
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-13-06

Delay-Constrained Shortest Paths:
Approximation Algorithms and
Second-Order Cone Models

Antonio Frangioni, Laura Galli, Maria Grazia Scutellà
Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, 56127 Pisa – Italy
{frangio,galli,scut}@di.unipi.it

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Delay-Constrained Shortest Paths: Approximation
Algorithms and Second-Order Cone Models

Antonio Frangioni, Laura Galli, Maria Grazia Scutellà
Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, 56127 Pisa – Italy
{frangio,galli,scut}@di.unipi.it

Abstract

Real-time traffic with stringent Quality of Service requirements is becoming more
and more prevalent in contemporary telecommunication networks. When maximum
packet delay has to be considered, optimal delay-constrained routing requires not only
choosing a path, but also reserving resources (transmission capacity) along its arcs,
as the delay is a nonlinear function of both kinds of components. So far only simple
versions of the problem have been considered in the literature where all arcs are reserved
the same capacity (this is referred to as ERA, i.e., Equal Rate Allocations) and have
the same capacity reservation cost, because in such a restricted case polynomial time
exact algorithms can be devised, whereas the general problem is NP-hard. We first
extend the polynomial-time approaches for the ERA version of the problem with unit
arc costs by deriving a pseudo-polynomial time algorithm for the integer arc costs
case and a FPTAS for the general arc costs case. We then show that, under the
main latency models proposed in the literature, the general problem can be formulated
as a mixed-integer Second-Order Cone (SOCP) program, and therefore solved with
off-the-shelf technology. We compare two formulations: one based on standard big-
M constraints, and an improved one where Perspective Reformulation techniques are
used to tighten the continuous relaxation. Extensive computational experiments on
both real-world networks and randomly-generated realistic ones show that the ERA
approach is extremely fast and provides a surprisingly effective heuristic for the general
problem whenever it manages to find a solution at all, but it fails for a significant
fraction of the instances that the SOCP models can solve. We therefore propose a
three-pronged approach that combines the fast running time of the ERA algorithm
and the effectiveness of the SOCP models, and show that the combined approach is
capable of solving realistic-sized instances at different levels of network load in a time
compatible with real-time usage in an operating environment.

Keywords: Delay-constrained Routing, Approximation Algorithms, Mixed-Integer Non-
Linear Programing, Second-Order Cone Model, Perspective Reformulation

1

1 Introduction

The development of computer networks capable to support high bandwidth applications
while having stringent Quality of Service (QoS) guarantees is a relevant practical issue,
since there now exist many applications over IP networks (e.g., industrial control systems,
remote sensing and surveillance systems, live Internet Protocol Television and IP Telephony)
requiring real-time guarantees, that is, controlled end-to-end delay. Hence, Internet Service
Providers are required to negotiate delay bound within their Service Level Agreements, which
in turn requires appropriate traffic engineering support. From an optimization point of view,
this implies both computing paths and reserving resources along the paths of the network,
since the maximum delay of a flow depends on both.

Even in the single-flow case, this problem is therefore significantly more difficult than
usual shortest path routing problems. Several practical approaches have been proposed [17]
where delays are assumed to be link-additive in order to simplify the problem; however,
delay bounds do depend on the amount of reserved resources at each link, usually in a
nonlinear and non-additive way. Efficient algorithms have been devised for the special case
where the resource allocation is uniform on all the links of a path, which is called the
Equal Rate Allocation (ERA) approach, and when the objective function is basically the
arc/node count of the path [13, 15]. However, even for fixed paths ERA has been shown to
be highly suboptimal when addressing the more general delay-constrained routing case [12],
thus requiring more resources than those strictly necessary to ensure a given delay bound
for a given flow, and possibly failing to find feasible delay-constrained routings even when
they are present.

In this paper we mark a first step in the direction of joint path computation and resource
reservation under delay bound constraints by considering the more general scenario where
the resource allocation may be different on the links of the considered path. We concentrate
on the Single-Flow Single-Path Delay-Constrained Routing problem (SFSP-DCR), which is
already NP-hard since it generalizes the Constrained Shortest Path problem (CSP); how-
ever, due to the nonlinear nature of the delay constraints, adapting known approaches for
CSP is not straightforward. We first consider the ERA version of the problem (ERA-SFSP-
DCR), i.e. the case where all arcs in the path are allocated the same amount of resource,
which is solvable in polynomial time in the case of unit arc costs, and derive a pseudo-
polynomial time algorithm for integer arc costs and a FPTAS for general costs. We then
consider the general case: following the analysis of [12], we show that under appropriate
assumptions (affine arrival curves) the problem can be formulated as a convex Mixed-Integer
Non-Linear Optimization problem (MINLP), and in particular as a Mixed-Integer Second-
Order Cone problem (MISOCP) that can be solved by efficient general-purpose tools. We
present two MISOCP models for the problem: a straightforward one based on big-M con-
straints, and an improved one where convex-envelope techniques are used to tighten the
continuous relaxation. Extensive computational experiments on both real-world networks
and randomly-generated realistic ones show that the exact algorithms for ERA-SFSP-DCR
are extremely fast and provide a surprisingly effective heuristic for the general problem
whenever they manage to find a solution at all, but they fail for a significant fraction of
the instances that the (MI)SOCP models can solve. We therefore propose a three-pronged
approach that combines the fast running time of the ERA algorithms and the effectiveness of

2

the SOCP models, and show that the combined approach is capable of solving realistic-sized
instances at different levels of network load in a time compatible with real-time usage in an
operating environment.

2 The Delay-Constrained Routing problem

We are given a telecommunication network represented by a directed graph G = (N,A), with
n = |N | and m = |A|. Our problem is to route one single “new” flow on the network along
a minimum cost path, where the cost is any linear function of the reserved capacities on the
traversed arcs, with a constraint on the maximum delay that any packet may incur during
the trip. For this we assume our flow to be characterized by an origin s ∈ N , a destination
d ∈ N \ {s} and, in general, an arrival curve A(t) : R+ → R+ specifying how many more
bits of that flow can enter the origin s with respect to those entered t instants before; in
other words, if the arrival function F(t) measures how many bits have entered the origin at
time t, we have F(t̄ + t) − F(t̄) ≤ A(t) for all t̄ and t ≥ 0. For our purposes we assume
the arrival curve to be entirely specified by the two parameters σ (burst) and ρ (rate) of
a leaky-bucket traffic shaper [11], so that A(t) = σ + tρ. Each link (arc) (i, j) ∈ A in the
network is characterized by a fixed link delay lij, a physical link speed wij, and a reservable
capacity cij (≤ wij, since in general other flows are already present in the network at the
time when the new one is routed). Each node i ∈ N in the network is characterized by a
fixed node delay ni; also, the maximum transmit unit L (i.e., the maximal size of any packet)
is known and assumed constant. The flow has a deadline δ, which bounds from above the
maximum time that every bit in the flow is allowed to spend traversing the network prior to
reaching the destination; in other words, the worst-case delay of the flow must be at most
δ. Given link reservation costs fij (i.e., the cost of reserving one unit of capacity on (i, j)),
the Single-Flow Single-Path Delay-Constrained Routing (SFSP-DCR) problem requires to
find one feasible s-d path and a feasible reservation of capacity for each of its arcs so that
the flow can be routed along the path, with the given reserved capacities, by respecting the
deadline (delay constraint) δ at the minimum possible reservation cost.

2.1 Delay modeling

Formulating SFSP-DCR requires to specify how the worst-case delay of the flow is computed.
This depends on several factors:

1. the selected routing for the flow, i.e., the selected s-d path P in G;

2. for each arc (i, j) of the chosen path P , the reserved capacity (or rate) 0 ≤ rij ≤ cij
(≤ wij) for the flow along the arc;

3. the specific characteristics of the software/hardware systems at the nodes dictating
how the flows entering and leaving the nodes are managed (intra-node scheduling of
different flows, queues and buffer depths, . . .).

The latter point requires a sophisticated analysis, that can be performed e.g. via network
calculus [9]. In all cases of interest here, the delay is finite only if the minimum reserved

3

rate along the arcs of the path is at least as large as the rate of the path ρ, i.e.,

rij ≥ ρ ∀(i, j) ∈ P . (1)

Once (1) is satisfied, the general form of the delay for a given routing path P is

σ

min{ rij : (i, j) ∈ P}
+
∑

(i,j)∈P

(
θij + lij + ni

)
(2)

where θij is the delay experienced by the flow on traversing the arc (i, j) that is due to the
scheduling protocol. The exact form of θij depends on the details of the scheduling algorithm
at nodes. Following [13, 15] we assume

θij =
L

rij
+

L

wij

(3)

which corresponds to Strictly Rate-Proportional delay (e.g. [10, 11, 23]). Other slightly
different forms of delay formulae exist, such that the Weakly Rate Proportional one, that
have basically the same algebraic form and therefore could be subject to the same treatment;
see [12, 13, 15] and the references therein. The fundamental property of (3) in our context
is that it is a convex function of rij when rij ≥ 0, which is clearly very useful in order to
devise efficient solution approaches.

2.2 Feasibility of SFSP-DCR

While SFSP-DCR is clearly NP-hard (it reduces to the Constrained Shortest Path problem
e.g. if cij = ρ for all arcs), checking the existence of a feasible solution is easy. Indeed,
according to (2)–(3) the delay is a decreasing function of the rates, which means that setting
rij = cij for each arc (i, j) provides the best (least) possible contribution to the delay.

