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A Nonmonotone Proximal Bundle Method With (Potentially)
Continuous Step Decisions

A. Astorino* A. Frangioni' A. Fudulif E. Gorgone®

Abstract

We discuss a numerical algorithm for minimization of a convex nondifferentiable function belonging
to the family of proximal bundle methods. Unlike all of its brethren, the approach does not rely on
measuring descent of the objective function at the so-called “serious steps”, while “null steps” only
serve at improving the descent direction in case of unsuccessful steps. Rather, a merit function
is defined which is decreased at each iteration, leading to a (potentially) continuous choice of the
stepsize between zero (the null step) and one (the serious step). By avoiding the discrete choice
the convergence analysis is simplified, and we can more easily obtain efficiency estimates for the
method. Simple choices for the step selection actually reproduce the dichotomic 0/1 behavior of
standard proximal bundle methods, but shedding new light on the rationale behind the process, and
ultimately with different rules. Yet, using nonlinear upper models of the function in the step selection
process can lead to actual fractional steps.
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1 Introduction

We are concerned with the numerical solution of the problem
fr=if{flx) :zeX} | (1)

where f : R™ — R is a finite-valued proper convex possibly nondifferentiable function, and X C R” is
closed convex; for notational simplicity we will initially assume X = R"™, with extension to the constrained
case discussed later on. Prozimal bundle methods (for the sake of conciseness, just “bundle methods” in
the following unless otherwise stated) are known to be among the most efficient implementable algorithms
for solving this class of problems. They only require that f is known through an oracle (“black box”)
that, given any « € X, returns the values f(z) and z € df(x). They work by generating a sequence of
tentative points {x;} where the oracle provides the f-value f; = f(x;) and any subgradient z; € 9f(z;).
Then, at each iteration, a bundle of information B = {(z;, fi,z;)} is maintained to construct a model
f of the function f, that is exploited to construct the next tentative point. This is done by taking a
distinguished vector Z as the current point, and solving a (primal) master problem

¢p(z) =inf { fa(z +d)+ %[> } | (2)

which provides a tentative descent direction d* along which the next tentative point is generated. The
master problem seeks for a minimum of the current model fz plus the stabilizing term o;||d||* that
discourages points “far away” (in the standard Euclidean norm) from Z, where fg is presumably a “bad
approximation” of f; ¢t > 0 is the proximal parameter dictating the “strength” of the stabilization.

In all proximal bundle methods known so far, a binary decision is taken depending on the quality of
the best point generated along d*. Typically, only the unitary step is probed; that is, one compares f(Z)
with f(z), where x = Z + d*. If f(x) is “significantly smaller” than f(Z), then Z is moved to z; this is
called a Serious Step (SS). Otherwise, (z, f(x),z € 0f(z)) added to B in order to obtain a (hopefully)
better direction at the next iteration; this is called a Null Step (NS). With proper rules for the NS/SS
decision, and by appropriate handling of B and of ¢, these approaches can be shown to minimize f.
However, the convergence proofs are somewhat complicated because two basically distinct processes are
going on:



e During sequences of consecutive NS, one is actually aiming at solving the stabilized primal problem
¢¢(z) =inf { f(z+d)+ 5ld|* } . (3)

This amounts at computing the Moreau—Yosida regularization ¢, of f in &, which has the same set
of minima as f (cf. §3) but is smooth, making it easier to construct descent algorithms. However,
solving (3) with the sole help of the black box for f is, in principle, as difficult as solving (1);
therefore, bundle methods solve (3) approzimately and iteratively during sequences of NS by a
standard cutting-plane-type approach [20]. Indeed, a NS happens when fg(x) < f(Z) but f(z) &
f(Z); in this case, the new information (z, f(z),z) will “significantly enrich” B, leading to a new
master problem (2) that will eventually provide a better approximation to the solution of (3).

e After SS is declared, the master problem (2) bears basically no relation with that before the SS.
Indeed, in the convergence proofs one is typically allowed to completely change B after each SS.

In other words, convergence of (proximal) bundle methods is usually analyzed as if being made by
two almost unrelated processes: sequences of consecutive NS, where an approximate solution to (3) is
computed for the given Z and ¢, (possibly) interrupted by the sought-after SS. However, at each SS the
algorithm can basically be restarted from scratch (apart from keeping %), so each sequence of NSs is
basically seen as being almost completely unrelated with all the others.

It can be argued that, at least in practice, this leads to a substantial underestimation of the rate
of convergence of these methods. Indeed, the (few) available theoretical estimates [22] depict an almost
hopelessly slow method, even worse than what methods of this kind need necessarily be [25]. While indeed
practical convergence can be slow, and tailing-off often rears its ugly head [6], this is not always the case:
when the model fz “rapidly becomes a good approximation to f”, convergence can actually be pretty
quick [15, 16]. Thus, it appears that (as one would intuitively expect) the accumulation of information
in B can make a substantial difference in the convergence of the approach; yet, this phenomenon is
completely lost by the available theoretical analysis.

The “dichotomic” decision to be made at each step between NS and SS is clearly at the basis of the
characterization of bundle methods as being made of two loosely related processes. We aim at developing
a bundle method where this distinction is removed; that is, the convergence of the algorithm is proven
by monitoring one single merit function, and showing that it is improved at any step, so that eventually
optimality is reached. Doing so requires doing away with monotonicity in the form that is usually found in
bundle methods, i.e., that of the objective function value between two consecutive SS (which is, anyway,
a somewhat awkward notion). Thus, the algorithm we propose is nonmonotone in that particular sense,
although of course it s monotone w.r.t. its newly defined merit function. Note that this is substantially
different from the previously proposed nonmonotone bundle methods [9, 18], that are based on the well-
known (and somewhat “dirty”) trick of setting a fixed k and requiring that the SS improves over the worst
among the last k values of the current point. Even the filter-bundle approach of [19] for constrainted
optimization, which is arguably nonmonotone in some sense, uses the objective function value to define
the “filter”; the nonmonotone behavior is dictated by the need to balance function value improvements
with constraint satisfaction improvements, while our approach is nonmonotone even in the unconstrained
case. There are “truly nonmonotone” bundle methods, in particular the level ones [25] which always move
the current point to the last iterate, making up for convergence with a clever update of the “stabilizing
device”, that is quite different from that of the proximal bundle methods we study here. Perhaps not
by chance, level bundle methods have the best efficiency estimates among all bundle methods; however
they require some compactness assumptions that may not be easily satisfied in applications, and they
can be more costly in practice since they can require the solution of two problems at each iteration. Our
proposal will instead keep the basic structure of proximal bundle methods, with its advantages: the trait
that clearly distinguishes our approach from all other bundle methods so far is that the NS/SS decision
is not eliminated, as in level methods, but rather made (ideally) continuous. Remarkably, the most
natural choices for the step selection process bring back to dichotomic decisions; therefore, the simplest
implementations of the proposed algorithm still perform “NS/SS”, although possibly nonmonotone (in
terms of f-value) ones. This sheds new light on the rationale of the process and may suggest further
developments of “classical” methods.

The structure of the paper is as follows. In Section 2 we introduce the necessary notation from the
standard proximal bundle method in order to motivate our approach; we also show why a “naive” initial



version of our main idea does not work. To overcome this latter problem, in Section 3 we introduce and
analyze the merit function we employ, deriving some useful results. Then, in Section 4 we introduce
the algorithm, discussing in detail the crucial step of finding the “optimal stepsize”, and in Section 5
we analyze its convergence, propose rules for the on-line management of the proximal parameter (§5.1),
provide speed-of-convergence estimates (§5.2), and briefly discuss the impact of employing nonlinear
upper models of f (§5.3). Finally, in Section 6 we report some preliminary computational results aimed
at giving a first estimate of the actual convergence behavior of the new algorithm on some significant
test function in relation to that of the standard proximal bundle method, and in Section 7 we draw some
conclusions.

2 Motivation

In this section we motivate the key ideas in our development. To do that, we need to introduce some
notation. In the following, the lower model fi has to be intended as the ordinary cutting plane model

fB(»’C) =max{ fi + zi(x —x;) : (x5, fi,zi) € B}

which clearly satisfies f}; < f. Apart from easing the solution of the master problem, as fg is a polyhedral
function that can be represented by linear constraints, this has the extra advantage that B can be
considered as a set of pairs {(aF, z;)}, where

ai(T) = f(2) = [ fi + 2(2 — i) | (4)
is the linearization error of the subgradient z; obtained at z; w.r.t. Z; in other words,
Zi € 8%(2)]“(55) . (5)

Thus, unlike with other models (e.g. [1]) one does not need to keep track of the iterates x; in B, since
the linearization error can be easily updated using the information transport property when z is moved
to any

ai(z) = 2(7 — ) + ai(7) + (f(z) - f(2)) (6)
(just write (4) for  and Z and simplify out common terms). In standard approaches, the current point
is mostly regarded as being fixed, and thus there is no need to stress the fact that the linearization errors
depend on Z; in our case this is sometimes necessary, but for the sake of notational simplicity we will still

use «; as much as possible when Z is clear from the context. Since we will move to points of the form
x(\) = T + Ad*, for which (6) gives

ai(z(A) = ai(z) + f(z(N) = f(Z) = Azid" (7)

to simplify the notation we will denote c;(x(\)) simply as ;). Note, however, that (7) requires knowledge
of f(x(X\)), that usually is known only for A € {0,1}. To further ease notation, in the following we will
often use the shorthand “i € B” for “(«y, z;) € B”; let us also remark immediately that while the index

