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Abstract
The Perspective Reformulation (PR) of a Mixed-Integer NonLinear Program with

semi-continuous variables is obtained by replacing each term in the (separable) ob-
jective function with its convex envelope. Solving the corresponding Perspective Re-
laxation requires appropriate techniques. Under some rather restrictive assumptions,
the Projected PR can be defined where the integer variables are eliminated by pro-
jecting the solution set on the space of the continuous variables only. This approach
produces a simple piecewise-convex problem with the same structure as the original
one; however, this prevents the use of general-purpose solvers, in that some variables
are then only implicitly represented in the formulation. We show how to construct an
Approximated Projected PR whereby the projected formulation is “lifted” back to the
original variable space, with the integer variables expressing one piece of the obtained
piecewise-convex function; in some cases, this produces a reformulation of the original
problem with exactly the same size and structure as the standard continuous relax-
ation but with a substantially improved bound. While the bound can be weaker than
that of the PR, this approach can be applied in many more cases and allows direct use
of off-the-shelf MIQP software; this is shown to be beneficial in different applications.
In the process we also relax some of the other restrictive assumptions of the original
development, such as the need for the objective function to be quadratic and the need
for the left endpoint of the domain of the variables to be non-negative.

Keywords: Mixed-Integer NonLinear Problems, Semicontinuous Variables, Perspec-
tive Reformulation, Projection
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1 Introduction

The interest in Mixed Integer Nonlinear Programming has steadily increased over the last
decade, as researchers from both continuous optimization and discrete optimization find ways
to collaborate. When only convex functions are involved, the extension of methods arising
from the Mixed-Integer Linear case is easier and many works follow this line of research (e.g.,
see [1, 4, 17, 21] for surveys on applications and solution algorithms).

In this paper we consider convex separable Mixed-Integer NonLinear Programs (MINLP)
with n semi-continuous variables pi ∈ Rmi for i ∈ N = {1, . . . , n}. That is, each pi either
assumes the value 0, or lies in some given convex polytope Pi = { pi : Aipi ≤ bi }; this
implies that { pi : Aipi ≤ 0 } = { 0 }, and therefore allows the usual modeling trick where
the semi-continuity of each pi is expressed by using an associated binary variable ui as in

min g(z) +
∑

i∈N fi(pi) + ciui (1)

Aipi ≤ biui i ∈ N (2)

(p, u, z) ∈ O (3)

u ∈ {0, 1}n , p ∈ Rm , z ∈ Rq (4)

where all fi and g are closed convex functions, z is the vector of all other variables, and O
is any subset of Rm+n+q (with m =

∑
i∈N mi), representing all the other constraints of the

problem, beyond (2). Problem (1)—(4) can be used to model many real-world problems such
as distribution and production planning problems [27, 7, 12], financial trading and planning
problems [8, 6], and many others [2, 3, 16, 17, 15, 18]. As we shall see, in some applications
(§4.3, §4.4) the binary variables ui are not only useful to prescribe the semi-continuous status
of the corresponding pi, but also for representing some of the other constraints of the model;
however, in some other cases (§4.1, §4.2) this does not happen, and hence the only source
of non-convexity in (1)—(4) lies in the fact that one is actually dealing with the nonconvex
functions

fi(pi, ui) =


0 ui = 0 , pi = 0

fi(pi) + ci ui = 1 , pi ∈ Pi

+∞ otherwise

.

One can therefore strive to devise tight convex underestimators of this function in order to
guide exact or approximate solution approaches; this is the approach that has been most suc-
cessfully followed in general-purpose approaches to MINLP (e.g. [4, 14, 24] among the many
others). In this particular case it is actually possible to characterize its convex envelope, i.e.,
the best possible such underestimator. Indeed, the convex hull of the (possibly, disconnected)
domain {0} ∪ Pi of each pi can be conveniently represented in a higher-dimensional space,
which allows to derive disjunctive cuts for the problem [22]; this leads to the Perspective
Reformulation of (1)—(4) [5, 7]

(PR) min
{
g(z) +

∑
i∈N f̃i(pi, ui) + ciui : (2) , (3) , (4)

}
(5)

where f̃i(pi, ui) = uifi(pi/ui) is the perspective function of fi(pi). It is well-known that, since
fi is convex, f̃i is convex for ui ≥ 0; indeed, it coincides with the convex envelope of fi(pi, ui)
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on the set { (pi, ui) : Aipi ≤ biui , ui ∈ (0, 1] }, and it can be extended by continuity in
(0, 0) assuming 0fi(0/0) = 0. In other words, by dropping the integrality constraints in (5)
one obtains the “best possible” convex relaxation, dubbed the Perspective Relaxation (PR),
which indeed turns out to be significantly stronger than the continuous relaxation of (1)—(4),
and therefore is a more convenient starting point to develop exact and approximate solution
algorithms [3, 7, 8, 12, 16]. Yet, all this hinges on the ability to solve (PR) with comparable
efficiency as the ordinary continuous relaxation despite the fact that f̃i can be “significantly
more difficult” than the original fi to deal with (for instance, it is nondifferentiable in (0, 0)).
For instance, one can reformulate (5) either as a Mixed-Integer Second-Order Cone Program
[3, 9, 16, 26] (provided that the original objective function is SOCP-representable) or as a
Semi-Infinite MINLP [7].

Recently, another approach has been proposed [10] for the case where the fi are quadratic
and n = m, leading to a reformulation of (PR) in terms of a piecewise-convex optimization
problem. By standard tricks, this is in turn equivalent to a QP of roughly the same size as
the standard continuous relaxation, with at most 2m continuous variables replacing the m
variables p, but with no u variables. When O has some valuable structure, this leads to the
development of specialized solution approaches for (PR) that can be significantly faster than
those available for the continuous relaxations of the MI-SOCP or SI-MILP formulations,
ultimately leading to better performances of the corresponding enumerative approaches.
This Projected Perspective Reformulation (P2R) approach is based on projecting out the ui
variables from the formulation by partial minimization, which can be carried out thanks to
the particularly simple structure of the constraints in which the variables ui are involved.
However, it comes at the cost of three significantly restrictive assumptions on the data of
the original problem (1)—(4):

A1) each pi is a single variable (mi = 1), thus Pi = [pimin, p
i
max], with 0 ≤ pimin < pimax;

A2) each ui only appears in the corresponding constraint (2), but not in constraints (3);

A3) all functions are quadratic, i.e., fi(pi) = aip
2
i + bipi (with ai > 0).

While there are several relevant applications where A1, A2, and A3 hold, there are oth-
ers where they do not. In particular, assumption A2 rules out all applications (§4.3, §4.4)
in which the ui variables are re-used to express other constraints, since in P2R these have
been entirely eliminated from the formulation. Further negative side-effects of this removal
are that valid inequalities concerning the ui variables cannot be added to the formulation,
and that ad-hoc solution approaches must be developed, losing the possibility of exploiting
off-the-shelf, general-purpose, state-of-the-art solvers that are both simpler to use and po-
tentially more powerful given the huge amount of ingenuity and development/testing time
that have been invested in them.

In this paper we improve on this state of affairs by developing an approach which works
under less restrictive assumptions than A1, A2, and A3. In particular, in Section 2 we
will extend the approach to the case where pimin < 0 and fi respects one simple condition,
satisfied by several classes of functions in addition to quadratic ones. However, the most
relevant contribution is presented in Section 3, where we show how to eliminate A2 altogether,
albeit at a cost. In fact, we construct an Approximated Projected PR (AP2R), whereby the
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problem is reformulated over the variables p and z only, like in the P2R approach, as if
no constraints (3) were binding variables u; once this is done, a MINLP reformulation is
constructed which re-introduces the integer variables u in a different way to entirely encode
the obtained piecewise-convex function. While the corresponding continuous relaxation is in
general weaker than that of the PR, the two being equivalent only when A2 holds, the new
approach allows to extend the P2R idea to the many non-projectable applications, and most
importantly to use off-the-shelf MIQP software to solve it, thereby benefiting from all the
sophisticated machinery it includes, rather than developing ad-hoc algorithms or advanced
features such as callback functions. This is shown to be beneficial at least in some practical
applications; in particular, the approach is tested on 1D sensor placement problems (§4.1),
single-commodity fixed-charge Network Design problems (§4.2), Mean-Variance portfolio
optimization problems with min-buy-in and portfolio cardinality constraints (§4.3), and Unit
Commitment problems in electrical power production (§4.4).