Let us define the set C = { cij : (i, j) ∈ A } of all possible arc capacities (note that
|C| ≤ m), and for any r ∈ C the reduced graph Gr = (N,Ar) where Ar = { (i, j) ∈ A :
cij ≥ r }, i.e., all arcs whose residual capacity is smaller than r are removed. Let us now
define the modified arc costs

l̄ij =
L

cij
+

L

wij

+ lij + ni ,

(for future notational convenience we will denote by l′ij = L/wij + lij +ni the part of l̄ij that
does not depend on the choice of r). Solving an s-d shortest path on Gr thus allows one
to compute the minimum-delay path P among the paths not containing arcs with capacity
smaller than r, and therefore such that σ/rmin(P) ≤ σ/r, where rmin(P) = min{ rij : (i, j) ∈
P}. Clearly, if the cost (delay, in our context) of P is ≤ δ − σ/r, then a feasible solution
has been found. It is easy to show that, by repeating the above process for each r ∈ C
(hence |C| ≤ m times), either one finds a feasible solution, or it proves that none exists (if
no such minimum delay path is feasible). Indeed, the only issue may come from the fact
that the minimum-delay path P for some value of r may actually only use arcs with a larger
capacity (hence assigned rate) than r: this means that σ/r > σ/rmin(P), possibly leading to

4

declaring P unfeasible while it actually satisfies the delay bound. However, it is possible to
observe that, in such a case, P is also a path of Gr̄ (and therefore, it remains optimal) for
some values r̄ > r in C, the largest of which corresponds to rmin(P). Therefore, the delay
of P is correctly evaluated during the iteration corresponding to rmin(P).

By simply keeping track of the minimum cost among all feasible paths thusly generated
(possibly avoiding to stop as soon as the first feasible path is found), this approach provides
a first heuristic for SFSP-DCR. Since all arcs are reserved the maximum possible rate, this
heuristic should not be expected to provide particularly good bound (and indeed this is
shown to happen in §5.2); however, at least it can quickly detect unfeasible instances, that,
as we will see, is a useful feature in more ways than one. Furthermore, the heuristic can be
improved somewhat using the ideas from the ERA case presented in the next section.

3 The Equal Rate Allocation case

Some polynomial time approaches to SFSP-DCR have been proposed in the literature [13, 15]
under two strong assumptions. The first one is the Equal Rate Allocation (ERA), that is
to say all the arcs (i, j) of the chosen s-d path P must receive the same resource allocation.
Therefore, rij = r (≥ ρ) for a given value r for all (i, j) ∈ P , while of course rij = 0 for
(i, j) /∈ P . Since throughout this section we shall consider the ERA assumption to be in
force, we will always refer to “the rate r” as the unique value assigned to all rij, for (i, j) ∈ P ,
which of course implies that rmin(P) = r as well; the corresponding restricted problem will
be denoted as ERA-SFSP-DCR. The second assumption concerns the form of the objective
function, as discussed in the following.

3.1 The equal costs case

The ERA-SFSP-DCR problem can be solved in polynomial time if the objective function is
nondecreasing with respect to the cardinality of P and the rate r; clearly, this is the case if
we take fij = 1 for all (i, j) ∈ A, i.e., we pay the same cost for installing a unit of capacity
on each arc, as this means that the objective function has form r · |P |, where |P | denotes the
number of arcs in P . We will denote this problem by EC-ERA-SFSP-DCR (from “Equal
Costs”).

The crucial observation is that it is easy to solve EC-ERA-SFSP-DCR for a fixed value
of r, in that this basically boils down to a hop-constrained shortest path problem. In fact,
for a fixed value of r one can define the arc costs

lrij = L/r + l′ij

(cf. §2.2) and exploit the well-known property of the Bellman-Ford algorithm for the shortest
path problem, i.e., that of being able to determine shortest paths with a constraint on the
maximum number of hops. In fact, implementing the standard general shortest path scheme
[5] where the set Q of candidate nodes is a FIFO list (or queue), one has the following
property: each time a given node i is extracted from Q, the path currently entering i is the
one having least cost among the paths (from s to i) with that number of arcs. Furthermore,
the cost of the considered paths entering i is decreasing. Hence, for the fixed value of r one

5

can run the Bellman-Ford algorithm (with root s) on the reduced graph Gr (cf. §2.2) with
the arc costs lr and easily find the optimal solution to the EC-ERA-SFSP-DCR with the
fixed value of r in O(nm) time. This is done by simply checking the cost (that is delay in
our context) of the s-d path entering d each time it is extracted from Q: the first time this
cost (delay) is ≤ δ − σ/r one has found the hop-shortest delay-feasible path for the given
value of r. Clearly, if the delay is always > δ − σ/r, then no feasible delay-constrained path
does exist for the given value of r.

This approach has first been analyzed in [13] for the problem of finding the delay-minimal
path under the ERA assumption. As in §2.2, this is done by repeating the above procedure for
all values of r in the set C. Furthermore, in [13] it is observed that, by simply keeping track of
the hop-shortest delay-feasible path found for each value r ∈ C (which is freely obtained if the
Bellman-Ford algorithm is used) and returning the best (in terms of minimum cardinality)
computed path over the values r in C, an exact approach can be immediately derived for
determining a feasible delay-constrained path P (if it exists) of minimum cardinality. Note
that a simple way to enhance the practical efficiency of this approach is simply to order the
values of C in an increasing way, and then applying the Bellman-Ford algorithm on Gr for
increasing values of r: since the set Ar is non-increasing when r increases, while the path
delays decrease, then the first time a feasible delay-constrained path is determined, this is
indeed the hop-shortest delay-feasible path.

The above analysis suggests a possible modification to the feasibility-checking approach
of §2.2: just solve the shortest path problem by Bellman-Ford algorithm, and whenever
d exits Q compute the cost and the delay of the path currently stored in the predecessor
vector, saving the best one obtained (i.e., the one with minimum cost). This way one explores
several paths for each value of r, instead of just one, and starting with hop-shortest ones.
Clearly, because the value of rij is not taken to be equal for all arcs, but rather set to its
maximum possible value, the number of hops is no longer equivalent (for fixed r) to the
objective function value, but yet one may hope to generate “good” paths. We call this
approach ERA-I (ERA-inspired); its distinctive feature is that it always produces a feasible
solution, if one exists. Furthermore, it can be used to compute (at no added extra cost)
the least possible feasible value of δ for which a feasible solution exists by just recording the
smallest possible delay value generated; this will we useful in our computational experiments,
as discussed in §5.1.

However, the approach above does not necessarily find an optimal solution to EC-ERA-
SFSP-DCR when the more general objective function r |P | has to be minimized. The obvious
counterexample is the one where the computed minimal cardinality path P is such that the
delay constraint is not tight: then, r can be suitably reduced by maintaining the path
feasibility but without modifying the path cardinality, thus finding a better solution.

This has been addressed in [15], where the following simple modification to the above
approach has been proposed. Again, an outer loop is performed where r is chosen in C, the
reduced graph Gr built, and the Bellman-Ford shortest path procedure with root s and costs
lr is ran. For each possible path cardinality h, this determines a minimum-delay s-d path P
among the paths in Gr having exactly h arcs. If such a path P is found to be feasible, then
the algorithm first computes the minimum value of the rate such that the delay constraint

6

related to P is satisfied as an equality: this is simply done by considering that

∆(r, P) =
σ + L|P |

r
+
∑

(i,j)∈P

l′ij ≤ δ (4)

and noting again that the path delay is nondecreasing with respect to the rate, i.e., that for

r̃(P) =
σ + L|P |

δ −
∑

(i,j)∈P l
′
ij

(5)

one has both ∆(r̃(P), P) = δ and r̃(P) ≤ r. Therefore, the algorithm minimizes the cost
function, with respect to r, in the rate interval [r̃(P), r]; the approach is described in [15] for
slightly more general cost functions, but in our case this simply amounts to picking the value
r̃(P). The best of the thusly obtained pairs (r̃(P), P) is an optimal solution to EC-ERA-
SFSP-DCR (as stated, but not really proven, in [15]). To prove this, consider the optimal
solution (r∗, P ∗) to the problem, and let r be the smallest element in C larger than (or
equal to) r∗; clearly, such an r must exist since otherwise all arcs of P ∗ should be assigned
a capacity strictly larger than the maximal arc capacity. Let us then consider the iteration
of the approach where that particular r is chosen: clearly, P ∗ is a path in Gr (each arc
(i, j) ∈ P ∗ has capacity at least r∗, hence at least r) and it is delay-feasible for that value
of r (since it is delay-feasible for r∗ ≤ r and the delay decreases with r). Therefore, there
exist delay-feasible s-d paths in Gr having exactly h∗ = |P ∗| arcs. Now, let us consider the
path P determined by the algorithm for the rate r and the hop count h∗: since P is the
minimum-delay s-d path in Gr with h∗ hops, its delay ∆(r, P) must be smaller than or equal
to the delay ∆(r, P ∗) of P ∗. However, if by contradiction we had ∆(r, P) < ∆(r, P ∗), then
since |P | = |P ∗| = h∗, one would also have∑

(i,j)∈P l
′
ij <

∑
(i,j)∈P ∗ l′ij =⇒ δ −

∑
(i,j)∈P l

′
ij > δ −

∑
(i,j)∈P ∗ l′ij

(cf. (4)): the r-dependent term is in fact identical for P and P ∗, and hence r̃(P) < r̃(P ∗).
Since r̃(P ∗) ≤ r∗, then this would imply that (r̃(P), P) is a better solution than (r∗, P ∗). It
follows that both P and P ∗ are optimal solutions, and therefore the best of the computed
pairs (r̃(P), P) is an optimal solution to EC-ERA-SFSP-DCR, as stated; the solution is found
in time O(|C|nm) ≤ O(nm2). Clearly, the thusly determined solution (if any) is feasible for
the general SFSP-DCR, and therefore we can use this as a heuristic for the problem where
the rij are allowed to take on different values (and, possibly, cost coefficients are not all
equal); we will refer to this in the following as ERA-H.