7 can upon a first reading be considered that of the iteration, in general the bundle evolves in rather
different ways. All this allows us to rewrite fz as

f(z) =max{ z(x —2)—a; : i€BY} + f(&) .
With this choice, the master problem (2) becomes the simple QP
ldI|I? : v>zd—a; i€B} [+f(2)] . (8)

min { v + |

Note that the constant term “+ f(Z)” is most often disregarded, but it is crucial in our development, as
we shall see. Solving (8) is equivalent to solving its dual

min { S b+ Syl ¢ 0 @} —f(@)] , 9)

where © = { >°, . g0 =1, 6; >0 i€ B} is the unitary simplex of appropriate dimension. Standard
duality results show that v(8) = —v(9) (where v(-) denotes the optimal value of an optimization problem),
and that the dual optimal solution 8* of (9), appropriately “translated in the (z, «)-space” by

z* = ZieB 2191* at = Zie[)’ 0419: ) (1())



gives the primal optimal solution (v*,d*) of (8) as
d* = —tz* v = —t||z*]]? — a* . (11)

The dual form of the master problem is not only useful for algorithmic purposes [10], but it is also closely
related to the stopping criterion of the method. In fact, from

2" € Op f(T) (12)

(an immediate consequence of (5)) one immediately realizes that, whenever z* = 0 and a* = 0, 7 is
optimal. In practice, one would therefore stop when the two non-negative numbers |z*|| and o* are
“small”. One possible way of implementing this is to choose a scaling factor ¢* and stop whenever

s =t*2*|* + o <&, (13)

where ¢ is the (absolute) accuracy required to the objective function value. In general one wants to on-line
tune t, allowing it to shrink and grow to adapt to the scaling of f in the neighborhood of the current
7, while leaving t* to a “large enough” value to ensure that ||2*||? actually is “small enough” when the
algorithm terminates. However, at first reading one may take ¢t* = ¢; further discussion is provided later
on.

In the standard approach, after that (8)/(9) are solved, one probes f(z) (with z = Z + d*) and
decides whether or not moving z to x. Of course, setting T = z is quite natural whenever f(z) < f(Z)
(after all, we are minimizing f); on the other hand, it is not entirely obvious that this is necessarily the
best choice. Indeed, what one would really want is that s* decreases as fast as possible, so that (13) is
attained as early as possible. But choosing & = «x is not necessarily the best way to decrease it; indeed,
any decrease in s* is brought about at best indirectly by the fact that the «;’s change when the SS is
performed. In particular, the new pair (z,«) obtained evaluating f(z) has a(z) = o = 0, i.e., z has a
“small linearization error” if the SS is done. However, there is no guarantee at all that (13) has improved
after the SS.

Therefore, one may wonder whether, even if f(z) < f(Z), a different move than a standard SS
could be better in terms of improvements of (13). A possibility is to consider the line segment £ =
conv({Z,z}) ={x(N\) : A €[0,1] }, and try to determine the optimal value \* of X that minimizes s* at
the next iteration; then the new current point Z is set to z(\*). We observe in passing, that, instead of L,
one could consider conv( {z; : i € B}U{x} ), which requires keeping track of the iterates x;. Because this
would surely make the development much more complex, we refrain from exploring this option; clearly,
any approach that works with £ will a fortiori work if more information is provided.

One initial issue with this idea is that in order to set x(\) as the current point one needs to know
f(xz(N)) to compute the linearization errors (cf. (7)). However, one can alternatively develop an upper
model fB of f that is correct at least on L, i.e. such that fB(\) = fB(z(\)) > f(xz(N\)) for all z(\) € L,
and use it to (conservatively) estimate the true function value and therefore the linearization errors:

a} = PN - [fitz(z(N) —z)] >
FPaN) = [fi+zi(a(N) —2)] =a}

(note that f; is known exactly, although it should be easy to extend the approach to approzimate bundle
methods where the oracle itself has errors [23]). In particular, the “obvious” upper model is

PN = 1= Nf(@) +Mf(2) = f(2) + AAf (15)

where Af = f(x) — f(Z) is the all-important difference between the f-values of x and Z. This is clearly
the “worst case” model: no upper model need (and therefore should) be above (15), and being below only
improves the accuracy of (14), so we will mainly work with (15) since then results will a fortiori hold with
any more accurate upper model (besides is has some computational advantage, cf. §4.1). Note that (15)
can only be computed after that = has been selected and f(x) evaluated: hence, strictly speaking one
can only do that after that (f(x), z) has been added to B, but we will allow ourselves this small abuse of
notation. A more serious consequence is that one cannot use the upper model to drive the selection of the
next iterate x; yet, for this task one can still use (as customary in bundle methods) the lower model fz,

(14)



which is well-defined everywhere, restricting the use of f2 to the selection of A, i.e., of the next current
point z(\) € L.

An issue with (15) is that Z itself may be the a(\) of the previous iteration: hence f(Z) is actually
unknown, and the above formula cannot be directly applied. However, one can obviously use fB(fc) in
place of f(z) in (15) and still obtain a valid upper model; that is the “recursive” definition

FEON) = (1= N FB() + Af(z) = fB(z) + AAT (16)
where Af = f(z) — f5(%), still gives
a} = fO) = [fi+z(z\) —2) ] = @(@) +AAf — Azgd™ > o (17)

(cf. (7)). Thus, we can always assume knowledge of an upper model like (16), which for notational
convenience we will most often denote simply as f: any way to construct an upper model based on exact
information should easily extend if some of the data actually comes from an upper estimate of f instead.
Doing so allows us to consider the family of QP dual pairs, parametric over A

—6(\) = min{v+2it||d||2 cv>zd—a) i€B} [+f(z(N)] (18)

o) = min { 3] Siep 50l + Sies @i : 00} [—f@N)] - (19)
The optimal solution 6*(\) of (19), or better its representative in the (z, «)-space
2(A) = Xiep il (N) a(\) =i a0 (V) (20)
immediately gives (cf. (12) and (14))
zi € pp f(x(N) = 2(A) € dapn) [(2(N)) - (21)

Note that (21) refers to the “true” f(z(\)) rather than its approximation f(\). That is, while linearization
errors are only estimated, the estimate is “kept in check” by the fact that at each application of (17)
we do use the “true” value of f(z) to compute Af. Said otherwise, applying (17) twice cancels out the
term “fB(Z)” corresponding to the middle point, and therefore any error in that term: the error in the
estimate of the @ depends only on that of the initial f(Z) and on that of the final f(x())). In particular,
each time (if ever) a SS is done (A* =1 = z(A\) = 2 = f(A) = f(x)) the linearization errors all become
“exact” again. Also, we remark for future reference that 6(A) = v(19) = —v(18) is a concave function.
Indeed, \ appears linearly in the right-hand-side of the constraints in (18); therefore, —§()\) is the value
function of a convex problem, and hence convex.

Due to (21), the stopping condition (13)—with z(A) and a()) replacing z* and a*, respectively—can
still be applied. The idea of the approach is then to seek the value of A such that z(\) and «()) are “the
best possible” for (13). In other words, one would like to find the optimal solution \* of

min { s*(A) =t*|z(AN)]2P+a(X) : A€[0,1] } (22)

and set T = x(\*), in order to (hopefully) obtain (13) faster. However, it is easy to prove that the
approach, as it is stated, might not work in general. Indeed, consider the linear case f(x) = rz for one
fixed r € R™. Clearly this problem is unbounded below, and a standard bundle algorithm would “prove
it” by making infinitely many consecutive SSs along the direction —r. It is also easy to see that B would
contain all and only identical copies (r,0). Hence, (z(\), a(A\)) = (r,0) whatever the value of A, i.e., s*(})
actually does not depend on A. Therefore any A € [0, 1] is optimal to (22), and nothing can prevent the
approach, as previously stated, to always select A* = 0, thereby dramatically failing to solve the problem.

The example shows that s*(A) of (22) is not an appropriate merit function for our problem. In the
next paragraph we will therefore propose a modification of the approach that solves this issue. As we
shall see, the basic idea is simply that the constant “f(xz(\))” in (18)/(19) (or, better, its readily available
approximation f()\)) needs be taken into account as well.