It is also possible that the proposed technique, other than proving useful for MINLPs
with semicontinuous variables, may lead to further advances for different structures. One
striking consequence of our main result (cf. (28)) is that by just translating the origin of a
continuous variable in a MINLP one may improve the quality of the continuous relaxation
bound. This is quite an unusual concept that may perhaps find a broader application.
Indeed, the computation of convex envelopes for specially-structured functions of “a few”
variables is an important field for which several advances are being done; for instance, one
of the most researched structures is that of functions φ(p, u) = f(p)g(u) where f is convex
and g is concave [19, 23, 25]. The very recent [19] shows that the characterization of the
convex envelope is possible in terms of piecewise definitions similar to our ones. However,
the development in [19] requires p and u to live in a Cartesian product of intervals, while
our development precisely rests on the assumption that “linking constraints” with a specific
form exist between p and u. Yet, it is possible that techniques may be usefully exchanged
between the two different settings.

2 Relaxing A1 and A3

We start by reproducing the analysis [10] under significantly weaker conditions than A1 and
A3. Since in this paragraph we will only work with one block at a time, to simplify the
notation we will drop the index “i”. First, we relax A1 to

A′1) p is a single variable and P is a bounded real interval [pmin, pmax],

where we do not require pmin ≥ 0 (while, clearly, pmin < pmax), thereby allowing that
0 ∈ intP . Note that, by changing sign to p (p → −p) if necessary, we can always assume
pmax > 0 without loss of generality. We will therefore concentrate on

min { f(p) + cu : pminu ≤ p ≤ pmaxu , u ∈ {0, 1} } (6)

and its Perspective Relaxation

min
{
f(p, u) = f̃(p, u) + cu : pminu ≤ p ≤ pmaxu , u ∈ [0, 1]

}
. (7)
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The basic idea in [10] is to recast (7) as the minimization of the following function of p alone:

z(p) = minu f(p, u) = minu

{
f̃(p, u) + cu : pminu ≤ p ≤ pmaxu , u ∈ [0, 1]

}
; (8)

by convexity, 0 has to belong to the domain of z even if pmin > 0 (that is, p ∈ conv( {0} ∪
[pmin, pmax] )); yet, allowing pmin < 0 complicates the analysis somewhat, as we will see.

When f(p) = ap2 + bp, the (convex) function z(p) can be algebraically characterized by
studying the optimal solution u∗(p) of the convex minimization problem in (8). In turn,
u∗(p) is easily obtained by the solution ũ(p) (if any) of the first-order optimality conditions
of the unconstrained version of the problem

∂f

∂u
(p, u) = c+ f(p/u)− f ′(p/u)p/u = 0 . (9)

If ũ(p) satisfying (9) exists and it is unique, it can be used to algebraically describe u∗(p),
and therefore

z(p) = f̃(p, u∗(p)) + cu∗(p) .

In fact, if ũ(p)pmin ≤ p ≤ ũ(p)pmax and 0 ≤ ũ(p) ≤ 1 then clearly u∗(p) = ũ(p); otherwise,
u∗(p) is the projection of ũ(p) over the feasible region, i.e., the extreme of the interval nearer
to ũ(p). If instead (9) has no solution then the derivative always has the same sign and u∗(p)
can be similarly found by projection. This is indeed possible in the quadratic case, where

∂f

∂u
(p, u) = c− ap2

u2
= 0

has the solution (that, by convexity of f(p, u), is a minimum)

ũ(p) = |p|
√
a/c =

{
p
√
a/c if p ≥ 0

−p
√
a/c if p ≤ 0

(10)

if and only if c > 0. We will now show that the treatment can be extended to any function
f such as ũ(p) has the following property:

A′3) f is such that either (9) has no solution, or for some g+ ≥ 0 and g− ≥ 0 dependent
only on the data of the problem

ũ(p) =

{
pg+ if p ≥ 0
−pg− if p ≤ 0

. (11)

is the unique stationary point of f(p, u) with respect to u.

As f(p, u) is only defined for u ≥ 0, it follows that the solution −pg− is needed only if
pmin < 0. Indeed, since the latter case requires a more complex treatment than the pmin ≥ 0
case of [10] (for a quadratic f), we will deal with each separately.
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2.1 The case pmin ≥ 0

To simplify the presentation, in the following we will treat pmin as if it were a positive number,
i.e., we will assume that p/pmin is always a well-defined quantity. If pmin = 0, the constraint
pminu ≤ p is redundant, and one can take p/pmin = +∞; it can be easily verified that all
the obtained formulae extend to this case.

Proposition 1 If A′3) is satisfied and pmin ≥ 0 then z(p) defined in (8) has the form

z(p) =

{
z1(p) =

(
f(pint)/pint + c/pint

)
p 0 ≤ p ≤ pint

z2(p) = f(p) + c pint ≤ p ≤ pmax,
(12)

where pint ∈ {pmin, 1/g
+, pmax}.

Proof. We start by rewriting the constraints in (8) as

(0 ≤)
p

pmax

≤ u ≤ min

{
p

pmin

, 1

}
. (13)

Then we proceed by cases:

a. Equation (9) has no solution and the global minimum in (8) is attained at one of the two
bounds for u in (13). So, there are two subcases:

a.1. The derivative is always negative, and therefore u∗(p) = min{ p/pmin , 1 }. This
gives two sub-subcases:

a.1.1. p/pmin ≤ 1 ⇐⇒ p ≤ pmin =⇒ u∗(p) = p/pmin =⇒

z(p) =
(
f(pmin)/pmin + c/pmin

)
p; (14)

a.1.2. p/pmin ≥ 1 ⇐⇒ p ≥ pmin =⇒ u∗(p) = 1 =⇒

z(p) = f(p) + c . (15)

In other words, z(p) is the piecewise function

z(p) =

{ (
f(pmin)/pmin + c/pmin

)
p if 0 ≤ p ≤ pmin

f(p) + c if pmin ≤ p ≤ pmax.
(16)

a.2. The derivative is always positive, and therefore u∗(p) = p/pmax (note that 0 ≤
u∗(p) ≤ 1). This gives

z(p) =
(
f(pmax)/pmax + c/pmax

)
p . (17)

b. The only solution to (9) is (11), and three cases can arise:

b.1. ũ(p) = p g+ ≤ p/pmax ⇐⇒ pmax ≤ 1/g+ =⇒ u∗(p) = p/pmax and (17) holds.

b.2. p/pmax ≤ ũ(p) ≤ p/pmin ⇐⇒ pmax ≥ 1/g+ ≥ pmin; two further subcases arise:
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b.2.1. (pmax ≥) p ≥ 1/g+ (≥ pmin), which implies both ũ(p) ≥ 1 and p/pmin ≥ 1,
so that u∗(p) = 1 and therefore (15) holds;

b.2.2. pmin ≤ p ≤ 1/g+ (≤ pmax), which gives ũ(p) ≤ 1. Now, if pmin ≤ p then
p/pmin ≥ 1, and therefore u∗(p) = ũ(p). However, because pmin ≤ 1/g+ we
always have p/pmin ≥ pg+ = ũ(p), thus even when 0 ≤ p ≤ pmin we have
u∗(p) = ũ(p), which finally implies

z(p) =
(
g+f(1/g+) + cg+

)
p . (18)

Thus, z(p) is the piecewise function

z(p) =

{ (
g+f(1/g+) + cg+

)
p if 0 ≤ p ≤ 1/g+

f(p) + c if 1/g+ ≤ p ≤ pmax

(19)

b.3. ũ(p) ≥ p/pmin ⇐⇒ (pmax ≥) pmin ≥ 1/g+ ⇐⇒ u∗(p) = min{p/pmin, 1} =⇒ (16)
holds.

Clearly,
z1(p) = ( z2(pint)/pint )p

which immediately shows that z1(pint) = z2(pint), and therefore allows us to write z(pint)
without further qualification. The analysis implies that z2(p) ≥ z(p), since z2(p) = z(p) for
p ≥ pint, and z2(p) ≥ z1(p) = z(p) for p ≤ pint. Furthermore, assuming pmin ≤ 1/g+ ≤ pmax

one has that (9) computed at p/ũ(p) = 1/g+ = pint gives (for a differentiable f)

(c+ f(pint))/pint = f ′(pint)

i.e., z′1(pint) = z′2(pint) as depicted in Figure 1. Thus, except in the two degenerate cases
pint = pmin = 0 and pint = pmax, z(p) is a two-piecewise function where the second piece
coincides with the original objective function; moreover, if pint = 1/g+, the breakpoint is at
the place where the first-order linearization of f targets the origin. Note that, in this case,
the first piece of (19) is precisely this first-order linearization and z(p) is also continuously
differentiable.

z

ppmaxpintpmin

z2

z1

Figure 1: The piecewise function z(p)
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2.2 The case pmin < 0

Proposition 2 If A′3) is satisfied and pmin < 0 then z(p) defined in (19) has the form

z(p) =


z2(p) = f(p) + c if pmin ≤ p ≤ p−int

z−1 (p) =
(
f(p−int)/p

−
int + c/p−int

)
p if p−int ≤ p ≤ 0

z+1 (p) =
(
f(p+int)/p

+
int + c/p+int

)
p if 0 ≤ p ≤ p+int

z2(p) = f(p) + c if p+int ≤ p ≤ pmax

(20)

where p−int ∈ {pmin, 1/g
−, 0} and p+int ∈ {0, 1/g+, pmax}.