3.2 The general costs case

An interesting remark, that does not seem to having been done yet in the literature, is
that under some conditions it is possible to extend ERA-H to the case of non-identical arc
reservation costs fij, thus considering objective functions of form rf(P), where f(P) =∑

(i,j)∈P fij.
In particular, assuming that fij are positive integers, one may think of replacing Bellman-

Ford shortest path algorithm at each iteration of ERA-H algorithm with standard pseudo-
polynomial time Dynamic Programming approaches to the Constrained Shortest Path prob-
lem, thus obtaining a pseudo-polynomial time algorithm (notice that, under such a more

7

general objective function, SFSP-DCR is NP-hard, despite the ERA assumption). Specifi-
cally, this can be obtained by considering any valid upper bound f̄ on the cost of a simple
s-d path in G (f̄ ≤ (n − 1)fmax where fmax = max{ fij : (i, j) ∈ A }) and generating the

extended Directed Acyclic Graph G̃ obtained from G by replicating each node i for f̄ + 1
times, producing nodes (i, f) for all (integer) values f ∈ F̄ = {0, 1, . . . , f̄}; the (well-known)
rationale of this definition is that (i, f) represents the fact that node i has been reached from
s with a path of cost f . Each arc (i, j) in G is then replicated as well (at most) f̄ + 1 times
to join all nodes (i, f) with (j, f + fij) (except of course those such that f + fij > f̄); each of
these arcs has the same delay coefficients and reservation capacity of the original arc (i, j).
By the outlined transformation, it is easy to see that there is a one-to-one correspondence
between the paths of G and these of G̃ in terms of associated delay, hop count, reservable
capacity and cost. It is well-known that by basically visiting G̃, in O(f̄m) time one can
determine for all possible values f ∈ F̄ the minimum-delay s-d path in G among the s-d
paths with objective function value exactly equal to f . This gives the following:

Theorem 1 If fij are positive integers, then ERA-SFSP-DCR can be solved in pseudo-
polynomial time O(|C|f̄m) ≤ O(nm2fmax).

Proof. We adapt ERA-H as follows: for each r ∈ C we construct the subgraph of G̃, say
G̃r, containing only arcs with capacity ≥ r (thus still with size bounded by O(f̄m)). We

then apply the Bellman-Ford shortest path algorithm (with root (s, 0)) to G̃r, which basically

amounts at a breadth-first visit of G̃r; each time a node (d, f) for some value of f is extracted
from Q, we have found, among all s-d paths of cost f , the minimum-delay one having the
given number of hops. If that path P is delay-feasible we proceed, as in ERA-H, to find the
smallest compatible value of r via (5) and we compare the cost r̃(P)f = r̃(P)f(P) with that
of the best solution found so far (if any), keeping the best.

One can easily prove that this approach finds the optimal solution of the problem by
extending the arguments of the previous section. In particular, it is sufficient to consider the
optimal solution (r∗, P ∗) of the problem, its path cost f ∗ = f(P ∗) and hop count h∗ = |P ∗|,
and the properly chosen r ≥ r∗: because P ∗ belongs to the graph G̃r and it has the given
function value and hop count, there must be an iteration of the visit where node (d, f ∗) is
extracted from Q providing a path P with |P | = h∗. Reasoning as in §3.1 one has that if
by contradiction we had ∆(r, P) < ∆(r, P ∗), this would imply r̃(P) < r̃(P ∗) ≤ r∗ (note
that this goes through (4)–(5) and therefore crucially uses the fact that |P ∗| = |P |, whence
the need to perform a breadth-first visit), hence r̃(P)f(P) = r̃(P)f ∗ < r∗f ∗ = r∗f(P ∗) and
the same conclusions stated in §3.1 follows. Note that the latter relation crucially requires
f(P) = f(P ∗); in §3.1 this was actually the same as the condition |P ∗| = |P |, but here the
two are different (and both needed), which justifies the need of the more involved pseudo-
polynomial construction.

As it typically happens, a pseudo-polynomial time algorithm for the integer case can be
used to construct a Fully-Polynomial Time Approximation Scheme (FPTAS) for the case
where fij are not (necessarily) integer valued.

Theorem 2 If fij are positive, then ERA-SFSP-DCR admits a FPTAS with time complexity
O(n2m3/ε).

8

Proof. The approach requires the repeated application of the pseudo-polynomial time al-
gorithm of Theorem 1 on a suitably defined approximated problem. The “outer loop” of the
algorithm cycles over all values of f ∈ F = { fij : (i, j) ∈ A }, i.e., all possible arc costs
(|F | ≤ m). For the currently selected f , one defines the reduced graph Gf where all arcs
with cost strictly larger than f are deleted, and defines the scaled costs

f̃ij = dfij/Ke where K = (εf)/(n− 1)

for all arcs in Gf . Since fij ≤ f for all arcs in Gf , f̃ij ≤ dn/εe; hence, we can solve the
reduced and scaled ERA-SFSP-DCR problem on Gf , with costs f̃ij, by means of the pseudo-
polynomial time algorithm of Theorem 1, in O(n2m2/ε) time. After this is done for all
values of f ∈ F , the minimum cost solution found is ε-optimal for the ERA-SFSP-DCR on
the original graph and with the original (unscaled) fij.

This can be proven similarly to Theorem 1: consider the optimal solution (r∗, P ∗) to the
problem, its hop count h∗ = |P ∗|, its maximal arc cost fmax(P ∗) = max{ fij : (i, j) ∈ P ∗ },
and its scaled path cost f̃ ∗ = f̃(P ∗). Now consider the outer iteration where f = fmax(P ∗).
Clearly, P ∗ is a path in Gf , and f ≤ f(P ∗) (since f = fmax(P ∗), and the costs are positive).
Finally, consider the inner iteration (that must occur) with the appropriate r ≥ r∗ where
node (d, f̃ ∗) is extracted from Q providing a path P with |P | = h∗. Because P is a minimum
delay s-d path with (scaled) cost f̃ ∗ and hop count h∗, one has ∆(r, P) ≤ ∆(r, P ∗) which,
reasoning as in Theorem 1, gives r̃(P) ≤ r∗. Furthermore, as a result of the rounding
operation one has

fij ≤ Kf̃ij ≤ fij +K ;

summing over P one obtains f(P) ≤ Kf̃(P), while summing over P ∗ one obtains Kf̃(P ∗) ≤
f(P ∗) + h∗K. Now, using f̃(P) = f̃ ∗ = f̃(P ∗) and the definition of K one obtains f(P) ≤
f(P ∗) + h∗K ≤ f(P ∗) + εf , which using f ≤ f(P ∗) can be rewritten as

f(P) ≤ f(P ∗)(1 + ε) ,

i.e., P is ε-optimal considering the cost of the path alone. However, since we have already
proven that r̃(P) ≤ r∗, we can conclude that

r̃(P)f(P) ≤ r̃(P)f(P ∗)(1 + ε) ≤ r∗f(P ∗)(1 + ε)

i.e., P is ε-optimal by considering the ERA-SFSP-DCR objective function rf(P). Since the
objective function value of the best solution found by the outlined approach is less than or
equal to r̃(P)f(P), the thesis follows. The stated approximation result is thus obtained with
the announced time complexity, since there are at most m outer iterations, each performed
in O(n2m2/ε) time.

The tricky part of the approach is the selection of the scaling factor f , which must be on
one hand “large enough” so that all scaled costs are “small” (≤ n/ε), and on the other hand
“small enough” to ensure that f ≤ f(P ∗); this is guaranteed by iterating over all the possible
values of f , which are at most m, although in practice there may be better approaches. For
instance, unless the set of arc costs is wildly distributed across a very large interval, just
running the pseudo-polynomial time approach once with f = fmax (hence Gf = G) looks
to have pretty good chances to actually provide an ε-optimal solution right away. One may

9

even be able to formally prove this by (approximately) solving the problem of computing
the shortest feasible s-d path (in terms of the costs fij); reasoning as in §2.2 this can be cast
as a standard Constrained Shortest Path problem and thus efficiently tackled by a FPTAS.
If the obtained lower bound (by considering the approximation factor) is ≥ fmax, then the
single application of the pseudo-polynomial time algorithm is already guaranteed to produce
ε-optimal solutions.

However, the approaches outlined before still assume the ERA restriction. Since evidence
have been provided [12] (in the multi-flow case but with fixed path) that this can be highly
suboptimal, in the next section we discuss exact MINLP models of SFSP-DCR that can be
used to compute optimal solutions to the more general scenario, and therefore assess the
effectiveness of ERA-H when applied to the non-restricted case.

4 Second-Order Cone models

We now proceed at presenting MISOCP models for the general version SFSP-DCR. For this
we first introduce arc-flow binary variables xij ∈ {0, 1} indicating whether or not arc (i, j)
belongs to the chosen path P , so that we can use the standard flow conservation constraints

∑
(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =

−1 if i = s

1 if i = d
0 otherwise

i ∈ N (6)

to model the s-d–path requirements. We also introduce arc reserve variables rij, a single
variable rmin (with obvious meaning) and the corresponding constraints

0 ≤ rij ≤ cijxij (i, j) ∈ A (7)

ρ ≤ rmin ≤ rij + cmax(1− xij) (i, j) ∈ A (8)

that ensure on one hand that rij = 0 if xij = 0, and on the other hand that ρ ≤ rmin ≤ rij if
xij = 1. Note that (1) is represented in (8), and cmax = max{ cij : (i, j) ∈ A } is used in (8)
to ensure that any arc not in the chosen path (xij = 0) does not contribute to setting rmin;
using cij in (8) would not be correct, as it would imply that rmin ≤ min{ cij : (i, j) ∈ A },
even counting arcs not in the chosen path.

We then introduce θij variables to represent the arc-additive part of the delay defined by
(2)–(3); with these, the delay constraint can be modeled as

t+
∑

(i,j)∈A

(
θij +

(L

wij

+ lij + ni

)
xij

)
≤ δ (9)

t rmin ≥ σ (10)

where t is an auxiliary variable needed to express the nonlinear σ/rmin term via the (rotated)
SOCP constraint (10). Of course, the tricky part is to represent the fact that θij is zero if
xij = 0, while it is given by an appropriate (convex) nonlinear expression otherwise.

