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Abstract
A graphG = (V, E) is called a pairwise compatibility graph (PCG) if therestgian edge-

weighted tre€l and two non-negative real numbetsi, anddmax such that each ledf, of T
corresponds to a vertexe V and there is an edge.,{) € E if and only if dmin < drw(lu, Iv) <
dmaxWheredr w(ly, Iv) is the sum of the weights of the edges on the unique path ffaoi, in

T. In this paper, we focus our attention on PCGs for which theess tree is a caterpillar. We
first give some properties of graphs that are PCGs of a ci#erpiVe formulate this problem

as an integer linear programming problem and we exploitftmisulation to show that for the
wheels om verticesW,, n = 7,..., 11, the witness tree cannot be a caterpillar. Related to this
result, we conjecture that no wheel is PCG of a caterpillanalfy, we state a more general
result proving that any pairwise compatibility graph adnaitfull binary tree as witness trée

Keywords: Pairwise Comparability Graphs, Caterpillar, Centiped&heel.

I ntroduction

A graphG = (V, E) is apairwise compatibility grapffPCG) if there exists a treg, an edge-weight
functionw that assigns positive values to the edge3 @nd two non-negative real numbels,
anddnay With dyin < dmax such that there is a bijection between the verticeG ahd the leaves
of T (so each vertex € V is uniquely associated to a lelgfof T) and there is an edge,() € E
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if and only if dpin < drw(lu, Iv) < dmax Wheredr (1, 1y) is the sum of the weights of the edges on
the unique path frorh, tol, in T. In such a case, we say thatis a PCG ofT for dpi, anddmay in
symbolsG = PCET, W, dmin, dmay)-

It is clear that if a tre€l’, an edge-weight functiow and two valuesl,, anddm,ax are given,
the construction of a PCG is a trivial problem. We focus onréwerse of this problem, i.e., given
a graphG we have to find a tre&, an edge-weight functiow and suitable valuesl,j, anddmax
such thatG = PCET,w, dmin, dmay. Such a problem is called thgairwise compatibility tree
construction problem

The concept of pairwise compatibility was introduced inifth computational biology context
and the weight functiom has positive values, as it represents a not null distanceeder, this
problem has many other applications as it is part of a clapsatflems that are motivated by issues
in graph powers, intersection graphs, tree representatibeimilarity relations and evolutionary
processes [2].

There are several known specific graph classes that havepbeesd to be pairwise compati-
bility graphs, e.g., all the graphs with at most 7 verticeg|3cliques and disjoint union of cliques
[5], chordless cycles and single chord cycles [6], someqdar subclasses of bipartite graphs
[7], some particular subclasses of split matrogenic grg@hdriangle-free outerplanar 3-graphs
[9], Dilworth 2 graphs [10]. From the other side, it is knowrat not all graphs are PCGs [7, 11].
Furthermore a lot of work has been done concerning somecpkatisubclasses of PCGs as leaf
power graphs [5], exact leaf power graphs [2] and min-leafgrayraphs [8].

A caterpillar I’y is ann-leaf tree for which any leaf is at a distance exactly one feooentral
path calledspine A centipedd], is ann-leaf caterpillar whose edges incident to the leaves induce
a perfect matching. As an exampl@; is depicted in Fig. 1.

Figure 1: A 7-leaf centipedH-.

Caterpillars are interesting trees in the context of PCGs$n anost of the cases, the pairwise
compatibility tree construction problem admits as soluiotree that is in fact a caterpillar. For
this reason, we focus on this special kind of tree, providiegfollowing results:

e We study the properties of the graphs that are PCGs of a d&erpFirst we consider
the special case in which the edge-weight function assiggight’ 1 to each edge of the
caterpillar, and we provide a characterization of thesplggaObserve that this restriction is
natural as in many papers (e.g. see [5, 1]) the tree is nothtegigand the distance is defined
as the number of edges on the (unique) path connecting twedea

Then we consider the general case and expldiicsent conditions concerningy,ax anddmin
to guarantee that the PCGs are triangle free.

e We formulate the pairwise compatibility tree constructpyoblem as an integer linear pro-
gramming problem (ILP). We exploit this formulation to shtat the witness tree of the



wheelsW,, n = 7,...,11 cannot be a caterpillar, whe¥d, is the graph formed by connect-
ing a single vertex to all vertices of an £ 1)-cycle. Related to this result, we conjecture
that no wheel is PCG of a caterpillar. We recall that it is aaywnown that\; is PCG [4],
while it is not known whethew,,, n > 8 is a PCG or not.

