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Abstract

Movement data are sensitive, because people’s whereabouts may allow re-
identification of individuals in a de-identified database and thus can potentially
reveal intimate personal traits, such as religious or sexual preferences. In this
paper, we focus on a distributed setting in which movement data from individ-
ual vehicles are collected and aggregated by a centralized station. We propose
a novel approach to privacy-preserving analytical processing within such a dis-
tributed setting, and tackle the problem of obtaining aggregated traffic information
while preventing privacy leakage from data collection and aggregation. We study
and analyze three different solutions based on the differential privacy model and
on sketching techniques for efficient data compression. Each solution achieves
different trade-off between privacy protection and utility of the transformed data.
Using real-life data, we demonstrate the effectiveness of our approaches in terms
of data utility preserved by the data transformation, thus bringing empirical evi-
dence to the fact that the “privacy-by-design” paradigm in big data analytics has
the potential of delivering high data protection combined with high quality even in
massively distributed techno-social systems.

1 Introduction
The widespread availability of low cost GPS devices enables the collection of data
about movements of people and objects at a large scale. Understanding of the human
mobility behavior in a city is important for improving the use of city space and ac-
cessibility of various places and utilities, managing the traffic network, and reducing
traffic jams. Generalization and aggregation of individual movement data can provide
an overall description of traffic flows in a given time interval and their variation over
time. Intuitively, movement data of multiple individual devices can be collected and
aggregated by a central station. However, this centralized setting entails two important
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problems: a) the amount of information to be collected and processed may exceed the
capacity of the storage and computational resources; and b) the raw data describes the
mobility behavior of the individuals with great detail that could enable the inference of
very sensitive information related to the personal private sphere.

Some recent work [29, 20, 2] have investigated how to aggregate distributed mobil-
ity data efficiently. For instance, Andrienko et al. [2] propose a method for generaliza-
tion and aggregation of movement data that requires all individual moving trajectories
be transformed into aggregate flows between areas. Though these work consider re-
leasing statistic information instead of raw trajectories to the central station, there still
may exist privacy leakage. For instance, the analysis of low-density aggregate traffic
flows (e.g., in rural areas) may still reveal the identity of the vehicles involved in these
flows.

In order to solve these problems, we propose a privacy-preserving distributed an-
alytical processing framework for the aggregation of movement data. We assume that
on-board location devices in vehicles continuously trace the positions of the vehicles
and periodically send statistical information about their movements to a central station.
The central station, which we call coordinator, will store the received statistical infor-
mation and compute a summary of the traffic conditions of the whole territory, based
on the information collected from individual vehicles. Since the coordinator can be un-
trusted, we design privacy-preserving methods for each individual vehicle participant
that provides formal privacy guarantee, meaning that the statistic information revealed
to the coordinator will not be swayed too much by whether or not a specific individ-
ual participates. The basic idea behind our approach is that even radical forms of data
randomization, capable of yielding strong protection of personal mobility data for each
participating vehicle, can be adopted in our setting while still allowing a correct re-
construction of aggregated traffic information at the coordinator side. Leveraging on
the differential privacy model on one side, and on large real-life movement data on the
other side, we are able to show how the theoretical and empirical outcomes of our study
achieves a high-level trade-off between data privacy and analytical utility. We believe
that the research reported here brings evidence to the fact that the “privacy-by-design”
paradigm in big data analytics has the potential of delivering high data protection com-
bined with high quality even in massively distributed techno-social systems. When we
have a clear analytical goal to realize, e.g., the continuous monitoring of traffic flows, it
is possible to design a privacy-preserving process that, as in our study, solves the prob-
lem delivering results with a bounded (small) quality-loss within a framework where
the risk of privacy leakage is also bounded (and very small).

We have the following contributions. First, to protect individual privacy, we pro-
pose three data transformation methods based on the well-known differential privacy
model. Each solution is characterized by a different trade-off between privacy and data
utility. Second, to further reduce the amount of information that each vehicle commu-
nicates to the central station, we propose to apply sketch techniques to the differentially
private data to obtain a compressed representation. The central station is able to recon-
struct the movement data represented by the sketched data that, although transformed
for guaranteeing privacy, preserve some important properties of the original data that
make them useful for mobility analysis. We validate the robustness and efficiency of
our privacy-preserving data aggregation methods by extensive experiments on large,

2



real GPS data.
The remainder of the paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 introduces background information and definitions. Section 4
describes the system architecture and states the problem. Sections 5&6 present our
proposals for providing a privacy-preserving framework; in particular, the first one de-
scribes the details of the node computation and the second one the computation of
the controller. Experimental results from applying our methods to real-world data are
presented and discussed in Section 7. Lastly, Section 8 concludes the paper.

2 Related Work
The existing methods of privacy-aware publishing of trajectories can be categorized
into two classes: (1) generalization/suppression based data perturbation, and (2) differ-
ential privacy.
Generalization/suppression based data perturbation techniques. There have been
some recent works on privacy-preserving publishing of spatio-temporal moving points
by using the generalization/suppression techniques. The mostly widely used privacy
model of these work is adapted from what so called k-anonymity [34, 33], which re-
quires that an individual should not be identifiable from a group of size smaller than
k based on their quasi-identifies (QIDs), i.e., a set of attributes that can be used to
uniquely identify the individuals. [1] proposes the (k, δ)-anonymity model that exploits
the inherent uncertainty of the moving object’s whereabouts, where δ represents pos-
sible location imprecision. Terrovitis and Mamoulis [36] assume that different adver-
saries own different, disjoint parts of the trajectories. Their anonymization technique
is based on suppression of the dangerous observations from each trajectory. Yarovoy
et al. [39] consider timestamps as the quasi-identifiers, and define a method based on
k-anonymity to defend against an attack called attack graphs. Monreale et al. [28] pro-
pose a spatial generalization approach to achieve k-anonymity. A general problem of
these k-anonymity based privacy preserving techniques is that these techniques assume
a certain level of background knowledge of the attackers, which may not be available
to the data owner in practice.
Differential privacy. The recently proposed concept of differential privacy (DP) [16]
addresses the above issue. There are two popular mechanisms to achieve differential
privacy, Laplace mechanism that supports queries whose outputs are numerical [16]
and exponential mechanism that works for any queries whose output spaces are discrete
[25]. The basic idea of the Laplace mechanism is to add noise to aggregate queries (e.g.,
counts) or queries that can be reduced to simple aggregates. The Laplace mechanism
has been widely adopted in many existing work for various data applications. For
instance, [37, 11] present methods for minimizing the worst-case error of count queries;
[4, 14] consider the publication of data cubes; [21, 38] focus on publishing histograms;
and [26, 23] propose the methods of releasing data in a differential private way for data
mining. On the other hand, for the analysis whose outputs are not real or make no
sense after adding noise, the exponential mechanism selects an output from the output
domain, r ∈ R, by taking into consideration its score of a given utility function q in a
differentially private manner. It has been applied for the publication of audition results
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[25], coresets [18], frequent patterns [6] and decision trees [19].
Recently some attention is paid to distributed private data analysis. In this setting, n

parties each holding some sensitive data wish to compute some aggregate statistics over
all parties’ data with or without a centralized coordinator. [5, 17] prove that when com-
puting the sum of all parties’ inputs without a central coordinator, any differentially-
private multi-party protocol with a small number of rounds and small number of mes-
sages must have large error. To the best of our knowledge, Rastogi et al. [31] and Chan
et al. [35] were the first ones to consider the problem of privately aggregating sums
over multiple time periods. Both of them consider untrusted coordinator, in particular,
malicious coordinator, and use both encryption and differential privacy for the design
of privacy-preserving data aggregation methods. Compared with their work, we focus
on semi-honest coordinator, with the aim as designing privacy-preserving techniques
by adding meaningful noises to improve data utility, which is an issue that is rarely dis-
cussed in both [31, 35]. We agree that our methods can be further enforced to against
the malicious coordinator by applying the encryption methods in [31, 35]. In our pre-
vious work [27], we considered the same distributed aggregation framework as in this
paper, and proposed to apply ε-differential privacy model to the framework. However,
we rarely addressed the utility issue in [27]. This paper improves [27] significantly in
terms of the design of alternative approaches that address the trade-off between privacy
and data utility.