Proof. In this case, the form (13) of the constraints in (8) is no longer valid; indeed,
upmin ≤ p rather gives u ≥ p/pmin, and therefore one obtains

max

{
p

pmax

,
p

pmin

}
≤ u ≤ 1 . (21)

Yet, the result of the leftmost “max” only depends on the sign of p; in particular

p ≥ 0 =⇒ max{ p/pmax , p/pmin } = p/pmax

p ≤ 0 =⇒ max{ p/pmax , p/pmin } = p/pmin .

Therefore, we can proceed by cases, mirroring the previous development with the necessary
changes:

a. If (9) has no solution, the global minimum in (8) is one of the bounds in (21), and there
are two subcases:

a.1. The derivative is always negative, and therefore u∗(p) = 1 =⇒ (15) holds (i.e.,
pmin = pmax = 0).

a.2. The derivative is always positive, and therefore

for p < 0, u∗(p) = p/pmin =⇒ (14) holds,

for p ≥ 0, u∗(p) = p/pmax =⇒ (17) holds.

All in all, in this case

z(p) =

{ (
f(pmin)/pmin + c/pmin

)
p if p < 0(

f(pmax)/pmax + c/pmax

)
p if p ≥ 0

. (22)

b. If, instead, the only solution to (9) is (11), one has to separately consider [pmin, 0] and
[0, pmax], since u∗(p) = ũ(p) if

p ∈ [pmin, 0] =⇒ p/pmin ≤ ũ(p) = −pg− ≤ 1

p ∈ [0, pmax] =⇒ p/pmax ≤ ũ(p) = pg+ ≤ 1

That is, exactly two of the following four cases hold:
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b.1. p ≥ 0 and ũ(p) ≤ p/pmax ⇐⇒ pmax ≤ 1/g+ =⇒ u∗(p) = p/pmax =⇒ (17) holds.

b.2. p ≥ 0 and ũ(p) ≥ p/pmax ⇐⇒ pmax ≥ 1/g+; two further subcases arise:

b.2.1. (pmax ≥) p ≥ 1/g+ (≥ 0) =⇒ ũ(p) ≥ 1 =⇒ u∗(p) = 1 =⇒ (15) holds.

b.2.2. (0 ≤) p ≤ 1/g+ (≤ pmax) =⇒ ũ(p) ≤ 1 =⇒ u∗(p) = ũ(p) =⇒ (18) holds.

This again gives (19).

b.3. p ≤ 0 and ũ(p) ≤ p/pmin ⇐⇒ (0 >) pmin ≥ −1/g− =⇒ u∗(p) = p/pmin =⇒ (14).

b.4. p ≤ 0 and ũ(p) ≥ p/pmin ⇐⇒ pmin ≤ −1/g− (< 0); two further subcases arise:

b.4.1. −1/g− ≤ p ≤ 0 ⇐⇒ ũ(p) ≤ 1 =⇒ u∗(p) = ũ(p) =⇒

z(p) =
(
− g−f(−1/g−)− cg−

)
p (23)

b.4.2. pmin ≤ p ≤ −1/g− (< 0) ⇐⇒ ũ(p) ≥ 1 =⇒ u∗(p) = 1 =⇒ (15).

All this gives

z(p) =

{
f(p) + c if pmin ≤ p ≤ −1/g−(
− g−f(−1/g−)− cg−

)
p if − 1/g− ≤ p ≤ 0

(24)

To summarize, z(p) is the convex function with at most 4 pieces

z(p) =


f(p) + c if pmin ≤ p ≤ −1/g−(
− g−f(−1/g−)− cg−

)
p if − 1/g− ≤ p ≤ 0(

g+f(1/g+) + cg+
)
p if 0 ≤ p ≤ 1/g+

f(p) + c if 1/g+ ≤ p ≤ pmax

(25)

Under condition b.1, the two rightmost pieces are substituted with the linear piece
(f(pmax)/pmax + c/pmax)p and/or, under condition b.3, the two leftmost pieces are
substituted with the linear piece (f(pmin)/pmin + c/pmin)p, yielding a 3- or 2-piecewise
convex function (piecewise-linear in the latter case as in (22)).

The above results generalize those of [10] for the quadratic case to handling pmin < 0,
since we have 1/g+ = 1/g− =

√
c/a. There, (18) simplifies to 2p

√
ac, and (23) reads

−2p
√
ac.

2.3 Some examples

We now show a few examples of non-quadratic functions where assumption A′3 holds.

2.3.1 The rational exponent case

Let us consider the function f(p) = apk/h, where a > 0 and k > h integers. We will also ask
pmin ≥ 0 if k is odd to ensure that we use it only in the region where it is convex. In this
case, (9) reduces to

c− a
(
k

h
− 1

)(p
u

) k
h

= 0 (26)
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which, provided c 6= 0, has only one real root ũ(p) = pg+ if k is odd and two roots ũ(p) =
±pg+ if k is even where

g+ =

(
k − h
h

a

c

)h
k

.

Note that, if c ≤ 0, the derivative is always negative (cf. a.1) for p ≥ 0, while, if c ≥ 0
and k is even, the derivative is always positive (cf. a.2) for p ≤ 0; in both cases (26) has no
solution. In all other cases, ũ(p) has the form (11), with g− = g+ when k is even, and the
analysis in points b. of propositions 1 and 2 apply depending on k odd or even, respectively.

Example 1 If k = 3 (odd case), h = 2, a = 1, c = 4, and 0 ≤ pmin ≤ 4 ≤ pmax, one has

g+ =

(
1

2

1

4

) 2
3

=
1

4
and then z(p) =

{
3p if 0 ≤ p ≤ 4

p3/2 + 4 if 4 ≤ p ≤ pmax,
.

Example 2 If k = 4 (even case), h = 3, a = 3, c = 1, pmin ≤ −1, and pmax ≥ 1, one has

g± =

(
1

3

3

1

) 3
4

= 1 and then z(p) =


3p4/3 + 1 if pmin ≤ p ≤ −1

−4p if − 1 ≤ p ≤ 0

4p if 0 ≤ p ≤ 1

3p4/3 + 1 if 1 ≤ p ≤ pmax,

.

2.3.2 The exponential case

In the non-polynomial case f(p) = eap, (9) reduces to

c+ eap/u(1− ap/u) = 0 .

It is easy to verify that g(z) = ez(1 − z) ≤ 1 (the maximum being attained in z = 0); this
implies that for c < −1 the system cannot have a solution, the derivative is always negative
(cf. a.1). For c = −1, the unique solution requires ap/u = 0, that is undefined in the variable
u. Otherwise, the above equation defines one or two stationary points (depending on c ≥ 0
or −1 < c < 0, respectively). In both cases, there is only one local minimum that is defined
by

ũ(p) =
ap

1 + PL(c/e)

where the PL(z) (known as the “ProductLog” function) gives the principal solution for w
in z = wew, which is real for all z ≥ −1/e; this can be efficiently computed numerically for
a fixed argument such as c/e. Since in our case z = c/e, ũ(p) is well-defined, e.g., whenever
c ≥ 0. If a < 0, then eap/u(1 − ap/u) ≥ 0 and the derivative is always positive (cf. a.2).
For a > 0 instead, ũ(p) has the form (11) with g+ = a/(1 + PL(c/e)) > 0; therefore, it is
possible to apply the above analysis to this case, too.

Example 3 For c = e2 and 0 ≤ pmin ≤ 2 ≤ pmax one has w = 1, ũ(p) = p/2, and g+ = 1/2,
hence

z(p) =

{
e2p if 0 ≤ p ≤ 2

ep + e2 if 2 ≤ p ≤ pmax

.
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2.3.3 The Kleinrock delay function case

Another interesting nonquadratic objective function is the Kleinrock delay function f(p) =
a/(pmax− p), which is often used to model delay in a communication network when the flow
p over a given arc nears its maximum capacity pmax (e.g. [20]). The function is convex as
long as 0 ≤ pmin ≤ p < pmax and a > 0; then, by applying the Perspective Relaxation (7)

f(p, u) =

 uf(p/u) + cu =
au2

upmax − p
+ cu if 0 ≤ p ∈ [upmin, upmax) and u ∈ [0, 1]

+∞ otherwise
.

For this case, (9) reduces to

c+
au

upmax − p
− aup

(upmax − p)2
= 0 ;

this (using upmax − p > 0) reduces to a simple quadratic form with non-negative quadratic
coefficient (cpmax + a)2. For c > −a/pmax, the form has the two roots

ũ±(p) =
p

pmax

(
1±

√
a

cpmax + a

)
.

and therefore ∂f/∂u is nonpositive in the interval ũ−(p) ≤ u ≤ ũ+(p) (even assuming it is
defined there, which is not necessarily the case). In other words, ũ+ is the unconstrained
minimum, and (11) gives

g+ =
1

pmax

(
1 +

√
a

cpmax + a

)
> 0

so that the above analysis can be applied. If c ≤ −a/pmax instead, then ∂f/∂u is always
positive, i.e., co f is always nonincreasing with respect to u, which gives u∗(p) = 1 and again
the above analysis applies.

