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Abstract


This paper deals with equilibrium problems with nonlinear constraints. Exploiting


the gap function recently introduced in [1], which rely on a polyhedral approximation


of the feasible region, we propose two descent methods. They are both based on the


minimization of a suitable exact penalty function, but they use different rules for up-


dating the penalization parameter and they rely on different types of line search. The


convergence of both algorithms is proved under standard assumptions.


Keywords: Equilibria, constraint linearization, gap function, exact penalization


1 Introduction


The equilibrium problem provides a general setting to formulate a large number of problems


such as scalar and vector optimization, variational inequality, fixed point, complementar-


ity, saddle points and noncooperative games in a unique format (see [2, 3] and references


therein). A huge number of applications have been developed in different areas such as eco-


nomics, environment, transportation, information technology and telecommunications: some
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recent papers focused on oligopolistic and spatial price markets [4, 5, 6], auction and finan-


cial markets [7, 8, 9], risk management [10], climate policies [11, 12], traffic and pricing over


telecommunication networks or over public roads [1, 13, 14], clouding computing [15, 16],


power allocation in radio systems [17, 18], internet advertising [19].


Several kinds of methods to solve equilibrium problems have been proposed (see, for


instance, the recent survey [2]). One popular approach relies on the reformulation of the


equilibrium problem as an optimization problem through appropriate gap or D-gap functions:


many ad hoc descent methods for minimizing the chosen gap function have been developed


(see [1, 14, 20, 21, 22, 23, 24, 25, 26, 27]). Most of them require the computation of the


minimum of a convex function over the (convex) feasible region of the equilibrium problem


just to evaluate the gap function at a given point. Therefore, this evaluation could be compu-


tationally expensive when the feasible region is described by nonlinear (convex) constraints.


Recently, a gap function which uses a polyhedral approximation of the feasible region has


been introduced in [1]. This paper introduces two descent methods for solving equilibrium


problems with nonlinear constraints, exploiting this new gap function. They are both based on


a search direction which could be unfeasible, unlike most of the known algorithms. Therefore,


some penalization techniques are needed: an exact penalty term is introduced and a descent


direction for the penalized gap function is available provided that the penalization parameter


is small enough. It is worthy to remark that the penalization parameter is updated throughout


the iterations of the algorithms whenever it is needed.


These new methods have some better features than most of the available descent methods.


At each iteration a convex optimization problem with linear constraints is solved instead of


a convex problem with nonlinear constraints as in [14, 21, 22, 24, 25]. Moreover, the key


assumption for convergence is weaker than those for the methods proposed in [21, 24, 25].


Finally, the parameters are bounded away from zero while they might go to zero, and thus


give numerical instability, in the methods developed in [1, 14, 22].


The paper is organized as follows: Section 2 recalls some well-known definitions and


results about gap functions for equilibrium problems. Section 3 provides the two new solution


methods and their convergence is proved under standard assumptions. Finally, Section 4


contains some final remarks and comparisons between the new methods and those already


available in the literature.
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2 Preliminaries


We consider the following equilibrium problem:


find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀ y ∈ C, (EP )


where C ⊆ R
n is closed and convex and f : Rn × R


n → R is a bifunction. Throughout the


paper the following basic assumptions are made:


– The feasible set C is bounded and it is defined by convex inequalities, i.e.,


C = {x ∈ R
n : ci(x) ≤ 0, i = 1, . . . ,m},


where ci : R
n → R are convex functions.


– The ci’s are twice continuously differentiable and Slater constraint qualification holds,


i.e., there is x̂ ∈ R
n such that ci(x̂) < 0 for all i = 1, . . . ,m.


– The bifunction f is continuously differentiable, f(x, ·) is convex, f(x, x) = 0 for all


x ∈ D, where D is a bounded polyhedron containing C.


The above assumptions guarantee that (EP ) admits at least one solution (see for instance [28]).