10

We will first present the following big-M formulation for this fragment of the problem:

0 ≤ θij ≤Mxij (i, j) ∈ A (11)

θij ≥ sij −M(1− xij) (i, j) ∈ A (12)

sij r
′
ij ≥ L (i, j) ∈ A (13)

sij ≥ 0 (i, j) ∈ A (14)

0 ≤ r′ij ≤ rij +M(1− xij) (i, j) ∈ A (15)

The formulation requires two extra sets of variables. Indeed, one would like to represent the
nonlinear θij ≥ L/rij term via the (rotated) SOCP constraint

rij θij ≥ L

but this is not possible because, since L > 0, neither θij nor rij are allowed to be zero,
whereas rij = θij = 0 is expected when xij = 0. This is why one introduces:

• constraints (11) to guarantee that xij = 0 =⇒ θij = 0, although these may be also
avoided since the model has no incentive in increasing the value of θij;

• variables sij ≥ 0 such that θij ≥ sij if xij = 1, while basically θij and sij are “free” if
xij = 0;

• variables r′ij ≥ 0 such that r′ij ≤ rij if xij = 1, while basically r′ij and rij are “free” if
xij = 0;

• the SOCP constraint (13) ensuring that sij ≥ L/r′ij, which of course implies

θij ≥ sij ≥ L/r′ij ≥ L/rij

whenever xij = 1.

All this requires a “big-M” in the constraints, which we claim is best set asM = max(
√
L , L/ρ).

The rationale for this choice is as follows:

• When xij = 0, (11)–(15) give

0 ≥ θij ≥ sij −M , sij ≥ L/r′ij , r′ij ≤M

(as rij = 0 as well). Since in this case sij and r′ij are free to take any value they want
(they do not appear in the objective function nor in any other constraint) we only need
to choose a value of M for which a solution exists: this means M ≥ sij ≥ L/r′ij ≥ L/M ,
hence M2 ≥ L.

• When xij = 1 instead, (11)–(15) give

M ≥ θij ≥ sij ≥ L/r′ij ≥ L/rij

but rij ≥ ρ from (8), whence M ≥ L/ρ.

11

Hence, SFSP-DCR can be modeled as a MISOCP, and therefore solved by off-the-shelf,
efficient, general-purpose solvers like Cplex or GUROBI. However, the thusly proposed for-
mulation has m binary variables and 4m + 2 continuous ones, together with m + 1 SOCP
constraints and, more importantly, several big-M coefficients. It can be expected that such
a formulation may quickly become rather difficult to solve.

To avoid some of the issues in the previous formulation we exploit a well-known reformu-
lation technique known as Perspective Reformulation, that has been introduced in [1] and
used in several applications with success (e.g. [2, 4, 3, 7, 8]), although usually in a different
form than the one that is presented here. The approach is based on the well-known fact
(e.g. [20]) that, given any convex function f : Rq → R and the two sets

P0 = { 0 } , P1 = { v ∈ Rq : l ≤ v ≤ u , f(v) ≤ 0 }

the best possible convex approximation of their (nonconvex) union can be formulated as

conv(P0 ∪ P1) =
{
v : λl ≤ v ≤ λu , λf(v/λ) ≤ 0 , λ ∈ [0, 1]

}
. (16)

Of course the above formulation looks ill-defined when λ = 0, but one can generally assume
that 0f(0/0) = 0 and make things work; as we will see, in practice this is not an issue. We
can readily apply this to (3); in particular, we take v = [θij, rij] and

f(θij, rij) =
L

rij
− θij

and identify λ = xij to obtain that our requirement can be modeled by the MINLP fragment

ρxij ≤ rij ≤ cijxij

0 ≤ θij ≤ (L/ρ)xij

Lx2
ij

rij
≤ θij (17)

The crucial observation is that (17) can be directly modeled as a (rotated) SOCP constraint;
thus,

min
∑

(i,j)∈A fijrij (18)

(6) , (7) , (8) , (9) , (10)

θij rij ≥ Lx2
ij (i, j) ∈ A (19)

θij ≥ 0 (i, j) ∈ A (20)

xij ∈ {0, 1} (i, j) ∈ A (21)

provides an exact reformulation of the problem. Indeed, the SOCP constraint (19) ensures
that θij ≥ L/rij when xij = 1, but simply reduces to θij ≥ 0 when xij = 0 (which will then
mean that θij = 0 in any optimal solution since the model does not have any incentive to
grow θij), thus negating the need for the extra variables sij and r′ij of the big-M formulation.

12

Clearly, (18)–(21) is a more promising formulation than the corresponding big-M one based
on (11)–(15): while it has the same number of integer variables and conic constraints, it
has only 2m + 2 continuous variables, i.e., only m + 1 more than the structural ones, and
clearly the minimum possible number to express the fractional terms in (2)–(3) by means
of conic constraints. Furthermore, the continuous relaxation of this formulation is likely
to be significantly stronger, since the “optimal” reformulation of some (small) fragments
of the model has been used; this has been already shown to yield significant performance
improvements in other applications [1, 2, 3, 4, 8], and the next section will show that the
same holds for this one.

We finish this section by underlying a potential advantage of using MISOCP models:
they could be easily generalized to the case where the cost comprises both reservation costs
and fixed costs for the arc selection.

5 Computational Results

We now report our computational experiences aimed at assessing the relative efficiency and
effectiveness of the different exact and heuristic approaches to SFSP-DCR. In particular,
we compare ERA-H, ERA-I, and the two different MISOCP solvers for the solution of the
general model SFSP-DCR. However, we confine ourselves to the case in which all capacity
reservation costs fij are equal. This choice is partly motivated by the fact that, in such a
scenario, ERA-H can be implemented simply and runs in (low) polynomial time O(|C|nm), as
shown in §3.1. However, another motivation is that defining sensible weights which measure
the different impact of capacity consumption on different arcs is nontrivial, and in want of
a specific need to do otherwise, assuming unitary weights is the reasonable option. We will
refer to the model (18)–(21) as “P”, and to the model using instead the constraints (11)–
(15) as “bM”. All the experiments have been performed on a (currently, rather low-end)
PC with a 2Ghz Opteron 246 processor and 2Gb RAM, running a 64 bits Linux operating
system (Ubuntu 12.4). All the codes were compiled with gcc 4.4.3 and -O3 optimizations.
The two MISOCP models were solved by the two state-of-the-art, off-the-shelf, commercial
solvers Cplex 12.5 and GUROBI 5.10. Both solvers were ran without time limit and with
default parameters.

5.1 The instances

Constructing a set of significant DCR instances is a nontrivial exercise; fortunately, the
recently released FNSS tool [18] provides a number of expert-tuned options to help devising
realistic models of current telecommunications networks.

The generation process starts by selecting a network topology (basically, the graph G).
For this we considered two sets of real-world IP network topologies: the GARR subset [6] of
the Internet Topology Zoo [21], and the SNDlib ones [19], which can be downloaded in gml

format. Furthermore, in order to test our models on larger instances we used also random
topologies generated according to the Waxman model [22]. This can be done directly by
FNSS, which allows to generate random Waxman topologies simply by specifying the number
of nodes n and the (probability) parameter α ∈ (0, 1], representing the link density : in our

13

experiments we set n ∈ {100, 200} and α = 0.4.
Once the topology is loaded in FNSS (either by reading a gml file or by its internal random

generator), one can assign realistic link capacities using one of the three allocation algorithms
specifically designed for modeling PoP-level link capacity assignment in ISP backbones.
These algorithms exploit the correlation between the amount of capacity assigned to a specific
link and three metrics that are meant to capture the importance of the link; in particular,
we used the edge betweenness centrality metric that corresponds to the number of shortest
paths passing through a specific link. In particular, once one has specified a set of possible
link capacity values wij (in our case the standard {1, 10, 40} Gbps), the “edge betweeness”
algorithm will assign a capacity from the set to all the links of the network proportionally
to the edge betweenness centrality.

After this is done, FNSS also supports generation of realistic traffic matrices that take
into account the capacities of the network. To generate a traffic matrix one needs to specify
the mean traffic demand µ(T) and its standard deviation σ2(T); for our experiments we set
µ(T) = 0.8 Gbps and σ2(T) = 0.05. We remark that SNDlib instances also provide link
capacity and (multiple) traffic matrices, but for the sake of uniformity we used randomly-
generated data on these, too.

Basically, the above set of parameters (together with arc costs) define an instance of
a Multicommodity Min Cost Flow (MMCF) problem; in order to standardize and ease the
distribution of our instances we thus created a corresponding set of MMCF instances in the
well-known Mnetgen format [14]. We remark that FNSS generates by default n2 traffic flows,
i.e., one for each possible origin-destination pair in the network; while this results in an
acceptable number of flows in all the real-world instances, the same cannot be said for the
Waxman ones, that would in this way get the order of 10000 flows. Restricting the number of
flows in FNSS is possible but complex; thus, we rather exploited this “translation stage” to
select a subset of the FNSS generated flows, limiting the number to n log n.

The last step of the generation process takes in input any MMCF instance and defines
reasonable values for the missing parameters, basically the delay-related ones. For this we
implemented a DCR-generator that generates the remaining network parameters according
to the suggestions of telecommunication network experts. In particular, the MTU L is set
to 1500 bytes, since nearly all IP over Ethernet implementations use the Ethernet V2 frame
format. Node delays ni and link delays lij are then set equal to L/wij; individual reservation
capacities cij are taken to be all equal to the mutual reservation capacitiy wij at this stage.
Flow bursts σ are set to 3 times the MTU value. Finally, to define flow deadlines δ, we
calculate the least possible value δmin, under which no routing is possible, and the maximum
possible value δmax, over which the delay constraint becomes redundant. As mentioned in
Section 2.2, δmin can be computed using the ERA-I algorithm; as for δmax, one can use an
analogous approach where each rij is set to its minimum possible value ρ (as opposed to its
maximum possible value cij as in ERA-I). Then, δ is randomly chosen uniformly within the
interval [δmin , (δmax− δmin)β] for a fixed parameter β; in our experiments we used β = 0.2.

All the produced files are freely available at [14], and the DCR-generator will also be
made available in due time. We remark that we tested, on a small subset of topologies, several
other combinations of the generation parameters at the various steps (traffic matrices, delay,
. . .) but the general flavor of the results did not change significantly, so we believe that the
ones reported in the next section can be considered fairly typical.

14

5.2 Computational esperiments

In a first set of experiments we assumed link speed wij and link capacity cij to coincide;
in other words, each flow is individually routed in an “empty” network. Because of our
generation process (cf. §5.1), this means that each corresponding instance is feasible.