As a consequence of this latter result, caterpillars caganerate all the PCGs, so we focus
on a more general tree structure, namely full binary treebindry tree is said to baull if all its
internal vertices have two children; in other words, alliiteernal vertices, except for its root
have degree exactly 3; we denote a full binary treé\by

Concerning PCGs, we prove that it isfiscient to focus only on full binary trees, i.e.@&is a
PCG then one of its possible witness trees must be a full pinee.

2 Preiminaries

In this section we recall some graph theory definitions amdestheorems dealing with PCGs, that
will be useful in the rest of the paper.

Thek-th power of a graph Gdenoted byGX, is a graph with the same set of verticesaaand an
edge between two vertices if and only if@ithere is a path of length at mdsbetween them. The
n vertex simple path is denoted .

Given two graphs defined on the same vertexGgt (V,E;) andG;, = (V, Ey) such that
E, C E4, theirdifference G — G, is the graph defined on the node $etwhose edges are all the
edges in5; that are not irG,.

A unit interval graphis the intersection graph of a set of unit length intervalshareal line. It
has one vertex for each interval in the set, and an edge be®veey pair of vertices corresponding
to intervals that intersect. We denote bythe set oin vertex unit interval graphs.

Given a centipedgl,, consider its plane representation in which the path reptey its spine
lies on a horizontal line, and the leaves lie on a paralleiZootal line, ordered in a way that does
not introduce crosses (as an example, see Fig. 1). We naneriides and edges of, as follows:

o letly, Iy, ..., I1, |, be the leaves, considered from left to right;
e lete,i =1,...,nbe the (unique) edge incident to the Igaf

e lets, ..., s, be the vertices on the spine, considered from left to righiss is the parent
oflj,i=1,...,n;

e finally, lete,,; be the edge on the spine connecting vertgesds,;, i =1,...,n— 1.

In view of the following result, it is possible to get rid ofr@r kinds of caterpillar structures
and restrict our attention to consider only centipedes.

Theorem 1 [4] Let G be an n vertex graph;, andIl, be an n leaf caterpillar and centipede,
respectively.

Let G= PCGEI'n, W, dmin, dmax)- Then itis possible to choosé and d,,,, such that it also holds
that G = PCH(I1,, W', Omin, A0y -



We conclude this section with some useful general propgecbacerning the edge-weight func-
tion of a pairwise compatibility tree.

Theorem 2 [12] Let G = PCET, W, dmin, dmax), Where 6hin, dmaxand the weight \(e)Aof egch edge
e of T are nonnegative real numbers. Then it is possible toshoaatural numberdyin, dmaxand
an edge wight functiow such that for any ay(e) is a natural number and G PCHT, W, Amin, Gmayx)-

Theorem 3 [4] Let G = PCG(T, W, Uin, Omay)- It is possible to choose natural numbeksn, dmax
and for any e in ET), W(€), such thaminegmy W(e) = 1 and G= PCET, W, Amin, dmay) -

Due to the last results, in the rest of the paper we will asstimaethe weights andmin, dmax
are integers and that the smallest weight is 1.

The next section is devoted to the study of some properti®€@s for which the witness tree
is a centipede.

3 Propertiesof PCGsof Centipedes

There are a number of papers dealing with the attempt of cteaiaing the classes of PCGs de-
rived by special trees or by special valuesdgf, anddny for instance, PCGs of a st& , are
characterized in [12], PCGs of any tree with, = dmax = 3,4, 5 are studied in [2] and PCGs of
caterpillars for whichd.,j, = 0 are considered in [13].