A function g : C → R is said to be a gap function for (EP ) if g is non-negative on C and x∗


solves (EP ) if and only if x∗ ∈ C and g(x∗) = 0. Thus, gap functions allow to reformulate an


equilibrium problem as a global optimization problem, whose optimal value is known a priori.


In order to build gap functions with good smoothness properties, it is helpful to consider a


continuously differentiable auxiliary bifunction h : Rn ×R
n → R which satisfies the following


conditions:


– h(x, y) ≥ 0 for all x, y ∈ D and h(z, z) = 0 for all z ∈ D,


– h(x, ·) is strictly convex for all x ∈ D,


– ∇yh(z, z) = 0 for all z ∈ D,


– 〈∇xh(x, y) +∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ D.


Given any α > 0, a well-known gap function (see, for instance, [25]) is


φα(x) = −min
y∈C


{f(x, y) + αh(x, y)} .
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Several descent methods based on the minimization of the gap function φα have been devel-


oped [1, 14, 21, 24, 25]. However, computing φα(x) require the solution of a convex optimiza-


tion problem with nonlinear constraints, which may be computationally expensive.


Recently, the gap function φα has been modified by replacing the feasible region C by its


polyhedral approximation at each considered point [1], namely introducing the function


ϕα(x) = − min
y∈P (x)


{f(x, y) + αh(x, y)} , (1)


where


P (x) = {y ∈ D : ci(x) + 〈∇ci(x), y − x〉 ≤ 0, i = 1, . . . ,m}.


Since the inner optimization problem in (1) has a strictly convex objective function and a


bounded feasible region, it admits a unique solution yα(x). We remark that this modifica-


tion of the gap function φα extends to (EP ) a similar idea developed in [29] for variational


inequalities.


Lemma 2.1 [1] The following statements hold:


– ϕα is a gap function for (EP);


– ϕα is locally Lipschitz continuous on D;


– x∗ solves (EP) if and only if yα(x
∗) = x∗;


– If x ∈ D does not solve (EP) and f is strictly ∇-monotone on D, i.e.


〈∇xf(x, y) +∇yf(x, y), y − x〉 > 0, ∀ x, y ∈ D with x 6= y, (2)


then yα(x) − x is a descent direction for ϕα at x.


The above results suggest to exploit yα(x) − x as a search direction at a given iterate x in


the minimization process of the gap function ϕα. However, the direction yα(x) − x may be


unfeasible because yα(x) belongs to the approximating polyhedron P (x) but not necessarily


to the feasible set C. For this reason the following exact penalty function has been introduced


in [1]:


ψα,ε,p(x) := ϕα(x) +
1


ε
‖c+(x)‖p


where c+(x) = (c+1 (x), . . . , c
+
m(x)) with c+i (x) = max{0, ci(x)}, ε > 0 and p ∈ [1,∞]. Given


any α > 0, also the penalty function turns out to be a gap function, provided that the


4







penalization parameter ε is small enough. In fact, the results about penalization in [30] (par-


ticularly, Proposition 8 and Theorems 11 and 12) allow to prove the following key properties


just arguing as in the proof of Lemma 3 in [1].


Lemma 2.2 Given any α > 0 and any p ∈ [1,∞], there exists ε̄ > 0 such that


a) ψα,ε,p(x) ≥ 0 for all x ∈ D,


b) x∗ solves (EP) if and only if x∗ ∈ D and ψα,ε,p(x
∗) = 0,


for all ε ∈ (0, ε̄).


The next section introduces two new solution methods for (EP ) based on the minimiza-


tion of the penalized gap function ψα,ε,p, which are both convergent under assumption (2).


Actually, a method based on the minimization of the ψα,ε,p has already been proposed in [1].


