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A CONDENSED REPRESENTATION OF ALMOST NORMAL MATRICES∗

ROBERTO BEVILACQUA † AND GIANNA M. DEL CORSO‡

Abstract. In this paper we study the structure of almost normal matrices, that is the matrices for which there
exists a rank-one matrix C such that AH A−AAH = CA−AC. Necessary and sufficient conditions for a matrix to
belong to the class are given and a canonical representation as a block tridiagonal matrix is shown. The approach is
constructive and in the paper it is explained how, starting from a 1×1 or 2×2 matrix we can generate almost normal
matrices. Moreover, given an n×n almost normal matrix we can compute the block tridiagonal representation with
a finite procedure.

Perturbation of normal matrices, canonical representation 65F99;15A21;15B99

1. Introduction. Normal matrices play an important theoretical role in the field of nu-
merical linear algebra. A square complex matrix is called normal if

AHA−AAH = 0,

where AH is the conjugate transpose of A. Over the years many equivalent conditions have
been found [13, 8], and it has been discovered that the class can be partitioned in accordance
with a parameter s, where s is the minimal degree of a polynomial such that AH = ps(A),
s≤ n−1. A milestone in the study of normal(s) matrices are the results related to the Faber-
Manteuffel theorem [11, 10, 9] where it is proved that only normal(s) matrices can have
short (s-term) recurrence when Arnoldi process is applied. Equivalently, the theorem proves
that the Hessenberg matrix we obtain applying Arnoldi process from any possible starting
vector to a normal(s) matrix is an (s + 2)-band Hessenberg matrix. Moreover the structure
is preserved under QR steps, making it possible to use implicit methods, and reducing the
cost per step of QR iterations. Faber-Manteuffel theorem is not able to discover however the
possible hidden structure in the matrix when the degree s is for example n− 1 as it happens
for unitary matrices. It is well known however that unitary Hessenberg matrices have a rank-
one structure in the upper triangular part [5]. This structure is reveled by considering that any
normal matrix is such that AH = p`(A)/qm(A) with p` and qm polynomials with degree ` and
m respectively. For unitary matrices qm(A) = A, with m = 1 and p`(A) = I, with ` = 0.

Despite it is simple [6] to prove that the Hessenberg form of any normal matrix such
that AH is a rational function in A is such that all the submatrices taken out above the
max{|`−m|,1} diagonal1 have rank at most m, it is uncertain if the contrary is true. In [2] the
authors try to extend the Faber-Manteuffel theorem to a wider class of matrices, namely the
matrices A such that AH = p`(A)

qm(A) +Ck, being Ck a rank k matrix. They determined sufficient
conditions in order that a conjugate gradient method can be implemented using a short multi-
ple recursion. Necessary conditions, although claimed, are not proved in the general case [1].
Given the hardness of studying this class of matrices, in this paper we consider the simpler
case where instead of rational functions we have polynomials and a rank-one correction. In
the literature, there are many results concerning the spectrum of a perturbed Hermitian ma-
trix [16] or general normal matrices [18, 15], or examples of implicit QR algorithms for the
computation of the eigenvalues of low rank perturbations of symmetric or Hermitian matri-
ces [19, 22]. The notion or quasi-normal, or almost normal matrices have been introduced
earlier in the literature [21, 17], in this paper however we give a different definition of the
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1When ` = 0 and m = 1 as in the case A is unitary, the rank-one structure extends up to the main diagonal.
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class and we are mainly interested in the description of a condensed representation of the
matrices of the class, which eventually can lead to algorithmic advantages for the computa-
tion of eigenvalues or for the solution of linear systems. In particular, we say that an n× n
complex matrix A is almost normal if there exists a matrix C with rank at most one such that
AH−C commutes with A. In the nonderogatory case, if A is almost normal then there exists a
polynomial ps(·) such that AH = ps(A)+C for a polynomial with degree s, s≤ n−1. In the
derogatory case, however this is no more true because, matrices can commute without being
polynomials in each other. In this paper we do not consider this polynomial formulation and
the degree of the polynomial will nor play a role, because we take the union over all the pos-
sible s. We investigate the structure of almost normal matrices with a constructive approach.
Our approach has the same flavor of that carried out by Ikramov and Elsner in [14] and [7]
for normal matrices and by Ghasemi Kamalvand and Ikramov [12] for low rank perturbations
of normal matrices. The condensed form introduced in our paper can be obtained by a finite
algoritheoremic procedure which is described in the theorems proved in the paper.

Normal matrices are fully characterized by the Schur canonical form that is diagonal.
However, the Schur form seems not to characterize almost normal matrices. In fact, if A is
a non-derogatory almost normal matrix, that is AH = ps(A)+C, and we consider the Schur
canonical form of A, we have

T H = ps(T )+C̃, where C̃ is a suitable rank-one matrix.

Since T is upper triangular, we obtain that all the minors taken out from the strictly upper
triangular part of T have rank at most one. However this is not a sufficient condition for A to
be almost normal.

The paper is organized as follows. In Section 2 we introduce the class of almost normal
matrices and we give necessary conditions for a matrix to be in the class. In particular we
show that any almost normal matrix can unitarily reduced to a matrix with a tridiagonal
block structure, where the diagonal blocks are related to each other and the entries of the off
diagonal blocks depend on those of the successive more external block. In Section 3 we show
that the necessary conditions turn out to be sufficient as well. A recursive argument allows to
border any almost normal matrix with suitable entries to obtain another larger matrix of the
class. In Section 4 it is shown that any almost normal matrix is a rank-one perturbation of a
normal matrix and Section 5 contains some concluding remarks.