A first set of results related to the performance of the heuristics ERA-I and ERA-H
is reported in Table 1. For each instance of the three test sets (visually separated by an
horizontal line) we report the size of the graph and the number of flows (k); each line of the
table refers to the solution of all flows in the instance, one by one, as SFSP-DCR. For both
heuristics we report the average and the maximum (among all the flows of the instance) gap
between the optimal value, as computed by the SOCP models, and the value of the solution
returned by the heuristic. We do not report running times because for both heuristics they
were negligible, always less than 0.001 seconds; furthermore, they will be reported later on
(cf. Table 3). However, for ERA-H we report the failure rate (column “inf”), i.e., the fraction
of the instances (flows) for which ERA-H was not able to find a feasible solution. We don’t
do this for ERA-I because, as the theory predicts, it was always capable of finding a feasible
solution. Of course, the average and the maximum for ERA-H were only computed for those
flows for which it did produce a feasible solution.

The table clearly depicts a rather awkward picture, whereby ERA-I always produces so-
lutions of rather abysmal quality (average gaps almost always larger than 50% and maximal
gaps on the region of 90%) but solves all flows, whereas ERA-H consistently produces solu-
tions of extremely good quality in average (despite a smattering of “bad” cases, revealed by
the “max” column) but can fail to find solutions in a significant fraction of the cases (up to
85%) despite all instances being guaranteed to be feasible.

We then move on to Table 2, which reports the behavior of the two general-purpose
solvers for the solution of the two MISOCP models P and bM. Since we did not set any
time limit all solvers were capable of solving all instances, so we only report the (average
and maximum) running time (“t”) and the number of nodes (“n”) they required. We do
not report again instance information since the rows are organized exactly as in Table 1 and
have the same meaning.

If there is one thing that the table clearly shows, is that—how it should be expected—
model P is way better than model bM. On the real-world networks, the first is between
2 and 6 times faster on average for Cplex and between 3 and 12 times faster on average
for GUROBI, with similar (albeit often somewhat smaller) improvement rates showing up on
the maximum time. For the largest networks the ratios climb to a factor of 10 and 15
for the average and to a factor of 20 and 35 for the maximum, respectively for Cplex and
GUROBI. Hence, there is no reason not to use model P. The comparison between the two
solvers is less clear: GUROBI is often somewhat faster, but also somewhat less consistent
(although one may want to remark that Cplex have occasionally shown numerical issues).
Incidentally, these results probably depend on somewhat different strategies, as shown by
the fact that GUROBI enumerates significantly more nodes, but it is often faster in doing so,
which probably implies it being less reliant on strategies to improve the lower bound, such
as valid inequalities; indeed, this is the typical approach that the folklore would associate to
a faster behavior on “easy” instances but a less consistent one on“harder” ones. Yet, the two
solvers are largely equivalent, and the results bode relatively well for the use of the P model

15

ERA-I ERA-H
instance n m k avg max avg max inf

garr 1999-01 16 36 240 0.65 0.88 0.000 0.001 0.02
garr 1999-04 23 50 506 0.57 0.94 0.000 0.001 0.75
garr 1999-05 23 50 506 0.55 0.94 0.000 0.000 0.75
garr 2001-09 22 48 462 0.60 0.94 0.000 0.000 0.74
garr 2001-12 24 52 552 0.59 0.94 0.000 0.000 0.75
garr 2004-04 22 48 462 0.56 0.94 0.000 0.000 0.75
garr 2009-08 54 136 2862 0.65 0.94 0.001 0.386 0.85
garr 2009-09 55 138 2970 0.67 0.94 0.000 0.000 0.85
garr 2009-12 54 136 2862 0.67 0.94 0.001 0.240 0.85
garr 2010-01 54 136 2862 0.67 0.94 0.001 0.241 0.85

abilene 12 15 31 0.52 0.92 0.000 0.000 0.06
atlanta 15 22 45 0.57 0.88 0.000 0.000 0.07
cost266 37 57 120 0.48 0.95 0.000 0.000 0.17

dfn-bwin 10 45 45 0.03 0.06 0.000 0.000 0.00
dfn-gwin 11 47 53 0.16 0.86 0.000 0.000 0.02
di-yuan 11 42 58 0.48 0.90 0.000 0.000 0.12

france 25 45 66 0.44 0.90 0.000 0.000 0.02
geant 22 36 63 0.46 0.89 0.000 0.001 0.06

germany50 50 88 276 0.50 0.90 0.000 0.001 0.21
giul39 39 172 1482 0.67 0.97 0.011 0.570 0.10

india35 35 80 195 0.53 0.93 0.000 0.000 0.11
janos-us 26 84 650 0.71 0.95 0.004 0.275 0.18

janos-us-ca 39 122 1482 0.68 0.95 0.010 0.289 0.23
newyork 16 49 89 0.50 0.90 0.000 0.000 0.03
nobel-eu 28 41 106 0.55 0.93 0.000 0.000 0.23

nobel-ger 17 26 51 0.49 0.93 0.000 0.000 0.10
nobel-us 14 21 24 0.35 0.90 0.000 0.001 0.00
norway 27 51 341 0.71 0.94 0.000 0.000 0.12

pdh 11 34 54 0.64 0.90 0.000 0.001 0.04
pioro40 40 89 204 0.40 0.89 0.000 0.000 0.25
polska 12 18 24 0.59 0.90 0.000 0.000 0.00

sun 27 102 702 0.76 0.95 0.008 0.431 0.06
ta2 65 108 388 0.45 0.92 0.000 0.000 0.31

w1-100-04 100 414 664 0.77 0.95 0.015 0.739 0.07
w1-200-04 200 1550 1528 0.71 0.96 0.015 0.814 0.05

Table 1: Behavior of ERA-I and ERA-H

in a real-world operating environment, with average and even maximum (except for a few
cases for GUROBI) running times sitting squarely in the split-second range. However, things
rapidly degrade as the size grows, with average (and especially maximum) running times
becoming unfeasibly large on the 200 nodes network. Admittedly, one could experiment
with setting a tight time limit and/or a coarser optimality tolerance to the MISOCP solvers
to determine whether or not good feasible solutions can be obtained (although not proven

16

Cplex P Cplex bM GUROBI P GUROBI bM
average maximum average maximum average maximum average maximum

t n t n t n t n t n t n t n t n
0.022 0.017 0.13 1 0.09 0.21 0.33 1 0.034 0.5 0.09 9 0.096 6.6 0.38 17
0.029 0.000 0.07 0 0.10 0.07 0.45 3 0.016 1.9 0.11 26 0.115 2.7 0.55 35
0.029 0.004 0.09 1 0.10 0.08 0.40 3 0.018 2.0 0.08 25 0.139 3.5 0.79 36
0.030 0.000 0.10 0 0.11 0.10 0.44 3 0.020 2.0 0.09 19 0.156 4.0 0.97 29
0.029 0.000 0.08 0 0.09 0.16 0.32 3 0.015 0.0 0.04 0 0.116 0.1 0.31 17
0.028 0.000 0.18 0 0.09 0.05 0.31 3 0.021 3.0 0.06 14 0.128 3.5 0.57 27
0.087 0.005 0.46 2 0.57 0.47 1.99 27 0.070 7.6 0.72 124 0.776 18.8 5.39 164
0.089 0.011 0.62 4 0.60 0.61 2.19 36 0.071 7.6 0.59 202 0.918 21.8 4.85 212
0.090 0.013 0.78 4 0.60 0.59 2.47 44 0.071 7.6 0.55 123 0.920 22.7 6.21 352
0.093 0.013 0.50 4 0.61 0.57 2.32 32 0.073 7.6 0.68 114 0.916 22.8 5.76 339
0.011 0.000 0.03 0 0.02 0.03 0.09 1 0.011 0.0 0.03 0 0.032 0.1 0.06 3
0.015 0.044 0.18 1 0.03 0.07 0.17 1 0.012 0.5 0.03 8 0.044 1.6 0.08 15
0.015 0.017 0.06 1 0.05 0.03 0.26 1 0.012 0.4 0.05 11 0.099 0.8 0.30 27
0.012 0.000 0.03 0 0.05 0.02 0.11 1 0.007 0.0 0.01 0 0.068 0.0 0.08 0
0.020 0.151 0.10 1 0.05 0.00 0.16 0 0.017 0.0 0.04 0 0.104 0.1 0.31 4
0.051 1.190 0.34 18 0.11 1.36 0.62 31 0.028 2.0 0.21 46 0.116 4.9 0.46 74
0.014 0.000 0.05 0 0.04 0.02 0.16 1 0.011 0.3 0.03 6 0.079 1.2 0.18 17
0.011 0.016 0.06 1 0.03 0.03 0.19 1 0.011 0.7 0.04 11 0.062 1.2 0.17 22
0.024 0.025 0.10 1 0.09 0.06 0.70 1 0.016 1.1 0.26 34 0.166 2.5 0.93 52
0.245 0.547 0.99 13 1.27 15.33 6.68 610 0.424 67.6 6.69 1308 1.795 138.5 30.02 2212
0.021 0.036 0.27 1 0.08 0.07 0.58 4 0.014 0.4 0.12 14 0.132 1.8 0.34 29
0.093 0.108 0.63 7 0.43 2.65 1.55 30 0.150 21.2 2.14 767 0.717 85.4 16.54 1168
0.141 0.138 0.83 8 0.80 5.76 2.76 243 0.285 47.1 7.87 916 1.741 158.4 25.93 1595
0.018 0.034 0.14 1 0.07 0.05 0.28 1 0.013 0.8 0.04 14 0.091 2.2 0.22 22
0.016 0.009 0.08 1 0.04 0.05 0.26 1 0.013 0.2 0.09 9 0.080 0.4 0.25 31
0.011 0.020 0.04 1 0.04 0.08 0.24 3 0.012 0.4 0.04 11 0.056 1.4 0.33 38
0.015 0.083 0.10 1 0.04 0.04 0.19 1 0.012 0.8 0.05 11 0.047 0.9 0.15 11
0.035 0.079 0.32 8 0.11 0.36 0.96 8 0.033 2.8 0.44 30 0.141 7.7 0.63 55
0.042 0.444 0.38 8 0.11 0.74 0.38 13 0.023 4.6 0.09 47 0.081 7.1 0.23 45
0.019 0.039 0.27 1 0.10 0.14 0.57 6 0.015 0.6 0.09 13 0.160 2.6 0.57 44
0.020 0.042 0.11 1 0.03 0.08 0.09 1 0.010 0.5 0.03 7 0.038 1.2 0.06 9
0.165 0.587 0.89 13 0.65 7.68 2.36 257 0.189 39.6 0.76 282 0.961 126.9 5.68 583
0.020 0.015 0.13 1 0.12 0.08 0.89 4 0.018 0.6 0.12 27 0.214 1.9 1.52 33
1.854 3.176 43.14 85 8.88 164.49 43.87 2585 2.372 159.3 7.09 703 14.064 407.2 110.36 5339

24.231 25.366 413.95 4075 231.09 2714.68 9088.54 127429 9.575 241.4 63.37 1395 134.145 637.0 2384.84 10943

Table 2: Behavior of MISOCP models

optimal) in much less time; however, it is fair to say that these results already start to show
the limitations of an approach entirely relying on general-purpose tools.