However, the assumptions required by this latter method for convergence are different from


those used in this paper. In fact, the method in [1] is based on the following concavity-type


condition:


f(x, y) + 〈∇xf(x, y), y − x〉 ≥ 0 ∀ x, y ∈ D, (3)


which is neither weaker nor stronger than condition (2). Moreover the following example


shows that, if conditions (2) and (3) are both satisfied, then the method given in [1] could be


numerically unstable because the parameter α might go to zero. This may never happen in


the algorithms of this paper since the parameter α is kept fixed.


Example 2.1 Consider (EP) with n = 2, m = 1, f(x, y) = (x1+x2)y1+(x2−x1)y2−x
2
1−x


2
2


and c1(x) = x21 + x22 − 1. Therefore, the feasible region C is the unit ball and x∗ = (0, 0) is


the unique solution of (EP). Notice that f satisfies both (2) and (3) since f(·, y) is concave


for all y and


〈∇xf(x, y) +∇yf(x, y), y − x〉 = ‖y − x‖22.


Consider h(x, y) = [(x1 − y1)
2 + (x2 − y2)


2]/2 and the box D = [−1, 1]× [−1, 1] containing


the feasible region. Three cases are possible: either the algorithm of [1] finds x∗ after a finite


number of iterations, or it generates a sequence converging to x∗ while the parameter α is


updated only a finite number of times, or it generates a sequence converging to x∗ while α


goes to zero (see [1, Theorem 5]). We now show that the first two possibilities cannot happen.
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Since yα(x) is actually the projection of zα(x) = (x1 − (x1 + x2)/α, x2 − (x2 − x1)/α)


onto P (x), it is not possible to have yα(x) = γx with γ < 0 for any x ∈ D, which would be


necessary for the algorithm to identify x∗ at a given iteration.


It is also impossible that the parameter α is updated only a finite number of times, being


therefore definitely fixed. In fact, given any α > 0, we have zα(x) → 0 as x → 0, and


therefore zα(x) ∈ P (x) whenever ‖x‖ is small enough. In this situation, yα(x) = zα(x) and


the decrease condition (13) of [1] does not hold as it reads ‖x‖ < 0. Therefore, the algorithm


would decrease α and keep the current iterate fixed until zα(x) /∈ P (x).


3 Descent methods


While yα(x) − x is a descent direction for ϕα at x, it is not necessarily so for any penalized


gap function ψα,ε,p. Indeed, the key result show that it is a descent direction also for ψα,ε,p


at x if the parameter ε is small enough. The generalized directional derivative of ψα,ε,p at x


along the direction d, i.e.,


ψ◦
α,ε,p(x; d) := lim sup


z→x
t↓0


t−1 [ψα,ε,p(z + t d)− ψα,ε,p(z)] ,


provides a convenient tool to check whether d a descent direction. In fact, if ψ◦
α,ε,p(x; d) < 0,


then ψα,ε,p(x+ td) < ψα,ε,p(x) holds whenever t > 0 is small enough.


Theorem 3.1 Let α > 0 and p ∈ [1,∞]. If (2) holds and x ∈ D does not solve (EP), then


ψ◦
α,ε,p(x; yα(x)− x) < 0


and therefore yα(x)−x is a descent direction for ψα,ε,p at x provided that 1/ε ≥ ‖λ+‖q, where


λ+i =











λi if ci(x) > 0,


0 otherwise,


λ ∈ R
m
+ is any Lagrange multiplier associated to yα(x) and ‖ · ‖q is the dual norm of ‖ · ‖p.


Proof. Since x does not solve (EP ), then d := yα(x)−x 6= 0. Considering the convex function


v(x) := ‖c+(x)‖p, then v◦(x; d) coincides with its directional derivative v′(x; d). Thus, the


generalized directional derivative of ψα,ε,p satisfies the following inequality:


ψ◦
α,ε,p(x; d) ≤ ϕ◦


α(x; d) +
1


ε
v′(x; d).
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The following chain of inequalities and equalities hold:


ϕ◦
α(x; d) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), d〉


< 〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), d〉


= −


m
∑


i=1


λi 〈∇ci(x), d〉


=


m
∑


i=1


λi ci(x)


≤
m
∑


i=1


λ+i c
+
i (x)


= 〈λ+, c+(x)〉.