2. Structure of the class: Necessary conditions. Let A be such that AH = ps(A)+C,
where ps(·) is a polynomial with degree s and C is a rank-one matrix. If A is nonderogatory,
this condition is equivalent to AH −C commuting with A, that is

(AH −C)A = A(AH −C).

In this paper we study the class of of almost normal matrices that we define as follows.
DEFINITION 2.1. An n×n complex matrix A is almost normal if there exists a matrix C

with rank at most one such that

AHA−AAH = CA−AC. (2.1)

Note that, since C has rank at most one, the matrix CA−AC has rank two or zero (in the latter
case A is normal). Moreover, because matrix AHA−AAH appearing on the left-hand side
of (2.1) is Hermitian, it can be diagonalized with unitary transformation Q, that is QH(AHA−
AAH)Q = D, where D is a real diagonal matrix. To keep the notation simple, we will still
call A the matrix obtained applying unitary transformations which preserve the structural
properties.
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The matrix AHA−AAH has zero trace, and rank zero or two, hence there exists a non-
negative real number α≥ 0 such that

AHA−AAH =

 O O

O
α 0
0 −α

 . (2.2)

From (2.2), setting

A =
[

A11 A12
A21 A22

]
, A22 ∈ C2×2 (2.3)

we get the following blocks relations

AH
11A11−A11AH

11 = A12AH
12−AH

21A21, (2.4)
AH

11A12−A11AH
21 = A12AH

22−AH
21A22, (2.5)

AH
22A22−A22AH

22 = A21AH
21−AH

12A12 +
[

α

−α

]
. (2.6)

REMARK 1. Note that equations (2.2), (2.4), (2.5) and (2.6) still hold whenever we apply
to A unitary block diagonal transformations of this kind[

P O
O S

]
,

where P is an (n−2)× (n−2) unitary matrix and S is a 2×2 phase matrix.
REMARK 2. Note that not all the matrices verifying equation (2.2) are almost normal,

since it might not exist a matrix C such that (2.1) holds.
Next theorem, gives necessary conditions on the structure of the blocks of an almost

normal (not normal) matrix.
THEOREM 2.2. Let A be an n× n, n ≥ 3 almost normal matrix, not normal, such that

equations (2.1) and (2.2) hold for a given matrix C with rank at most one. Partition A as

in (2.3) and C accordingly, that is C =
[

x1
x2

][
yH

1 ,yH
2
]
, for some vectors x1, x2, y1, y2, with

||x1||22 + ||x2||22 = 1. Then we have

(a) x1 = 0, y1 = 0, x2 =
[

ζ

−ω

]
, and yH

2 = κ [ω,−ζ], for a nonzero constant κ, and ζ, ω

such that |ζ|2 + |ω|2 = 1.
(b) A12 and A21 have rank at most one and

A12 = [ωd,ζd] , A21 =
[

ζ fH

ω fH

]
, d, f ∈ Cn−2. (2.7)

(c) Denoting A22 =
[

b11 b12
b21 b22

]
we have that b11 = b22, and moreover ω2 b12− ζ2 b21 =

α/κ.
Proof.
Since A in not normal, C has rank exactly one, so x and y are different from zero. For

the same reason α > 0. Rewriting equation (2.1) and (2.2) in terms of the blocks of A and the
3



generators of C we obtain four matrix equations:

x1(yH
1 A11 +yH

2 A21)− (A11x1 +A12x2)yH
1 = 0 (2.8)

x1(yH
1 A12 +yH

2 A22)− (A11x1 +A12x2)yH
2 = 0 (2.9)

x2(yH
1 A11 +yH

2 A21)− (A21x1 +A22x2)yH
1 = 0 (2.10)

x2(yH
1 A12 +yH

2 A22)− (A21x1 +A22x2)yH
2 =

[
α 0
0 −α

]
. (2.11)

To prove (a) assume by contradiction that x1 6= 0. From equation (2.8) and (2.9), applying
Lemma 5.1 in the Appendix, we have

µyH
1 = (yH

1 A11 +yH
2 A21) (2.12)

µyH
2 = (yH

1 A12 +yH
2 A22), (2.13)

where µ = (A11x1 +A12x2)Hx1.
Then from (2.12) and (2.13) it follows that yH is a left eigenvector of A corresponding to

the eigenvalue µ. From (2.1) and (2.2), we have O O

O
α 0
0 −α

= xyHA−AxyH = (µI−A)xyH (2.14)

which is a contradiction because α 6= 0, and the matrix on the left hand side of equation (2.14)
has rank exactly two while the right hand side is a rank-one matrix. Hence x1 = 0. We can
repeat the same reasoning assuming y1 6= 0 and using equations (2.8) and (2.10), obtaining
that y1 must be zero.

Equation (2.11) becomes

x2 yH
2 A22−A22 x2 yH

2 =
[

α 0
0 −α

]
. (2.15)

Multiplying on the left by yH
2 and on the right by x2 we get that the left hand side of (2.15)

vanishes, and we obtain the following relation between y2 and x2

yH
2

[
α 0
0 −α

]
x2 = 0.

Taking yH
2 = (ȳn−1, ȳn) and x2 = (ζ,−ω)T , with |ζ|2 + |ω|2 = 1, we have

ȳn−1ζ+ ȳnω = 0, (2.16)

which implies yH
2 = κ [ω,−ζ], for some nonzero constant κ. Thus (a) is proved.