Example 4 For a = 4, c = 1, and pmax = 12 one has

z(p) =

{
p
4

if 0 ≤ p ≤ 8
4

12−p + 1 if 8 ≤ p ≤ 12
.

3 Project and Lift

As already mentioned in the introduction, one of the main limitations of the P2R approach
lies in the fact that the ui variables are removed from the formulation; this makes it impossible
to use off-the-shelf software to solve the corresponding problem. The main result of this
section is that it is actually possible to “lift back” the obtained piecewise characterization
of the convex envelope in the original space. The result is somewhat surprising, since (at
least if pmin ≥ 0) what one ends up with is a convex program with exactly the same size
and structure as the original one, but which provides a (much) better bound. As a side
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effect of our development, it turns out that one can also apply the approach in the case
where assumption A2 does not hold, i.e., the constraints defining O bind different variables
ui together, albeit at the cost of accepting a weaker lower bound than that provided by the
Perspective Relaxation (PR). The idea is relatively simple: even if constraints (3) involve
the u variables, one disregards them and proceeds to compute the projected function z(p) as
in the previous section. Of course, this provides a lower bound on what the computation of
the “true” projected function would achieve, since one is disregarding some constraints, i.e.,
solving a relaxation of the real projection problem. As in the previous section, we analyze
the somewhat simpler case where pmin ≥ 0 first.

3.1 The case pmin ≥ 0

The projected function z(p) of Proposition 1 can always be formulated in terms of an ap-
propriate nonlinear program. This property is proved by exploiting the following very well-
known result (e.g., see [10]).

Lemma 5 Let γ(p) be a generic convex function with a k-piecewise description

γ(p) = γi(p) if αi−1 ≤ p ≤ αi i = 1, . . . , k

(with each γi(p) convex, obviously). Then γ(p) can be rewritten as

γ(p) =


min γ1(p1 + α0) +

∑k
i=2

(
γi(pi + αi−1)− γi(αi−1)

)
0 ≤ pi ≤ αi − αi−1 i = 1, . . . , k

α0 +
∑k

i=1 pi = p

. (27)

Moreover, for any p ∈ [α0, αk], there always exists an optimal solution p∗ = [p∗1, . . . , p
∗
k] to

problem (27) such that p∗i = αi− αi−1 for i < h, p∗i = 0 for i > h, and p∗h = p− αh−1 for the
index h such that p ∈ [αh−1, αh].

Intuitively, Lemma 5 comes from the fact that a convex function has increasing slope,
so the leftmost intervals are “more convenient” than the rightmost ones; thus, to obtain a
given value p the best way is to “fill up the intervals starting from the left”.

Theorem 6 Let z(p) be the function defined by (12) in Proposition 1, then z(p) can be
reformulated by the following program:

z(p) =


min h(u, q) = uz(pint) + z2(q + pint)− z(pint)

(pmin − pint)u ≤ q ≤ (pmax − pint)u
p = pintu+ q , u ∈ [0, 1]

. (28)

Proof. Applying (27) to (12) (α0 = 0, α1 = pint, α2 = pmax, k = 2) gives

z(p) =

{
min z1(p1) + z2(p2 + pint)− z(pint)

0 ≤ p1 ≤ pint , 0 ≤ p2 ≤ pmax − pint , p = p1 + p2
(29)
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(remember that z(pint) = z2(pint)). Now, if we identify p1 = pintu and p2 = q in (29), we
easily get the equivalence of the objective functions of (29) and of (28) (because z1 is linear)
and of the constraints p = p1 + p2 and p = pintu+ q (because u ∈ [0, 1]).

To justify the substitution of constraint

(pmin − pint)u ≤ q ≤ (pmax − pint)u (30)

in place of 0 ≤ p2 = q ≤ pmax − pint, the first step is to note that, due to Lemma 5, for any
fixed p the optimal solution (p∗1, p

∗
2) of (29) satisfies

1. p < pint ⇐⇒ p∗1 < α1 ⇐⇒ u∗ < 1 =⇒ p∗2 = q∗ = 0;

2. p ≥ pint ⇐⇒ p∗2 = q∗ ≥ 0 =⇒ p∗1 = α1 (= pint)⇐⇒ u∗ = 1.

This implies that (30) is satisfied by (q∗, u∗) whatever the value of p: indeed, by construction
pmin − pint ≤ 0 ≤ pmax − pint, which implies on one hand that q = 0 is always feasible in
the constraint whatever the value of u, and on the other hand that pmin − pint ≤ 0 ≤ q∗.
Yet, (30) is weaker than the original constraint, at least on one side, since it does not imply
q ≥ 0 unless u = 0. This opens the possibility that q∗ < 0. If u∗ = 1, then a solution
(u, q) with q < 0 ≤ q∗ cannot be optimal for (28). Indeed, the constraints p = pintu + q
will imply that u = (p− q)/pint > u∗ = 1, violating the contraint u ≤ 1. When u∗ < 1, the
optimal solution (u, q) of (28) could present q < 0 if z2(p) < z1(p) for p < pint; in this case,
it could be more convenient to use “the cheaper z2 on the left of its interval rather than
the more costly z1”. Fortunately, this does not happen here, as Figure 1 usefully reminds.
This is easy to prove formally by showing that in case 1. (p < pint) the optimal solution to
(28) is (u∗, q∗) = (p/pint, 0). In fact, consider any alternative feasible solution of the form
(u, q) = (u∗+ ε/pint,−ε) such that p = pintu+ q, where ε is arbitrary in sign (z1 being linear
is both concave and convex, a quite peculiar object in the usually one-sided word of convex
analysis); the objective function value of this solution is

h(u, q) = p
z(pint)

pint
+ ε

z(pint)

pint
+ z2(pint − ε)− z(pint) .

Now, because z1 is linear we have

z(pint)/pint ∈ ∂z(p̃) for each p̃ ∈ [0, pint]

and taking in particular p̃ = pint we can write the subgradient inequality

z(pint − ε) ≥ z(pint) + (pint − ε− pint)
z(pint)

pint
= z(pint)− ε

z(pint)

pint
.

Since z2 ≥ z1 for p ∈ [0, pint] one has

z2(pint − ε)− z(pint) + εz(pint)/pint ≥ 0

and therefore h(u∗, q∗) ≤ h(u, q) as desired. This result only uses properties of the objective
function, and does not depend at all on the constraint q ≥ 0, which is therefore redundant,
thus terminating the proof.
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It is important to justify our choice of (28), and in particular the introduction of the
somewhat troubling constraint (pmin−pint)u ≤ q in place of the natural (and stronger) q ≥ 0.
The point is that not only is (28) a reformulation of (PR) which uses the same number of
variables, but it has no fractional terms in the objective function; even more interestingly,
adding the integrality constraint u ∈ {0, 1} to (28) one clearly obtains a reformulation of
the original integer program (6) whose ordinary continuous relaxation is (equivalent to) the
Perspective Relaxation if A2 holds. This clearly requires that q can span the whole interval
[pmin − pint, pmax − pint] when u = 1, so that p = pint + q can span the whole interval
[pmin, pmax], which in turn requires that the constraint q ≥ 0 must not be present. In this
way we have obtained a simple algebraic reformulation to a problem with “the same degree
of nonlinearity” as the original problem, whose continuous relaxation provides the same
bound as the PR, when A2 holds, and a weaker bound—but still potentially better than
that of the continuous relaxation of the standard formulation—if it does not. We call that
the Approximated Projected Perspective Reformulation (AP2R), where the “Approximated”
tag is only justified when A2 does not hold. The interesting properties of AP2R are:

• the integer variables u are present and play exactly the same role as in the original
formulation, therefore (unlike in [10]) AP2R can be passed to any general-purpose
MINLP solver that can handle the original problem, exploiting all of its sophisticated
machinery: branching rules, preprocessing, heuristics, any valid inequality for (1)—(4)
concerning the u variables (cf. §4.2);

• the AP2R has as many variables and constraints as the original formulation, and thus
is more compact than any other readily solvable PR: even the MI-SOCP formulation
[26, 3, 9, 16] has at least one more variable (per block), while the SI-MILP formulation
[7] has one variable and infinitely many more constraints (cf. §4.3).