Given these results, for our final set of experiments we focussed only on the P model. The
rather peculiar behavior of the ERA-H heuristic, which is very effective when it does deliver
a solution but also rather prone to failure, suggests to try to combine the best characteristics
of all the available approaches. One simple way to do that is to develop a three-pronged
approach (“3P” in the following) that proceeds as follows:

1. initially it runs the very quick ERA-I, and if the instance if found to be unfeasible it
terminates;

2. otherwise it runs ERA-H: if a solution is found it is reported and the approach termi-

17

nates;

3. if all else fails, then model P is ran and its solution is reported.

This is clearly not the most sophisticated approach: one could for instance choose to always
run at least the root node of the P model to try to determine whether the current instance
is one of the (very) few where ERA-H finds solution of bad quality, or more in general
run the MISOCP solvers on tight time limits giving them the ERA-H solution as cutoff.
However, we decided to stick with the simplest solution and tested it on a somewhat more
“realistic” environment. In particular, we fixed in four possible ways (0, 0.2, 0.4, 0.8) a
maximum level γ of arc load, and for each level we subtracted to the arc capacity an amount
uniformly drawn at random in [0, γwij] to simulate a more realistically loaded network. We
then compared three approaches in all these four scenarios: ERA-H, the use of the MISOCP
solvers (obviously with model P), and the 3P approach. The results are shown in Tables 3,
4, 5, and 6 for γ = 0 (i.e., the “unloaded” network of Tables 1 and 2), γ = 0.2, γ = 0.4
and γ = 0.8, respectively. The rows of the tables are all organized in the same way as the
previous ones. In the leftmost part of each table we report the (average and maximum)
running times of the 3P approach, with both solvers, as compared to that of the direct
MISOCP approach. In the middle part we report the (average and maximum) gap of 3P,
which is of course the same for the two solvers, since that of the MISOCP is always zero.
Finally, in the leftmost part we report the average (when it is larger than 1e-6 seconds)
and maximum running time of ERA-H, as well as the corresponding fraction of “failed”
instances. This is just the number of flows for which a solution was not found when γ = 0,
but for larger values of γ some of the instances actually do not have a solution; thus, in this
case we report the fraction of the feasible instances (for which MISOCP and 3P can find
a solution) that cannot be solved by ERA-H. Note that in one case (entry “***” in Table
6) there was actually not a single flow that was feasible, and therefore this fraction had no
meaning. Also, note that we don’t report gaps for ERA-H since we can estimate them to
be very close to these of 3P; actually these of 3P are bound to be slightly smaller precisely
because it solves more instances than ERA-H and these in the difference set are solved with
guaranteed zero gap, but the difference is negligible.

The results show that, for γ = 0, 3P is not much faster than the MISOCP on the
GARR instances; this is not surprising, because the failure rate of ERA-H in these is very
large, meaning that for more than 75% of the flows one actually ends up performing both
approaches. However, on the same instances 3P is significantly faster than P for γ > 0: this
is due to the fact that the percentage of unfeasible instances increases with γ, and these are
quickly identified by ERA-I without a need to invoke neither of the other two components
(although, infeasible instances are quickly identified by the general-purpose solvers as well,
as it is easy to see since their running time also decreases).

On the SNDlib instances and on the Waxman-100 one, 3P most often requires a substan-
tially smaller average running time than MISOCP (typically one order of magnitude less),
while sporting a very low average gap (less than 1%) in spite of the occasionally substan-
tial (but, clearly, very rare) maximum gaps. For the SNDlib instances, the running time of
ERA-H is significantly smaller; however the heuristic fails in a significant number of cases.
Furthermore, while for γ = 0 ERA-H is still two orders of magnitude faster on the Waxman-
100 instance, when γ > 0 the difference is much smaller. This should be expected in view of

18

Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H
avg max avg max avg max avg max avg max avg max inf

0.025 0.12 0.001 0.03 0.035 0.10 0.001 0.03 0.00 0.00 4e-5 0.01 0.02
0.030 0.08 0.022 0.06 0.017 0.12 0.016 0.10 0.00 0.00 4e-5 0.01 0.75
0.028 0.08 0.021 0.06 0.018 0.08 0.016 0.08 0.00 0.00 6e-5 0.01 0.75
0.026 0.09 0.021 0.08 0.022 0.09 0.018 0.09 0.00 0.00 4e-5 0.01 0.74
0.027 0.07 0.022 0.07 0.016 0.04 0.012 0.04 0.00 0.00 4e-5 0.01 0.75
0.026 0.17 0.020 0.05 0.022 0.06 0.019 0.06 0.00 0.00 4e-5 0.01 0.75
0.084 0.44 0.075 0.44 0.069 0.70 0.065 0.71 0.00 0.39 2e-4 0.01 0.85
0.086 0.62 0.078 0.62 0.069 0.56 0.063 0.57 0.00 0.00 2e-4 0.01 0.85
0.088 0.75 0.078 0.73 0.071 0.52 0.061 0.50 0.00 0.24 2e-4 0.01 0.85
0.087 0.46 0.076 0.45 0.074 0.61 0.066 0.59 0.00 0.24 2e-4 0.01 0.85
0.009 0.02 0.001 0.01 0.009 0.02 0.001 0.01 0.00 0.00 0.00 0.06
0.016 0.16 0.001 0.02 0.010 0.03 0.001 0.02 0.00 0.00 0.00 0.07
0.013 0.05 0.002 0.03 0.012 0.04 0.003 0.04 0.00 0.00 0.00 0.17
0.011 0.02 0.000 0.00 0.007 0.01 0.000 0.01 0.00 0.00 0.00 0.00
0.019 0.09 0.000 0.01 0.015 0.04 0.000 0.01 0.00 0.00 0.00 0.02
0.050 0.35 0.017 0.35 0.028 0.22 0.012 0.23 0.00 0.00 0.00 0.12
0.015 0.04 0.000 0.01 0.010 0.03 0.000 0.01 0.00 0.00 0.00 0.02
0.013 0.05 0.001 0.01 0.010 0.04 0.001 0.03 0.00 0.00 0.00 0.06
0.021 0.09 0.005 0.08 0.017 0.24 0.007 0.27 0.00 0.00 7e-5 0.01 0.21
0.254 1.01 0.019 0.66 0.449 7.57 0.087 6.52 0.01 0.57 3e-4 0.01 0.10
0.019 0.25 0.002 0.04 0.016 0.11 0.002 0.07 0.00 0.00 0.00 0.11
0.091 0.62 0.013 0.33 0.153 2.25 0.051 2.19 0.00 0.28 1e-4 0.01 0.18
0.144 0.84 0.026 0.49 0.298 9.59 0.118 7.70 0.01 0.29 2e-4 0.01 0.23
0.017 0.13 0.000 0.02 0.015 0.04 0.001 0.02 0.00 0.00 0.00 0.03
0.014 0.05 0.004 0.05 0.016 0.09 0.005 0.09 0.00 0.00 0.00 0.23
0.010 0.03 0.002 0.03 0.015 0.04 0.002 0.04 0.00 0.00 0.00 0.10
0.013 0.09 0.000 0.00 0.014 0.05 0.000 0.00 0.00 0.00 0.00 0.00
0.032 0.30 0.005 0.25 0.035 0.32 0.005 0.13 0.00 0.00 6e-5 0.01 0.12
0.034 0.30 0.001 0.02 0.026 0.10 0.002 0.10 0.00 0.00 0.00 0.04
0.019 0.27 0.007 0.25 0.018 0.09 0.007 0.09 0.00 0.00 5e-5 0.01 0.25
0.016 0.09 0.000 0.00 0.014 0.03 0.000 0.00 0.00 0.00 0.00 0.00
0.154 0.89 0.006 0.36 0.188 0.87 0.009 0.40 0.01 0.43 2e-4 0.01 0.06
0.019 0.12 0.008 0.05 0.020 0.13 0.009 0.13 0.00 0.00 8e-5 0.01 0.31
1.906 46.7 0.034 1.84 2.354 8.35 0.150 3.54 0.01 0.74 2e-3 0.01 0.07

23.660 357.7 0.247 54.29 9.033 63.19 0.399 12.36 0.01 0.81 1e-2 0.02 0.05

Table 3: Comparison of the P model and 3P for γ = 0

the fact that its running time depends on |C|, and while for γ = 0 we have |C| = 3 in our
instances, in the other (more realistic) cases |C| ≈ m.