Rewriting equations (2.9) and (2.10) setting x1 = 0 and y1 = 0, since x2 6= 0 and y2 6= 0,
we have

A12x2 = 0, yH
2 A21 = 0, (2.17)

meaning that the matrices A12 and A21 have rank at most 1. Because of relation (2.17) we
have

A12 = [ωd,ζd] , A21 =
[

ζ fH

ω fH

]
,
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where d and f are (n−2)-vectors. Thus (b) is proved.
Part (c) of the theorem is proved imposing relation (2.15) on the entries of the matrix

A22.
The fact that A12 and A21 are rank-one matrices with the same proportional parameters is

usefull to prove that the structure of blocks A12 and A21 can be further simplified. This is the
first step towards the block tridiagonalization of A.

THEOREM 2.3. Let A be an almost normal matrix of size n, n ≥ 3, satisfying equa-
tion (2.2), and let A12 and A21 have the form described by equation (2.7), with |ω2|+ |ζ|2 = 1.
Then A can be unitarily reduced to a matrix still satisfying equation (2.2), and such that

A12 =

 0 0
|ω|δ1 |ζ|δ1
|ω|δ2 |ζ|δ2

 , A21 =
[

0H |ζ|δ2 |ζ|δ1
0H |ω|δ2 |ω|δ1

]
, (2.18)

meaning that ζ and ω can be supposed real non negative. Moreover |δ1| ≥ |δ2|.
Proof. If d = f = 0 then A12 and A21 have the required form. Let d 6= 0, and assume

n > 4, the case f 6= 0 can be treated analogously. From equation (2.4) we have

AH
11A11−A11AH

11 = A12AH
12−AH

21A21. (2.19)

Substituting (2.7) we have

AH
11A11−A11AH

11 = (|ω|2 + |ζ|2)(ddH − ffH) = ddH − ffH .

Consider the matrix B = AH
11A11−A11AH

11. B is Hermitian and hence diagonalizable with
unitary transformation U , moreover its trace is zero, then there exists a real nonnegative
value β such that

UHBU = UH(AH
11A11−A11AH

11)U =

 O O

O
β 0
0 −β

 . (2.20)

Let us reduce A so that B has already the form (2.20).
Splitting d = (d1;d2) and f = (f1; f2) according with the partition (2.20) we get

d1dH
1 − f1fH

1 = 0
d1dH

2 − f1fH
2 = 0 (2.21)

d2dH
2 − f2fH

2 =
[

β 0
0 −β

]
.

If β = 0, applying Lemma 5.1, from equations (2.21) we have d = µ f, with |µ| = 1. We can
construct an Householder-like transformation P such that

Pd = γ

 0
1
1

 ,

where |γ|= ‖d‖2/
√

2 and γ = |γ|expiθ, with θ =−arg(d̄n−3 + d̄n−2), being d2 =(dn−3,dn−2)T .
Setting µ = expiϕ, we can take the unitary matrix Q as

Q =
[

expi(ϕ/2−θ) P
I2

]
,
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which is such that

QHAQ =


PHA11P

0 0
ωδ ζδ

ωδ ζδ

O
ζδ ζδ

ωδ ωδ
A22

 , (2.22)

where δ = |γ|expiϕ/2, and hence A12 and A21 have the desired structure.
If β 6= 0, assume that d1 6= 0, we have from Lemma 5.1 that d2 = µ f2. This is however a
contradiction because otherwise d2dH

2 − f2fH
2 = (|µ|2− 1)f2fH

2 will have rank at most one,
which is not possible because β 6= 0. Hence d = (0;d2) and f = (0; f2).
Setting d = (0;∆1;∆2), and f = (0;Φ1;Φ2), we need to prove that we can reduce A to a matrix
where Φ̄1 = ∆2 and Φ̄2 = ∆1.
Rewriting (2.21) we have

∆1∆̄1−Φ1Φ̄1 = β

∆2∆̄2−Φ2Φ̄2 =−β

∆1∆̄2 = Φ1Φ̄2.

Summing together the first two equations we have

|∆1|2 + |∆2|2 = |Φ1|2 + |Φ2|2

that, together with |∆1||∆2|= |Φ1| |Φ2|, implies that we can either have |∆1|= |Φ1| and |∆2|=
|Φ2| or |∆1|= |Φ2| and |∆2|= |Φ1|. However the first case is not acceptable when β 6= 0.

By means of phase transformations we get Φ̄1 = ∆2 and Φ̄2 = ∆1, proving that

A12 =

 0 0
ω∆1 ζ∆1
ω∆2 ζ∆2

 , A21 =
[

0H ζ∆2 ζ∆1
0H ω∆2 ω∆1

]
, (2.23)

eventually with ∆1 = ∆2 if β = 0. Let us prove that there exist ω̃ and ζ̃ real and nonnegative
such that (2.18) holds.

Writing the possibly complex numbers ω and ζ in polar form, we have ω = |ω| expiθω ,
and ζ = |ζ| expiθζ . Let φ = (θζ−θω)/2, and consider the phase matrix

S =

 In−2
exp−iφ

expiφ

 ,

then

SAS−1 =
[

A11 Ã12
Ã21 Ã22

]
,

where

Ã12 =

 0 0
|ω|δ1 |ζ|δ1
|ω|δ2 |ζ|δ2

 , Ã21 =
[

0H |ζ|δ2 |ζ|δ1
0H |ω|δ2 |ω|δ1

]
, (2.24)
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where δ1 = ∆1 expi(θω+θζ)/2 and δ2 = ∆2 expi(θω+θζ)/2. The block Ã22 is not modified respect
to A22 in its diagonal entries and equation (2.20) still holds. Finally, if |δ1| < |δ2|, rows and
columns n−3 and n−2 can be permuted without destroying the structure properties used in
this theorem.