In this section we try to derive some properties of the PCG=ofipedes. As they seem to be
very general graphs, we first consider a simplified model,we assume that(e) = 1 for each
edge of the tree. Observe that this restriction is natural asany papers (e.g. see [5, 1]) the tree
is not weighted and the distance is defined as the number ekesigthe (unique) path connecting
two leaves. Then, we slightly extend the class of weighttions we consider, and finally we give
some properties whem is arbitrary.

3.1 Unit edge-weight

Observe that the problem to characterize PCGs of catarphias been considered in [13] in the
special case in whicth,, = 0 (in such a case PCGs coincide with the claslsaezf Power Graphs
[14]), providing the following result:

Theorem 4 [13] Let G be an n vertex connected graph dngdbe an n leaf caterpillar and let the
edge-weight function(a) = 1 for each edge e df,.
Then the following statements are equivalent:

1. G= PCGQIy, U, 0, Amay);

2. Gis aunitinterval graph.

We now characterize the class of graphs that are PCGs of ipedatwith unit edge weights.



Theorem 5 Let G be an n vertex connected graphhe an n leaf centipede and let the edge-weight
function e) = 1 for each edge e dfl,.
Then the following statements are equivalent:

1. G = PCqub u, dmin’ dmax)’
2. G= P2 _ pin=3 it q > 3and G= Pim? otherwise.

Proof. Let G = PC{II,, u, dnin, dmay). Observe that due to the unitary weights, the weighted
distance between any two leaveslIip coincides with the length of the shortest (unique) path
between them. Thus, two vertices are adjacer@ ihand only if their corresponding leaves are
connected ifl, by a path of a length belonging to the intervahf, dmay-

So, if we consider the verticas, .. ., v, of G lying on a line, each of them is connected to the
vertices at distancé.,i, — 2, .. ., dnax— 2 on the line. These edges can be obtained by considering
then vertex pathP, and computing itsdmax— 2)-th power; but this graph contains even edges that
are not inG, and these edges are exactly those preseR{f. On the other hand, based on the
same argument, it is easy to verify thaGf= P2 — pd"=3 then it is a PCG of the centipede
with unitary weights.

To conclude the proof, observe that valuegigf, too small imply that this constraint has no
effect because every pair of leaves is at distance greater trequal tod,. =

Let #, be the class afl vertex graphs that are PCGs of a unit edge-weight centipedeeasy
to see tha®®, N I, # 0 (indeedP, belongs to this set); moreoveP, — 7, and1,, — P, are both
non empty. Indeed, observe that @@ (115, U, dyin, dmax) SUCh thatyax — dmin = 3 anddyi, > 2
contains & 3 as an induced subgraph. Hence such graphs belofAg-+a’, (indeed unit interval
graphs aré 3-free). Furthermore, it is not flicult to see that the unit interval graph constituted
by two copies oKy, joined by an edge cannot be expressed in the ferrr 2 — PAn=3 and thus
itisin I, — .

This is not a contradiction, as Theorem 1 does not apply &rp#ars with unit edge-weight,
and so the result in Theorem 4 is not a particular case of hdtii@ Theorem 5; instead, this latter
result constitutes a further puzzle-piece toward the cetmgmsion of the PCG properties.

Exploiting the same technique used in the proof of Theoremé can state the following
results:

Corollary 1 Let G be an n vertex connected graph digan n leaf centipede. Furthermore, let
be given an integer value k and define the edge-weight funation I1, as follows: y(g) = k and
Ux(eni) = 1foreachi=1,...n.

Then the following statements are equivalent:

1. G= PC{HIIp, Uk, Onmin, Amay);

2. G= pimac2k _ pnin=2-1 it q 5 2k + 1 and G= P> otherwise.

Corollary 2 Let G be an n vertex connected graph digan n leaf centipede. Furthermore, let
be given an integer value k and define the an edge-weightiurigton I1,, as follows:Uk(e) = 1
andl(e.i) = kforeachi=1,...n.