Therefore, AP2R is a promising reformulation for (1)—(4). Of course, it also has some
potential drawbacks:

• AP2R may provide weaker bounds than (PR) when Assumption A2 does not hold
(cf. §4.3 and §4.4);

• AP2R is unlikely to fully retain any useful combinatorial structure of the original
problem like P2R does, and therefore is likely to be less useful to develop specialized
approaches for the bound computation (cf. §4.1);

• as already noted, in the extreme cases pint = pmin = 0 and pint = pmax the z(p)
function is actually a single-piece one, and thus P2R is much simpler than AP2R: if
pint = pmax for all variables (not an impossible event, cf. §4.1), for instance, P2R has
a linear objective function, whereas AP2R keeps having the original nonlinear term
(only, the constraints in (28) have the slightly simpler form (pmin − pmax)u ≤ q ≤ 0);

• compared with the MI-SOCP formulation [26, 3, 9, 16], AP2R has roughly the same
size and degree of nonlinearity, so the relative performance of the two formulations
should be expected to depend on fine details of the implementation, such as whether a
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solver is available which exploits the specific structure of f better than what interior-
point methods can do for the MI-SOCP formulation (this is the case, e.g., when f is
quadratic and the constraints linear, as one can use active-set quadratic solvers);

• compared to the SI-MILP formulation [7], AP2R has roughly the same advantages
as the MI-SOCP formulation (a compact and fixed formulation rather than the need
for dynamically adding a potentially large number of constraints) as well as the same
potential drawback: if the only nonlinearity in the model is that of f , the SI-MILP
formulation solves sequences of Linear Programs, which can be faster than solving one
nonlinear program especially when done iteratively during an enumerative approach
thanks to the excellent reoptimization capabilities of LP codes (cf. §4.4).

Thus, the actual computational benefits of AP2R over P2R and the MI-SOCP and SI-MILP
formulations can only be fully gauged experimentally.

3.2 The case pmin < 0

We can prove that (20), too, can be reformulated as a compact NLP.

Theorem 7 Let z(p) be the function defined by (20) in Proposition 2, then z(p) can be
reformulated by the following program:

z(p) =



min h(u+, u−, q+, q−)

−p+intu+ ≤ q+ ≤ (pmax − p+int)u+

(pmin − p−int)u− ≤ q− ≤ −p−intu−

p = p+intu
+ + q+ + p−intu

− + q−

u+ + u− ≤ 1 , u+ ∈ [0, 1] , u− ∈ [0, 1]

(31)

where

h(u+, u−, q+, q−) = u+z+1 (p+int)+z2(q
++p+int)−z+1 (p+int)+u−z−1 (p−int)+z2(q

−+p−int)−z−1 (p−int).

Proof. As in Theorem 6, the first step is to bring (20) in the form (27). Here k = 4, and
using a slightly nonstandard numbering (to better highlight the fundamental symmetry of
the function) we have α−2 = pmin, α−1 = p−int, α0 = 0, α1 = p+int, α2 = pmax, z−2 = z2,
z−1 = z−1 , z1 = z+1 . Applying (27) to (20) gives

z(p) =



min z2(p−2 + pmin) + z−1 (p−1 + p−int)− z−1 (p−int)+

z+1 (p1) + z2(p2 + p+int)− z(p+int)

0 ≤ p−2 ≤ p−int − pmin , 0 ≤ p−1 ≤ −p−int
0 ≤ p1 ≤ p+int , 0 ≤ p2 ≤ pmax − p+int
p = pmin + p−2 + p−1 + p1 + p2

(32)

(remember that z+1 (0) = 0). We can now identify

p−2 + pmin = q− + p−int , p−1 = p−int(u
− − 1) , p1 = p+intu

+ , p2 = q+
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to recover the objective function and most of the constraints in (31), as some simple but
somewhat tedious algebra shows. Then, the general result about (27) can be applied to the
optimal solution (p∗−2, p

∗
−1, p

∗
1, p
∗
2) (or, equivalently, (q̂−, û−, û+, q̂+)) of (32) for any fixed p,

yielding

p p∗−2 p∗−1 p∗1 p∗2 q̂− û− û+ q̂+

[pmin, p
−
int] ≥ 0 0 0 0 ≤ 0 1 0 0

[p−int, 0] p−int − pmin ≥ 0 0 0 0 ∈ [0, 1] 0 0
[0, p+int] p−int − pmin −p−int ≥ 0 0 0 0 ∈ [0, 1] 0

[p+int, pmax] p−int − pmin −p−int p+int ≥ 0 0 0 1 ≥ 0

This shows that the constraints

−p+intu+ ≤ q+ ≤ (pmax − p+int)u+ , (pmin − p−int)u− ≤ q− ≤ −p−intu− , u− + u+ ≤ 1

are satisfied by (q̂−, û−, û+, q̂+) for each value of p. Again, the issue is that −p+intu+ ≤ q+ is
weaker than 0 ≤ q+ and q− ≤ −p−intu− is weaker than q− ≤ 0 (p−int ≤ 0 ≤ p+int). However,
reasoning as in Theorem 6 one easily shows that relaxing the constraints in this way does
not change the optimal solution to (32).

Once again, the choice of (31) is motivated by the fact that, imposing integrality con-
straints u+ ∈ {0, 1}, u− ∈ {0, 1} and with the identification u = u+ + u−, one obtains
a reformulation of the original MINLP whose continuous relaxation is equivalent to (PR)
under Assumption A2, and weaker otherwise. This formulation has twice the number of
continuous and binary variables than the ordinary formulation (counting the semicontinuous
variables only), but possibly provides (much) stronger bounds.

4 Computational results

In this section we report results of computational tests performed on four classes of (MIQP)s
with semicontinuous variables. For all the problems, it has already been clearly shown
[7, 8, 9, 10] that Perspective Reformulations are largely preferable to the ordinary formula-
tion; therefore, we will not report results for the latter, focussing only on the comparison
between different forms of PRs. Among these, the SI-MILP formulation has been shown to
be consistently more effective than the MI-SOCP one [9], and therefore we will refrain from
testing the latter, too. Hence, we will compare three possible approaches: the SI-MILP for-
mulation, denoted as “PC”, the Projected Perspective Relaxation of [10], denoted as “P2R”,
when Assumption A2 holds and a specialized solver is available, and the newly proposed
approach, denoted as “AP2R”.

The experiments have been performed on a PC with a 2Ghz Opteron 246 processor and
2Gb RAM, running a 64 bits Linux operating system. All the codes were compiled with
gcc 4.4.3 and -O3 optimizations, using Cplex 12.3. PC and AP2R entirely rely on the
(sophisticated) B&C machinery of Cplex, which is used here with all standard parameters
setting; in particular, the stopping condition of the B&C is an optimality gap below 0.01%.
By contrast, P2R requires a “hand-made” B&B, in one case using Cplex to compute the
lower bounds, and in another being entirely independent from it; of course, the stopping
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criterion has been set to the same 0.01%. The B&B used for P2R is not a particularly
sophisticated one (see [10] for details), and it surely could be improved. On the other hand,
general-purpose solvers like Cplex keep improving all the time, usually at a much faster rate
than the developers of any specialized solver can afford, and require almost no programming
(except for setting appropriate cutcallback functions for PC). Besides, they have several
sophisticated options that can be activated or improved by appropriate parameter tuning,
which we purposely refrained from doing. Thus, while the results could possibly be improved
somewhat for all the tested approaches, we believe this way of testing to be appropriate in
that it shows the relative performance experienced by a non-expert user.

4.1 Sensor Placement problem

The (one-dimensional) Sensor Placement (SP) problem requires placing a set N = {1, . . . , n}
of sensors to cover a given area while minimizing the fixed deployment cost plus an energy
cost, that is quadratic in the radius of the surface covered. A simple MIQP formulation,
which exhibits structure (3), is

min
{ ∑

i∈N ciyi +
∑

i∈N aix
2
i :

∑
i∈N xi = 1 , 0 ≤ xi ≤ yi , yi ∈ {0, 1} i ∈ N

}
The P2R relaxation boils down to a continuous convex quadratic knapsack problem with at
most 2n variables that can be solved in O(n log n) [13].

We tested 168 random instances of the Sensor Placement problem, grouped in 8 classes.
The first 4 classes, with 30 instances each, contain random instances with either 2000 or 3000
sensors and either “high” (“h”) or “low” (“l”) quadratic costs. The following two classes,
with 24 instances each, derive from random instances of the Partition problem, according
to the NP-hardness proof for (SP) [2]. All these have already been used in [10], to which
the interested reader is referred for further details. Because these instances were all solved
at the root node by both P2R and AP2R (cf. Table 1), we also developed and tested some
additional more difficult instances. These have been obtained by replicating the Partition
and Subset Sum instances that can be found at

http://people.sc.fsu.edu/∼jburkardt/datasets/partition problem/partition problem.html

and then applying the reduction procedure from Partition problem to the (SP) problem
as in [2] (it is well-known that Subset Sum can be reduced to Partition, and therefore to
(SP)). We constructed 9 instances with n = 50 and 9 instances of n = 100 sensors; of each
group, 3 (denoted by p∗) are derived from Partition and the rest (denoted by s∗) from
Subset Sum. All the instances can be freely downloaded from

http://www.di.unipi.it/optimize/Data/RDR.html .