If n = 3 or n = 4 the blocks A12 and A21 do not have the zeros in the first rows and
columns, since they have respectively size 1×2 (when n = 3) and 2×2 (if n = 4).

Theorem 2.2 assumes A not normal. However, it is in general possible that the leading
principal (n− 2)× (n− 2) minor is normal. Next Corollary gives necessary and sufficient
condition for A11 to be normal.

COROLLARY 2.4. Under the hypothesis of Theorem 2.3 the matrix A11 is normal if and
only if |δ1|= |δ2|.

Proof. If A is reduced in the form described in Theorem 2.3, from (2.4) we have

AH
11A11−A11AH

11 =−AH
21A21 +A12AH

12. (2.25)

Consider the right hand side of (2.25), using the equality (2.18), we have

AH
11A11−A11AH

11 =

 O
|δ1|2−|δ2|2

|δ2|2−|δ1|2

 .

Then we have that A11 is normal iff |δ1|= |δ2|.
As underlined in remark 2, not all the matrices satisfying equation (2.2) are almost nor-

mal. Next theorem gives necessary and sufficient conditions for a matrix A to belong to that
class, that is for the existence of a rank-one matrix C such that AHA−AAH = CA−AC. The
theorem will be used in Section 3.1 for proving sufficient conditions.

THEOREM 2.5. Let A be an n×n complex matrix, with n≥ 3. Partition A as follows

A =
[

A11 A12
A21 A22

]
, A11 ∈ C(n−2)×(n−2).

If
(a) Equation (2.2) holds with α 6= 0,
(b) A12 and A21 are structured as in equation (2.7), with ω and ζ nonnegative reals such that

ω2 +ζ2 = 1,

(c) A22 =
[

b11 b12
b21 b11

]
.

Then A is almost normal (not normal) meaning that there exists a rank one matrix C such that
AHA−AAH = CA−AC, if and only if ω2b12−ζ2b21 6= 0.

Proof. If A is almost normal, not normal, then for Theorem 2.2 the rank-one matrix

C =
(

0
x2

)(
0H ,yH

2
)

is such that x2 =
[

ζ

−ω

]
, yH

2 = κ (ω,−ζ). With such a choice

CA−AC =

 O O

O
κ(ω2b12−ζ2b21) 0

0 −κ(ω2b12−ζ2b21)

=

 O O

O
α 0
0 −α

 .

Since α 6= 0 (A is not normal) then (ω2b12−ζ2b21) 6= 0. Vice versa, if (ω2b12−ζ2b21) 6= 0,
ω and ζ being the coefficients in (2.7), a rank-one matrix C such that AHA−AAH = CA−AC

is given by C =
(

0
x2

)(
0H ,yH

2
)

with x2 =
[

ζ

−ω

]
, yH

2 = κ (ω,−ζ), and with

κ =
α

ω2b12−ζ2b21
.
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We are now ready to prove the main result of this paper. Notice that it is not required A to
be almost normal, i.e. the existence of a rank one matrix C such that AHA−AAH =CA−AC is
not assumed. It states that any almost normal matrix unitary reduced to a form such that (2.2)
holds, has a leading principal submatrix with the same structure.

THEOREM 2.6. Let A be an n×n complex matrix, with n≥ 6. Partition A as follows

A =
[

A11 A12
A21 A22

]
, A11 ∈ C(n−2)×(n−2).

If
(a) Equation (2.2) holds with α 6= 0,
(b) A12 and A21 are structured as in equation (2.18), with ω and ζ real nonnegative such

that ω2 +ζ2 = 1 and |δ1|> |δ2|,

(c) A22 =
[

b11 b12
b21 b11

]
,

then ω 6= ζ and A can be unitary reduced to a matrix such that the block A11 has the form

A11 =


Â11

O

ω1δ
(1)
1 ζ1δ

(1)
1

ω1δ
(1)
2 ζ1δ

(1)
2

O
ζ1δ

(1)
2 ζ1δ

(1)
1

ω1δ
(1)
2 ω1δ

(1)
1

Â22


, (2.26)

and satisfies (a), (c). Moreover the parameters of A11 are such that |δ(1)
1 | ≥ |δ

(1)
2 | , ω1 and ζ1

real non negative, ω1 > ζ1 with ω2
1 +ζ2

1 = 1. In particular equation (2.2) for A11

AH
11A11−A11AH

11 =

 O O

O
β 0
0 −β

 ,

holds with β > 0.
Proof. Since n > 6, we can partition A11 as follows

A11 =
[

Â11 Â12
Â21 Â22

]
,where Â11 ∈ C(n−4)×(n−4), Â22 ∈ C2×2.

Rewriting equation (2.5) in block form we have

[
ÂH

11 ÂH
21

ÂH
12 ÂH

22

] 0 0
ωδ1 ζδ1
ωδ2 ζδ2

+

 0 0
ζ δ̄2 ωδ̄2
ζ δ̄1 ωδ̄1

A22−
[

Â11 Â12
Â21 Â22

] 0 0
ζ δ̄2 ωδ̄2
ζ δ̄1 ωδ̄1

−
 0 0

ωδ1 ζδ1
ωδ2 ζδ2

AH
22 = 0

(2.27)
Set Â12 = [g,h], and ÂH

21 = [r,s], where g,h,r and s are n− 4 complex vectors. Looking at
the upper (n−4) equations of (2.27) we get

ω(δ1 r+δ2 s)−ζ(δ̄2 g+ δ̄1 h) = 0
ζ(δ1 r+δ2 s)−ω(δ̄2 g+ δ̄1 h) = 0.