There are some work on publishing differentially private spatial data. Chen et al.
[7] propose to release a prefix tree of trajectories with injected Laplace noise. Each
node in the prefix tree contains a doublet in the form of< tr(v), c(v) >, where tr(v) is
the set of trajectories of the prefix v, and c(v) is a version of |tr(v)|with Laplace noise.
Compared with our work, the prefix tree in [7] is data-dependent, i.e., it should have a
different structure when the underlying database changes. In our work, the frequency
vector is data-independent. Cormode et al. present a solution to publish differentially
private spatial index (e.g., quadtrees and kd-trees) to provide a private description of
the data distribution [11]. Its main utility concern is the accuracy of multi-dimensional
range queries (e.g., how many individuals fall within a given region). Therefore, the
spatial index only stores the count of a specific spatial decomposition. It does not
store the movement information (e.g., how many individuals move from location i to
location j) as in our work. In another paper, Cormode et al. [12] proposes to publish a
contingency table of trajectory data. The contingency table can be indexed by specific
locations so that each cell in the table contains the number of people who commute
from the given source to the given destination. The contingency table is very similar
to our frequency vector structure. However, [12] has a different focus from ours: we
investigate how to publish the frequency vector in a differential privacy way, while [12]
address the sparsity issue of the contingency table and presents a method of releasing
a compact summary of the contingency table with Laplace noise.

3 Preliminaries
In this section, we introduce the preliminaries of our paper.
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3.1 Movement Data Representation
Given a 2-D space territory R2, we define a trajectory as a sequence of triples T =
{〈l1, t1〉, . . . , 〈ln, tn〉}, where ti (with i = 1 . . . n) denotes a timestamp such that
∀1≤i<n ti < ti+1 and li = (xi, yi) are points in R2. Intuitively, each pair 〈li, ti〉 indi-
cates that the object is in the position li = 〈xi, yi〉 at time ti. In a time interval τ , each
moving object can have multiple trajectories. We do not require that each trajectory is
complete, i.e., locations may be missing at some timestamps. Moreover, each trajectory
may contain repeated sub-trajectories (i.e., the object may move between locations li
and lj back and forth for multiple times). For example, a vehicle can have two trajec-
tories: T1 = {〈a, t1〉, 〈b, t2〉, 〈c, t3〉, 〈a, t4〉} and T2 = {〈a, t5〉, 〈b, t6〉, 〈a, t7〉, 〈b, t8〉}.
We assume that the territory R2 is subdivided into cells C = {c1, c2, . . . , cp} which
compose a partition of the territory. For this partition we can use existing division of the
territory (e.g., census sectors, road segments, etc.) or we can determine a data-driven
partition as will be discussed in Section 7.2. During travel a user may move from one
cell to another. We use g to denote the function that applies the spatial generalization
to a trajectory. Given a trajectory T this function generates the generalized trajectory
g(T ), i.e. a sequence of moves with temporal annotations, where a move is an pair
(lci , lcj ) indicating that the moving object moves from the cell ci to the adjacent cell
cj . Note that lci denotes the pair of spatial coordinates representing the centroid of the
cell ci; in other words lci = 〈xci , yci〉. The temporal annotated move is the quadruple
(lci , lcj , tci , tcj ) where lci is the location of the origin, lcj is the location of the destina-
tion and the tci , tcj are the time information associate to lci and lcj . As a consequence,
we define a generalized trajectory as follows.

Definition 3.1 [Generalized Trajectory] Given a trajectory T = 〈l1, t1〉, . . . , 〈ln, tn〉.
Let C = {c1, c2, . . . , cp} be the territory partition. A generalized version of T is a
sequence of temporal annotated moves Tg = {(lc1 , lc2 , tc1 , tc2) (lc2 , lc3 , tc2 , tc3) . . .
(lcm−1 , lcm , tcm−1 , tcm)} with m <= n.

Now, we show how to construct frequency distribution vectors of generalized tra-
jectories. First, we define the function Move Frequency (MF ) to compute how many
times the move appears in a generalized trajectory Tg within a given time interval.
More formally, we define the move frequency function as follows.

Definition 3.2 [Move Frequency] Let Tg be a generalized trajectory and let (lci , lcj )
be a move. Let τ be a temporal interval. The move frequency function is defined as:

MF (Tg, (lci , lcj ), τ) = |{(lci , lcj , ti, tj) ∈ Tg|ti ∈ τ ∧ tj ∈ τ}|.

For any move (lci , lcj ), the value of MF (Tg, (lci , lcj ), τ) can be any non-negative
integer. For instance, consider the trajectory T2 = {〈a, t5〉, 〈b, t6〉, 〈a, t7〉, 〈b, t8〉}.
Assume location a and b are located in the cells c1 and c2, respectively. Then, the
generalized version of T2 is Tg = {(lc1 , lc2 , t5, t6), (lc2 , lc1 , t6, t7)(lc1 , lc2 , t7, t8)} and
MF (Tg, (lc1 , lc2), [t5, t8]) = 2. This function can be easily extended for taking into
consideration a set of generalized trajectories T G . In this case, the information com-
puted by the function represents the total number of movements from the cell ci to the
cell cj in a time interval in the set of trajectories.
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Definition 3.3 [Global Move Frequency] Let T G be a set of generalized trajectories
and let (lci , lcj ) be a move. Let τ be a time interval. The global move frequency
function is defined as:

GMF (T G , (lci , lcj ), τ) =
∑
∀Tg∈T G

MF (Tg, (lci , lcj ), τ).

The number of movements between two cells computed by either the function MF
or GMF describes the amount of traffic flow between the two cells in a specific time
interval. This information can be represented by a frequency vector. To define the
frequency vector, we first define vector of moves.

Definition 3.4 [Vector of Moves] Let C = {c1, c2, . . . , cp} be the set of the cells
composing the territory partition. The vector of moves M is a vector of size s =
|{(ci, cj)|ci is adjacent to cj}|, in which each element M [k] = (lci , lcj ), where
1 ≤ k ≤ s, is the move from the cell ci to the adjacent cell cj .

Now we are ready to define the frequency vector.

Definition 3.5 [Frequency Vector] Let C = {c1, c2, . . . , cp} be the cells that compose
the territory partition and let M be its vector of moves. Given a set of generalized
trajectories T G in a time interval τ , its frequency vector f is a vector of size s =
|{(ci, cj)|ci is adjacent to cj}|, in which each element f [k] = GMF (T G ,M [k], τ).