The results are displayed in Table 1. For each approach we report the total running time (in
seconds) and the B&B nodes required to solve the problem to optimality, averaged among
the instances of each group.

Table 1 shows that, as already reported in [10], projected formulations are by far the
most effective way to solve this (simple, yet NP-hard) problem. While PC is more effective
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PC P2R AP2R
nodes time nodes time nodes time

2000-h 3 24.88 0 0.28 0 0.40
2000-l 0 12.43 0 0.07 0 0.13
3000-h 1 58.00 0 0.65 0 0.64
3000-l 0 29.37 0 0.15 0 0.20
PTN-2000 6 79.16 0 0.31 0 1.86
PTN-3000 5 176.72 0 0.72 0 4.45
p50 26 0.16 583 0.22 23 0.06
s50 285 0.37 747 0.25 150 0.15
p100 33 0.46 10897 14.04 70 0.15
s100 1438 3.01 23396 27.88 1112 2.22

Table 1: Results of the (SP) problem

than the MI-SOCP formulation, and much more so than using the standard continuous
relaxation [10], it is considerably outperformed by P2R among all instances that require a
few or no branching nodes. This is due both to the much faster solution of (PR), and to
the fact that very accurately solving (PR) pays off surprisingly well in this case: while the
exact solution of (PR) produces a feasible solution which immediately closes the gap on the
random generated instances, the approximate solution of PC can require a certain amount
of branching to achieve the same effect.

Among projected methods, P2R is faster than AP2R when no branching is required; by
a slim margin on the random instances, by a more significant one (up to a factor of six) on
the PTN-* ones. This is not surprising, as (SP) is clearly a worst case as far as AP2R versus
P2R goes: neither of the two methods require any branching on those instances, so the faster
O(n log n) specialized solution algorithm of P2R [13] clearly pays off in this case, while the
more efficient branching and cutting techniques uniquely available to AP2R have no impact.
We remark that this is one case where P2R solves a strictly smaller continuous program than
AP2R because the two-piece function is actually a single-piece one; indeed, around 2% of
the variables in “h” instances and all the variables in “l” instances have pint = pmax, and
therefore only the linear piece is defined for P2R (this also explains why “l” instances are
solved much faster than “h” ones).

However, when branching is required (p∗ and s∗ instances) AP2R is competitive with
P2R. In fact, all the sophisticated machinery (preprocessing, branching, heuristic, and cutting
techniques) that is available in Cplex allows a significant reduction of the number of nodes
w.r.t. the hand-coded enumerative approach required by P2R; despite each node taking longer
to solve, the final balance favors the new approach. Indeed, for larger instances even PC is
competitive with P2R for the same reason; yet, AP2R is even better.

4.2 Nonlinear Network Design problem

The quadratic, separable, single-commodity Network Design (ND) problem requires routing
a generic flow on a directed graph G = (N,A), where each node i ∈ N has a deficit di ∈ R
indicating the amount of flow that the node demands. Each arc (i, j) ∈ A can be used up to
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a given maximum capacity uij, paying a fixed cost cij if a nonzero amount of flow xij transits
along the arc; flow cost is a convex quadratic function bijxij +aijx

2
ij. The MIQP formulation

min
∑

(i,j)∈A(cijyij + bijxij + aijx
2
ij)∑

(j,i)∈A xji −
∑

(i,j)∈A xij = di i ∈ N
lijyij ≤ xij ≤ uijyij , yij ∈ {0, 1} (i, j) ∈ A

(33)

again exhibits structure (3) together with a strong network structure, so that the computa-
tion of the P2R can be reduced to a convex quadratic min-cost flow problem on a graph with
(at most) twice the number of arcs. For this problem, we tested 180 of the 360 instances
used in [10]. These are randomly generated with the well-known netgen generator, different
sizes (from 1000 to 3000 nodes) and fixed and quadratic costs generated as to be “high”
(“h”) or “low” (“l”) w.r.t. the original linear costs of netgen; more details can be found in
[10], and the instances can be freely downloaded from

http://www.di.unipi.it/optimize/Data/MCF.html .

For the current tests we discarded half of the original instances, those with “high” quadratic
costs. The rationale for this choice is that all these instances are solved at the root node by
all the methods, similarly to what happens with the “easy” (SP) instances. The results for
all these instances are therefore easily inferred from those of the other half, many (but not
all) of which are also solved at the root node, as discussed below.

The results are reported in Table 2. For each approach we report the number of B&B
nodes and the required running time, averaged among groups of 30 instances with similar
characteristics. However, since there are substantial differences among each group, with
several instances solved at the root node while others require significant branching, for AP2R
we also report the average (among the 30 instances) of the ratio between the running time
and that of the other two approaches.

PC P2R AP2R
nodes time nodes time nodes time PC P2R

1000-l 4 34.11 4 0.30 5 0.43 0.06 11.30
1000-h 4 27.14 3 0.23 3 0.36 0.37 10.21
2000-l 259 103.23 415 71.18 219 5.09 0.03 11.49
2000-h 76 66.98 83 11.29 51 2.14 0.48 9.91
3000-l 309 145.95 280 76.13 273 9.85 0.50 9.06
3000-h 79 92.81 49 12.01 59 3.85 0.77 14.39

Table 2: Results of the (ND) problem

The results may at first appear contradictory: while the average running time of AP2R
is most often better than that of P2R, the average ratio is always smaller than one, often
significantly so. Similarly (although somewhat less markedly) for PC: the ratio between the
average running times does not seem to correctly reflect the average ratio. The reason is that
the relative performance of the algorithms is not uniform across different running times. To
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better gauge this phenomenon, the ratios (y axis) are plotted against the AP2R running time
(x axis) in Figure 2 for PC (left) and P2R (right); note that both axes are in logarithmic
scale. !"#$%&'()*+
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Figure 2: AP2R time ratios for (ND): versus PC (left) and versus P2R (right).

The figure shows that AP2R is almost always faster than PC; the handful of instances
where this is not true happen to be all and only the empty ones, that are proven so at the
root node by both approaches. Here PC is faster because it can do so without generating any
cut, and therefore solving a simpler linear program w.r.t. the quadratic program of AP2R.
In all the other instances that are solved at root node (the majority), AP2R computes the
PR bound faster, and therefore attains a very small ratio; however, these are all solved in a
few seconds. For the instances that require significant branching, and therefore significantly
longer running times, AP2R is still markedly faster, but the ratio tends to be somewhat
larger.

The opposite trend is apparent in the P2R chart: due to the faster (PR) solution, the
ratio is large for the (many) instances that are solved at root node. However, whenever
significant branching occurs the benefits of the more sophisticated techniques available to
AP2R result in a significantly improved running time, with ratios that tend to decrease as
the running time increases, being smaller than one for all instances requiring more than 10
seconds (as well as for some requiring less). Note that the other 180 instances of the test
set of [10], being all solved at the root node, would have only contributed to make (much)
thicker the “cloud” on the left of both charts without altering their fundamental shape.

4.3 Mean-Variance portfolio problem

The Mean-Variance (MV) portfolio problem with minimum and maximum buy-in thresholds
requires optimally allocating wealth among a set A of assets in order to obtain a prescribed
level of return ρ while minimizing the risk as measured by the variance of the portfolio. A
nonseparable (MIQP) formulation is

min
{
pTQp :

∑
i∈A pi = 1 ,

∑
i∈A µipi ≥ ρ , piminui ≤ pi ≤ pimaxui , ui ∈ {0, 1} i ∈ A

}
where µi, p

i
min and pimax are respectively the expected unitary return and the minimum and

maximum buy-in thresholds for asset i, while Q is the variance-covariance matrix. This
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apparently simple model is rather demanding for general-purpose (MIQP) solvers, since the
root node gaps of the ordinary continuous relaxation are huge, and its very simple struc-
ture means that classical polyhedral approaches to improve the lower bounds are scarcely
effective. To apply PR techniques to this problem, first the objective function need be mod-
ified to extract the “largest” possible diagonal part with efficient and effective (although
the improvement largely depends on the characteristics of Q) SemiDefinite Programming
techniques; see [8] for details. For our tests we used the 90 randomly-generated instances,
30 for each value of n∈{200, 300, 400}, already employed in [7, 8] and available at

http://www.di.unipi.it/optimize/Data/MV.html ;

the interested reader is referred to the cited sources for details. Here we only mention that
each group of 30 instances is subdivided into three sub-groups denoted “+”, “0” and “−”
according to the fact that Q is strongly diagonally dominant, diagonally dominant, or not
diagonally dominant, respectively; this turns out to have a substantial effect on the quality
of the diagonal objective function that can be extracted and therefore on the effectiveness
of the PR, making instances more and more difficult (for a fixed size) as they become less
and less diagonally dominant [8].