8



Writing the four equations of (2.27) involving the entries ai j of Â22 and the entries bi j of A22
we get

ωδ1 ā11 +ωδ2 ā21−ζδ̄1 a12−ζδ̄2 a11 = ωδ1 b̄11−ωδ̄2b21 +ζδ1 b̄12−ζδ̄2 b11 (2.28)
−ωδ̄1 a12−ωδ̄2 a11 +ζδ1 ā11 +ζδ2 ā21 = ωδ1 b̄21−ωδ̄2 b11 +ζδ1 b̄11−ζδ̄2 b12 (2.29)
ωδ1 ā12 +ωδ2 ā22−ζδ̄1 a22−ζδ̄2 a21 = ωδ2 b̄11−ωδ̄1 b21 +ζδ2 b̄12−ζδ̄1 b11 (2.30)
−ωδ̄1 a22−ωδ̄2 a21 +ζδ1 ā12 +ζδ2 ā22 =−ωδ̄1 b11 +ωδ2 b̄21 +ζδ2 b̄11−ζ δ̄1 b12(2.31)

Observe that ω 6= ζ. Otherwise, assume by contradiction that ω = ζ, then the left hand
side of equations (2.28) and (2.29) are the same, and subtracting them we get

δ1(b̄21− b̄12) = δ̄2(b12−b21). (2.32)

From equation (2.2) on the block in position (2,2) we have

AH
12A12 +AH

22A22−A21AH
21−A22AH

22 =
[

α

−α

]
.

Using the fact ω2−ζ2 = 0, we have

|b21|2−|b12|2 = α 6= 0.

From the absolute value of (2.32) and observing that |b̄21− b̄12| = |b12− b21| 6= 0, we get
|δ1|= |δ2| which contradicts the hypothesis because |δ1|> |δ2|.

Hence, because ω 6= ζ, with two linear combinations we get

(ω2−ζ
2)(δ̄2 g+ δ̄1 h) = 0 (2.33)

(ω2−ζ
2)(δ1 r+δ2 s) = 0 (2.34)

Since ω2 − ζ2 6= 0, the matrices Â12 = [g,h], and ÂH
21 = [r,s] have rank at most one. In

particular there exist two n−4 vectors d(1) and f(1) such that

Â12 =
[
ω1 d(1),ζ1 d(1)

]
, Â21 =

[
ζ1 f(1)H

ω1 f(1)H

]
,

where ζ1 = κδ̄2 and ω1 =−κδ̄1 and κ is such that |ζ1|2 + |ω1|2 = 1. It follows that |ω1|> |ζ1|.
We need now to prove that the diagonal entries of Â22 are the same, that is a11 = a22.
With some linear combinations of equations (2.28)-(2.31) we obtain

(ω2−ζ
2)δ̄2(a11−a22) = 0

(ω2−ζ
2)δ̄1(a11−a22) = 0.

Since we cannot have δ1 = δ2 = 0, we get a11 = a22 as claimed, proving property (c) for A11.
Because of the structure of A12 and A21 described in (b) and using (2.4), we get

AH
11A11−A11AH

11 =

 O
|δ1|2−|δ2|2

|δ2|2−|δ1|2

 . (2.35)

proving (a) for A11, and the property that β = |δ1|2−|δ2|2 is positive.
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We note that matrix A11 satisfies the hypothesis of Theorem 2.3. Hence block Â12 and Â21

have the structure described in (2.26) with |δ(1)
1 | ≥ |δ

(1)
2 |. Note that the phase transformation

which makes ω1 and ζ1 real nonnegative, modifies the external border, changing the polar
part in the representation of δ1 and δ2: in detail, setting

δ1 = |δ1|exp(iε1), δ2 = |δ2|exp(iε2), κ = |κ|exp(iε3),

the new value for δ1 and δ2 are respectively

|δ1|exp(i(ε1 + ε2− ε3)), −|δ2|exp(i(ε1 + ε2− ε3)),

finding that δ2|δ1|=−δ1|δ2|.

Theorem 2.6 does not consider the cases A is a matrix of size n < 6. However, if n =
3, A11 = a11 collapses to a number and the thesis does not make any sense, also because
hypothesis (b) is not true. If n = 4, we do not have δ

(1)
1 and δ

(1)
2 because A11 is 2× 2 and

then coincides with Â22. If n = 5 the structure of (2.26) simplifies, Â11 is just a number and
|δ(1)

1 |= |δ
(1)
2 |.

Note that if A is almost normal, and hence Theorem 2.6 can be applied, the matrix A11
is not, in general almost normal because matrix Ĉ such that AH

11A11−A11AH
11 = ĈA11−A11Ĉ

might not exist. However if ω2
1a12− ζ2

1a21 6= 0 then, for Theorem 2.5, A11 is almost normal
as well.

Summarizing for any n×n almost normal, not normal matrix A, with n > 4, partitioned
as

A =
[

A11 A12
A21 A22

]
, where A11 ∈ C(n−2)×(n−2), A22 ∈ C2×2,

then either A11 is normal or we can unitary reduce A to the following structure

A =



Â11

O

ω1δ
(1)
1 ζ1δ

(1)
1

ω1δ
(1)
2 ζ1δ

(1)
2

O

O
ζ1δ

(1)
2 ζ1δ

(1)
1

ω1δ
(1)
2 ω1δ

(1)
1

Â22
ωδ1 ζδ1
ωδ2 ζδ2

O
ζδ2 ζδ1
ωδ2 ωδ1

A22


(2.36)

that is the blocks in position (1,2) and (2,1) of A11 have the same structure of the more
external blocks and the entries of the internal blocks are related to parameters appearing in
the more external blocks.