3 The merit function

An appropriate merit function can be devised exploiting the Moreau—Yosida regularization ¢; (cf. (3)) of
f. We start recalling some of its well-know properties:

o < f (23)

¢i(x) = f(x) <= x optimal for (1) (24)

Indeed, d = 0 is a feasible solution to (3), which gives (23). Furthermore, the optimality conditions of (3)
0o fot )+ I7/@))d) > —d'/tedf@td)

clearly imply that d* = 0 <= =z is optimal for (1), but d* =0 <= ¢:(x) = f(z), whence (24). As
already remarked, ¢; is only a “conceptual” object because it is difficult to compute (the oracle being for
f); however, owing to fg < f, for the “readily available” ¢p . (cf. (2)) one clearly has

b5t <ot [< f] (25)
B, = f() = x optimal for (1). (26)

We are now ready to propose the merit function, in both the “conceptual”

Ce(x) = 2f(x) — di(x)

and the “implementable” form

CBi(w) =2f(r) —dpe(x) [>¢] - (27)

Another way to look at the definition is to write it as

Glz) = f(@) + ( flz) — ¢u(2) )
thereby revealing the gap function associated with ¢; (and with ¢;)

d¢(x) = Ce(x) — f(2) = f(x) = du(2) [2 0] (28)

which gives (;(z) = f(z) <= f(x) = ¢s(x) <= 0i(x) = 0, and therefore
G=>f (29)
Ci(z) = f(xr) <= =z optimal for (1) (30)

via (23)—(24). This and (27) then immediately give

Be>Gl[>f] (31)
(B = f(x) = z optimal for (1) (32)

which is equivalently rewritten in terms of

e =Ci—f=f—0¢5:>02>0 .
The link with the master problems (18)/(19) is
(e(x(N) = 2f(x(N)) = ¢5.¢(x(N)) = 2f(z(N)) —v(18)
= f@) +tlzN]*/2+ aX) = (@A) + d.4(z(N)) (33)

due to v(18) = —v(19) and the fact that the constant term “— f(2(\))” in (19) cancels out with the factor
of 2.

Hence, (; is a “complementary” function to ¢;: both coincide with f only at optimality, but the former
is an upper approximation, whereas the latter is a lower approximation. Of course, a difference of much
greater magnitude is that while ¢; is convex, (; is, in general, not (although clearly it is a DC function,
as is d¢); this is shown in Figure 1 for the simple piecewise-linear function f(x) = max{—3x+ 8, —z +
4,1,z — 3,2z — 9}. Thus, while minimizing ¢p; (and refining B as needed) is an attractive option, the
same cannot be said for (g¢. Yet, as a merit function (; is “no (much) less powerful” than ¢;, at least
on converging (sub) sequences.



Figure 1: ¢; (dotted line) and (; (dashed line) for a simple f (thick solid line).

Lemma 1 Assume that a sequence {Z;, B;, t;} is given such thatt; >t > 0, {Z;} = T andliminf; o (J; =
0B,.t;(Ti)) = 0; then, T is optimal for (1).

Proof. Since 0 > &, t; > t, (; is nondecreasing in ¢ (hence d; is), and §; > 0 is lower semi-continuous,
and the result follows from (32). m

The interesting aspect of Lemma 1 is that nothing specific is required about how B; is handled,
provided of course that one succeeds in sending dp, +,(Z;) to zero. However, it is important to remark
as to why t; > t > 0 is required. The point is that there is an easy but “fictitious” way to ensure
¢(z) = f(Z): just take t = 0 (or, in a sequence setting, have ¢; — 0 fast). This does not harm much
the Moreau—Yosida regularization, except of course killing any regularization effect: ¢9 = f, which still
means that all minima of ¢y are minima of f. Conversely, this setting is disastrous for (;: (o —f = dp =0,
hence the merit function is of no use whatsoever for detecting minima of f. However, requiring ¢ to be
bounded away from zero is less than ideal: bundle algorithms (and not only them) converge even if t; — 0,
provided this happens “slowly enough” [7]. Furthermore, Lemma 1 requires a converging sequence to
start with, which may not be trivial to attain in the context of a numerical algorithm. It is possible to
improve on both aspects if f is “regular enough”; one useful concept, already used e.g. in [1, 11], is the
following:

Definition 2 Let S5(f) ={ = : f(x) < J } be the level set corresponding to the f-value §: a function f
is *-compact if VI >1> f* > —o0

e(l,1) = sup,{ dist(x, Sy(f)) : © € Sp(f) } < oo . (34)

A function is *-compact if the excess of any two level sets is bounded; many functions are *-compact,
e.g. all the inf-compact ones, as discussed in more detail in [11] where the class was introduced to study
the convergence of bundle methods with nonquadratic stabilizing terms. Interestingly, the same concept

can be used to extend Lemma 1 to non-converging sequences. To do that, we must first bound below the
gap function in terms of the remaining “distance” to the optimal value.

Lemma 3 For each x and & such that f(Z) < f(z) and g € O-f(x), it holds
(f@) = f@)*t (fl@) = (@) —e)? }

2z —=l> 2t||g[?

8:(z) > min {

Proof. By the very definition (3) we have
0r(z) = f(z) = ¢u(x) = f(z) —inf { fz+d)+ 5|ld|* } .

To construct a lower estimate for &, pick arbitrarily any & and consider the function

fgy = d BIE A= 85@) iy = B3+ (1= B and 5 < 0.1]
vy= +o00 otherwise



By convexity of f it clearly holds f > f, and therefore

Se(x) = flz) —inf{ fz +d)+ 5dl]* }
—inf { B(f(Z) — f(2)) + 5IBE —2)|* - Be[0,1] }
= max{ Y(8) = BAS — LAz - Be(0,1]})

where Af = f(z) — f(Z) > 0 and Az = ||Z — z||> > 0. The unconstrained maximum of 1 is

tAf)?
2Ax

B=tAf/Az >0 with ¥(B)=
Therefore, the optimal solution to the maximization problem is

g — B=tAf/Ax if <1 <= Af<Ax/t
11 if3>1 < Af>Azx/t

which immediately gives that its optimal value is

o) HAS)?/(2Az)  if Af < Azft
w8 = Af —Ax/(2t) if Af > Ax/t

For the case Af > Ax/t, we have that
Y(B%) = Af — Azx/(2t) > Az/(2t)

and we need to bound this in terms of Af. To do that, pick any ¢g € 0. f(x) and write the e-subgradient
inequality:
f@) 2 f@)+g@—=z)—c = |lgll-llz—22Af—¢ .

This gives Ax > (Af —€)?/||g||?, and hence the desired result. m

Lemma 4 Assume that f is *-compact: any sequence {Z;, B, t;} such that {; = (g, +,(T;) is monotone
nonincreasing, 0 < t; <t < oo, and

liminf; 6B¢,ti (fi)/ti =0 (36)
is an optimizing sequence, i.e., foo = Hminf; .o (fi = f(Zi)) = f*.

Proof. Because (; > f; and (; is nonincreasing, the sequence { f; } is bounded above: f; < I < oc.
If foo = —o0, then the theorem is proven: clearly, f* = —oo and {Z;} is an optimizing sequence.
Otherwise, assume by contradiction that f; — f* >~ > 0 and set —oco < [ =inf{ f;} — v <1 —~. Since
(8; = 0p,.1.(T3))/ti = ||271|?/2 + a /ti, (36) implies that, at least on one subsequence, ||z}|| — 0 and
af — 0. Hence we can apply (on the subsequence) Lemma 3 with & the projection of Z; over the level
set S;(f) (so that f; — f(#;) > ), g = 2z and € = a: using (34) in (35) gives

2 *\2
_ . vt (v—af)
8, (T0) > L ¢
(@) —mm{ 2e(1,0)? " 2427 |P }

Since of — 0, eventually v — af is bounded away from zero; furthermore in the denominator of the
rightmost term ¢; is bounded above and ||z}|| goes to zero, so the whole term eventually becomes large.
Finally, divide by t; to get -

8 = 80, (Ta) /i > 7%/ (2e(L,1)°)
which contradicts (36) and hence proves the result. m

Hence, under mild conditions on f any sequence of {Z;} that nullifies the gap function is a minimizing
one; t; can even be allowed to go to zero, provided this happens “slowly enough w.r.t. 4;” so that d;/t;
still goes to zero. In fact, a more familiar way to obtain (36) is

Soyti=o00 and Y 2,8 <oo : (37)



if §; goes to zero “fast enough”, so that the series converges, then ¢; can even be allowed to go to zero
“slowly enough”, so that the series diverges. Condition (37) implies (36) since lim inf; , d;/t; > 0 implies
that for some § > 0, a large enough h and all 4 > h one has §; > dt;, hence Zfih 0; > 62;’2,1 t; which
contradicts (37). Alternatively, if ¢; is bounded away from zero then (36) just requires that §; vanishes.
Indeed, if f is inf-compact (hence clearly *-compact) then we can extract a converging subsequence out
of {Z;} € Sr(f) (that is compact) and therefore recover Lemma 1.

All this gives us confidence that, under appropriate conditions, (s + can be used to construct a non-
monotone bundle method along the lines of §2. At least, using (g + solves the linear function counterex-
ample. Conceptually, this first requires working with the further approximate version of (33) employing
the upper model

Co.a(2(N) = FO) + HzI2/2 + a(N) = Co.a(z (V) (38)

(as f(A\) > f(z(\)) and @* > o). However, in the linear case f = f = & = a; furthermore, z()\) and
a()\) are independent on \. Yet, due to the extra term f()) in (38) w.r.t. (22), it is easy to see that
the merit function approach correctly assesses that A* = 1, which could therefore lead to an algorithm
capable of solving this (very easy) problem. This algorithm is described in details in the next paragraph.