An important remark is that, once the objective function is made separable, the problem
actually satisfies Assumption A2. It was not considered in [10] because it lacks exploitable
structure to develop specialized solution algorithms for the Projected PR, and therefore does
not seem to be a promising candidate for the P2R approach; clearly, this makes it an ideal
candidate for AP2R. Yet, in order to test the effect of non-separability on the quality of the
bounds, and therefore the effectiveness of AP2R, we experimented with adding to (MV) the
simple cardinality constraint ∑n

i=1 ui ≤ k (34)

for some k ≤ n. This provides a useful “gauge”: while Assumption A2 is satisfied for k = n,
decreasing k “increases the amount of non-separability” in the model, possibly impacting on
the tightness of the AP2R bound. We therefore tested all of the 90 instances twice: once
with k = n, and once with k = 10. The latter is a quite strict requirement, considering that
the min-buy-in constraints (which actually are the only source of difficulty in this problem)
would allow about 20 assets to be picked. As we shall see, (34) significantly impacts on the
performances of AP2R.

The results are reported in Table 3. Each row of the table reports average results between
10 instances with the same characteristics; the upper part of the Table is relative to k = n,
while the lower part is relative to k = 10 in (34). The leftmost part of the Table describes
the efficiency and effectiveness of the PR at the root node. That is, for each approach, we
report the time necessary to compute the root lower bound, before the introduction of any
valid inequality (except those necessary for PC, of course) as well as the gap, in percentage,
with the optimal solution (columns “time” and “dgap” under “lb”). We do not report times
and gaps for the final root lower bound since, as already stated, polyhedral techniques have
no discernible effect except (uselessly) consuming a little running time. Instead we report
the time necessary to also obtain the first heuristic solution at the root node with the gap, in
percentage, between the cost of that solution and that of the optimal one (columns “time”
and “pgap” under “heur”). A specific twist is that AP2R sometimes (albeit rarely) fails to
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find a primal solution at the root node; thus, in that case “pgap” excludes the instances
for which no solution was found, whose number is reported next on the right (0 meaning
that a solution was always found). The rightmost part of the table is devoted instead to
the overall B&C performances. We do not report averaged number of nodes/running time
since these vary wildly between different instances even for the same approach, even more
so than in §4.2 (up to three orders of magnitude). Therefore, column “nodes” reports the
ratio between the number of B&C nodes explored by AP2R and those explored by PC, while
columns “time” do the same for total running times, with maximum and minimum values
(among the 10 instances of the same group) reported together with the average. To help
better appraising the results, in Figure 3 we also plot, for each of the 90 instances, the value
of the time ratio as a function of the running time of AP2R; the chart on the left is for k = n,
that on the right for k = 10. As in Figure 2, both axes are in logarithmic scale.

AP2R PC AP2R / PC
lb heur lb heur nodes time

time dgap time pgap time dgap time pgap avg avg min max
200+ 0.56 1.14 0.62 7.51 1 0.80 1.14 2.45 7.52 0.81 0.35 0.13 0.71
2000 0.48 2.14 0.56 10.69 0 0.64 2.14 1.64 10.69 1.02 0.61 0.36 0.84
200− 0.49 3.65 0.59 18.81 1 0.66 3.65 1.78 15.58 0.97 0.63 0.38 0.98
300+ 1.51 1.30 1.64 2.85 1 2.18 1.30 5.31 11.82 0.51 0.29 0.17 0.45
3000 1.46 1.99 1.68 18.59 0 2.12 1.99 5.17 17.48 0.71 0.45 0.16 0.74
300− 1.50 2.68 1.73 18.83 1 1.92 2.68 5.22 14.52 0.92 0.51 0.36 0.74
400+ 3.91 1.43 4.17 2.68 0 5.71 1.43 10.69 16.18 0.52 0.33 0.11 1.14
4000 3.32 2.30 3.66 14.18 1 5.18 2.30 10.98 56.54 0.73 0.41 0.27 0.61
400− 3.29 3.06 3.62 7.87 0 5.06 3.06 10.98 32.82 0.94 0.46 0.31 0.70
200+ 0.49 0.77 0.55 8.23 0 1.38 0.51 2.95 1.65 2.67 0.41 0.21 0.69
2000 0.46 3.14 0.55 39.73 0 1.34 2.75 3.01 17.88 3.26 0.70 0.33 1.41
200− 0.49 4.75 0.60 76.76 0 1.45 4.18 3.51 30.53 4.56 0.87 0.23 2.17
300+ 1.43 1.08 1.57 16.43 0 3.96 0.49 7.51 2.64 6.02 0.78 0.37 1.37
3000 1.40 2.91 1.59 30.77 0 4.14 2.35 8.69 15.61 4.72 0.84 0.32 1.66
300− 1.47 3.92 1.77 83.38 0 4.03 3.58 7.91 41.35 3.50 0.63 0.40 1.10
400+ 3.43 0.85 3.61 5.51 0 9.99 0.41 14.09 1.35 7.94 0.87 0.30 1.54
4000 3.09 3.00 3.55 50.41 1 9.29 2.34 15.09 26.70 6.55 1.50 0.32 4.49
400− 3.15 4.53 3.77 81.93 1 9.43 3.80 15.19 47.78 6.87 0.94 0.37 1.99

Table 3: Results of the (MV) problem

The results clearly show that without (34) AP2R outperforms PC. The reason is clearly
explained by the root node results: gaps are (as the theory dictates) identical, running times
are far shorter, especially when the heuristic is taken into account. Indeed, AP2R is up to
5 times faster to get a feasible solution. The quality of the solutions varies, as it can be
expected with heuristics, but there is no clear dominance of either approach; on average
AP2R seems to fare somewhat better, except for the occasional failures that PC does not
suffer. The advantage of AP2R over PC is mainly its faster (PR) computation due to the
compact model: this is confirmed when looking at the B&C results. In fact, while most
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Figure 3: AP2R time ratios for (MV): k = n (left) and k = 10 (right).

often AP2R is faster than PC by a factor of 2 or more in average, getting close to one
order of magnitude faster in the best case and almost never being slower in the worst case,
the number of nodes is much more comparable. Yet AP2R requires on average less nodes,
likely indicating that the more compact model provides better guidance for branching and/or
heuristics. Figure 3 (left) shows that, with only one exception, AP2R is always faster than
PC; furthermore, the ratio seems, in general, to be somewhat better for larger and more
difficult instances.

However, the results are markedly different for k = 10. While the root node running
times of AP2R are still significantly lower, the quality of the lower bound is worse, sometimes
significantly so. This seems to directly reflect on the quality of the heuristic solutions: with
only one exception, those computed by AP2R are (on average) of worse quality, sometimes
significantly so. All this should be expected to have, and indeed it has, adverse effects on
the B&C. The number of nodes increase very significantly, being now on average between 3
and 7 times that of PC. Due to the faster relaxation solution, the effects on running times is
much less dramatic: on all but one classes of instances AP2R is still, on average, faster than
PC. However, the average and minimum ratios are now much closer to 1, and the maximum
ratio is almost always greater than 1, indicating that AP2R is slower in at least one instance
for each class, being up to 4.5 slower in one case. Figure 3 (right) shows that while AP2R
is competitive (the time ratio is smaller than one) in the majority of instances, there are
several ones in which PC is faster, sometimes very consistently so. Also, the Figure seems
to suggest that the ratio tends to get worse as the difficulty of the instance increases. This
is consistent with the folklore that the more difficult an instance is, the more it pays off to
invest on computing tight lower bounds, even if at the cost of increased relaxation times;
this favors PC over AP2R. Hence, these results show that, as it could be expected, there is
a trade-off between faster computing times and quality of the bounds, when Assumption A2
does not hold, which may not always favor AP2R over competing PR techniques.
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4.4 Unit Commitment problem

The Unit Commitment (UC) problem in electrical power production requires optimally oper-
ating a set of t thermal and h hydro generating units to satisfy a given total power demand
on the hours of a day. Each thermal unit is characterized by a minimum and maximum
energy output 0 < pmin < pmax, when the unit is operational, by a convex quadratic energy
(fuel) cost function f(p) = ap2 + bp of the produced power p, and by a fixed cost c to be paid
for each hour that the unit is operational; therefore, it exhibits structure (3) with n = 24t,
where u is the binary variable indicating whether or not the unit is operational. The com-
plete formulation is rather complex and we refrain from discussing it in detail; the interested
reader is referred, e.g., to [11, 12]. For the purpose of the present discussion, however, it is
important to mention that thermal units are subject to several complex constraints such as
minimum up- and down-time and ramp rate ones, linking energy and commitment variables
for the same unit at different hours, as well as (possibly) spinning reserve constraints linking
energy and commitment variables for different units at any given hour. In other words,
Assumption A2 is strongly violated in (UC), with several crucial constraints linking the u
variables of different blocks together.