Then the following statements are equivalent:
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1. G= PCG(Hn, Gk, dmin, dmax);

Amin—2

_px

dmax-2

it dnn > 2k+1and G= P * ? otherwise.

dma)bZJ

2. G=P; *

Corollary 3 Let G be an n vertex connected graph digan n leaf centipede. Furthermore, let
be given an integer value k and let the edge-weight fundijeak for each edge e dt,.
Then the following statements are equivalent:

1. G= PC{IIp, Uk, Omin, Amay);

dmax—2k dmin—2k

2.G=P, ¥ J_P % ifdyn> 2k+ 1and G= P}

dmax-2k
k

! otherwise.

3.2 General edge-weight

Let us now consider the more general case in witice PCHII,,, W, dmin, dmay), for any edge-
weight functionw, whose values are integer numbers, and their minimum valigaccording to
Theorems 2 and 3. We exploit some conditionsxgd,,i, anddn.x under whichG presents some
interesting properties.

Theorem 6 Let G = PCHIIp, W, dmin, dmax) @and maxeer;, W(€) = p. If dnax < 2dmin — 2p then G is
triangle free. On the contrary, ifg, = dmax = d, for each pair of edge@;, vj) and(v;, v) that are
in G, if w(ej) = d/2, then the edgév;, ) is in G, too.

Proof. Let G be a graph satisfying the condition of the theorem. Supposthe contrary
that there are three vertices v; andv, in G that form a triangle, i.e. such that (v;), (v, V)
and {;, v) are edges. Consider their corresponding ledyésandl,; without loss of generality,
assume < j < k. The existence of edges (v;) and {;, v) implies thatdmi, < d, w(li, |;) < dmax
anddmin < di, w(lj, k) < dmax. Consider the edgeri( v). We have:

A, w(lis k) = di,w(lis 1) + diw(ls [) — 2w(e;)
> 2dmin - 2W(ej).

In order to prove the first claim, observe that this lattemtées greater than or equal t@g, — 2p.
The hypothesis@i, — 2p > dnaximplies a contradiction.

To prove the second claim, notice thakz — 2w(e;) > diiy if and only if 2w(ej) < dmin.

On the other handjy, w(li, l) = w(g) + W(e) + X+ Y < 2dmax— 2W(g)), and this latter term is
upper bounded bghyax if and only if 2w(g;) > dmax. JOining together the two obtained inequalities,
we have that\(, v) is surely an edge db if dmax < 2W(gj) < dmin. Since, by definition of PCG,
min < dmax the claim follows. m

Given a graplG, letv,, ..., Vv, be any ordering on the line of its vertices. We define fte
with respect to nodes,w; and \, and denote it by j, the set of edges/( v) for eachi <k < j.

Theorem 7 Let G= PCHII,, W, dmin, dmaxy) and letwe) < w(e,1)+w(ey,i), foreachi=1,...,n-
1. In other words, if i< j <K, dy,w(li,1;) < dm,w(li, lk), for each k> j. If (vi,v;) and (v, w), | <K,
are edges of G, then the whole fan;Fbelongs to G.
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Proof. First observe that, if,v;) and {;, v) are edges o6, thendmin < diy, w(li,l;) < dmax
anddmin < d, w(li, k) < dmax Let us now consider a nodg, such thatj < m < k. To prove the

claim we have to show thak,, < diy, w(li, Im) < dmax It is easy to convince oneself that:

dHn,W(Ii’ Im) = dHn,W(Ii, Im—l) - W(em—l) + W(en+m—l) + W(em)
= dl‘In,w(Ii, Im+l) - W(em+l) - W(en+m) + W(em)

From the hypothesis(e,) < W(én,1) +W(€,:m), foreachm=1,...,n—1 and from the previous
equalities, it follows thatly, w(li, Im-1) < dn,w(li, Im) < do,w(li, Ime1). Iterating these inequalities,
we havedmin < d, w(li, 1) < dm,w(lis Im) < i, w(li, Ik) < dmax SO the claim follows.m