3.2 Differential Privacy
Differential privacy implies that adding or deleting a single record does not signifi-
cantly affect the result of any analysis. Intuitively, differential privacy can be under-
stood as follows. Let a database D include a private data record di about an individual i.
By querying the database, it is possible to obtain certain information I(D) about all data
and information I(D-di) about the data without the record di. The difference between
I(D) and I(D-di) may enable inferring some private information about the individual i.
Hence, it must be guaranteed that I(D) and I(D-di) do not significantly differ for any
individual i.

The formal definition of differential privacy [16] is the following. Here the param-
eter, ε, specifies the level of guaranteed privacy.

Definition 3.6 [ε-differential privacy] [16] A privacy mechanism A gives ε-differential
privacy if for any dataset D1 and D2 differing on at most one record, and for any
possible output D′ of A we have Pr[A(D1) = D′] ≤ eε × Pr[A(D2) = D′] where
the probability is taken over the randomness of A.

Two principal techniques for achieving differential privacy have appeared in the
literature, one for numerical outputs [16] and the other for outputs of arbitrary types
[25]. A fundamental concept of both techniques is the global sensitivity of a function
mapping underlying datasets to (vectors of) real numbers.

Definition 3.7 [Global Sensitivity] [15] For any function f : D → Rd, its sensitivity
is ∆f = maxD1,D2

||f(D1)− f(D2)||1 for allD1, D2 differing in at most one record.
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In particular, when d = 1, the sensitivity of f is the maximum difference in the val-
ues that the function f may take on a pair of databases that differ in only one element.

For the analysis whose outputs are numerical, a standard mechanism to achieve
differential privacy is to add Laplace noise to the true output of a function. Dwork et
al. [16] propose the Laplace mechanism which takes as inputs a datasetD, a function f ,
and the privacy parameter ε. The magnitude of the noise added conforms to a Laplace
distribution with the probability density function p(x|λ) = 1

2λe
−|x|/λ, where λ =

∆f/ε.

Theorem 3.1 [16] For any function f : D → Rd over an arbitrary domain D, the
mechanism A A(D) = f(D) + Lap((∆f/ε) gives ε-differential privacy.

A relaxed version of differential privacy, named (ε, δ)-differential privacy [16], al-
lows a small amount of privacy loss due to a variation in the output distribution for the
privacy mechanism A.

Definition 3.8 [(ε, δ)-differential privacy] [16] A privacy mechanism A gives (ε, δ)-
differential privacy if for any dataset D1 and D2 differing on at most one record, and
for any possible outputD′ ofA we have Pr[A(D1) = D′] ≤ eε×Pr[A(D2) = D′]+δ
where the probability is taken over the randomness of A.

Note that when δ = 0, (ε, δ)-differential privacy is equivalent to ε-differential pri-
vacy. In the remaining of this paper we will study how the trade-off between privacy
and data utility changes in our specific problem setting when we use differential private
methods based on ε-differential privacy (Definition 3.6) and (ε, δ)-differential privacy
(Definition 3.8).

4 Problem Definition

4.1 System Architecture
We consider a system architecture similar to the one described in [9]. In particular,
we assume a distributed-computing environment comprising a collection of k (trusted)
remote nodes (e.g., individual vehicles) and a designated coordinator site. Streams of
traffic data updates arrive continuously at remote nodes, while the coordinator site is
responsible for generating approximate answers to periodic user queries posed over
the aggregates of remotely-observed streams across all nodes. Each remote node ex-
changes messages only with the coordinator, providing it with state information on its
(locally observed) streams. There is no communication between remote nodes.

In our scenario, the coordinator is responsible for computing the aggregation of
movement data on a territory by combining the information received by each node.
In order to obtain the aggregation of the movement data in the centralized setting, we
need to generalize all the trajectories by using the cells of a partition of the territory. In
our distributed setting we assume that the partition of the territory, i.e., the set of cells
C = {c1, . . . , cm} used for the generalization, is known by both all the nodes and the
coordinator. Each node, that represents a vehicle that moves in this territory, in a given
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time interval observes a set of trajectories, that are sequence of spatio-temporal points,
generalize them and contributes to the computation of the global vector representing
the movement data aggregation.

Formally, each remote node j ∈ {1, . . . , k} observes local update streams that
incrementally render a distinct frequency distribution vector f j over data elements; that
is, f j [v] denotes the frequency of element v observed locally at remote node j. The
coordinator for each computes the global frequency distribution vector F =

∑k
j=1 f

j .

4.2 Privacy Model
We consider sensitive information as any information from which the typical mobility
behavior of a user may be inferred. This information is considered sensitive for two
main reasons: 1) typical movements can be used to identify the drivers who drive
specific vehicles even when a simple de-identification of the individual in the system
is applied; and 2) the places visited by a driver could identify specific sensitive areas
such as clinics, hospitals and routine locations such as user’s home and work.

In our setting, we assume that each node in our system is honest; in other words
we do not consider attacks at the node level. We also assume that the coordinator is
untrusted. There are two types of untrusted coordinators: (i) semi-honest coordinator
who will try to infer the sensitive mobility information from the inputs of nodes, but
otherwise follows the protocol correctly, and (ii) malicious coordinator who may have
arbitrary auxiliary information to help break the protocol. For example, the coordinator
may be able to obtain real mobility statistics information from other sources, such
as from public datasets on the web, or through personal knowledge about a specific
participant [35]. In this paper, we focus on designing privacy-preserving technique to
defend against a semi-honest coordinator. With weakened assumption of the strength
of coordinator, we aim at designing privacy-preserving techniques that can provide
meaningful data utility.

Unfortunately, releasing frequency of moves instead of raw trajectory data to the
coordinator is not privacy-preserving, as the intruder may still infer the sensitive typ-
ical movement information of the driver. As an example, the attacker could learn the
driver’s most frequent move; this information can be very sensitive because such move
usually correspond to user’s transportation between home and work place. Therefore,
our goal is to compute a distributed aggregation of movement data for a comprehensive
exploration of them while preserving privacy. In particular, we aim to find effective pri-
vacy mechanisms to protect the frequency information associated to each move. Our
problem can be defined formally as the following.

Definition 4.1 [Problem Definition] Given a set of cells C = {c1, . . . , cp} and a
set V = {V1, . . . Vk} of vehicles, the privacy-aware distributed mobility data ana-
lytics problem consists in computing, in a specific time interval τ , the F τ (V ) =
[f1, f2, . . . , fs], where fi = GMF (T G ,M [i], τ) and s = |{(ci, cj)|ci is adjacent
to cj}|, while preserving privacy. Here, T G is the set of generalized trajectories re-
lated to the k vehicles V in the time interval τ and M is the vector of moves defined on
the set of cells C.
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4.3 Approach Overview
In this paper, we propose different privacy-preserving solutions based on differential
privacy, which is a strong privacy model independent on the background knowledge
of an adversary. Each of our solutions is characterized by different trade-off between
privacy and data utility. In the following, we describe the key ideas of these three
solutions, including the computation by each node and by the coordinator respectively.
The node computation mainly involves transforming data to achieve desired privacy
guarantee. We present three privacy-preserving data transformation approaches. The
first one, named UniversalNoise, is based on the classical ε-differential privacy. It
can provide strong privacy guarantee but high loss of data utility, due to the generation
of negative flows and noise of very high magnitude. These two issues are managed
in the second solution, named BoundedNoise, by relaxing the privacy guarantee to
(ε, δ)-differential privacy, where δ measures the privacy loss. We will show that: (1) the
BoundedNoise approach can improve data utility significantly, and (2) in some cases,
theBoundedNoise approach may provide low level of guaranteed privacy in practice.
Indeed we can show that sometimes the privacy loss can be high. As a consequence,
we propose a third solution named BalancedNoise that tries to maintain the balance
between privacy and utility under control by setting appropriate values of ε and δ. The
mechanism allows the nodes to specify the level of privacy ε and the maximum privacy
loss δ and find the best solution that is capable to minimize the noise magnitude and
the possible negative flows, so that it can achieve good utility. Besides the design of
the privacy-preserving data transformation methods, we also design sketch approaches
to reduce the communication between nodes and the coordinator. We will validate our
theoretical analysis with an extensive set of experiments on large, real data.