4 The algorithm

We are now in the position to formally presenting the algorithm and discussing its main properties. To
simplify on the notation we will as much as possible avoid the iteration index “4”, using the subscript
“4+” for “i +17. Differently from standard proximal bundle algorithms, the sequence {Z;} of stability
centers may be almost entirely unrelated from that {x;} of iterates; as a consequence, the algorithm works
with the upper approximation f(#;) in place of the “true” value f(Z;), and therefore the approximate
linearization errors &, the approximate merit function 5[5,15 of (38), the corresponding approximate gap
function dp ¢ of (28), and so on. Hence, all references e.g. to the master problems (8)/(9), their solutions
(10) and (11), and so on, have to be intended with the approximate quantities in place of the “exact”

ones. These coincide only when A* € {0, 1}, which may (cf. §4.1) or may not be true.

Choose any Z. Initialize 0 < t < < co. Set d* =0, B=0. Goto 3.

Solve (9) for #*. Find z*, @* and d* from (10) and (11). B=BU{(z*,a*) }.
If (13) holds then stop (Z is e-optimal).

Compute x =z + d*, f(z), z € 0f(x) and a via (4). B=BU{(z,a) }.

For B’ C B, compute an approximately optimal solution A* € [0, 1] to

min { (g ¢(z(N) + A€ [0,1] } (39)

5. Set Zy = x(\*), By C BU{(2(A\*),a(A*))}, the linearization errors of B
according to (17) and 0 < t4 <t. Goto 1.

== o

A few comments on the algorithm are useful.

e In the first iteration, where d* =0, Z = x and B = { (z,a) }, (39) is “degenerate”: any A € [0, 1] is
optimal. Also, « = 0 (which is what (4) gives if f(Z) is “silently” initialized to f(z)).

e The fundamental property that we want from the algorithm is
G = @) +tellilP/2+ @) < f@) +t2I1P/2+a" =( . (40)
This is easy to obtain by requiring monotonicity of ¢
ty <t (41)

(which clearly implies ¢4 < %), an ever-increasing bundle B C B, and “complete” information in
(39), i.e. B’ = B, since then (z*, a*) is feasible for (19) at A = 0, and therefore (39) can only improve
on it. Things are somewhat more complicated if, as it should, some form of bundle management is
allowed at Step 4. (while choosing B’) and at Step 5. (while choosing B.). However, what is needed
is clearly:



— that (z*,a*) is feasible for (19) at A = 0;
— that (z(A*), a(A*)) is feasible for (9) at the subsequent iteration.

This can be obtained by the well-known aggregation trick: just add the pair one needs to preserve
to B. In the standard case this needs to be done only once per iteration, here—since there are two
different bundles B and B’—it must be done twice, at Step 1. and at Step 4. Doing that allows to
remove any other pair from B/B’, provided the “critical” ones are retained. The most aggressive
application of this approach results in the so-called “poorman’s Bundle method” [6]; here, this
translates to B’ = {(z*,a*), (z,)} in (39) and the “poorman’s bundle” B = { (z(\*), a«(A\*)) }, in
which case 1 = 0% € R is the only feasible (hence optimal) solution to (9) at the next iteration, and
therefore

(23,a%) = (2(A%),a(A")) (42)

A milder way to obtain the same result is to ensure that z(A\*) and a(\*) are still feasible for (9)
at the beginning of the next iteration by inhibiting removal of any subgradient h € B such that
05 (A*) > 0. However, this requires that these subgradients are actually “considered” during Step
4., which may not necessarily be the case (cf. the next point and §4.1).

e According to what exactly “approximately solve” means in Step 4., one could actually entirely
avoid Step 1. and pass directly to Step 2. This is the case if (z(A\*), a(A*)) is already the optimal
solution to (9) at the next iteration, which depends on exactly how (39) is solved and on the
relationships between B and B . For instance, it surely happens when B is the “poorman’s bundle”
(cf. (42)). However, this need not always happen. Indeed, since (39) is a “difficult” problem as
Egﬁt is nonconvex, one reasonable strategy is to simplify it by making B “as small as possible”
(cf. §4.1). However, working with a very restricted bundle has in general dire consequences on the
convergence speed [6, 15], which makes it only advisable when the cost of the master problem would
be unbearable otherwise [8]. So, in general one may want a “thin” B in (39) and a “fat” one in (9),
which in turn requires to re-solve (9) once A\* has been found. This is why we present this as the
“default behavior” of our algorithm.

e At Step 5., one may actually compute f(z(A\*)) (and some subgradient) to avoid using the ap-
proximation f(\*) (and possibly improve By) and ensure & = «, {5+ = (g as in the standard
bundle approach. Clearly this can only improve things, but it comes at the cost of an extra function
computation. Although there are cases where this may be worth, since the function computation is
only a negligible part of the overall time (e.g. [15]), in general one can work with the approximate
quantities, hence we prefer to develop our theory in the more general setting. Of course, this is
only relevant if \* ¢ {0, 1}, which may not happen often, if at all (cf. §4.1).

e Obviously, (41) is somewhat harsh. It is well-known that on-line tuning of ¢ is important in practice,
and ensuring that ¢; is chosen “large enough” may not be entirely trivial (even though t; = t* from
(13) should in principle do). Besides, as already discussed in §3, some care is needed to avoid ¢;
going to zero too fast and thereby rendering ¢ useless (cf. (36)/(37)). These issues require a better
grasp of the convergence properties of the approach, this is why we postpone their discussion to
§5.1.

4.1 Finding \*

The solution of (39) clearly depends on the specific upper model fB employed. The linear upper model
(16) is clearly one interesting possibility: it is very easy to compute and available for any f. However,
as already discussed it is also the “worst case” upper model, and therefore the one relying on the most
conservative (hence least accurate) estimates. Furthermore, it immediately leads to the fact that (39) is
concave in \: indeed, 6()\) (cf. (19)/(18)) is concave, and f? is linear. As a consequence, the use of (16)
leads to A* € {0, 1}, i.e., to only making either NSs or SSs, although with different “rules” than in the
traditional bundle method.

Indeed, a computationally useful consequence is that (39) is then easy: just solveit for A\ =0and A =1
and pick the solution giving the best (-value. This is clearly possible, but requires solving the master
problem twice at each iteration (although then step 1. could be skipped entirely, as already discussed). To
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avoid this it is possible to employ the already recalled aggregation technique, in particular with “extreme

aggregation”
B ={(z"a"), (z,a) } , (43)

so that the solution to (9) can be found by a closed algebraic expression. It is useful to develop the
approach in detail, which requires introducing some notation; first and foremost, the two linear functions
in A

L) =2 —a 4 @), S = A —a+ f(3)
such that

for(2(N)) = max { f(A), fF(A) } -

In particular, (17) then gives

= ) = foN) = f(@) FAAF = Mtd +at — f(2)
(Af —2*d*)+a* =\ (z — 2")d" —a | +a*
f(
(A

I
>

A) = f(A) = fF(Z) + MNAf — Azd* 4+ o — f(7)

MAf —zd)+a=a(l—N\) .

One therefore is faced with the special version of (19)
§(\) = min { L1602 + (1 — )] + 6a* + (1 — 0)a* : 0 [0,1] } (44)

whose optimal solution has the closed-form expression

0*(\) = min{ 1, max{ 0,00\ = a @*’Atjﬁj*z) } } , (45)

t]|z* —

since ()\) is the optimal solution of the relazation of (44) where the constraint 6 € [0,1] is removed.
Therefore, one can easily evaluate (an upper estimate of) ¢(0) and ¢(1) in O(n) (O(1) once a few scalar
products are computed once and for all), solving (39) (under (43)) with the same complexity.

It is instructive to examine the result from a different viewpoint. A little algebra (using in particular
Af = —tz*z — )) shows that (39) under (43) can be written as

min { 2(6,A) = h(0) + A(Af +t2*(z* —2)0 —«a) : 0 €[0,1], A€[0,1] }

(46)
where h(0) = t]|0z* + (1 — 0)2]|?/2 + 0a* + (1 — 0)«
is the objective function of (44) for A = 0. For the optimal solution (6*, \*) one then has
Af +t2* (2" —2)0* —a>0 = X\ =0
(47)

Af+t25(2* —2)0* —a<0 = X' =1

due since h(6, ) is linear in A. This first confirms that (16) leads to A* € {0, 1}, except for the vanishingly
small chance that Af + tz*(2* — 2)0* — a = 0. More tellingly, (47) can be interpreted as an “ex-post
NS/SS rule”, to be contrasted to the standard SS condition

Af <m| fs(z) - f(z)] (48)

for some arbitrary m € (0,1]. Of course, (47) can only be evaluated after that (39) has been solved
(albeit this is not a large computational burden); yet, one easily derives the sufficient conditions

Af >max{tz*(z —2*),0}+a = X =0
Af <min{tz*(z —2*), 0} +a = X =1

that can be evaluated early on to avoid solving (39) (and computing some of the required scalar products
in the process). These conditions show that the process is indeed nonmonotone: while (48) requires A f
to be negative, and “sizably so”, to declare a SS, (47) only forces a NS when Af is “sizably positive”,
allowing for SS to be taken even when Af > 0, but “not too large”. This is also seen by exploiting the
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fact that f(1) — f«(1) > 0 (f is convex) = tz*(z* — z) > a — @*: using this (multiplied by 6*) in (47)
gives the “ex-post” -
Af>a"0" + a(l —6%) = A* =0

(which can be made ex-ante using a@*0* + o(1 — 6*) < max{a*, a }), showing once again that Af need
be “large positive” for a NS to be declared.