4 ThelLP Model

In this section we propose an Integer Linear Programming)thodel for the pairwise compatibil-
ity tree construction problem, when the shape of the treeveng That is, given an vertex graph
G = (V,E) and am leaf treeT, we want to determine whether there exists an assignmegatijoe
mappingo : V — F) between the vertex s& and the seF of the leaves off, integer weights
w(a) for each edga € A of T, and two integersin < dmaxsuch thatc = PCGET, W, dmin, Amax)-

In the following, we denote b = {(i, j) € Vx V : i < j} the set of all possible edges@
and byF = {(u,v) € F xF : u < v} the set of all pairs of leaves ifi; since the shape df is
fixed, for each(, v) € F we know the subsei(u, v) C A defining the unique path between the leaf
u and the leak in T. With this notation, we want to determine whether it is pblsto satisfy the
condition

(i,]) e E &= dmin < Xaca@i).o() W@) < dmax (1)

We will show that we can (reasonably easily, for snmplsolve this problem by formulating it
as an ILP and using available tools. To do that, we first intoedthe classical (binary) assignment

variables
(1 ifo()=u
=10 otherwise

for all n? pairs {, u) € V x F, together with the @ assignment constraints
DievXu =1L ueF and Suer Xu=LieV. (2)
For each (i, V) € F we then introduce binary variables

(1 (o), o) € E
Yw=10 otherwise.

In order to guarantee the intended semantic, for eaoh) € F and {, j) € E we add

the constrainy,, > X, + Xjy — 1 if (i, j) e Eand (3)

the constrainy,, < 2 — Xy, — Xjv if (i,]) ¢ E. (4)



These do the intended job. Indeed, consider two leavel, af v € F and two vertices of5,
uve V. Ifi# o *u)orj# o }(v), then at least one among andx;, is 0. If (i, j) € E then the
right-hand-side of (3) ix 0, while if (i, j) ¢ E then the right-hand-side of (4) is1; in either case
the constraint is redundant singg € {0, 1}. Thus, the constraint only becomes “active” for these
quadruples ({ v), (i, j)) such thatx, = x;, = 1, i.e.,i = o*(u) andj = o(v); there, if (, j) € E
then constraint (3) forceg, = 1, while if (i, j) ¢ E then constraint (4) forceg,, = 0.

Given these constraints, we can model the “if” part of (1).dbothat we first introduce (pos-
itive) integer variablesdnmin, dnax @andw(a) for eacha € A, with obvious meaning. We must
now represent by linear constraints, for eaahvf € F, the logical condition “ify,, = 1, then
Omin < Yacauy W(@) < dmax- The standard approach for representing this within anwidald ask
for a-priori knowledge of a “sfliciently large” valueM, i.e., such thaM > 3;.auy) W(a) for all
possible @, V) € F and each possible feasible valuenofif any). If we had suchM at our disposal,

we could write the two classical “bii# constraints”

ZaeA(u,v) W(a) < dmax + M(l - yuv)

5
Sacauy) W@) = dmin — M(1 - yu) . (5)

Wheny,, = 0, both constraints are clearly redundant; converselynwhe= 1 we precisely obtain
the condition that the weight of the patiu, v) lies betweerd,,i, anddn.x. Unfortunately, there is
not any obvious way to find such & a priori.

However, modern ILP solvers like the one we usgd,ex 12.3, allow to add to the formula-
tion the so-calledndicator constraints These have the generic form

binary variable= value — linear constraint

and their semantic is that the “linear constraint” must tesBad by any feasible solution of the
ILP where the “binary variable” has the prescribed “valueiti{er O or 1), while the solutions
where the binary variable does not have that value can eitke constraint. Therefore, the two
indicator constraints
Yw=1 — ZaeA(u,v) W(@) < Omax
Yw=1l — ZaeA(u,v) W(@) > dmin

have precisely the same semantic of (5), while not requkirayvledge of\M.

