classes and interfaces according to the first three rules in Table 4.a.
Case GT-MethodFGJ. Let M ≡ 〈Y C P〉T m(T x){↑ e0; } OK IN C〈X C N〉. By GT-
MethodFGJ, we have for ∆ = X<:N, Y<:P, that the followings hold (since it is the
only rule that applies to M): ∆; x : T, this : C〈X〉 ` e0 : S, and ∆ ` S<:T, and
override(m, N, 〈Y C P〉T → T0). Then, by Theorem 5 we have: F [[∆]]; x : F [[T]], this :

23

C〈X〉 ` F [[e0]] : F [[S]]; By Lemma 3 we have: F [[∆]] ` F [[S]]<:F [[T]]; By Lemma 5
we have: override(m,F [[N]], 〈Y C F [[P]]〉F [[T]] → F [[T0]]). Then, by GT-MethodFGJ,
F [[M]] OK IN F [[C]].
Case GT-AnonymFGAJ. Let M ≡ 〈Y C P〉T m(T x){↑ e0; } and for some ∆, Γ and
V, ∆; Γ ` M OK IN I〈V〉. By GT-AnonymFGAJ, for ∆′ = ∆, X<:N, Y<:P, we have:
∆′; Γ, x : T, this : I〈V〉 ` e0 : S, and ∆′ ` T, T, P ok, and ∆′ ` V<:[V/X]N, S<:T,
and interface I〈X C N〉{H}, and 〈Y C P〉T m(T x) ∈ H. Then, by Theorem 5 we
have: F [[∆′]];F [[Γ]], x : F [[T]], this : I〈F [[V]]〉 ` F [[e0]] : F [[S]]; By Lemma 3 we have:
F [[∆′]] ` F [[T]],F [[T]],F [[P]] ok, and F [[∆′]] ` F [[V]]<:F [[[V/ X]N]],F [[S]]<:F [[T]]. Eventually,
by F-rule 2l, interface I〈X C F [[N]]〉{F [[H]]} is in the F-program, and by F-rule h,
〈YC F [[P]]〉F [[T]] m(F [[T]] x) ∈ F [[H]]. Then, by GT-AnonymFGAJ, F [[M]] OK IN F [[I]].
Case GT-HeaderFGAJ. Let H OK IN I〈XCN〉 for a method signature H ≡ 〈YCP〉T m(T x)
of an interface in the program. By GT-HeaderFGAJ, Y<:P, X<:N ` T, T, P ok holds in
the program, and by Lemma 3, Y<:F [[P]], X<:F [[N]] ` F [[T]],F [[T]],F [[P]] ok holds in the
F-program. Hence by GT-HeaderFGAJ in the F-program, F [[H]] OK IN F [[I〈XC N〉]] �

Lemma 6 (F [[]] Preserves Class Method Types) If mtype(m, N) = 〈Y C P〉U → U

then mtype(m,F [[N]])= 〈YC F [[P]]〉F [[U]]→ F [[U]]

Proof By F-rule 1l, if class C〈XCN〉CN {S f; K M} is in the program then class C〈XC
F [[N]]〉CF [[N]] {S]] f;F [[K]] F [[M]]} is in the F-program, and by F-rule m, if 〈YCP〉U m (U x){↑
e; } ∈ M then 〈Y C F [[P]]〉F [[U]] m (F [[U]] x){↑ F [[e]]; } ∈ F [[M]]. Hence, by MT-Class,
if mtype(m, N) = 〈Y C P〉U → U is inferred from the program then mtype(m,F [[N]])=
〈YC F [[P]]〉F [[U]]→ F [[U]] is inferred from the F-program. �

Theorem 10 : Proof
(Part a). For each syntactic form u of FGACJ exactly one rule of F-system (Table 6)
applies: The rule may requires the application of only a finite number of other rules
of F-system to the sub-terms of u. Let k be the constituent (sub-)terms of u. Then,
the application of the rule may involve no more than the application of k rules in total.
This proves that F [[u]] exists. Rule 2t removes closure types, F-rule 6e removes closure
invocations, F-rule 7e removes closure expressions, and no rule introduces closure types,
closure invocations, closure expressions. This proves that F [[u]] is in FGAJ
(Part b). Let #T(T) ≡ u. Then, interfaceA ≡interface I$n〈X, XC O, O〉{X invoke(X x)}
is added to the F-program, n = |T| and O stands for Object. By GT-HeaderFGAJ(since,
X<:O, X<:O ` X, X ok), and by GT-InterfFGAJ: A OK.
(Part c) We have two cases.
Case class C〈X C N〉 C N {T f; K M} ≡ u. By GT-ClassFGJ, and by Lemma 3,
X <: F [[N]] ` F [[N]],F [[N]],F [[T]] ok, and by Theorem 9, F [[M]] OK IN C〈XCF [[N]]〉. Moreover,
F [[fields(N)]] = F [[U]] g, and F [[K]] = C(F [[U]] g,F [[T]] f){super(g); this.f = f; } are easy
to obtain. Hence, by GT-ClassFGJ, class C〈XCF [[N]]〉CF [[N]] {F [[T]] f; F [[K]] F [[M]]} OK.
Case interface I〈X C N〉{H} ≡ u. By GT-InterfFGAJ, and Lemma 3, X <: F [[N]] `
F [[N]] ok, and Theorem 9, F [[H]] OK IN I〈XCF [[N]]〉. Hence, by GT-InterfFGAJ, interface
I〈XC F [[N]]〉{F [[H]]} OK �

Theorem 11 : Proof By case analysis on the last F-rule used and induction on
the application of F to the subterms of u.
Case 1t. Trivial

24

Case 2t. Let u ≡ #S(S). Let Z ≡ F [[F [[u]]]]. By F-rule 2t, Z = F [[I$n〈F [[S]]F [[S]]〉]]. By
F-rule 3t, and then, by induction, Z = I$n〈F [[F [[S]]]]F [[F [[S]]]]〉 = I$n〈F [[S]]F [[S]]〉 = F [[u]].
Case 3t. Immediate by induction.
Case 1l. Let u ≡ class C〈X C N〉 C N {T f; K M}. Let Z ≡ F [[F [[u]]]]. By F-rule
1l, Z = F [[class C〈X C F [[N]]〉 C F [[N]] {F [[T]] f;F [[K]] F [[M]]}]]. By F-rule 1l, Z =
class C〈X C F [[F [[N]]]]〉 C F [[F [[N]]]] {F [[F [[T]]]] f;F [[F [[K]]]] F [[F [[M]]]]}. Then, by induc-
tion, Z = F [[u]]. Case 2l. Let u ≡ interface I〈X C N〉{H}. Let Z ≡ F [[F [[u]]]].
By F-rule 2l, twice, Z = interface I〈X C F [[F [[N]]]]〉{F [[F [[H]]]]}. Then, by induction,
Z = interface I〈XC F [[N]]〉{F [[H]]}.
Case k. Let u ≡ C(T f){super(f); this.f = f; }. Let Z = F [[F [[u]]]]. By F-rule
k, twice, Z = C(F [[F [[T]]]] f){super(f); this.f = f; }. Then, by the induction, Z =
C(F [[T]] f){super(f); this.f = f; } = F [[u]].
Case m. Let u ≡ 〈X C N〉T m(T x){↑ e}. Let Z ≡ F [[F [[u]]]]. By F-rule m, twice,
Z = 〈XC F [[F [[N]]]]〉F [[F [[T]]]] m(F [[F [[T]]]] x){↑ F [[F [[e]]]]}. Then, by induction F [[F [[N]]]] =
F [[N]], F [[F [[T]]]] = F [[T]], F [[F [[T]]]] = F [[T]], F [[F [[e]]]] = F [[e]], we have Z = 〈X C
F [[N]]〉F [[T]] m(F [[T]] x){↑ F [[e]]} = F [[u]].
Cases h, 1e-5e and 8e are proved by trivial re-phrasings of the proof of the above case.
Case 6e. Let u ≡ e0!(e). Let Z ≡ F [[F [[u]]]]. By F-rule 6e, Z ≡ F [[F [[e0]].invoke(F [[e]])]].
By F-rule 3e, Z ≡ F [[F [[e0]]]].invoke(F [[F [[e]]]]). By induction F [[F [[e0]]]] = F [[e0]] and
F [[F [[e]]]] = F [[e]], we have Z ≡ F [[e0]].invoke(F [[e]]) = F [[u]].
Case 7e. Let u ≡ #(T x)e, with |T| = n and ∆; Γ ` e : #T(T), for some ∆ and Γ. Let
Z ≡ F [[F [[u]]]]. By F-rule 7e, Z ≡ F [[new I$n〈F [[T]]F [[T]]〉(){F [[T]] invoke(F [[T]] x){↑
F [[e0]]}}]]. By F-rule 8e, Z ≡ new I$n〈F [[F [[T]]F [[T]]]]〉(){F [[F [[T]] invoke(F [[T]]x){↑
F [[e]]]]}}. By induction F [[F [[T]]F [[T]]]] = F [[F [[T T]]]] = F [[T T]], by F-rule m on
invoke, by induction F [[F [[T]]]] = F [[T]], F [[F [[T]]]] = F [[T]] and F [[F [[e]]]] = F [[e]], we
have Z ≡ new I$n〈F [[T T]]〉 (){F [[T]] invoke(F [[T]] x){↑ F [[e]]]]}} = F [[u]]. �

References

[AeA80] P. F. Albrecht and et al. Source-to-Source Translation: Ada to Pascal and
Pascal to Ada. In ACM-SIGPLAN symposium on The ADA programming
language, SIGPLAN ’80, pages 183–193, New York, NY, USA, 1980. ACM.

[BO09] M. Bellia and M.E. Occhiuto. JavaΩ: A Translation Semantics for Closures
in Java. In CS&P’2009, pages 72–83. Warsaw University, 2009.

[BO10] M. Bellia and M.E. Occhiuto. JavaΩ: Proving Type Safety for Java Simple
Closures. In CS&P’2010, pages 61–72. Humboldt-Universitat zu Berlin, 2010.

[BO11a] M. Bellia and M.E. Occhiuto. Java in Academia and Research, chapter JavaΩ:
Higher Order Programming in Java, pages 166–185. iConcept Press Ltd., 2011.

[BO11b] M. Bellia and M.E. Occhiuto. Properties of Java Simple Closures. Fundamenta
Informaticae, 109(3):227–253, 2011.

[BS11] A. Buckley and D. Smith. JSR-000335 Lambda Expressions for the
Java Programming Language - Early Draft Review: Lambda Specifica-
tion, Version 0.4.2. Oracle Corporation, December 2011. http://download.
oracle.com/otndocs/jcp/lambda-0 4 2-edr-spec/index.html.

25

[Buc10] A. Buckley. Project Lambda: Java Language Specification draft - Ver-
sion 0.1, 2010. http://mail.openjdk.java.net/pipermail/lambda-dev/2010-Jan
uary/000349.html.

[Goe07] B. Goetz. The Closures Debate: Should Closures be Added to the Java Lan-
guage, and if so, How?, 2007. Java Theory and Practice, IBM Technical
Library, www.ibm.com/developerworks/java/library/j-jtp04247.html.

[Goe10] B. Goetz. State of the Lambda. Sun Microsystem, Inc., October 2010. http://
cr.openjdk.java.net/∼briangoetz/lambda/lambda-state-2.html.

[IPW01] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core
Calculus for Java and GJ. ACM TOPLAS, 23:396–450, 2001.

[Pep79] P. Pepper. A Study on Transformational Semantics. In International Summer
School on Program Construction, volume 69 of LNCS, pages 322–405. Springer-
Verlag, 1979.

[Rei09] M. Reinhold. Project Lambda: Straw-Man Proposal, 2009. http://cr.openjdk.
java.net/∼mr/lambda/straw-man/.

26