5 Privacy-Aware Node Computation
We assume that each node represents a vehicle that moves in a specific territory. Each
vehicle in a given time interval observes sequences of spatio-temporal points (trajecto-
ries) and computes the corresponding frequency vector that is to be sent to the coordi-
nator. The node computation is composed of two main steps described in Algorithm 1:
(a) the computation of a privacy-preserving frequency vector and (b) the vector sketch-
ing that compresses the information to be communicated with the coordinator. The
first step, described in detail in Algorithm 2, is the challenging step because it has to
transform data to achieve privacy without destroying too much the data utility. It is
composed of three phases: (1) trajectory generalization; (2) frequency vector construc-
tion; and (3) frequency vector transformation for achieving differential privacy. We
describe the details of these three phases in Section 5.1 - 5.3 respectively, and discuss
the details of the vector sketching step in Section 5.4.

5.1 Trajectory Generalization
Given a specific division of the territory, a trajectory is generalized in the following
way. We apply place-based division of the trajectory into segments. The area c1 con-
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Algorithm 1 NODECOMPUTATION(ε, τ , M , TG , w, d)
1: Inputs: A privacy budget ε, a time interval τ , the vector of the moves M , a set of

trajectories TG, the sketch w of dimension d.
2: Output: The sketch vector representing the privacy-preserving frequency vector
sk(f̃Vj ).

3: //Privacy-Preserving Computation (Sec. 5.1-5.3)
4: f̃Vj = PrivacyTransformation(ε,M, TG, τ)
5: //Data Compression (Sec. 5.4)
6: sk(f̃Vj ) = Count(f̃Vj , w, d)
7: return sk(f̃Vj )

Algorithm 2 PRIVACYTRANSFORMATION(ε, M , TG , τ )
1: Inputs: A privacy budget ε, a time interval τ , the vector of the moves M , a set of

trajectories TG.
2: Output: The privacy-preserving frequency vector f̃Vj .
3: for all observed trajectory T ∈ TG do
4: //Trajectory Generalization (Sec. 5.1)
5: Tg = TrajectoryGeneralization(M,T )
6: //Update of the Frequency Vector fVj (Sec. 5.2)
7: for all move (lci , lcj ) ∈ Tg do
8: n = MF (Tg, (lci , lcj ), τ)
9: fVj [(lci , lcj )]+ = n

10: //Transformation for achieving DP (Sec. 5.3)
11: f̃Vj = AchievingDP (fVj , ε, TG)
12: return f̃Vj

taining its first point l1 is found. Then, the second and following points of the trajectory
are checked for being inside c1 until finding a point li not contained in c1. For this point
li, the containing area c2 is found.

The trajectory segment from the first point to the i-th point is represented by the
vector (c1, c2). Then, the procedure is repeated: the points starting from li+1 are
checked for containment in c2 until finding a point lk outside c2, the area c3 containing
lk is found, and so forth up to the last point of the trajectory.

In the result, the trajectory is represented by the sequence of moves (c1, c2, t1, t2)(c2, c3, t2, t3)
. . . (cm−1, cm, tm−1, tm). Here, in a specific quadruple ti is the time moment of the
last position in ci and tj is the time moment of the last position in cj . There may be also
cases when all points of a trajectory are contained in one and the same area c1. Then,
the whole trajectory is represented by the sequence {c1}. Since, globally we want to
compute aggregation of moves we discard this kind of trajectories. Moreover, as most
of the methods for analysis of trajectories are suited to work with positions specified as
points, the areas {c1, c2, . . . , cm} are replaced, for practical purposes, by the sequence
lc1 , lc2 , . . . , lcm consisting of the centroids of the areas {c1, c2, . . . , cm}.
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5.2 Frequency Vector Construction
After the generalization of a trajectory, the node computes the Move Frequency func-
tion for each move (lci , lcj ) in that trajectory and updates its frequency vector fVj as-
sociated to the current time interval τ . Intuitively, the vehicle populates the frequency
vector fVj according to the generalized trajectory observed. Therefore, at the end of
the time interval τ , the element fVj [i] contains the number of times that the vehicle Vj
moved from m to n in the given time interval τ , if M [i] = (m,n).

5.3 Privacy-preserving Vector Transformation
As we stated in Section 4.2, if a node sends the original frequency vector without
any data transformation to the coordinator, the intruder may still be able to infer the
sensitive typical movements of the vehicle represented by the node. Clearly, the gen-
eralization step can help protect the privacy of drivers but it depends on the density
of the area. Specifically, if the area is not so dense, the attacker could identify few
candidates of locations that the driver has been to. In this case, the privacy is at high
risk to be bleached. An attacker could also infer if during a trip a user went from a
location a to a location b and how many times. The questions are, how can we hide
the event that the user moved from a location a to a location b during a trip in the time
interval τ? And how can we hide the real count of a move in that time window? To
answer these questions, we propose three solutions based on a rigorous privacy model
named ε-differential privacy (Section 3.2). Each solution provides a different balance
between privacy and data utility. The key point of this model is the definition of the
sensitivity. We argue that the sensitivity of a move frequency count depends on the
occurrence of that move in a trajectory. In a time interval τ for a given vehicle (node)
we can have different trips or trajectories. We have a trajectory when the user starts
from a location and stops at another. Recall that in our setting each trajectory is trans-
formed into a generalized one and a vehicle can go from cell a to cell b more than once
during a trajectory. Therefore, the frequency count of each move can be any arbitrary
non-negative integer number. We recall that the frequency count of move (lca , lcb) by
node nj is equal to

f =
∑
∀Tgi

MF (Tgi , (lca , lcb), τ),

where Tgi is one of the generalized trajectories of nj in the time interval τ , lca and
lcb denote the pair of spatial coordinates representing the centroids of the cells that la
and lb that locate in respectively. We argue that adding or deleting one trajectory of nj
can affect the count of move (la, lb) by at most maxi=1,...,r(MF (Tgi , (lca , lcb), τ)).
Therefore, the sensitivity

∆f = maxi=1,...,r(MF (Tgi , (lca , lcb), τ)). (1)

Note that the frequency count f of move (lca , lcb) always satisfies that f ≥ ∆f , as
f =

∑
i=1,...,r(MF (Tgi , (lca , lcb), τ)). Given the sensitivity of the count of a move

we can define a differential private mechanism in various ways. In the following, we
present three solutions, each one corresponding to a different implementation of the
AchievingDP function in Algorithm 2.
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5.3.1 UniversalNoise Approach

Our first approach, named UniversalNoise, is based on the classic ε-differential pri-
vacy model. In particular, at the end of the time interval τ , before sending the frequency
vector to the coordinator, each node adds the Laplace noise Lap(∆f

ε ), where ∆f is de-
fined in Equation 1, to each element in the frequency vector the value in that position
of the vector. At the end of this step the node transforms fVj into f̃Vj . This process is
described in Algorithm 3.