Using the simplified problem corresponding to “extreme” aggregation (43) would make (39) solvable
even when using non-linear upper models. In fact, it is clear that

SO = |07 (N2 4+ (1= 0*(\)z]|?/2 + 0 (V)a* + (1 — 0*(\)a

is a concave piecewise function with at most three pieces, since 6*()) is linear function of X inside one
(not necessarily proper) sub-interval of [0, 1], and constant outside it. Thus, 6()) is quadratic inside that
interval and linear outside it, as it is easy to verify with somewhat tedious algebra. Thus, if 5 is piecewise
in [0,1] with a small number of pieces, each one of them being a simple (say, smooth algebraic) function
(cf. §5.3), (39) can be solved by inspecting all intervals and evaluating 6(\) + f5()\) at all extremes and
at all points where the derivative vanishes.

This approach could be generalized to “larger” B than (43). In fact, it is possible to show that the
optimal solution of (19) is piecewise-linear in A; this only requires some sensitivity analysis arguments
along the lines of [10, §6] (there the parameter was ¢, but the result easily extends). Therefore, the
analogous to 6*(\) can be constructed, and an explicit concave piecewise form for §(\) can be devised.
However, the number of pieces grows with the set of all possible “bases” (optimal active sets) of (9), and
therefore exponentially. Thus, while applying the idea would be possible with a “small” B, the approach
would rapidly become impractical as |B| grows. There could also be intermediate approaches between
assuming (43) and complete enumeration of all possible bases. For instance, one may find the optimal A\*
under (43), then solve (19) with A = A*, substitute (z*, @*) with (z2(\*), a(A*)) in (43) and keep iterating
as long as improvement is obtained. This could make sense if function evaluation is much more expensive
than the master problem, i.e., the opposite situation as the one where computing f(x(A*)) makes sense.
While all these modifications could be useful for some specific applications, we will concentrate on the
simplest approach using the linear upper model (16) and the minimal bundle (43); all improvements on
these would a fortiori converge (hopefully, faster).

5 The convergence proof

The idea of the convergence proof is, clearly, to show that at all steps ¢ “decreases enough” (in this
Section, too, we remove the iteration index “:” whenever possible). That is, we need to monitor the
“crucial” quantity

AC=¢—¢t (49)

a non-negative number due to (40), and prove that G — fi (= f(z)): we will do that by showing,
basically, that A at least as large as an appropriate nonvanishing fraction of

(~F=8=tl=IP/2+a" > 1|22+ =5 .

While we aim at ultimately replacing the standard convergence arguments for proximal bundle methods,
we will exploit several of the ideas proposed there. The first, as already discussed, is the aggregation
technique leading to the simplified (44) of §4.1. Indeed, it is well-known that convergence of a sequence
of NSs is retained even with the “poorman’s bundle”, which allows to prove convergence of the approach
even if the maximum size of the bundle is fixed to any number > 2. While this is very useful in practice,
here we are rather interested in the fact that it allows to considerably simplify the convergence proof. In
particular, we will study A under the “extreme aggregation” assumption (43).

The second idea one can exploit, somewhat counter-intuitively (or maybe not, given §4.1), is that of
NS/SS. While the algorithm is not—in principle—restricted to these two dichotomic decisions, the fact
that standard bundle methods converge and our previous developments clearly suggest that one should
be able to prove convergence even if \* is restricted to belong to {0, 1}, i.e., only NS and SS are done.
That is, one could interpret (48) as a heuristic for the solution of (39):

(50)

Ao 1 if (48) holds
1 0 otherwise
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We note in passing that (48) can usually be replaced with the weaker
Af < —m[tllz*|P/2+a" | = —m[ (pu(2) - f(2) ] = —md

(cf. (33)) because fz(z) — f(Z) = v* = —t||z*||> — @* < —t]|2*]|?/2 — @* (cf. (11)). Since at each step
either (48) holds, or it doesn’t, we can bound A( from below considering separately both cases. To
simplify the treatment we assume t4 = t; needless to say, the analysis will a fortiori hold under (41), as
0, is increasing in ¢.

We start the case where (48) does not hold, and hence A\* = 0; of course, this corresponds to bounding
the decrease in the master problem value during one regular NS, i.e.,

A =C=C = @+t IP/2+a" — (F@(0) +t]=0)]%/2 +a(0))
e l2/2 4 6" — el 12/2 - &)

where (27, a% ) are the optimal solution to the “standard” master problem corresponding to adding (z, o)
to B while keeping all the rest untouched. Estimating this decrease is possible by simple algebraic means,
that have already been developed in §4.1. Indeed, for h(f) of (46) one has

WA)=tz*(z* —2z)+a" —a .

From (4) and t2* = —d* = & — 2 one has Af = f(z) — f(Z) = —tzz* — «; using this in (the contrary of)
(48) gives B

(1) > 1 -—m)[t)]"|P+a" ] > (1-m)s .
Hence, h/(1) is strictly positive (and “large if ¢ is”), which implies that = 1 cannot be the optimal
point. Thus, as in (45), 8* = 0*(0) is either the unconstrained minimizer 6(0) of h, or 0 (note that the

latter happens in particular if z = 2*, which means that h(#) is linear and 6 is not well-defined). The
former case gives

(tz*(z —2")+a—a*)>  W(1)? (1 —m)é)?
2t]|z* — z||? o 2t)|z* — z||2 T 2t||z* — 2|2

AC > h(1) — h(h) =

while the latter gives -
AC > h(1) = h(0) =t ?/2+ a* —tl|z]*/2 — .

To further develop this, combine h'(0) = ¢(z* —z)z+a*—a > 0 (since h is convex and 0 is the constrained
optimum) and (the contrary of) (48) to get

+m

1
tlzl?/2 + a < (tl="l?/2+a")

and therefore

= 1—-m 1—-m—
ATt /24 8" — (tal?/2 4+ ) > =5 (72 + ) = =
Combining the two cases we finally obtain
- (1—-m)s . (1—m)é
Al > ——— 1, ——— . 51
N Rl (L (51)

If (48) holds instead, and therefore we heuristically choose A* = 1, one has

AC=(— (4

F@ +tl7?/2+ 6" = (f@(D) + tlz))IP/2 + a(1) )
A+ HP/2+ 6" — tlz(1))P/2 - a1) (52)

Hence, in this case we do have the positive term —Af corresponding to the function value improvement,
but we have to estimate the possible increase in the value of the master problem corresponding to the
change in . To simplify this task we assume that B’ = {(z*,a*)}, i.e., the newly obtained (z,«) is
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discarded (this is indeed possible in standard bundle methods, where B can be reset arbitrarily at each
SS); clearly, this corresponds to underestimating A(. Yet, this also gives

AT > —AF+t|72/2+ & —t)|2|2/2 — @' > —Af +a* —a™! .

The useful relationship is that - -
arl = (@) +Af - £.(1)
(see Figure 2), where f.(1) = v* + f(z) = fs(x), which gives

Using @ > 0, =Af > —m[ fu(1) = f(Z) ] (cf. (48)) and f.(1)— f(2) = v* = —t[[z*|]* —a* < —t[[z*]]*/2~
a* one finally obtains

AC> (1 =2m)[f(1) = f(@)] > (2m—1)(¢]|2"]*/2+a") = (2m — 1)d

provided that 2m — 1 > 0.
f,
~JT

Af_\

ol =AF-1,(1)

£.(1) <

Figure 2: Estimating a*!

Since (48) either holds or not, we can conclude that

(53)

_ — 25
ACZémin{Qm—l,l m m)é}

2 7 2tz — 2*|]2

however chosen m € (1/2,1]. Note that this latter condition may seem restrictive when compared with
that of standard proximal bundle methods, which only require m € (0,1], but here m is not an actual
algorithmic parameter (possibly requiring tuning) as in that case; rather, it is only a technicality in the
proof.

We can now prove convergence of the algorithm. To simplify the proof, let us do away first with
the obvious case where fo, = liminf; o f; = —o0, since then clearly v(1) = —oco: {Z;} is a minimizing
sequence, and there is nothing else to prove.

Theorem 5 If (39) is solved by (50), (41) holds, fo, > —00 and
[|zi]] < L < o0 Vi, (54)
then im inf;_c 8; = 0 and:

i) if t >t > 0 and some subsequence of {Z;} converges to some x*, then x* is an optimal solution to
(1);
i) if f is *-compact and (36) holds, then foo = f*.