Previous theorem does not account for the case |δ1|= |δ2|, but in Corollary 2.4 we proved
that in that case A11 is normal. Next theorem gives additional necessary conditions on the
parameters and on the diagonal form of A11.

THEOREM 2.7. Let A be an n×n complex matrix, with n > 4. Partition A as follows

A =
[

A11 A12
A21 A22

]
, A11 ∈ C(n−2)×(n−2).

If
10



(a) Equation (2.2) holds with α 6= 0,
(b) A12 and A21 are structured as in equation (2.18), with ω and ζ real nonnegative such

that ω2 +ζ2 = 1 and |δ1|= |δ2|,

(c) A22 =
[

b11 b12
b21 b11

]
,

then the matrix A11 is normal and by a unitary transformation we can reduce A to a matrix
such that

(1) δ1 = δ2 = δ,
(2) and either δ = 0 (meaning that is A block diagonal), or the matrix ωδAH

11− ζδ̄A11 has
as eigenvector en−3 + en−2 corresponding to an eigenvalue

ω(δ b̄11− δ̄b21)+ζ(δ b̄12− δ̄b11).

Proof. For hypotheses (a), (b) and (c) we can apply Corollary 2.4 concluding that if
|δ1|= |δ2| then A11 is normal.

Proceeding as in Theorem 2.3 we can unitary reduce A to the form (2.22), obtaining a
δ = δ1 = δ2. In the case δ = 0 the matrix turns out to be block diagonal with A11 normal.

Assume δ 6= 0. Using equality (2.5), we have

AH
11

 0 0
ωδ ζδ

ωδ ζδ

+

 0 0
ζδ̄ ωδ̄

ζ δ̄ ωδ̄

A22−A11

 0 0
ζ δ̄ ωδ̄

ζ δ̄ ωδ̄

−
 0 0

ωδ ζδ

ωδ ζδ

AH
22 = 0.

(2.37)
The thesis follows setting u = en−3 + en−2 and rewriting first column of previous equality as(

ωδAH
11−ζδ̄A11

)
u =

(
(ωδb̄11−ωδ̄b21)− (ζ δ̄b11 +ζδ b̄12)

)
u.

Observing that the second column of (2.37) gives the same relation that one obtains using the
first column, we can conclude that en−3 +en−2 is an eigenvector of the matrix

(
ωδAH

11−ζ δ̄A11
)

corresponding to the eigenvalue (ωδb̄11−ωδ̄b21)− (ζ δ̄b11 +ζδ b̄12).

Summarizing, if the block A11 is normal we can have two situations. A is block diagonal,
that is

A =
[

A11 O
O A22

]
, and moreover A11 is normal

otherwise, if A12 and A21 are not null, A can be unitary reduced to the following structure

A =


A11

O

ωδ ζδ

ωδ ζδ

O
ζδ ζδ

ωδ ωδ
A22


. (2.38)

Theorem 2.7 concludes the proof of the structure of almost normal matrices, showing that we
can exploit a 2×2 block tridiagonal structure of almost normal matrices until we eventually
meet a leading principal block which is normal. In that case, we stop.
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3. Sufficient conditions. In this section we show how we can construct an almost nor-
mal matrix bordering an (n− 2)× (n− 2) almost normal matrix with suitable vectors. This
construction can be carried on inductively starting from a normal matrix, or a non normal
1×1 or 2×2 matrices.

THEOREM 3.1. Let A11 be an (n−2)× (n−2) matrix such that either A11 is normal or
is not normal but (2.2) holds (for A11). Assume A11 has the following structure

A11 =


Â11

O

ω1δ
(1)
1 ζ1δ

(1)
1

ω1δ
(1)
2 ζ1δ

(1)
2

O
ζ1δ

(1)
2 ζ1δ

(1)
1

ω1δ
(1)
2 ω1δ

(1)
1

a11 a12
a21 a11


,

with |δ(1)
1 | ≥ |δ

(1)
2 |, and ω(1) > ζ(1). Then we can border A11 in infinitely many ways to obtain

an n×n matrix

A =
[

A11 A12
A21 A22

]
, where A22 =

[
b11 b12
b21 b11

]
∈ C2×2,

such that (2.2) holds for A with α 6= 0, and A has the structure described in (2.36). Moreover
we can always choose the new parameters δ1,δ2,ω,ζ and the bi j in such a way that A is
almost normal.

Proof. Assume first that A11 is not normal and the eigenvalues of the difference matrix
AH

11A11−A11AH
11 are β,−β, where β > 0. We want to prove that if we construct A12, A21

and A22 as in Theorem 2.6 then the matrix A has the desired properties. Let ω and ζ be non
negative real numbers such that ω2 +ζ2 = 1, with ω 6= ζ. Set

A12 =

 0 0
ωδ1 ζδ1
ωδ2 ζδ2

 , A21 =
[

0H ζδ2 ζδ1
0H ωδ2 ωδ1

]
,

where δ1 and δ2 are such that (2.33) and (2.34) hold. This is achieved by setting δ1 = µω1
and δ2 =−µζ1, for any complex constant µ such that |µ|=

√
β/(ω2

1−ζ2
1).

Block A22 is determined by imposing conditions (2.28)-(2.31) where the unknowns this
time are the bi j’s, since

Â22 =
[

a11 a12
a21 a11

]
is given. Combining ζ times equation (2.28) with ω times equation (2.29) we get

(ω2−ζ
2)
(
a12 δ̄1 +a11δ̄2

)
= (b12−b21)ωζδ̄2 +(ζ2 b̄12−ω

2 b̄21)δ1 +b11(ω2−ζ
2)δ̄2.