Algorithm 3 UniversalNoise(fVj , ε, TG, )
1: Inputs: A frequency vector fVj , a privacy budget ε, a set of trajectories TG.
2: Output: The privacy-preserving frequency vector f̃Vj .
3: for all vector element fVj [k] do
4: ∆f = max∀Tgi∈TG(MF (Tgi,M [k], τ)), where M is the vector of moves of

fVj .
5: noise = Lap(∆f

ε )

6: f̃Vj [k] = fVj [k] + noise
7: return f̃Vj

Privacy Analysis. We are ready to show that Algorithm 2 with the privacy trans-
formation presented just now satisfies ε-differential privacy.

Theorem 5.1 Given the total privacy budget ε, for each frequency value x,UniversalNoise
approach ensures ε-differential privacy.

The correctness of Theorem 5.1 is straightforward due to how the noise is added
according to the Laplace mechanism [16].

5.3.2 BoundedNoise Approach

The UniversalNoise approach has a few weakness. First, it could lead to large
amounts of noise, due to the fact that ∆f , although with small probability, can be
arbitrarily large. Second, adding noise drawn from the Laplace distribution could gen-
erate negative frequency counts of moves, which does not make sense in our setting.
To fix these two problems, we propose the second approach, named BoundedNoise
approach, that bounds the noise drawn from the Laplace distribution. In particular,
for each value x of the vector fVj , we draw the noise from Lap(∆f

ε ) bounded to the
interval [−x, x]. In other words, for any original frequency fVj [i] = x, its perturbed
version after adding noise should be in the interval [0, 2x]. By doing this, we reduce the
amounts of utility loss due to adding noise. Algorithm 4 describes theBoundedNoise
approach.

We are aware that using a truncated version of the Laplace distribution may lead to
privacy leakage. In the following we show that the BoundedNoise approach satisfies
(ε, δ)-differential privacy, where δ measures the privacy loss.

Privacy Analysis. As pointed out in [22], differential privacy must be applied
with caution. The privacy protection provided by differential privacy relates to the data
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Algorithm 4 BoundedNoise(fVj , ε, TG)

1: Inputs: A frequency vector fVj , a privacy budget ε, a set of trajectories TG.
2: Output: The privacy-preserving frequency vector f̃Vj .
3: for all vector element fVj [k] do
4: ∆f = max∀Tgi∈TG(MF (Tgi,M [k], τ)), where M is the vector of moves of

fVj .
5: noise = Lap(∆f

ε )
6: while (noise > fVj [k]) or (noise < −fVj [k]) do
7: noise = Lap(∆f

ε )

8: f̃Vj [k] = fVj [k] + noise
9: return f̃Vj

generating mechanism and deterministic aggregate level background knowledge. Let F
and F ′ be the frequency distribution before and after adding Laplace noise. We observe
that bounding the Laplace noise will lead to some privacy leakage on some values. For
instance, from the noisy frequency values that are large, the attacker can infer that these
values should not be transformed from small ones. To analyze the privacy leakage
of our bound-noise approach, we first explain the concept of statistical distance [3].
Formally, given two distributions X and Y , the statistical distance between X and Y
over a set U is defined as d(X,Y ) = maxS∈U (Pr[X ∈ S]− Pr[Y ∈ S]).

[3] also shows the relationship between (ε, δ)-differential privacy and the statistical
distance.

Lemma 5.1 [3] Given two probabilistic functions F and G with the same input do-
main, where F is (ε, δ1)-differentially private. If for all possible inputs x we have that
the statistical distance on the output distributions of F and G is: d(F (x), G(x)) ≤ δ2,
then G is (ε, δ1 + (eε + 1)δ2)-differentially private.

Let F and F ′ be the frequency distribution before and after adding Laplace noise.
We can show that the statistical distance between F and F ′ can be bounded as follows:

Lemma 5.2 [3] Given an (ε, δ)-differentially private function F with F (x) = f(x) +
R for a deterministic function f and a random variableR. Then for all x, the statistical
distance between F and its throughput-respecting variant F ′ with the bound b on R is
at most d(F (x)− F ′(x)) ≤ Pr[|R| > b].

[3] has the following lemma to bound the probability Pr[|R| > b].

Lemma 5.3 [3] Given a function F with F (x) = f(x) +Lap(∆f
ε ) for a deterministic

function f , the probability that the Laplacian noise Lap(∆f
ε ) applied to f is larger

than b is bounded by: Pr(|Lap(∆f
ε )| > b) ≤ 2(∆f)2

b2ε2 .

We stress that this upper bound is not tight. For instance, when ∆f = 1, b = 1,
and ε = 1, the bound 2(∆f)2

x2ε2 = 2. Therefore, we improve the bound by the following
theorem.
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Lemma 5.4 Given a function F with F (x) = f(x) + Lap(∆f
ε ) for a deterministic

function f , the probability that the Laplacian noise Lap(∆f
ε ) applied to f is larger

than b is bounded by:

Pr(|Lap(∆f

ε
)| > b) ≤ e

−bε
∆f .

Proof. Let λ = ∆f
ε . The probability density function is p(x) = 1

2λe
(−|x|/λ) and

the cumulative distribution function is

D(x) = (1/2)(1 + sgn(x)(1− exp(|x|/λ))).

Therefore,

Pr(Lap(
∆f

ε
) > b) =

∫ ∞
b

1

2λ
e(−|x|/λ) dx (2)

=
1

2λ
(

∫ ∞
0

e(−|x|/λ) dx−
∫ b

0

e(−|x|/λ) dx)

= D(∞)−D(b)

= e(−b/λ).

Our analysis shows that e
−bε
∆f ≤ 2(∆f)2

b2ε2 , i.e., our bound is tighter than that in [3].
We stress that in our approach, the bound b of each frequency value x is not fixed.
Indeed, b = x. Therefore, each frequency value x has different amounts of privacy
leakage. Our approach thus achieves different degree of (ε, δ)-differentially privacy
guarantee on each frequency value x. Theorem 5.2 shows more details.

Theorem 5.2 Given the privacy budget ε, for each frequency value x,BoundedNoise
approach ensures (ε, (eε+1)e

−xε
∆f )-differentially privacy, where ∆f is defined in Equa-

tion 1.

The correctness of Theorem 5.2 can be easily proven by Lemma 5.1 and Lemma
5.4. Note that the frequency vectors with Laplace noise (without truncation) satisfies
(ε, 0)-differentially privacy. It is easy to verify that the privacy loss, measured as δ =

(eε+ 1)e
−xε
∆f , can be high. More details are as following. Recall that for any frequency

count x, x ≥ ∆f always holds. Next we discuss by cases that x = ∆f and x > ∆f .
For the former case that x = ∆f , δ = (1 + e−ε) > 1, i.e., the privacy loss is always
grater than 1. For the latter case that x > ∆f , δ = e(1− x

∆f )ε + e
−xε
∆f . In this case,

δ > 1 holds when x < ln(eε+1)∆f
ε . In other words, smaller frequency counts have

higher probability to get larger amounts of privacy loss.