Proof. Since (; > f;, the sequence {(;} is bounded below and nonincreasing, hence it converges to some
finite value. This ensures that §; — 0. Indeed, ||z}|| is bounded above and (54) implies that {z;} is
also bounded: hence, so is t;||z; — z}||? in the denominator of the rightmost term of (53) (given that
t; < t). Therefore, if §; > ¢ > 0 for infinitely many indices, then (53) would give that > . A(; = oo,
contradicting boundedness of ¢;. This immediately gives part i) via Lemma 1, which requires ¢ bounded
away from zero, and part ii) via Lemma 4 which requires f to be *-compact and (36). =
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A few comments on Theorem 5 are appropriate. Of course, (36) does not come for free: some form
of appropriate management of ¢ is required. Yet, this cannot be too difficult: ¢t bounded away from zero
surely suffice, and more sophisticated strategies are discussed in §5.1. In general, the result is somewhat
weaker than those available for standard bundle methods, in two main aspects:

e The global boundedness condition (54) is usually not required. Something related is actually needed
to show that the denominator in the rightmost term of (53) does not grow infinitely large, but this
is only required for sequences of consecutive NS. Since in that case Z is not changing, it is easy to
obtain (54) as a natural consequence of the algorithm’s workings: {z}} and {«}} are bounded since
the objective function of (9) is nonincreasing, hence {d}} is bounded (¢; is bounded above), hence
the {z;} all belong to the image of a compact set through the e-subdifferential mapping of the finite
function f for some bounded &, which is compact. This line of reasoning fails in our case since T is
changing in a “less controlled” way, and it does not seem to be easy to directly extend the argument.
Yet, there are plenty of cases where (54) holds, such as f globally Lipschitz, f inf-compact (all Z;
belong to some level set since ¢; > f; and (; is nonincreasing), and even more general cases where

the f is globally Liptchiz when restricted to any sublevel set, even if not compact (think e*).

e Requiring f to be *-compact is also usually not necessary: [7, Proposition 1.2], for instance, guaran-
tees convergence without any assumption on f provided that (in our notation) ||zf|| — 0, af — 0,
and

S5 At = oo (55)

While we do have the first two conditions, proving (55) for our algorithm, even in the easy case
where t; is bounded away from zero, is not easy. It is so in traditional bundle methods in the case
where infinitely many SS are done (the other, where a sequence of infinitely many consecutive NS
eventually starts, is dealt with separately): indeed, in that case A} = 1 infinitely many times and
the requirement is “just” that ¢; goes to zero slowly enough, a-la (37). One would guess that either
(55) holds, or “Z; is moving little and we are converging somewhere” (so that Lemma 1 applies);
however, this would call for proving that Y .-, t;||2}|| < co, while we only have the (much) weaker
Yooy till2f||* < oo. Again, a large part of this difference comes from the nonlinear (rightmost)
term of (53), which is not there in the standard convergence proof since it only appears in the study
of consecutive sequences of NS.

Thus, the convergence results for our approach are somehow less satisfactory than these available for
standard bundle methods, although they still cover many practical applications. Apparently, allowing
intermediate steps (between NS and SS), while simplifying some of the arguments, leaves significantly
more freedom to the algorithm, rendering it somewhat more difficult to analyze. This could, however,
just be the consequence of an unrefined analysis: it is possible that (53) can be improved as to make some
of these weakness disappear. Furthermore, (36) lends itself well to algorithmic treatment, as discussed
in the next section.

5.1 Management of ¢

The above development requires (41), which is unrealistic since on-line tuning of ¢ is well-known to be
crucial. However, increasing ¢ can easily kill any monotonicity argument in ¢, so this is only going to
be possible “in a controlled way”. Similarly, decreases of ¢ must be controlled, in that ¢ must either
remain bounded away from zero, or at least (36) has to hold. Going towards practical implementations,
one should therefore decide when is that ¢ should be decreased, and how should exactly ¢+ be chosen in
order for (36) to be satisfied. Standard “proximity control” techniques developed for the proximal bundle
method [21] are not immediately applicable here since they are mostly (although not entirely) based on
estimating and testing the decrease of f; that is, ¢ is (possibly) increased at SS and decreased at NS, a
strategy that cannot be easily replicated here.

As far as increasing t is concerned, the fundamental observation is that all our analysis basically hinges
upon (53) (which clearly implies (40)), so that as long as that condition holds the algorithm converges.
This implies that whenever AC is “large”, we can “sacrifice” some of this decrease to allow increases of
t. Thus, with two appropriate constants k1 > k2 > 0 we can define

e a very good step one for which - -
AC > k16 ; (56)
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e a good step one for which k10 > Al > Ka0;
e a not-so-good step one for which A < ko0.

Condition (56) gives global convergence as (53) does (and is gives the “nice part” where convergence is
linear). Hence, for ¢4 >t one has

AC = fHtllz /2 +ar = (FO) + tlz(A)2/2 + a(X7))
> —MNAf+6—t|z(A)]2/2 — a(X¥) > K10

and therefore any value - -
2((1 = K1)8 = XAf — (X))
[[2(A)]?

keeps (56) satisfied, and thus we may want to pick the largest possible value in (57). Note, that (except
in the “poorman” case), 0, < ty||z(A\*)||2 + a(A\*), but this is not an issue for (57), as a decreasing 0,
(and hence () can only help to attain (56). One can expect (56) to happen mostly when \* is “large”,
so this process somewhat mirrors the standard approach to increase ¢ after a “successful SS”; however,
nothing actually prevents ¢ increases to happen after a “successful NS” that has consistently decreased
the optimal value of the master problem. It may be wise to introduce a further “damping” constraint
t4 < pt for some fixed p € [1,00) to avoid excessive changes of ¢, together of course with the overarching
t+ < t. For good (but not very good) steps we are content with the current convergence rate and we keep
t unchanged, while for not-so-good steps we suspect that the algorithm is stuck in the “bad part with
sublinear convergence” of the estimate (53). We can then try to improve on this by decreasing ¢, whence
obtaining a smaller 6. Of course, this decrease of { is somewhat “fictitious”, as amply discussed in §3;
thus, we may want to only ensure the “minimal target” A{ > k6. Reasoning as for (57) we have that
any

>ty >t (57)

2((1 = K2)d = X*Af — a(A*))
b= EERIE

ensures that the “minimal target” is reached, and therefore we may want to select the largest possible
value in (58) (the minimal possible change of t). The combination of this and (57) should ideally produce
a linearly convergent process with rate between x; and k2, which could in many cases be considered
effective. However, we also need to ensure that the relevant hypotheses of Theorem 5 hold, i.e., either
t >t > 0 or (36), and likely to impose the reasonable damping ¢, > pt for some fixed p € (0,1].
To ensure the weakest hypothesis (36) one can select any increasing function 7 : R, — R, such that
lim, g+ s/7(s) = 0 (e.g. 7(s) = v/s for a fixed v > 0) and then require

<t (58)

te > 7(t0)P + a(V)) 2 7(5:) 9)

In fact, this yields _ _ _
Op [ty <o4/T(d4)

so that §/t — 0 as 0 — 0 (which it does). Clearly, all this (and a fortiori t > t > 0) can in practice
interfere with obtaining the desired rate of convergence; this, if nothing else, justifies increasing ¢ “when
the sun shines”, in order to buy up some wiggle room to decrease it “when the rain comes”.

While (56) provides a sensible “aspiration criterion” for managing ¢ during the process, and in par-
ticular increasing it against the natural requirement (41), it is appropriate (if only for the links with
the following §5.2) to remark that it is not the only one. In particular, our initial motivation for the
development of the approach (cf. §2) was to attain the stopping condition (13) as quickly as possible.
That condition uses one parameter t* to weight the term |2*||? in the z-space (or, better, its dual) with
the term o* (actually, @*) in the f-value space. Indeed, while both these need be “small”, ¢* dictates
the “relative importance” of the two, which is clearly somewhat related to the scaling of the function.
Indeed, assume for the sake of simplicity that dom f (or an appropriate level set) is compact with D < oo
its diameter. The term ¢*||2*||> = (¢*2*)z* in (13) can be seen as a measure of how much we can decrease
at most traveling along the approximate subgradient —z* by a step t*. Indeed, using ||z* — Z|| < D the
(approximate) subgradient inequality then gives

f@) = f(@)+ 27" —2)—a" = Dl +a" > f(@) - [
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When (13) holds, one has a@* < ¢ and
17| < /E—an )/
and therefore one can seek for the value t* such that
e>Dy/(e—a*)/t*+a" > D|z*||+a* > f(z) - f*

and therefore guarantees that Z is actually e-optimal at termination. Simple algebra shows that a sufficient
condition is

t*>D?%/e . (60)

One could therefore run the algorithm with fixed ¢ = t*; this, conceptually, would have the advantage
that the merit function ¢ exactly weights the norm of z* as the stopping condition (13), thereby hopefully
reaching the goal of having the latter satisfied as quickly as possible. This is, however, moot in more ways
than one. First, (60)—even assuming it can be precisely estimated—is likely to be a rather large value:
fixing ¢ there would result in an almost un-stabilized approach, which is likely to be rather inefficient
in practice. Furthermore, the initial aim of reaching (13) as quickly as possible has had to be changed
anyway, since one needs to take into account the decrease of f as well. Indeed, ¢ can be seen as being
made of two terms, f(Z) + @* in the f-value space and ||z*|| in the dual space, with t* weighting the
two. That is, t* can be seen as a measure of the relative importance of having a “small z*” w.r.t. having
a “small f-value”. During the algorithm, this should arguably change: intuitively, reducing the f-value
is more important at the early stages, where Z is very far from being optimal, while reducing |z*| is
more important at the final stages where T is close to being optimal, one one needs “proving” it. This
means that ¢ should arguably be allowed to be (much) smaller than ¢* during the course of the algorithm,
although it could be beneficial to have it grow and reach near t* as the computation nears its end. In
other words, ¢t ~ t* is another sensible aspiration criterion for management of ¢, but not necessarily
uniformly along all the iterations. Different heuristics to this effect (that do not counter (40)/(53)) can
be developed, but this is not the appropriate venue to discuss them.