The first inequality is actually Theorem 2 (b) in [1] while the second one is due to the strict


∇-monotonicity of f + αh. The subsequent equalities follow from the multipliers’ rule and


the complementarity slackness condition: in fact, we have


∇yf(x, yα(x)) + α∇yh(x, yα(x)) +


m
∑


i=1


λi∇ci(x) = 0


and


λi [ci(x) + 〈∇ci(x), yα(x) − x〉] = 0, i = 1, . . . ,m,


since λ is a Lagrange multiplier associated to yα(x). Finally, the last inequality and equality


follow immediately from the definitions. Moreover, the proof of Lemma 4 in [1] shows that


v′(x; d) ≤ −v(x). Thus, we have:


ψ◦
α,ε,p(x; d) < 〈λ+, c+(x)〉 − ε−1 ‖c+(x)‖p


≤ ‖λ+‖q ‖c
+(x)‖p − ε−1 ‖c+(x)‖p


=
(


‖λ+‖q − ε−1
)


‖c+(x)‖p


≤ 0.


since 1/ε ≥ ‖λ+‖q. ✷


Notice that yα(x) − x is a descent direction for ψα,ε,p at a feasible point x for any ε > 0:


in fact, x ∈ C implies λ+ = 0 and hence 1/ε ≥ ‖λ+‖q holds for all ε > 0. Under assumptions


on f other than strict ∇-monotonicity, this is no longer necessarily true (see [1, Theorem 4]).


The solutions of (EP ) coincide with the global minima of ψα,ε,p on the set D provided


that ε is small enough (see Lemma 2.2). As a consequence of Theorem 3.1 a further result


7







holds under the strict ∇-monotonicity of f . In fact, provided that ε is small enough, if (2)


holds then the stationary points of ψα,ε,p on D, i.e., those x∗ ∈ D such that


ψ◦
α,ε,p(x


∗; y − x∗) ≥ 0, ∀ y ∈ D,


solve (EP ). Furthermore, an explicit bound on ε is also available.


Corollary 3.1 Let α > 0, p ∈ [1,∞] and Λα(x) be the set of all the Lagrange multipliers


associated to yα(x). If (2) holds and


1/ε ≥ max
{


‖λ+‖q : λ ∈ Λα(x), x ∈ D
}


,


then any stationary point of ψα,ε,p on D solves (EP).


Therefore, any local minimization method could be directly applied for solving (EP )


exploiting a unique penalized gap function, but the computation of the bound would be


required. Actually, this is not necessary: a descent method can be devised moving away from


the current iterate xk along the direction dk = yα(x
k) − xk after updating the penalization


parameter ε just in case it is too big for dk to be a descent direction. Clearly, dk = 0, which


means that xk is a fixed point of the map yα, guarantees that x
k solves (EP ).


Algorithm 1


(0) Choose a sequence ρj ↓ 0, p ∈ [1,∞], α > 0, β, γ ∈ (0, 1), x0 ∈ D. Set ε = ρ0 and k = 0.


(1) Compute yk = argmin{f(xk, y) + αh(xk, y) : y ∈ P (xk)} and λk a corresponding


Lagrange multiplier vector.


(2) If dk := yk − xk = 0, then STOP.


(3) while 1/ε < ‖(λk)+‖q do


set ε = ρj+1 and j = j + 1.


end


(4) Compute the smallest non-negative integer s such that


ψα,ε,p(x
k + γs dk)− ψα,ε,p(x


k) ≤ −β γ2s ‖dk‖2,


set tk = γs, xk+1 = xk + tk d
k, k = k + 1 and goto Step 1.
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Theorem 3.2 If (2) holds, then Algorithm 1 either stops at a solution of (EP) after a finite


number of iterations or produces a sequence {xk} such that any of its cluster points solves


(EP).