This effect is even more apparent in the Waxman-200 instance: indeed, while for γ = 0
ERA-H requires about 0.01 seconds, for γ > 0 its average running time blows up to around

19

Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H
0.024 0.11 0.001 0.05 0.032 0.11 0.001 0.03 0.00 0.00 3e-4 0.01 0.05
0.040 0.12 0.003 0.05 0.003 0.09 0.003 0.07 0.00 0.00 5e-4 0.01 0.79
0.037 0.12 0.004 0.05 0.004 0.05 0.003 0.04 0.00 0.00 5e-4 0.01 0.82
0.046 0.15 0.004 0.08 0.005 0.07 0.003 0.06 0.00 0.00 4e-4 0.01 0.73
0.035 0.12 0.004 0.06 0.003 0.04 0.003 0.03 0.00 0.00 5e-4 0.01 0.76
0.035 0.11 0.003 0.05 0.003 0.04 0.002 0.04 0.00 0.00 4e-4 0.01 0.73
0.132 0.89 0.033 0.29 0.024 0.31 0.027 0.34 0.00 0.00 7e-3 0.02 0.74
0.134 0.96 0.035 0.37 0.025 0.36 0.029 0.37 0.00 0.00 7e-3 0.02 0.76
0.129 0.76 0.035 0.51 0.026 0.33 0.028 0.34 0.00 0.24 7e-3 0.02 0.76
0.131 0.80 0.036 0.51 0.026 0.30 0.031 0.33 0.00 0.24 7e-3 0.02 0.76
0.010 0.04 0.000 0.01 0.005 0.02 0.001 0.02 0.00 0.00 0.00 0.04
0.015 0.10 0.001 0.02 0.009 0.04 0.001 0.03 0.00 0.00 0.00 0.05
0.014 0.06 0.002 0.04 0.010 0.06 0.002 0.06 0.00 0.00 3e-4 0.01 0.10
0.021 0.05 0.000 0.00 0.001 0.01 0.001 0.01 0.00 0.00 2e-4 0.01 0.00
0.032 0.08 0.001 0.02 0.011 0.03 0.001 0.02 0.00 0.00 2e-4 0.01 0.05
0.044 0.19 0.011 0.18 0.026 0.20 0.012 0.21 0.00 0.00 2e-4 0.01 0.15
0.019 0.06 0.001 0.01 0.008 0.03 0.000 0.01 0.00 0.00 3e-4 0.01 0.00
0.014 0.04 0.000 0.01 0.007 0.04 0.001 0.01 0.00 0.00 0.00 0.02
0.025 0.12 0.004 0.12 0.013 0.09 0.005 0.10 0.00 0.00 1e-3 0.01 0.13
0.257 1.21 0.057 1.02 0.424 7.08 0.100 7.07 0.01 0.57 2e-2 0.03 0.11
0.025 0.20 0.002 0.05 0.015 0.11 0.004 0.04 0.00 0.00 1e-3 0.01 0.09
0.103 0.50 0.018 0.33 0.155 1.84 0.041 1.84 0.00 0.28 2e-3 0.01 0.16
0.170 0.78 0.044 0.81 0.274 3.34 0.113 3.30 0.01 0.26 6e-3 0.02 0.22
0.020 0.10 0.001 0.06 0.014 0.05 0.002 0.03 0.00 0.00 4e-4 0.01 0.03
0.015 0.06 0.003 0.03 0.014 0.07 0.004 0.07 0.00 0.00 2e-4 0.01 0.17
0.013 0.04 0.000 0.01 0.011 0.04 0.001 0.02 0.00 0.00 0.00 0.03
0.013 0.07 0.001 0.02 0.007 0.03 0.001 0.02 0.00 0.00 0.00 0.08
0.032 0.26 0.006 0.27 0.034 0.27 0.008 0.26 0.00 0.00 7e-4 0.01 0.12
0.034 0.17 0.001 0.03 0.023 0.07 0.003 0.08 0.00 0.00 0.00 0.04
0.020 0.09 0.003 0.08 0.013 0.06 0.004 0.07 0.00 0.00 1e-3 0.01 0.18
0.017 0.08 0.001 0.02 0.013 0.04 0.002 0.04 0.00 0.00 0.00 0.05
0.154 0.82 0.013 0.42 0.187 1.45 0.020 0.57 0.00 0.23 4e-3 0.01 0.08
0.025 0.11 0.007 0.11 0.013 0.13 0.008 0.13 0.00 0.00 2e-3 0.01 0.25
1.48 46.0 0.42 3.5 2.286 10.51 0.52 3.62 0.01 0.65 0.17 0.26 0.09

31.38 291.1 16.66 208.5 9.772 97.03 16.50 33.57 0.01 0.83 8.29 10.18 0.07

Table 4: Comparison of the P model and 3P for γ = 0.2

8 seconds, and the maximum to around 10. For GUROBI this is actually larger than the
mean running time, so that 3P turns out to be actually slower than P on average, although
it is still significantly faster when the maximum is taken into account; things are different
with Cplex only because for this instance it is significantly slower than GUROBI. Yet, all this
is scarcely relevant: quite simply, none of the proposed techniques can solve SFSP-DCR

20

Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H
0.025 0.18 0.002 0.04 0.029 0.07 0.002 0.06 0.00 0.00 2e-4 0.01 0.07
0.010 0.09 0.001 0.03 0.001 0.04 0.001 0.04 0.00 0.00 2e-4 0.01 0.62
0.010 0.08 0.001 0.04 0.002 0.04 0.001 0.04 0.00 0.00 2e-4 0.01 0.68
0.011 0.08 0.001 0.04 0.002 0.03 0.001 0.03 0.00 0.00 2e-4 0.01 0.53
0.009 0.08 0.001 0.04 0.002 0.03 0.001 0.03 0.00 0.00 2e-4 0.01 0.65
0.010 0.12 0.001 0.03 0.002 0.04 0.001 0.05 0.00 0.00 2e-4 0.01 0.48
0.039 0.36 0.008 0.18 0.010 0.29 0.009 0.28 0.00 0.00 3e-3 0.02 0.57
0.037 0.42 0.009 0.13 0.010 0.25 0.010 0.25 0.00 0.00 3e-3 0.02 0.60
0.036 0.38 0.008 0.32 0.010 0.21 0.010 0.21 0.00 0.24 3e-3 0.01 0.58
0.036 0.37 0.008 0.32 0.010 0.23 0.010 0.24 0.00 0.24 3e-3 0.02 0.58
0.009 0.03 0.000 0.00 0.007 0.03 0.000 0.00 0.00 0.00 0.00 0.00
0.012 0.05 0.001 0.02 0.009 0.04 0.002 0.04 0.00 0.00 0.00 0.06
0.011 0.04 0.001 0.02 0.007 0.04 0.001 0.03 0.00 0.00 3e-4 0.01 0.09
0.007 0.03 0.000 0.00 0.000 0.01 0.000 0.00 0.00 0.00 0.00 0.00
0.014 0.05 0.001 0.02 0.004 0.02 0.000 0.01 0.00 0.00 2e-4 0.01 0.07
0.027 0.12 0.003 0.12 0.014 0.06 0.002 0.06 0.00 0.00 0.00 0.09
0.015 0.07 0.001 0.01 0.007 0.03 0.001 0.01 0.00 0.00 3e-4 0.01 0.00
0.012 0.03 0.001 0.01 0.007 0.04 0.000 0.01 0.00 0.00 2e-4 0.01 0.03
0.019 0.08 0.003 0.05 0.010 0.09 0.005 0.09 0.00 0.00 9e-4 0.01 0.16
0.241 1.02 0.053 1.05 0.365 9.72 0.089 8.41 0.00 0.34 1e-2 0.03 0.13
0.018 0.07 0.001 0.06 0.011 0.09 0.002 0.04 0.00 0.00 7e-4 0.01 0.06
0.093 0.44 0.013 0.35 0.121 1.40 0.023 1.42 0.00 0.24 2e-3 0.01 0.15
0.141 0.63 0.030 0.56 0.223 3.88 0.063 3.95 0.00 0.24 5e-3 0.01 0.22
0.016 0.08 0.001 0.02 0.012 0.04 0.001 0.03 0.00 0.00 2e-4 0.01 0.06
0.013 0.04 0.002 0.03 0.010 0.07 0.003 0.06 0.00 0.00 9e-5 0.01 0.14
0.009 0.03 0.001 0.02 0.009 0.04 0.001 0.03 0.00 0.00 0.00 0.11
0.010 0.06 0.000 0.00 0.006 0.04 0.000 0.00 0.00 0.00 0.00 0.00
0.029 0.32 0.006 0.26 0.032 0.24 0.010 0.23 0.00 0.00 5e-4 0.01 0.17
0.032 0.21 0.000 0.02 0.024 0.11 0.001 0.03 0.00 0.00 0.00 0.02
0.015 0.13 0.003 0.13 0.010 0.08 0.003 0.08 0.00 0.00 6e-4 0.01 0.19
0.014 0.06 0.000 0.01 0.012 0.03 0.000 0.00 0.00 0.00 0.00 0.00
0.140 0.63 0.017 0.50 0.186 0.85 0.025 0.65 0.00 0.59 3e-3 0.01 0.11
0.016 0.11 0.003 0.10 0.009 0.05 0.004 0.05 0.00 0.00 1e-3 0.01 0.18
1.86 53.2 0.42 4.3 2.30 11.0 0.55 4.84 0.01 0.54 0.17 0.26 0.12

23.57 332.5 16.22 145.2 10.41 131.5 15.99 40.51 0.01 0.84 7.97 9.65 0.10

Table 5: Comparison of the P model and 3P for γ = 0.4

instances of that size efficiently enough.