Finally, let us remark that, since the theory refers to the asymptotic behavior, “everything than only
happens finitely many times is allowed”. That is, like e.g. in [11, (4.ii)], ¢4 can be set to whatever value
one desires provided that some mechanism ensures this stops happening “at some point” and (57)/(59)
are satisfied “from that point onwards”, so that the convergence theory applies to the iterates “after that
tipping point”. Yet, in standard bundle methods this mostly applies to sequences of NS: as soon as a SS
is performed, everything can be basically reset, comprised the “counters for allowing irregular behavior”.
This is a somehow convenient consequence of the otherwise irritating characterization of bundle methods
as composed by two almost independent processes (cf. §1): for the “inner” process, i.e., sequences of
consecutive NS, everything restarts anew (in terms of asymptotic convergence) with any new SS (if any).
Such convenience is not shared by our approach, that is analyzed in terms of a unique converging process.
Yet, as shown in the next section, this allows to more easily derive efficiency estimates for the method
than what is possible for the standard approach [22].

5.2 Efficiency estimates

We now turn to deriving efficiency estimates for the method, that is, an upper bound on the number of
iterations i required to ensure that f; — f* < e. Apart from the given (absolute) maximum error £ > 0,
the bound typically depends on a pair of other (often unknown in practice) constants: the maximum
norm of any subgradient encountered during the process, and the maximum distance between any two
(even non consecutive) iterates. The former is clearly smaller than the L < oo of (54) (e.g., the global
Lipschitz constant of f); for the latter one can take the D < oo of (60) (e.g., the diameter of dom f, or
of an appropriate level set if f is inf-compact).

We need first detail the relationships between the stopping condition (13) (with a* replacing a*, of
course), ¢, and the desired property f; — f* < e. As previously discussed, the latter is implied by (13)
whenever (60) holds, which we will then assume in the following. Further, it is easy to verify that if
T = lf*/lfZ 2 1, then

251'7'1' > S: .

Therefore, (13) surely holds if
20 <e = 20;/t; <eftt = 26 <e(ti/t") ; (61)
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note that, due to (36), this has to happen eventually.
In order to estimate how many iterations at most this will take, we use the fact that

fi—f"<LD.
Furthermore, since ||2}]|> < L? and &} = a1 = 0 we can assume
ety /t*) < 201 < 4y L? (62)
(for otherwise (61) would hold for i = 1) and therefore
G-fi<h = G-f"<LD+6 = G—-f*<LD+tL%/2

(note that actually f; = f1 and ¢; = ¢;). Thus, we only need to estimate the iteration index k such that

S AC =G = G = LD+ 8y — e(t:/11)/2 (63)
indeed, when this happens we get

Sk =Co— fF <G — T <G = fF—LD =6 +e(t;/t")/2 < et /1) /2

and therefore—via (61)—that (13) holds, and hence that f; — f* < & due to (60). Note that in this way
we not only account for the time it takes to reach a e-optimal point, but also for the time it takes to
certify its e-optimality having constructed appropriate z* and &*. Thus, this is a very fair evaluation of
the complexity of the algorithm.

To simplify the notation somewhat we now fix m = 3/5, so that 2m —1 = (1 — m)/2 and the first
two terms in the min of (53) are equal; furthermore, we use ||z — 2*||? < 2L? to get

0 . )

Al > E mln{ 1, 2 } . (64)
The main issue at this point is that (64) does not say is how the decrease in ¢ is “subdivided between
its two components”. That is, (64) may imply either that f decreases (at least) by the given amount,
or ¢ does, or that both decrease, each by a fraction of the total amount. Fortunately, it is clear what
the worst case is. Indeed, decreasing in f while not decreasing & (or even increasing it) will result in the
same (or larger) right-hand-side in (64) at the next iteration, and therefore (at least) as large a decrease
in (. Conversely, a decrease in ¢ results in a smaller right-hand-side in (64), and therefore to a smaller
(estimate, worst-case) decrease in (, at the next iteration. Thus, from an “adversarial” viewpoint, the
strategy leading to the slowest possible decrease of  is clear:

e first, d has to be decreased (as slowly as possible) without changing f, up until no further decrease
is possible least (61) be satisfied;

e then, ¢ is kept fixed and f is improved (as slowly as possible).

Clearly, any other strategy where § is not decreased “as fast as possible” will lead to a larger overall
worst-case decrease of (, and therefore faster convergence.

We therefore estimate the performance corresponding of the above worst-case adversarial strategy,
separately for each of the two phases. Actually, the first phase is subdivided into two sub-phases: that
of “large §” and that of “small §”. That is, until

;i
>
LR 1 (65)
the rate of decrease is linear - o
C+ <G —0;/5

and since we assume f; = f; (= f1), this means

5y <6i—08:/5 = & <b&(4/5)" .
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Unfortunately, (65) does not last long: combining it with (62) gives

t1L?
>
10t;, L2 =

i.e., the “large 0” sub-phase can well terminate immediately unless t; is reduced very quickly. Although
this provides an interesting rationale for some of the discussion in §5.1, it is compatible with the algorithm
that this sub-phase terminates in O(1) iterations (e.g. if ¢ is constant during these) and to simplify the
discussion we will assume this happens.

After that, the second sub-phase begins where instead

0 <e(ty/t*))2 <6 <5t;L?

and therefore the rate of decrease is sublinear:

- - 02
< (=
CJr = gz 25tiL2

However, since (t;/t*)/2 < §; we can estimate the rate of decrease with the linear

which, using again f. = f; (= f1) and (60) gives

_ _ _ _ _ _ _ 2
br=C—Fe <G fi 7 51':51'[1—%(%)}

2y t—1 2 2y t—1
: Y i L Y
5, <o (1-L < 1— =
= 1( 50) =2 ( 50)

where v = ¢/DL. Hence, the second sub-phase terminates for the smallest ¢ such that

t1 L2 2\ "1 t;
1 - <e
2 50 2t*

and therefore

which, using ¢; < t; and (60), gives

Q=250 <42 — iz =—B0) Ly

" log(1 —72/50)
We have therefore to estimate how quickly £(7) goes to infinity (as it is easy to verify it does) when its
argument v = ¢/ DL goes to zero. Some easy but tedious calculus shows that

lim,, 0+ £(y)/7F =0,

for all k > 2, i.e., that any super-quadratic function goes to infinity faster than £(v) does. This means
that, at least for “small” values of €, the second sub-phase terminates in at most O((DL/e)*¥) iterations
for any k > 2.

We are now left to estimating the length of the second (and last) phase, where 8 ~ e(t;/t*) is no
longer reduced and f; is improved instead. Therefore, denoting by h the last iteration of the first phase,
we know that the second phase (and, hence, the whole algorithm) must terminate when

=G <LD .
We start again from (66), but now we use 62 > (e(t;/t*)/2)? and (60) to get
t; g2 g3

000 ST

G <G " 100(DL)?
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where 77 = t;/t*. Therefore

_ &3 ; ; DL\*
i * i *
gi S Ch — sz:h Ti — Zj:h Ti S 100 (T)
To obtain the final estimate on ¢, we need to assume something on how quickly the series of 7 diverges
(which of course requires it indeed diverges in the first place). The simple assumption 7;* > 7 > 0 (which
implies ¢; bounded away from zero) gives

100 /DL\?
1< — | — +h .

- T €

Therefore, all in all the algorithm has O((LD/e)?) efficiency. This is much worse than the optimal
O((LD/e)?) efficiency, that is attained by level methods [25], but comparable to (although somewhat
different than) the O(D*L?/e?) efficiency of proximal bundle methods [22]. Tt is difficult to say whether
this difference in the efficiency estimate really reflects a different asymptotic behavior of the proposed
algorithm w.r.t. the proximal bundle method rather than being a figment of the different complexity
analysis techniques. To gain some insight upon this issue, the next section is devoted to a preliminary
computational comparison between the two.

5.3 Alternative upper models

All the development so far has used the linear upper model (16); clearly, the results a fortiori hold for
any tighter fB. Intuitively, an upper model which better reflects the behavior of f along A would lead
to a better estimate of the potential decrease of f, and therefore to better choices. This is easily seen
with an example: consider the function f(x) = |z| with 1 =Z = —1, and B = {(—1,0)}. For ¢t = 2 one
would have x = 2 with Af = 0 and the new pair (1,2) added to B’. Simple symmetry arguments (or
a little tedious algebra) show that both A = 0 and A = 1 are optimal for (39), but none of the points
A € (0,1): {(N) is concave (quadratic), with the mazimum in z = 0, precisely where the minimum of f
lies. Thus, the choice of A\* is taken on a very “bad” estimate of the real behavior of f, which is clearly
due to fB assuming f to be constant while it actually has a “V-shape”. This shows that better upper
models may be useful to improve the algorithm’s decisions. However, there are no “standard” ways to
construct upper models for convex functions (apart of course (16) itself).