5.3.3 BalancedNoise Approach

As discussed above, the UniversalNoise approach may provide very strong privacy
guarantee but poor data utility, while the BoundedNoise approach can improve data
utility but with possible high privacy loss. Our third approach, namedBalancedNoise,
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tries to address the trade-off issue between privacy and data utility. This approach, de-
scribed in Algorithm 5, allows the user to set the desirable values for the two param-
eters, the privacy budget threshold ε and the privacy loss threshold δ. Next, for each
value x of the vector fVj , the algorithm finds the smallest interval [−b, b] such that the
following inequality holds: (eε + 1)e

−bε
∆f ≤ δ. Note that e

−bε
∆f is the privacy loss we

found in Lemma 5.4. This implies that b ≥ −∆f
ε ln δ

eε+1 .
After finding the interval, for each value x of the frequency vector, the node draws

the noise from Lap(∆f
ε ) bounding the noise value to the interval [−b, b], where b =

max(0, −∆f
ε ln δ

eε+1 ). Note that this solution limits as much as possible the generation
of noise with values of too high magnitude while not completely solves the problem of
the negative flows. Clearly, the possibility to compute the minimum interval that better
fits the user privacy requirements also helps to limit the negative flows. Similar to the
BoundedNoise approach, the BalancedNoise approach satisfies (ε, δ)-differential
privacy.

Algorithm 5 BalancedNoise(fVj , ε, TG, δ)
1: Inputs: A frequency vector fVj , a privacy budget ε, the privacy loss δ, a set of

trajectories TG.
2: Output: The privacy-preserving frequency vector f̃Vj .
3: Compute b = −∆f

ε ln δ
eε+1 .

4: for all vector element fVj [k] do
5: ∆f = max∀Tgi∈TG(MF (Tgi,M [k], τ)), where M is the vector of moves of

fVj .
6: noise = Lap(∆f

ε )
7: while (noise > b) or (noise < −b) do
8: noise = Lap(∆f

ε )

9: f̃Vj [k] = fVj [k] + noise
10: return f̃Vj

5.4 Compact Communications
In a distributed system an important issue to be considered is the amount of data to
be communicated. In fact, real life systems usually involve thousands vehicles (nodes)
that are located in any place of the territory. Each vehicle has to send to the coordina-
tor the information contained in its frequency vector that has a size depending on the
number of cells that represent the partitions of the territory. The number of cells in a
territory can be very huge and this can make large frequency vectors. As an example,
in the dataset of real-life trajectories used in our experiments, there are approximately
4, 200 vehicles and we use a territory tessellation of about 2, 400 cells. So, considering
as possible moves only pairs of adjacent cells we obtain frequency vectors containing
about 15, 900 positions (moves). Therefore, the system has to be able to handle not
only a very large number of nodes but also huge amounts of the information to be com-
municated. These considerations make the optimization of communicated information
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necessary. To address this problem it is possible to compress the transmitted data by
sketching algorithms [10]. Here, we propose the application of Count sketch algorithm
[13]. This algorithm maps a frequency vector f onto a more compressed vector. The
sketch consists of an array C of d×w counters. For each of d rows, there are two hash
functions: hj that maps items, that our case are moves, onto one of the elements of the
j−th row, and gj that maps each item onto {−1, 1}. For each item i, it will be mapped
onto d entries in the array by adding the value f [i] × gj(i) on the entry C[j, hj(i)] in
row j, for 1 ≤ j ≤ d.

Given a sketch representation of a vector we can estimate the original value of each
component of the vector by the following function f̂ [i] = median1≤j≤dgj(i)C[j, hj(i)].
Setting d = log 1

γ and w = log( 4
α2 ) this sketch ensures that the estimation of f [i] has

error at most αn with probability at least 1 − γ. Therefore, here α indicates the accu-
racy (i.e. the approximation error), and γ represents the probability of exceeding the
accuracy bounds.

In [27] we proposed the application of Count-Min sketch algorithm; it is suitable
for compressing non-negative values while does not work well in case of presence of
negative values. Since withUniversalNoise andBalancedNoisewe can obtain neg-
ative flows then we choose the Count sketch algorithm that is not sensible to negative
values.

Adding this data summarization step (the last step in Algorithm 1) does not change
the privacy guarantee provided by the above methods. This is due to the fact that the
Count sketching function only accesses a differentially private frequency vector, not the
underlying database. As proven by Hay et al. [21], a post-processing of differentially
private results remains differentially private. Therefore, also the whole Algorithm 1
with the sketching step maintains the same privacy guarantee of Algorithm 2.

6 Coordinator Computation
The computation of the coordinator is composed of two main phases: 1) computation
of the set of moves and 2) computation of the aggregation of global movements.
Move Vector Computation. The coordinator in an initial setup phase has to send to
the nodes the vector of moves (Definition 3.4). The computation of this vector depends
on the set of cells that represent the partition of the territory. This partition can be a
simple grid or a more sophisticated territory subdivision such as Voronoi tessellation.
The sharing of vector of moves is a requirement of the whole process because each
node has to use the same data structure for allowing the coordinator the correct com-
putation of the global flows.
Global Flow Computation.The coordinator has to compute the global vector that cor-
responds to the global aggregation of movement data in a given time interval τ by
composing all the local frequency vectors. It receives the sketch vector sk(f̃Vj ) from
each node; then it reconstructs each frequency vector from the sketch vector, by using
the estimation described in Section 5.4. Finally, the coordinator computes the global
frequency vector by summing the estimate vectors component by component. Clearly
the estimate global vector is an approximated version of the global vector obtained by
summing the local frequency vectors after the only privacy transformation.
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7 Experiments

7.1 Dataset
For our experiments we used a large dataset of GPS vehicles traces, collected in a
period from 1st May to 31st May 2011. The GPS traces were collected in the geo-
graphical areas around Pisa, in central Italy, and it counts for around 4, 200 vehicles,
generating around 15, 700 trips. In our simulation, the coordinator collects the Fre-
quency Vectors (FV) from all the vehicles to determine the Global Frequency Vector
(GFV), i.e. the sum of all the trajectories crossing any link, at the end of each day,
so we defined a series of time intervals τi, where each τi spans over a single day. In
the following we show the resulting GFV for the 25th May 2011, but similar accuracy
is observed also for the other days. Note that we conducted experiments on data by
considering different sizes of time interval τ : 4 hours, one day and 2 days. The results
we found in terms of data utility are very similar, therefore for lack of space, in the
following we only report the results concerning τ equal to one day.

7.2 Space Tessellation
The generalization and aggregation of movement data is based on space partitioning.
Arbitrary territory divisions, such as administrative districts or regular grids, do not re-
flect the spatial distribution of the data. The resulting aggregations may not convey the
essential spatial and quantitative properties of the traffic flows over the territory. Our
method for territory partitioning extends the data-driven method suggested in paper [2].
Using a given sample of points (which may be, for example, randomly selected from a
historical set of movement data), the original method finds spatial clusters of points that
can be enclosed by circles with a user-chosen radius. The centroids of the clusters are
then taken as generating seeds for Voronoi tessellation of the territory. We have mod-
ified the method so that dense point clusters can be subdivided into smaller clusters,
so that the sizes of the resulting Voronoi polygons vary depending on the point den-
sity: large polygons in data-sparse areas and small polygons in data-dense areas. The
method requires the user to set 3 parameters: maximal radius R, minimal radius r, and
minimal number of points N allowing a cluster to be subdivided. In our experiments,
we used a tessellation with 2, 681 polygons obtained with R = 10km, r = 500m,
N = 80.