Combining ω times equation (2.28) and ζ times equation (2.29) we have

(ω2−ζ
2)(ā11 δ1 + ā21δ2) = (b̄12− b̄21)ωζδ1 +(ζ2 b12−ω

2 b21)δ̄2 + b̄11(ω2−ζ
2)δ1.

We do the following changes of variables x1 = b11, x2 = ζ2 b̄12−ω2 b̄21 and x3 = b12− b21.
We get the following linear system[

(ω2−ζ2)δ̄2 δ1 ωζδ̄2
(ω2−ζ2)δ̄1 δ2 ωζδ̄1

] x1
x2
x3

= (ω2−ζ
2)
[

a12 δ̄1 +a11δ̄2
a21 δ̄2 +a11δ̄1

]
.

12



The above linear system is consistent and has infinitely many solutions of the form x1
x2
x3

= k

 ωζ

0
ζ2−ω2

+
1

|δ1|2−|δ2|2

 a11(|δ1|2−|δ2|2)+δ1 δ̄2 a21− δ̄1 δ2 a12
(ω2−ζ2)(δ̄2

1 a12− δ̄2
2 a21)

0

 .

(3.1)
Then b11 = x1 and b12 and b21 are the solutions of the linear system[

ζ2 −ω2

1 −1

][
b12
b21

]
=
[

x̄2
x3

]
,

obtaining

b12 =
x̄2

ζ2−ω2 − k ω
2, b21 =

x̄2

ζ2−ω2 − k ζ
2. (3.2)

To complete the proof we need to show that we can always choose k in such a way
ω2 b12−ζ2 b21 6= 0. In Theorem 2.5 we show that in this case there exists a rank-one matrix
C for which A is almost normal. Note that ω2 b12−ζ2 b21 = x3− x̄2. Hence

ω
2 b12−ζ

2 b21 = k (ζ2−ω
2)− 1
|δ1|2−|δ2|2

(ω2−ζ
2)(δ2

1 ā12−δ
2
2 ā21).

Since x2 does not depend on k, |δ1| 6= |δ2| and ζ2−ω2 6= 0, we achieve our goal by choosing

k 6= −δ2
1 ā12 +δ2

2 ā21

|δ1|2−|δ2|2
.

Assume now A11 is normal. In accordance with Theorem 2.7, either we can choose
δ = 0, or the parameters ω,ζ and δ should be chosen in such a way matrix ωδAH

11− ζ δ̄A11
has eigenvector en−3 +en−2. If we decide for δ = 0, then we set A12 = O and A21 = O, and A

is a block diagonal matrix A =
[

A11 O
O A22

]
, with A22 a generic 2×2 matrix with b11 = b22.

With a unitary transformation acting on the last two rows and columns of A we can always
obtain a matrix satisfying (2.2). With the particular choice b22 = b11 and b12 6= b21 we get an
almost normal matrix and

C = κ

 O O

O
1 −1
−1 1

 ,

where κ(b12−b21) = |b21|2−|b12|2.
In the case A11 is normal and u = en−3 + en−2 is eigenvector of ωδAH

11−ζδ̄A11 we have
infinitely many different choices for the entries bi j of A22. Let A11 = QDQH , with D diagonal
and Q the unitary matrix of the eigenvectors. Denote by µi the eigenvalues of A which are the
diagonal entries of D, and let µ be the eigenvalue of A11 such that

ωδ µ̄−ζ δ̄µ = ω(δ b̄11− δ̄b21)+ζ(δ b̄12− δ̄b11), (3.3)

knowing in advance that we need b11 = b22. For the necessary conditions proved in Theo-
rem 2.7, we have to find suitable bi j’s such that equality (3.3) holds.

Reasoning similarly to what done for the non normal case, we end up with the following
linear equation

(ω2−ζ
2) δ̄µ = (ω2−ζ

2) δ̄b11 +δ(ζ2 b̄12−ω
2 b̄21)+ωζδ̄(b12−b21). (3.4)
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With the same change of variables x1 = b11, x2 = ζ2 b̄12−ω2 b̄21 and x3 = b12−b21, we have
that if ω 6= z  x1

x2
x3

= k1

 ωζ

0
(ζ2−ω2)

+ k2

 ζ2−ω2

δ̄/δ

0

+

 µ
0
0

 ,

where k1 and k2 are free complex parameters. If ω = ζ the above equation (3.4) simplifies
and we have  x1

x2
x3

= k1

 1
0
0

+ k2

 0
δ̄/δ

−2

 ,

where k1 is a free parameter, |k2| is free but the angle αk of k2 is such that αk = αδ±π/2.
where αδ is the angle of δ.

Thus we have infinitely many solutions in the above systems depending on k1 and k2 , and
hence choices of the bi j’s. Moreover, similarly to the not normal case, we can always choose
k1 and k2 in such a way there exists a rank-one matrix C such that AHA−AAH = CA−AC.
For example, possible values guaranteeing ω2 b12− ζ2 b21 6= 0 are k1 = 0 and k2 6= 0 (in the
case ω = ζ , k2 should still be such that αk = αδ±π/2).

REMARK 3. Note that if A11 is not normal, for any two different values of k, the corre-
sponding almost normal matrices differ only for the tailing 2× 2 principal minor A22. The
difference of the two almost normal matrices is a multiple of matrix C itself.

In the case the principal minor A11 is normal, given an almost normal matrix obtained
with parameters k1 and k2 we can choose a second almost normal matrix B differing from
A only for the tailing 2× 2 principal block with parameters k′1 and the same k2 such that
A−B = (k1− k′1)C.