Proof. Since there exists M > 0 such that ‖λ‖q ≤ M holds for all x ∈ D and all λ ∈ Λα(x)


(see [31, Lemma 3.3]), the parameter ε is updated at most a finite number of times and step


3 may never loop indefinitely.


Next, we show that the line search procedure in step 4 is finite. By Theorem 3.1 and the


choice of ε at step 3 ψ◦
α,ε,p(x


k; dk) < 0 holds for all k. By contradiction, suppose there exists


an iteration k such that


ψα,ε,p(x
k + γs dk)− ψα,ε,p(x


k) > −β γ2s ‖dk‖2


holds for all s ∈ N. Then, taking the limit we get the contradiction


ψ◦
α,ε,p(x


k; dk) ≥ lim sup
s→∞


γ−s
[


ψα,ε,p(x
k + γs dk)− ψα,ε,p(x


k)
]


≥ 0.


If the algorithm stops at x∗ after a finite number of iterations, then the stopping criterion


guarantees that x∗ solves (EP ) thanks to Lemma 2.1.


Now, suppose the algorithm generates an infinite sequence {xk} and consider any cluster


point x∗ of the sequence. Taking the appropriate subsequence {xℓ}, we have xℓ → x∗.


Without loss of generality we can assume that ε is constant for all the iterations. Moreover,


the continuity of the map yα guarantees dℓ → d∗ = yα(x
∗) − x∗. We want to prove d∗ = 0


and therefore that x∗ solves (EP ). By contradiction, suppose d∗ 6= 0. Since the sequence


{ψα,ε,p(x
k)} is monotone descreasing and bounded below, we have


lim
ℓ→∞


[


ψα,ε,p(x
ℓ)− ψα,ε,p(x


ℓ+1)
]


= 0.


Moreover, the stepsize rule 4 guarantees


ψα,ε,p(x
ℓ)− ψα,ε,p(x


ℓ+1) ≥ β t2ℓ ‖d
ℓ‖2 > 0.


Therefore, tℓ → 0 as ℓ→ +∞ since d∗ 6= 0. Moreover, the inequality


ψα,ε,p


(


xℓ + tℓ γ
−1 dℓ


)


− ψα,ε,p(x
ℓ) > − β (tℓ γ


−1)2 ‖dℓ‖2 (4)


holds for all ℓ ∈ N. Since ψα,ε,p is locally Lipschitz continuous, the mean value theorem


guarantees that


ψα,ε,p


(


xℓ + tℓ γ
−1 dℓ


)


− ψα,ε,p(x
ℓ) = 〈ξℓ, tℓ γ


−1 dℓ〉, (5)
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where ξℓ is a generalized gradient of ψα,ε,p at xℓ + θℓ tℓ γ
−1 dℓ, holds for some θℓ ∈ (0, 1).


Hence, (4) and (5) imply


〈ξℓ, dℓ〉 > − β tℓ γ
−1 ‖dℓ‖2.


On the other hand, we have


ψ◦
α,ε,p


(


xℓ + θℓ tℓ γ
−1 dℓ; dℓ


)


≥ 〈ξℓ, dℓ〉,


and thus


ψ◦
α,ε,p


(


xℓ + θℓ tℓ γ
−1 dℓ; dℓ


)


> − β tℓ γ
−1 ‖dℓ‖2.