7.3 Utility Measures
To assess the information loss incurred to achieve privacy and to reduce the amount
of information to be transmitted, we study how much data utility is preserved after
the transformations. Since the coordinator reconstructs the flows among the zones
of the tessellation, we can represent such data as a directed graph, where the nodes
represent the zones and an edge between two nodes represents the flows from one zone
to the other. This graph-based model allows us to analytically evaluate the resulting
aggregations by means of some network-based statistics, described below. The models
can also be exploited for different application scenarios and for each of them we can
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assess the quality of results after the transformations, since these mobility analyses can
be performed on the transformed data too.

Network-based Measures. In order to assess the utility of the data collected by
the coordinator we study how the distributions of general network-based measures are
preserved. In particular we have considered the following measures:

Flow per Link: this measure evaluates the volume of flow in each move (edge), i.e.,
traffic between two adjacent zones.

Flow per Zone: for each zone we sum the flows of all the incoming and outgoing
flows in a zone (node).

Node Degree: this measures is similar to the previous one, but there we consider the
distinct number of origins and destinations for each zone, thus focusing on the
topological properties of the resulting graph.

Clustering Coefficient [30]:given a node the clustering coefficient is defined as the
probability that two randomly selected neighbors are connected to each other.

Node Betweeness: this function is a measure of a node’s centrality in a network.
It computes the number of shortest paths from all nodes to all others that pass
through that node. This measure highlights the load placed on the given node in
the network as well as the node’s importance to the network than just connectiv-
ity.

Edge Betweeness: this function provides similar information to the previous one but
considering the edge instead of the node. In other words, it measures the edge’s
centrality in a network.

Mobility Application Scenarios. The reconstructed GVF enables a traffic man-
ager to evaluate the traffic condition by monitoring the status of the road network. We
explored a visualization approach where the measures Flow per link and Flow per zone
are rendered on a map. In particular, in Figure 1 the flows per link are presented as ar-
rows whose thickness is proportional to the amount of traffic on that link. The flow
per zone is rendered with a circle whose radius is proportional to the median value of
all the zones and the color indicates if the flow is above (red) or below (cyan) the me-
dian. These two graphical representation allows to identify easily the portions of the
road network with critical traffic conditions. Figure 1 shows the reconstructed map for
different parameters for privacy preservation. This allows us to qualitatively choose a
good trade-off between data privatization and data utility. For example, for low values
of epsilon, e.g. ε = 0.2, it is still possible to reason about traffic condition since the
mayor flows for links are sufficiently preserved. The cumulative flows per zone are
more robust to data transformation, since the randomization is performed on the edge
level and, hence, in the same zone different perturbations on incident edges tend to
compensate each others. From the figure we can notice the influence of the δ parameter
on the transformed flows. In fact, fixed a value ε = 0.2 the overall quality of the maps
can be improved by increasing the second parameter for the BalancedNoise transfor-
mation. In particular, it is evident how the resulting maps for δ = 0.1 and δ = 0.2
present a topology similar to the original flows. The strong relationship between ε and
δ will be analytically discussed in Section 7.4.
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The transformed data has also been used to study the aggregation of zone on the
basis of their relative mobility, according to the approach presented in [32]. Starting
from the graph-based model of flows, we apply a community discovery algorithm on
the data to determine the groups of nodes strongly connected by high flows. We call
such aggregation of zones as Mobility Borders to stress the definition of a boundary
derived from mobility data. The result of Mobility Borders can be rendered visually by
joining the geometries of the zones into a larger polygon according to the group they
belong to. Figure 2 shows a visual comparison between the resulting aggregations for
different combination of ε and δ and the aggregation resulting from the original data.
The borders yielding from the original data are rendered as thicker lines to facilitate
the comparison. The resulting borders for the transformed data are rendered by colors:
zone in the same group are filled with the same color. The map shows the influence of
the two parameters for the transformation, in particular we show the resulting maps for
ε = 0.2 and δ = 0.2. We can notice how Mobility Borders results are very robust to
data perturbation, since the majority of the zones are preserved even for low values of
ε. However, it is possible to identify small variation on central zones of the map where
we have an higher density of links and connections.

In general, the zones grouped for the original data tend to stay in the same group
also for the transformed data. In some cases, it happens that an original group is split
across two or three distinct new groups. To analytically evaluate such behavior, we
consider two measures adapted from information retrieval research field: precision
and recall. With precision we measure the ratio of zones in the same group in the
original data that stay in the same group in the transformed one. The recall measures
the contribution of several original groups to a group coming from transformed data.
The resulting values for the two measures are showed in Figure 3. We can see that
the precision (Figure 3(left)) remains very high for any value of ε for the motivations
discussed above. Recall (Figure 3(right)), instead, tends to decrease for ε < 0.3 and
the overall result is increased by augmenting δ to 0.2 or 0.3.

We also studied the impact of the parameters of the privacy transformation in more
detail by analyzing the spatial distributions of the errors, expressed as the logarithms
of the ratios of the aggregated traffic values obtained from transformed data to those
obtained from the original data. The use of the logarithms allowed us to reduce the
impact of local outliers. The study was done using the results of 99 runs for all com-
binations of the values of ε from 0.1 to 0.9 with the step 0.1 and the values of delta
0.01, 0.02, 0.025, 0.03, 0.05, and up to the value 0.2 with the step 0.025. The corre-
sponding 99 spatial distributions of the errors were clustered by similarity using the
k-means methods. We experimented with different k and found that, starting from
k = 9, increasing the value of k just subdivides small clusters into yet smaller ones,
mostly singletons. There is one large cluster (Cluster 7) consisting of 68 distributions
that preserves when k increases. This cluster consists of the spatial distributions with
the best (i.e., lowest) values of the errors. The area-wise median errors for this cluster
are shown in the map in Figure 4 (left) by color-coding. Light yellow corresponds to
values close to 0, shades of orange and red represent overestimates and shades of blue
underestimates. The color legend is shown on the right of Figure 4. The prevalence
of light yellow and light shades of orange means that the absolute values of the errors
in cluster 7 are quite low. There are only a few high overestimates occurring in areas
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with low traffic density. Cluster 7 includes all spatial distributions for values of ε = 0.4
and higher and values of delta from 0.01 to 0.05 and almost all spatial distributions for
epsilon 0.6 and higher irrespective of the value of δ. Hence, starting from ε = 0.6, δ
has no impact on the data quality. For comparison, the map on the right of Figure 4 rep-
resents the errors in another cluster, which includes the spatial situations for ε = 0.2.
Very high overestimates occur almost everywhere. For ε = 0.1, the overestimates are
even higher. This study clarifies what combinations of the parameter values should be
used for obtaining good results in terms of utility of the transformed data.

7.4 Analytical evaluation
We now discuss the experiments conducted on the real-world data described above.
To evaluate the data quality after the transformation we compare the transformed flows
with the original one. According to the utility measures defined in Section 7.3, for each
measure we compare the resulting statistics for each node and edge of the graph-model
resulting from transformed data with the graph yielding from the original data. For
example, in Figure 5 we show the comparison of the Flow per link measure for two
different transformations, namely ε = 0.5 (left) and ε = 0.2 (right). The scatter plots
highlight the differences between the two transformations, where the more protective
transformation (ε = 0.2) perturbs more the data, since the data points tend to go far
from the fitting line.