Previous theorem gives the conditions for the recursive construction of an almost normal
matrix. We now have to describe the structure of the basic block to start recursion. We have
two cases. A11 is normal, or it is a 2× 2 non normal matrix. If A11 is an odd-size normal
matrix - eventually of size one - we can border it as described in Theorem 3.1 obtaining an
odd-size almost normal matrix. If A11 has even size, we end up with an even-size almost
normal matrix. Everything works well starting with a with a 2× 2 matrix as proved in next
theorem.

THEOREM 3.2. Any 2×2 matrix is almost normal.
Proof. We can assume A is in the Schur form, that is A is upper triangular,

A =
[

λ1 η

0 λ2

]
.

We want to show that there exists a rank one matrix C and a polynomial p(x) = ax + b with
degree at most one, such that such that AH −C = p(A). Let ε, ε 6= 0 such that λ1 + ε 6= λ2.
Then there exist a and b, unique, such that

λ̄1 = aλ1 +b+ εa

λ̄2 = aλ2 +b− 1
ε
|η|2.

In fact

det(
[

λ1 + ε 1
λ2 1

]
) = λ1 + ε−λ2 6= 0.
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Once we found a and b solutions of the linear system, we compute C = AH − p(A) which is
given by

C =
[

λ̄1− (aλ1 +b) −aη

η̄ λ̄2− (aλ2 +b)

]
,

whose determinant is zero, so that C has rank at most one.

4. Relationship with normal matrices. We already stressed that when adding a rank-
one perturbation to a normal matrix we may end up with a matrix which is not almost normal
because AHA−AAH can have rank up to four. However, next theorem shows that any al-
most normal matrix can be viewed as a particular rank-one correction of a particular normal
matrix.

THEOREM 4.1. Let A be an almost normal matrix. Then there exists a normal matrix
N and a constant h such that A = N + hC, where C is the same rank one matrix such that
AHA−AAH = CA−AC.

Proof. Let A be an almost normal matrix already in the condensed form described
in (2.36). In this proof, for the sake of simplicity, we assume A11 is not normal; the case
A11 normal is similar. In particular, as remarked in 3, we can choose infinitely many A(k) that
differ from A only for the lower right 2×2 block, taking different values of k in the solution of
system (3.1). Among the infinite possible A(k) we prove that we can always find a particular
k̃ such that the matrix A(k̃) is normal.

In fact, an almost normal matrix, which is also normal should satisfy equations (2.4),

(2.5) and (2.6) with α = 0. Let A(k)
22 =

[
b11 b12
b21 b11

]
the lower 2×2 diagonal block. From (2.6)

setting α = 0 we have

|b21|2−|b12|2 = (|δ1|2 + |δ2|2)(ζ2−ω
2).

Substituting in previous equality relations (3.2), where the dependence of b12 and b21 from k
is made explicit, we get

|k|2− k
x2

(ζ2−ω2)
− k̄

x̄2

(ζ2−ω2)
− (|δ1|2 + |δ2|2) = 0, (4.1)

where x2 is independent of k. Setting c = x2/(ζ2−ω2), a solution can be obtained expressing
k and c in polar form, i.e. k = |k|expiθk , c = |c|expiφ. We get

|k|2−2 |c| |k| cos(θk +φ)− (|δ1|2 + |δ2|2) = 0.

For any value of θk, the previous equation in |k| has always two real roots, one of which
is positive. For all these solutions we obtain a normal matrix. In particular, by choosing
θk̃ = π/2−φ, and |k̃|=

√
|δ1|2 + |δ2|2, we have that the corresponding A(k̃) is normal and is

a rank-one perturbation of A. With the choice of h = k− k̃, we get the thesis.

5. Conclusions. In this paper we studied almost normal matrix, i.e. those matrices for
which there exists a rank-one perturbation C such that AHA−AAH = CA−AC and showed
how to transform them to a condensed representation. This condensed form allows to repre-
sent almost normal matrices by means of O(n) parameters compared with the O(n2) repre-
sentation of the general Hessenberg form.

The approach used is essentially theoretical and has some link with previous condensed
representations for normal matrices [7] and low-rank perturbations of normal matrices [12].
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These results allow us to explicitly construct matrices in the class, with a recursive argument,
bordering smaller matrices with suitable entries.

We are also able to recognize if a matrix A for which AHA−AAH is a rank-two matrix
is almost normal, looking at the structure of the two outer rows and columns, and applying
Theorem 2.2 and Theorem 2.5. This can be verified with a finite procedure.

In [7] and in [3, 12, 20] the reduction to other condensed forms is obtained using gener-
alized Krylov subspace methods. On the contrary, our reduction is obtained applying unitary
transformations which diagonalize rank-two matrices (which is a finite procedure) and phase
transformations which guarantee that some of the parameters are real.

Another interesting problem is that of designing QR-like algorithms which can take ad-
vantage from the block tridiagonal structure as it happens when other rank-structured matrices
are considered [4].

As underlined in the introduction, a rank one perturbation of a normal matrix is not,
in general, in our class. We intend to study the structure of these rank-one perturbation of
normal matrices to see if we can discover structures and have some interesting computational
advantages.

Appendix. LEMMA 5.1. Let x,y,u and v be n−vectors such that

xyH = uvH .

If x 6= 0, then there exists a constant µ, such that yH = µvH .
Proof. By multiplying both sides of the equality by xH on the left. We get

(xHx)yH = (xHu)vH ,

hence setting µ = (xHu)/‖x‖2 we get yH = µvH .
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