Since xℓ → x∗, dℓ → d∗, and tℓ → 0, we get xℓ + θℓ tℓ γ
−1 dℓ → x∗. Since ψ◦


α,ε,p is upper


semicontinuous as function of (x; d) (see for instance [32]), taking the limit we get


ψ◦
α,ε,p(x


∗; d∗) ≥ lim sup
ℓ→∞


ψ◦
α,ε,p


(


xℓ + θℓ tℓ γ
−1 dℓ; dℓ


)


≥ 0. (6)


Eventually taking a subsequence, λℓ → λ∗ as ℓ → +∞ for some λ∗ ∈ R
m
+ since the sequence


{λℓ} bounded. Moreover, we have λ∗ ∈ Λα(x
∗) since the set-valued map Λα is closed (see [33,


Lemma 2]). Therefore, 1/ε ≥ ‖(λℓ)+‖q implies 1/ε ≥ ‖(λ∗)+‖q, and hence Theorem 3.1


ensures ψ◦
α,ε,p(x


∗; d∗) < 0 in contradiction with (6). ✷


The main difference between the above algorithm and the one in [1] is about the pa-


rameters’ update. Parameters are updated to guarantee that dk is a descent direction: in


Algorithm 1 it is enough to check that ε is small enough, while in the algorithm of [1] also


two further conditions must be met and α has to be updated too. This difference affects the


behaviour of the parameters meaningfully: in Algorithm 1 α is fixed and ε is updated at most


a finite number of times, while in the other algorithm α and ε change simultaneously and


may actually go to zero (see Example 2.1).


In general, a different kind of line search can be considered too: the term ‖d‖ may be


replaced by the value of the considered gap function (see [14]). Applying this idea in the


current framework requires some additional care as the solution strategy is based on the


minimization of the penalized gap function ψα,ε,p. While a descent direction can be obtained


in the same way of Algorithm 1, lack of feasibility may create some further troubles. A line


search based on the inequality


ψα,ε,p(x
k + γs dk)− ψα,ε,p(x


k) ≤ −β γ2s ψα,ε,p(x
k)
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may not work. In fact, the right hand size of the inequality has to be negative. Therefore,


a further check has to be performed to guarantee that the penalized gap function is positive


at the current iterate xk: if it is not so, it is enough to decrease the penalization parameter


ε enough to get a positive value (see Lemma 2.2). Anyway, feasibility may be not achieved


all the same: the method could provide sequences for which the values of the gap function go


to zero but whose cluster points are not feasible. Adding the penalty term ‖c+(x)‖p to the


right hand side of the line search inequality allows to get feasibility as well.


Algorithm 2


(0) Choose a sequence ρj ↓ 0, p ∈ [1,∞], α, δ > 0, β, γ ∈ (0, 1), x0 ∈ D. Set ε = ρ0, j = 0


and k = 0.


(1) Compute yk = argmin{f(xk, y) + αh(xk, y) : y ∈ P (xk)} and λk a corresponding


Lagrange multiplier vector.


(2) If dk := yk − xk = 0, then STOP.


(3) while ψα,ε,p(x
k) ≤ 0 or 1/ε < ‖(λk)+‖q do


set ε = ρj+1 and j = j + 1.


end


(4) Compute the smallest non-negative integer s such that


ψα,ε,p(x
k + γs dk)− ψα,ε,p(x


k) ≤ −β γ2s
[


ψα,ε,p(x
k) + δ‖c+(xk)‖p


]


,


set tk = γs, xk+1 = xk + tk d
k, k = k + 1 and goto Step 1.


Theorem 3.3 If (2) holds, then Algorithm 2 either stops at a solution of (EP) after a finite


number of iterations or produces a sequence {xk} such that any of its cluster points solves


(EP).


Proof. Lemma 3.3 in [31] and Lemma 2.2 allow to check that ε is updated at most a finite


number of times. Furthermore, arguing as in the proof of Theorem 3.2 it is easy to show that


the line search procedure in step 4 is finite.
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If the algorithm stops at x∗ after a finite number of iterations, then the stopping criterion


guarantees that x∗ solves (EP ) thanks to Lemma 2.1.