A first possibility could therefore be to rely on specific properties of f. For instance, in many ap-
plications, such as in classification problems [4, 2, 3], f is a polyhedral max-function corresponding to
an “easy” optimization problem, that is, either a convex (linear) program [8, 12, 14, 16] or a nonconvex
one that can still be solved efficiently [13]. In this case, one can use sensitivity analysis techniques on
the problem to determine the minimum value A < 1 so that the optimal solution for the f-problem at z
(A = 1) is still optimal for A = X (and therefore for all values in between). This means that (cf. §4.1)

f@N) =f(\) =dzd* —a+ f(Z)  VreN]]
and therefore that one can use the piecewise-linear upper model

{ (1—=NFB@) +Af(\)  ifo
if

IN

fEN) =

IN A
— >l

A
A

>l
IN

f)

Of course, in the worst case A = 1 and this gives back (16). This approach is easily extended to composite
functions where an appropriate mapping is superimposed over the max-function [26].

A different (not necessarily alternative) idea is to use an upper model that estimates the shape of f
without requiring 8 > f. A simple approach could be to mimic a technique developed for heuristically
adjusting ¢ [12, 21]: develop the quadratic function ¢(A) so that ¢(0) =0, ¢(1) = f(1), and ¢'(1) = f'(1)
(note that g(\) — §(\) can be convex, concave or neither). This possibly estimates the shape of f better
than (16), but it cannot be used alone because it may overestimate the decrease of f, leading to a step
that is actually nonmonotone in ¢. A possible workaround is to combine this model with (16) by defining
the sub-interval of [0, 1] in which (16) ensures a “sufficient decrease”, e.g. in the sense of (56). Since one
can arbitrarily choose any value of A\ in the interval without compromising convergence, the heuristic
upper model can be used to drive the selection of A* in there.
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6 Computational results

We start by stressing that the results reported in this section are only meant to be preliminary; the aim
is to provide a first look at the performances of the proposed approach as compared to the existing ones
(and in particular the proximal bundle method from which the approach derives). For this purpose we
have implemented the proposed approach (which we refer to as “NMBundle”) in C++ and compared it
with the proximal bundle code (which we refer to as “PBundle”) developed by the second author and
already used with success in several other applications [12, 8, 16, 15]. The structure of the existing code
allows the new approach to inherit several useful features. For instance, once an “oracle” for a function
f is implemented it can be used by both approaches without modifications, and the new approach can
exploit the efficient solver for the master problem described in [10]. All the algorithms have been compiled
with GNU g++ 4.0.1 (with -O3 optimization option) and ran on an Opteron 246 (2 GHz) computer with
2 GB of RAM, under Linux Fedora Core 3.

We have compared the two approaches on two different test sets. The first is a set of 12 “classical
academic test functions” with small n (up to 48) that have been used many times to evaluate the
performances of algorithms for (convex) nondifferentiable optimization; one recent instance is [1], to which
the interested reader is referred for a detailed description of the test set. The results are reported in Table
1. For each approach, column “iter” reports the number of iterations (function evaluations) and column
“gap” returns the relative gap between the best function value found by the algorithm at termination and
the true optimum of the function. For both approaches, extensive tuning of the algorithmic parameters
has been performed in order to find the single setting that produces the best results across all functions.
In particular, for both approaches the initial value of ¢ is set to 0.1, and for NMBundle the two crucial
parameters k1 and ko in (57) and (58) are set to 0.1 and 0.06, respectively. The stopping criterion was
set to a target relative accuracy of 1e-6 (¢ = 1075 f(z)) in (13), with ¢* chosen as small as possible to
obtain (almost) “ex-post” satisfaction of the prescribed accuracy (in particular, ¢* = 1 for all functions
except TR48 where ¢t* = 100 is required).

Table 1: Results for standard test functions

PBundle NMBundle
f  n | iter gap iter gap

CB2 2 19  3.8e-7 23 1.5e-7
CB3 2 13 2.8e-7 16 8.9e-11

DEM 2 10 2.5e-12 11 6.9e-8

QL 2 17 6.2e-8 18  4.6e-8

LQ 2 11  3.1e-8 6 6.3e-8

MifHinl 2 31 6.9e-7 26 8.2e-7

Rosen 4 35 3.Te-T 38  1.8e-7

Maxq 20 | 143 4.6e-7 118  1.4e-6
Maxl 20 32 1.8e-15 41  4.4e-16

Maxquad 10 | 129 3.3e-7 107 1.8e-7
TR48 48 | 141  0.0e+0 | 198 4.7e-15

Shor 5 36 3.le-7 41 5.0e-7

The Table shows that the two approaches are roughly comparable; NMBundle requires less iterations
in 4 cases over 12, in two of them (Maxq and Maxquad) somewhat significantly, while it is significantly
slower in the largest TR48. However, it is difficult to draw significant conclusions out of a test set
comprising a few very different test functions of low dimensionality. Therefore we also compared the two
approaches on a significant application: the solution of Lagrangian Duals for optimization problems with
multicommodity flow structure. These, in their many variants, are a staple in Lagrangian optimization;
see e.g. [, 8, 12, 15, 17, 24] for a partial list of reasonably recent publications. In particular here we
employ the simple weak flow relazation of the Fixed-Charge Multicommodity Min-Cost Flow (FC-MMCF)
problem. We avoid delving into the details of the original problem and of the corresponding Lagrangian
relaxation, referring the interested reader to [8] and especially to the recent [15] for the details (comprised
a description of the freely available test instances); here we only mention that, contrary to the “academic”
test cases of Table 1, there are larger-scale problems whose dimensionality n is given by the product of
the number of arcs (m) and the number of commodities (k) in the underlying graph. Hence, the largest
instances reported in Table 2 have n = 960000, although this is partly mitigated by the fact that the
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Lagrangian multipliers are constrained to be non-negative (z > 0) which somewhat decreases the “true”
dimensionality of the problem, since a fraction of the variables can be expected to be zero at optimality
and along all the optimization process. Again in this case we have performed accurate tuning for both
approaches (for PBundle we actually piggy-backed on the tuning performed in [15]), which in particular
led to selecting k1 = 0.6 and k2 = 0.001 in (57) and (58), respectively (now ¢ = 1 at start). The stopping
criterion has been set as in the previous case, and the meaning of the columns in Table 2 is the same as
in Table 1.

Table 2: Results Multicommodity flows
PBundle NMBundle
m k iter  gap iter  gap
300 100 | 2404 1.3e-13 773 7.6e-T
300 200 | 2109 2.9e-14 961  5.6e-7
300 400 | 1118 6.8e-7 940  2.0e-7
300 800 | 1644 6.6e-7 1217 1.6e-7
600 100 824  1.9e-7 753  4.6e-7
600 200 671 1.4e-6 640 1.1e-6
600 400 | 3812 5.7e-7 1880  1.3e-7
600 800 | 2892 7.0e-7 2066 1.le-7
1200 100 | 1598 1.le-6 1543  2.0e-6
1200 200 | 1302 7.2e-7 1024  2.1e-6
1200 400 | 1752  7.9e-7 1932 7.6e-7
1200 800 | 2980 7.8e-7 2691  3.0e-7

Also Table 2 shows that the two approaches are comparable. The results could be showing a trend
whereby NMBundle is more competitive with PBundle for smaller-size problems, while the latter tends
to be better on larger-size ones. While this would need to be confirmed by further experiments, it could
be explained by the fact that the techniques developed for the management of ¢ in §5.1 are all “short-
term”; that is, they only “look” at what is happening in the current iteration. For PBundle, “long-term”
strategies have been developed (see e.g. [8] for the problem at hand) which have been shown to be useful
for large-scale, difficult problems. Hence, these preliminary results may be an indication that appropriate
long-term strategies for ¢ management are required also in the nonmonotone approach.

7 Conclusions and Future Research

We have developed a new variant of the proximal bundle approach for convex nondifferentiable opti-
mization whose main characteristic is that of being “truly” nonmonotone while staying very close to the
original proximal bundle idea, up to using the very same master problem. This is obtained by using,
instead of the function value, an (apparently) novel merit function, derived from the Moreau-Yoshida
regularization, to drive the search towards optimality. This approach would in general lead to a non-
dichotomic choice for the stepsize, which is intuitively appealing; however, the “simple” choice of the
upper model as a linear function implies that one of the two extreme choices for the step is always
optimal, in fact bringing back the algorithm to performing either null steps or serious steps. Yet, the
convergence of the approach can now be studied as that of a single process, which provides a much simpler
way to deriving efficiency estimates.

These results may provide new insight on the theory of bundle methods for nondifferentiable opti-
mization which may ultimately lead to the development of variants of these algorithms that are actually
more efficient in practice. For instance, the efficiency estimates seem to indicate that the main culprit
of the low theoretical convergence rate of these algorithms lies in the “bad sublinear part” of the con-
vergence of sequences of consecutive null steps (cf. (51)), thus possibly highlighting a crucial target for
future improvements: if that part of the convergence could be made faster, a theoretically (and, hope-
fully, practically) better algorithm would ensue. We remark that that part of the convergence estimate is
precisely the one where there is no difference between using a “full” bundle or a “poorman’s” one, which
is perhaps the main reason behind the wide gap between the appalling worst-case theoretical performance
of the algorithm and the much better (at times) observed practical one; this may suggest some direction
for future research. Yet, there are several other possible research directions, e.g. extending the results to
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generalized bundle methods [11] or developing “long-term” strategies for ¢ management that result into
theoretically and/or practically more effective algorithms.
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