To present the results for different comparisons of parameters and utility mea-
sures, we adopt the Pearson Correlation Coefficient (PCC) to represent analytically
the amount of data perturbation introduced. The coefficient tends to 1 when the data
points are close to the regression line, while it tends to zero when the data point are
scattered away from the line. In the following we will consider only two methods:
UniversalNoise and BalancedNoise, since we found in our experiments that the
BoundedNoise may presents privacy loss. Indeed, we observed that usually in a time
interval of one day each user has a high set of moves with low value, because typical
users during the day go from an area to another only few times. This fact implies that
the application of the BoundedNoise method may lead to a too high privacy loss. In
Figure 7 (top,right) we plot the percentage of cases where we have a resulting δ too
high to be acceptable for privacy protection. In Figure 7 (bottom, right), we also noted
that when we increase the time interval τ the privacy loss decreases and this supports
our hypothesis that this naive approach can give good trade-off between privacy and
data utility in scenarios where it is reasonable to have a wide time window, for exam-
ple one week, and in contexts which are characterized by high frequencies of items.
However, the utility provided by BoundedNoise method is very good, as showed in
Figure 7 (left), where it is reported the PCC for each network-based measure computed
for different values of ε.

To assess the validity of the transformation approach, we compare the private data
with the original data by varying the transformation parameters. The comparison is
performed with two approaches by varying the values of ε and δ: we compare the re-
sulting cumulative distribution of the utility measures and the linear correlations by
means of the PCC. In Figure 6 we report, for each utility measure, the resulting distri-
butions for ε = 0.1, 0.2, . . . , 0.9 and for the original data. From such plots it is possible
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to estimate the best parameters that yield a good trade-off between data protection and
data utility. For example, for the Flow per link measure (Figure 6(a)), we can notice a
clear discontinuity for ε = 0.2 and ε = 0.1, suggesting that a good value for ε would
be 0.3. However it is interesting to note how the δ parameter may contribute to in-
crease data utility. In fact, considering a more protective value for ε, say ε = 0.2, it is
possible increasing δ to augment the resulting data utility. In Figure 6(b), we can see
how the distributions tend to be similar to the curve for ε = 0.3 when we increase δ.
In particular, when δ = 0.2 the curve is very similar to ε = 0.3 even with a difference
on the tails of the two curves. Similar results can be observed for Flow per Zone mea-
sure (Figure 6(c) and (d)), where the candidate value for ε is again 0.3. Also in this
case, the δ parameter contributes to enhance the data protection by lowering the value
for ε to 0.2 and increasing δ to 0.2. The Clustering Coefficient measure is very robust
even for low values of ε (Figure 6(e) and (f)): we can appreciate a different distribu-
tion only when ε = 0.1. This property confirms that the privacy transformation may
perturb the local weights of edges but in general it preserves the topology of the graph.
Another evidence of this phenomenon is given by the two measures of betweenness
((Figure 6(i), (j), (k) and (l))), where we can appreciate how the different parameters
yield similar distribution. This means that, for example, the number of relevant edges
within the graph is maintained across different transformations. This is evident also
from the distribution of the Node Degree measure, where we can notice how the num-
ber of neighbors for each node tends to diminish when ε becomes smaller. We can
relate this property to the pruning of some graph components that, however, are not
relevant for the connectivity of the graph.

Besides the general distributions of the utility measures, we want also to assess how
locally each component of the graph is transformed. Figure 8 shows, for each utility
measure, the resulting PCC for different combination of δ and ε. Even at this level of
detail, it is possible to identify the most promising ε values for the transformations.
In particular, let us consider the Flow per Link correlation in Figure 8(a). As already
observed for the cumulative distribution, the correlation index decreases considerably
when ε is less than 0.3. Fixed a minimum PCC threshold, we can reasoning about the
relation between ε and δ. Fixed a minimum value of 0.77 for PCC, we can reach a
comparable quality result even if we decrease ε by increasing the value of δ. From
the figure we can infer that the data utility provided by ε = 0.3 is equivalent to the
data utility for ε = 0.22 and δ = 0.2. Similarly, fixed a value for ε, say ε = 0.3, by
increasing δ it is possible to increase the data quality of the reconstructed flows. The
relation between the two parameters enables the data owner to define the most suitable
trade-off between data protection and data utility. The discussion for the choice of
the correct ε parameter is even more crucial for the betweenness quality measures.
Figures 8(i) and (k) show that the PCC drops when the threshold is below ε = 0.3.
However, when δ is increased the quality measure performance raises.

We have also empirically evaluated how the network-based measures are preserved
after the sketch transformation. We have considered three different sketch transfor-
mations according to the parameter showed in Table 1. We found that in general the
quality of network-based measures is reasonable though the approximation introduced
by the Count sketches. We show the effect of the Count sketches for different size
in Figure 8(b), (d), (f), (h), (j) and (l). We observe how the PCC is particularly well
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α γ Columns (w) Rows (d) w × d
C3k 0.03162 0.05 1,000 3 3,000
C5k 0.03162 0.01 1,000 5 5,000
C10k 0.03162 0.00005 1,000 10 10,000

Table 1: Count sketch size for different values of α and γ.

preserved for the two measures Flow per Link and Flow per Zone. The preservation of
this measure is important because this enables analyses as those in Figure 1. Clearly,
we observe for all measures an decreasing of the correlation when the rate compression
increases.

8 Conclusion
In this paper, we have studied the problem of computing movement data aggregation
based on trajectory generalization in a distributed system while preserving privacy. We
have proposed three methods for protecting privacy based on the well-known notion of
differential privacy that provides very nice data protection guarantees. Each solution is
characterized by a different trade-off between privacy and data utility. S In particular,
in our framework each vehicle, before sending the information about its movements
within a time interval, applies to the data a transformation for achieving privacy and
then, can creates a summarization of the private data (by using a sketching algorithm)
for reducing the amount of information to be transmitted. The results obtained in our
experiments show that the privacy transformations preserve some important properties
of the original data allowing the analyst to use them for important mobility data anal-
ysis. We have validated the robustness and efficiency of our privacy-preserving data
aggregation methods by extensive experiments on large, real GPS data.

Future investigations could be directed to explore other methods for achieving dif-
ferential privacy; as an example, it would be interesting to understand the impact of the
use of the geometric mechanism instead of the Laplace one for achieving differential
privacy.
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Figure 1: Traffic and density analysis: comparison between UniversalNoise and
BalancedNoise approaches (ε = 0.2, 〈ε = 0.2, δ = 0.1〉 and 〈ε = 0.2, δ = 0.2〉)

26



Figure 2: Mobility Borders results for ε = 0.2 and 〈ε = 0.2, δ = 0.2〉 compared with
results from original data (thicker black lines)
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Figure 4: Comparison of the spatial distributions of the errors for different value com-
binations of ε and δ.
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Figure 5: Correlations of flows after UniversalNoise
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Figure 6: Cumulative Distributions of the network-based measures

Figure 7: Study of the privacy transformation BoundedNoise
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Figure 8: Distribution of the PCC of various network-based measures after the privacy
transformation
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