Now, suppose the algorithm generates an infinite sequence {xk} and consider any cluster


point x∗ of the sequence. Taking an appropriate subsequence {xℓ}, we have xℓ → x∗. Without


loss of generality we can assume that ε is constant for all the iterations. By contradiction,


suppose that x∗ does not solve (EP ). If x∗ ∈ C, then


ψα,ε,p(x
∗) + δ‖c+(x∗)‖p = ψα,ε,p(x


∗) = ϕα(x
∗) > 0.


On the other hand, if x∗ ∈ D \C then ‖c+(x∗)‖p > 0 and ψα,ε,p(x
∗) ≥ 0, since ψα,ε,p(x


ℓ) > 0.


Therefore, we have


ψα,ε,p(x
∗) + δ‖c+(x∗)‖p > 0


also in this case. Since the sequence {ψα,ε,p(x
k)} is monotone descreasing and bounded below,


we have


lim
ℓ→∞


[


ψα,ε,p(x
ℓ)− ψα,ε,p(x


ℓ+1)
]


= 0.


Moreover, the stepsize rule 4 guarantees


ψα,ε,p(x
ℓ)− ψα,ε,p(x


ℓ+1) ≥ β t2ℓ
[


ψα,ε,p(x
ℓ) + δ‖c+(xℓ)‖p


]


> 0. (7)


Since


lim
ℓ→∞


ψα,ε,p(x
ℓ) + δ‖c+(xℓ)‖p = ψα,ε,p(x


∗) + δ‖c+(x∗)‖p > 0,


then tℓ → 0 as ℓ→ +∞. Arguing as in the proof of Theorem 3.2 we get


ψ◦
α,ε,p(x


∗; yα(x
∗)− x∗) ≥ 0 (8)


and 1/ε ≥ ‖(λ∗)+‖q for some λ∗ ∈ Λα(x
∗). Therefore, Theorem 3.1 guarantees


ψ◦
α,ε,p(x


∗; yα(x
∗)− x∗) < 0,


which contradicts (8). ✷


Though Agorithm 2 updates the penalization parameter ε according to a different rule


from Algorithm 1, it is still updated at most a finite number of times, thus preventing the


possible numerical troubles due to arbitrarily small parameters.
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4 Conclusions


In the paper two globally convergent algorithms for solving equilibrium problems with nonlin-


ear constraints have been developed. They are both based on the minimization of a suitable


penalized gap function: at each iteration they solve a convex optimization problem with linear


constraints, but the computation of the generalized derivative of the penalized gap function


is not needed. The rule to update the penalization parameter and the line search are the core


differences between the two algorithm.


This paper extends to equilibrium problems the ideas given in [29] for variational inequal-


ities only. Moreover, explicit rules to update the penalization parameter ε throughout the


iterations are given, while the algorithm in [29] require the a priori knowledge of a suitable


fixed ε. Furthermore, the new algorithms perform Armijo-type inexact line searches instead


of the rather theoretical exact line search of [29].


The descent methods given in [14, 21, 22, 24, 25] do not perform any constraint lineariza-


tion, and hence convex optimization problems with nonlinear constraints have to be solved at


each iteration, while the algorithms of this paper provide this valuable feature. Moreover, the


convergence of the methods proposed in [21, 24, 25] require the strong ∇-monotonicity of the


equilibrium bifunction (see, for instance, [25, condition (15)]), which is a stronger assumption


than the strict ∇-monotonicity condition (2) used in this paper.


While the methods proposed in [1, 14, 22] converge under assumptions which are neither


stronger nor weaker than condition (2), the behaviour of the regularization and penalization


parameters can be compared. In the algorithms of this paper the regularization parameter α


is fixed and the penalization parameter ε is updated at most a finite number of times, and


thus they are both bounded away from zero. Conversely, α and ε change simultaneously and


may actually go to zero in [1], α is the unique parameter and may go to zero in [14], while


α is fixed but ε (which actually plays the role of a further regularization parameter as no


penalization is involved) always goes to zero in [22].
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