We have compared PC and AP2R on a test bed of randomly generated realistic instances
already employed in [7, 8, 11, 12], and freely available at

http://www.di.unipi.it/optimize/Data/UC.html .

In practical applications these problems need to be solved quickly, and therefore are solved
with low required accuracy [11, 12]. Here we solved them with the default 0.01% accuracy
as in the other cases; hence like in [8] we only report results for the instances of small size
(up to t = 75, h = 35) and with a(n already unrealistic) time limit of 10000 seconds. The
results are displayed in Table 4: rows with h = 0 refer to “pure thermal” instances, and
each row reports averaged results of 5 instances of the same size. The uppermost part of the
table reports results for AP2R, the lowermost for PC. The leftmost part of the table concerns
root node results. In particular, we report the gap between the obtained lower bound and
the optimal solution (column “dgap”) for both the “pure” PR (columns “NCNH”, i.e., “No
Cuts, No Heuristic”) and after that valid inequalities have been added (columns “CNH”,
i.e., “Cuts enabled, but No Heuristic”), together with the required time. Also, we report
the gap between the root node heuristic solution value and the optimal solution (column
“pgap”), together with the required time. The rightmost part of the table is devoted to the
results of the B&C: we report the number of nodes and the running time at termination, the
gap between the best solution found and the optimal solution (“pgap” again), and the gap
between the upper and lower bound at termination (column “gap”).

Table 4 shows that AP2R is not competitive with PC on (UC). As the theory predicts, the
AP2R lower bound is (very slightly, but visibly) worse than that of PC, albeit the difference is
much less than in (MV) for k = 10 (whose gap however can be much larger, cf. Table 3). Yet,
AP2R is somewhat less efficient in solving (PR). Differently from (MV), valid inequalities
here help in considerably reducing the bound, more often than not increasing the (small
but visible) gap between the AP2R lower bound and the PC one; furthermore, PC obtains
this (better) bound two/three times faster. Results for the heuristic vary, with AP2R often
being capable of obtaining more and better solutions (except in hydro-thermal instances,
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AP2R
NCNH CNH CH B&C

t h time dgap time dgap time pgap nodes time pgap gap
10 0 0.31 1.49 1.50 0.29 2.59 0.04 1229 284 0.00 0.01
20 0 0.75 1.25 6.97 0.29 13.99 0.15 4635 9999 0.01 0.17
50 0 3.19 1.19 50.53 0.22 65.12 0.23 1078 9999 0.02 0.23
20 10 0.88 0.58 3.04 0.15 7.91 0.16 16477 1078 0.00 0.01
50 20 2.91 0.58 18.97 0.09 28.33 3780 9999 0.00 0.07
75 35 5.46 0.49 39.18 0.06 45.73 1727 9999 0.03 0.08

PC
10 0 0.17 1.48 0.99 0.23 1.25 0.40 365 17 0.00 0.01
20 0 0.49 1.24 3.93 0.25 5.38 15607 4851 0.00 0.02
50 0 2.85 1.16 16.59 0.19 20.63 14286 9986 0.00 0.13
20 10 0.52 0.56 1.92 0.13 3.14 0.51 8107 240 0.00 0.01
50 20 2.05 0.57 6.17 0.07 13.11 66945 6649 0.00 0.02
75 35 4.19 0.48 11.23 0.05 20.22 0.08 57456 9999 0.00 0.02

Table 4: Results of the (UC) problem

that have a larger continuous part); however, the penalty in running time worsens. All this
clearly impacts on the behavior of the B&C: AP2R requires more nodes to solve one instance
and each node requires more time, so PC can ultimately solve more instances and obtain
better upper and lower bounds for those that cannot be solved within the time limit. This is
likely due to the fact that (UC) instances are known to have a quite flat objective function
(small quadratic coefficients), so that a small number of linear approximations suffices for
approximating the nonlinear objective function quite well [11, 12]. The result is that in
this case solving a (short) sequence of LPs to find the (non-approximated) (PR) bound is
preferable to solving one quadratic program as AP2R does; furthermore, the latter seem to
reoptimize much less efficiently when other valid inequalities are added and branching is
performed, leaving PC as the uncontested best approach for this class of problems.

5 Conclusions

The paper presents results that very considerably extend the significance of the Projected
Perspective Reformulation approach of [10]. The main contribution is the “project and lift”
procedure giving rise to the Approximated Projected Perspective Reformulation approach,
which allows the idea to be applied to any MINLP with nonlinear (separable) semicontinuous
variables, possibly (but not necessarily) at the cost of some bound degradation, as opposed
to the much narrower class of these satisfying assumption A2; furthermore, it allows direct
and easy use of off-the-shelf MINLP solvers rather than requiring the development of ad-hoc
codes. Coupled with the significant extension of the class of possible objective functions
and to feasible regions having 0 in their interior, this allows the successful application of
the Projected Perspective Reformulation to a much wider class of problems than previously
possible. The computational experiments show that AP2R is competitive with the best
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other available Perspective Reformulation approaches except in the extreme cases where
either the problem is “easy” and with a very strong structure (cf. §4.1), or the problem
strongly violates assumption A2 and a few linear approximations suffice for constructing a
good estimate of the nonlinear objective function (cf. §4.4). Clearly, the trade-off here is
mostly a technological issue, and it may change in the future according to the evolution of
the relative efficiency of Quadratic Programming solvers w.r.t. Linear Programming ones, in
particular during reoptimization. Hence, we believe that AP2R can be a useful tool to have
available in the “bag of tricks” of Mixed-Integer NonLinear Programming, especially since
it is simpler to implement than the other alternatives. This is especially relevant in view
of the fact that the list of applications that have been shown to benefit from Perspective
Reformulation approaches is steadily growing [3, 6, 17, 18].

We also believe that the “project and lift” technique employed here could be useful in
other contexts as well, possibly (but not necessarily exclusively) in the growing field of the
study of convex envelopes for specially structured functions [19, 23, 25]. We find it partic-
ularly remarkable that a very substantial improvement of the continuous relaxation bound
can be obtained with a technique that ultimately boils down to appropriately translating a
continuous variable in a MINLP, leaving a problem with exactly the same size and structure
of the original one. If such an approach could be replicated in other settings this could
actually prove quite interesting for general MINLP; research in this direction is currently
underway.

References

[1] K. Abhishek, S. Leyffer, and J. Linderoth. FilMINT: An outer-approximation-based
solver for nonlinear mixed integer programs. INFORMS Journal on Computing, 22:555–
567, 2010.

[2] A. Agnetis, E. Grande, and A. Pacifici. Demand Allocation with Latency Cost Func-
tions. Mathematical Programming, 132(1-2):277–294, 2012.
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[4] P. Bonami, M. Kilinç, and J. Linderoth. Algorithms and Software for Convex Mixed
Integer Nonlinear Programs. In S. Leyffer J. Lee, editor, Mixed Integer Nonlinear Pro-
gramming, volume 154 of The IMA Volumes in Mathematics and its Applications, pages
61–89. 2012.

[5] S. Ceria and J. Soares. Convex programming for Disjunctive Convex Optimization.
Mathematical Programming, 86:595–614, 1999.

[6] X. Cui, X. Zheng, S. Zhu, and X. Sun. Convex Relaxations and MIQCQP Reformu-
lations for a Class of Cardinality-constrained Portfolio Selection Problems. Journal of
Global Optimization, online first, 2012.

26



[7] A. Frangioni and C. Gentile. Perspective Cuts for 0-1 Mixed Integer Programs. Math-
ematical Programming, 106(2):225–236, 2006.

[8] A. Frangioni and C. Gentile. SDP Diagonalizations and Perspective Cuts for a Class of
Nonseparable MIQP. Operations Research Letters, 35(2):181 – 185, 2007.

[9] A. Frangioni and C. Gentile. A Computational Comparison of Reformulations of the Per-
spective Relaxation: SOCP vs. Cutting Planes. Operations Research Letters, 37(3):206
– 210, 2009.

[10] A. Frangioni, C. Gentile, E. Grande, and A. Pacifici. Projected Perspective Reformu-
lations with Applications in Design Problems. Operations Research, 59(5):1225–1232,
2011.

[11] A. Frangioni, C. Gentile, and F. Lacalandra. Solving Unit Commitment Problems
with General Ramp Contraints. International Journal of Electrical Power and Energy
Systems, 30:316 – 326, 2008.

[12] A. Frangioni, C. Gentile, and F. Lacalandra. Tighter Approximated MILP Formulations
for Unit Commitment Problems. IEEE Transactions on Power Systems, 24(1):105–113,
2009.

[13] A. Frangioni and E. Gorgone. A Library for Continuous Convex Separable Quadratic
Knapsack Problems. European Journal of Operational Research, to appear, 2013.

[14] C.E. Gounaris and C.A. Floudas. Tight convex underestimators for C2-continuous
problems: I. univariate functions. Journal on Global Optimization, 42:51–67, 2008.
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