21

Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H
0.029 0.08 0.003 0.04 0.018 0.11 0.005 0.12 0.00 0.00 2e-4 0.01 0.22
0.004 0.07 0.000 0.02 0.001 0.06 0.000 0.04 0.00 0.00 8e-5 0.01 0.50
0.004 0.06 0.000 0.02 0.001 0.05 0.000 0.03 0.00 0.00 1e-4 0.01 0.57
0.004 0.06 0.000 0.01 0.001 0.02 0.000 0.02 0.00 0.00 9e-5 0.01 0.28
0.003 0.03 0.000 0.02 0.001 0.03 0.000 0.02 0.00 0.00 9e-5 0.01 0.43
0.004 0.05 0.000 0.02 0.001 0.03 0.000 0.02 0.00 0.00 9e-5 0.01 0.38
0.016 0.20 0.002 0.14 0.005 0.27 0.004 0.26 0.00 0.00 1e-3 0.01 0.54
0.016 0.23 0.003 0.25 0.005 0.17 0.004 0.18 0.00 0.00 1e-3 0.01 0.56
0.014 0.20 0.003 0.12 0.005 0.16 0.004 0.15 0.00 0.00 1e-3 0.02 0.57
0.014 0.19 0.003 0.12 0.005 0.22 0.004 0.21 0.00 0.00 1e-3 0.02 0.57
0.007 0.02 0.000 0.01 0.004 0.02 0.000 0.01 0.00 0.00 0.00 0.06
0.013 0.06 0.002 0.02 0.008 0.05 0.003 0.05 0.00 0.00 0.00 0.15
0.010 0.03 0.001 0.03 0.005 0.04 0.001 0.04 0.00 0.00 2e-4 0.01 0.13
0.003 0.01 0.000 0.00 0.000 0.01 0.000 0.00 0.00 0.00 0.00 ***
0.007 0.04 0.000 0.00 0.001 0.01 0.000 0.00 0.00 0.00 0.00 0.00
0.019 0.06 0.000 0.02 0.007 0.05 0.001 0.04 0.00 0.00 0.00 0.04
0.013 0.05 0.001 0.02 0.004 0.02 0.001 0.03 0.00 0.00 2e-4 0.01 0.09
0.010 0.04 0.001 0.01 0.005 0.04 0.000 0.01 0.00 0.00 0.00 0.03
0.017 0.15 0.004 0.15 0.006 0.05 0.003 0.05 0.00 0.00 6e-4 0.01 0.22
0.270 1.61 0.070 1.66 0.285 2.28 0.090 2.40 0.01 0.69 1e-2 0.03 0.27
0.015 0.07 0.002 0.04 0.008 0.04 0.002 0.03 0.00 0.00 5e-4 0.01 0.13
0.092 0.61 0.017 0.55 0.090 0.43 0.023 0.40 0.01 0.41 2e-3 0.01 0.24
0.142 1.08 0.039 1.08 0.150 0.85 0.065 0.89 0.01 0.77 4e-3 0.02 0.38
0.013 0.05 0.001 0.03 0.008 0.04 0.002 0.04 0.00 0.00 1e-4 0.01 0.10
0.010 0.05 0.001 0.02 0.005 0.06 0.001 0.06 0.00 0.00 9e-5 0.01 0.12
0.008 0.03 0.002 0.03 0.007 0.04 0.003 0.04 0.00 0.00 0.00 0.26
0.009 0.08 0.000 0.00 0.005 0.03 0.000 0.00 0.00 0.00 0.00 0.00
0.027 0.23 0.007 0.23 0.024 0.23 0.010 0.24 0.00 0.27 4e-4 0.01 0.24
0.026 0.15 0.001 0.02 0.018 0.07 0.001 0.03 0.00 0.00 0.00 0.05
0.010 0.06 0.002 0.04 0.006 0.05 0.003 0.04 0.01 0.30 3e-4 0.01 0.25
0.010 0.02 0.000 0.00 0.008 0.02 0.000 0.00 0.00 0.00 0.00 0.00
0.139 0.82 0.023 0.56 0.162 0.90 0.037 0.74 0.01 0.57 3e-3 0.01 0.21
0.012 0.06 0.002 0.04 0.005 0.05 0.003 0.04 0.00 0.00 6e-4 0.01 0.26
1.82 38.3 0.55 21.5 2.126 17.2 0.67 6.71 0.02 0.60 0.17 0.25 0.21

28.83 373.6 15.48 206.6 9.670 136.5 15.00 49.36 0.03 0.74 7.73 9.24 0.36

Table 6: Comparison of the P model and 3P for γ = 0.8

6 Conclusions and future research

Routing under QoS constraints is a new, interesting application that motivates the devel-
opment of MINLP models with novel structures. In particular, the SFSP-DCR problem is
an interesting optimization model that shows both a “classical” flow/path structure and a
pretty uncommon nonlinear (albeit, fortunately, convex) resource constraint. This peculiar

22

combination allows for the development of specialized approaches, largely based on shortest
paths computations, for the case where the “nonlinear” features of the problem can be dealt
with easily, such as when one restricts all the resource allocations to be equal; however, the
general case gives rise to complex MISOCP models that require sophisticated reformulation
techniques to be solved efficiently enough with general-purpose tools.

Our computational results show that one can solve SFSP-DCR with high efficiency for
networks of realistic size, in particular if it is possible to cope with occasional (but very rare)
suboptimal solutions; in this case, the “three pronged” approach that combines combinatorial
heuristics and the use of MISOCP models seems to be a promising option. Let us mention
that split-second running times on ordinary hardware is feasible for practical applications,
because routing decisions can nowadays be demanded to a specialized Path Computation
Element (PCE) [16] that, unlike ordinary routers, can be computationally powerful and run
a significant amount of non-routing-related software such as a general-purpose optimization
solver. Besides, only one PCE per network is required, thus hardware, software and mainte-
nance costs would not be a serious issue. Thus, the approaches presented in the paper could,
at least in principle, be feasibly implemented in a real-world operating environments.

However, our results also show that there is still ample room for improvement. When the
size of the network increases, all the approaches become excessively slow. This is true not only
for the MISOCP models, but also for the (otherwise very fast) combinatorial heuristics, even
in its best case of all-equal costs; while efficient (approximated) versions could be devised
for general costs, it must be expected that their practical performances be significantly
slower than these for the all-equal case. Hence, we believe that the study of nonlinearly-
constrained shortest path (or flow) models is a promising new research venue that can both
lead to significant methodological advances and foster practically useful applications.

Acknowledgements

We are very grateful to Giovanni Stea for numerous suggestions and helpful discussions, and
to Lorenzo Saino for his precious assistance in using FNSS. This research has been partly
funded by the Italian Ministry of Education, University and Research (MIUR) under grant
PRIN 2009XN4ZRR.

References

[1] A. Frangioni and C. Gentile. Perspective Cuts for a Class of Convex 0–1 Mixed Integer
Programs. Mathematical Programming, 106(2):225–236, 2006.

[2] A. Frangioni and C. Gentile. A Computational Comparison of Reformulations of the Per-
spective Relaxation: SOCP vs. Cutting Planes. Operations Research Letters, 37(3):206–
210, 2009.

[3] A. Frangioni, C. Gentile, E. Grande, and A. Pacifici. Projected Perspective Reformu-
lations with Applications in Design Problems. Operations Research, 59(5):1225–1232,
2010.

23

[4] A. Frangioni, C. Gentile, and F. Lacalandra. Tighter Approximated MILP Formulations
for Unit Commitment Problems. IEEE Transactions on Power Systems, 24(1):105–113,
2009.

[5] G. Gallo and S. Pallottino. Shortest path methods: A unifying approach. Mathematical
Programming Studies, 26:38–64, 1986.

[6] Garr. http://www.garr.it.

[7] O. Günlük and J. Linderoth. Perspective Reformulation and Applications. In S. Leyffer
J. Lee, editor, Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes
in Mathematics and its Applications, pages 61–89. 2012.

[8] H. Hijazi, P. Bonami, G. Cornuejols, and A. Ouorou. Mixed Integer NonLinear Programs
featuring “On/Off” Constraints: Convex Analysis and Applications. Electronic Notes
in Discrete Mathematics, 36(1):1153–1160, 2010.

[9] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea. Tight End-to-end Per-flow Delay
Bounds in FIFO Multiplexing Sink-tree Networks. Performance Evaluation, 63:956–987,
2006.

[10] L. Lenzini, E. Mingozzi, and G. Stea. Eligibility-Based Round Robin for Fair and
Efficient Packet Scheduling in Interconnection Networks. IEEE Transactions on Parallel
and Distributed Systems, 15(3):254–266, 2004.

[11] L. Lenzini, E. Mingozzi, and G. Stea. A Methodology for Computing End-to-end Delay
Bounds in FIFO-multiplexing Tandems. Performance Evaluation, 65:922–943, 2008.

[12] A. Lori, G. Stea, and G. Vaglini. Towards Resource-Optimal Routing Plans for Real-
Time Traffic. In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal
Methods, Verification, and Validation, volume 6415 of Lecture Notes in Computer Sci-
ence, pages 214–227. 2010.

[13] Q. Ma and P. Steenkiste. Quality-of-Service Routing for Traffic with Performance Guar-
antees. In In Proc. IFIP International Workshop on Quality of Service, pages 115–126,
1997.

[14] Multicommodity problems. http://www.di.unipi.it/optimize/Data/MMCF.html.

[15] A. Orda. Routing with End-to-End QoS Guarantees in Broadband Networks.
IEEE/ACM Trans. on Networking, 7(3):365–374, 1999.

[16] F. Paolucci, F. Cugini, A. Giorgetti, N. Sambo, and P. Castoldi. A Survey on the Path
Computation Element (PCE) Architecture. IEEE Communications Surveys Tutorials,
to appear, 2013.

[17] M. Saad, A. Leon-Garcia, and W. Yu. Optimal Network Rate Allocation under End-
to-End Quality-of-Service Requirements. IEEE Transactions on Network and Service
Management, 4(3):40–49, 2007.

24

[18] L. Saino, C. Cocora, and G. Pavlou. A toolchain for simplifying network simulation
setup. In Proceedings of the 6th International ICST Conference on Simulation Tools
and Techniques, SIMUTOOLS ’13, ICST, Brussels, Belgium, Belgium, 2013. ICST.

[19] Sndlib. http://www.sndlib.zib.de.

[20] M. Tawarmalani and N.V. Sahinidis. Convex extensions and envelopes of lower semi-
continuous functions. Mathematical Programming, 93:515–532, 2002.

[21] The internet topology zoo. http://www.topology-zoo.org/.

[22] B. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications, 6(9):1617–1622, 1988.

[23] L. Zhang. Virtual clock: a new traffic control algorithm for packet switching networks.
ACM SIGCOMM Computer Communication Review, 20(4):19–29, 1990.

25