(6)

_ To enforce the “only if” part we need to introduce two furttbémary variables for eachu(v) €
F:
.1 (oMU, o HW)) ¢ E and Tacagy W(@) = Onax+ 1
Yo =10 otherwise
o [1if (™M), o7(v)) ¢ E and Y cauy W(@) < Omin— 1
Yo =10 otherwise

These need be linked to tlyg, by the constraint

1-Yw =Y+ Yo (7)

which guarantees that ¥f,, = 1 (and therefor@in < X acauy W(@) < dmax because of (6)) then

vy + Yoo = 0, while if y,, = 0 then exactly one among, andy;, is equal to one. We can then
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finish up with the two further indicator constraints

Yo=1 - ZaeA(u,v) W(@) > dmax+ 1

8
Yw=1 - ZaeA(u,v) W(@) < din—1 (®)

which enforce that whenever one (and only one) amgpandy;, is equal to one, theR ,cau.v) W(a)
lies outside the intervabl,in, dnay (in either of the two possible directions).

Collating all the above constraints provides a valid ILRviatation (with indicator constraints)
of our problem, that can therefore be solved by standarddbl&t Note that we have not specified
any objective function; indeed, since we are only inteikgtedetermining the feasibility of the
integer system, we can leave the costfioents of all variables to zero. Alternatively we may
add a single variable, constraints

vV > w(a) acA

and minimize the objective function this results in an optimization problem whereby we seek
for the labels (if they exist) with minimum maximal value.

The model ha®©(n?) binary variables|A| + 2 general integer variables, a@gn*) constraints,
primarily due to (3) and (4) (all other constraints @¢n?)). Even for relatively smalh, the
corresponding ILP may be rather large, and therefoifecdlt to solve. If the permutatioor were
fixed, then the problem would considerably simplify: we wbulot need thex, variables and
the corresponding constraints, and for eagivf € F we could determine a-priori whether or not
(c~Y(u), " 1(v)) € E, that is, the value of thg,, variables. Let us denote Bythe subset oF such
that @1(u),c1(v)) € E, i.e.,yu = 1. We must of course keep the general integer variables
Omin @anddnmax in the model, but for eachu(v) € F we can substitute the corresponding indicator
constraints (6) with the simple

dmin < ZaeA(u,v) W(a) < dmax-

For (u,V) ¢ F (yu = 0), we must rather constrafa. o,y W(2) to lie outside the interval; however,
we must still choose the “side” of the interval, and therefae still need indicator constraints like
(8). Yet, because we know that, = O, (7) gives 1=y, + Y., I-€., 1=V, = Yi» that is, the two
variablesy?;, can be eliminated, and (8) can be simplified to

Zy=1 — ZaeA(u,v) W(@) > dpax+ 1 )
zy=0 — ZaeA(u,v) W(@) < dmin—1

for binary variablesz,, only defined for ¢,v) ¢ F. Therefore, denoting bk = |F| - |F| <
IF| = n(n — 1)/2 the cardinality of the complement &f the model for fixedr only hask binary
variables)A| + 2 general integer variablekindicator constraints an| = n(n—1)/2 — k linear
constraints. This model is significantly easier to solve:rfo= 7, it only takes a small fraction
of a second using a state-of-the-art ILP solver lijpdex 12.3 on an ordinary laptop computer.
Of course, the drawback is that we need, in principle, toesohof such models, one for each of
the possible permutations, in order to solve the overall problem. However, when we wapiis
model to the case in whidB is the 7 vertex whedl\; andT is the centipedé&l;, we can exploit



the symmetry of the tree and of the graph to reduce the nunflparmutations to be considered.
We can extend these arguments easily by induction to reche@umber of the permutations
that need to be considered for< 11. We have therefore written a sm&h+ program that
automatically constructs all these models, each one qunekng to one fixed permutatian,
and solves them witliplex 12.3. None of these models turned out to have any feasible salutio
The code and the accompanying files (encoding the necessamyfations) are freely available at
http://www.di.unipi.it/optimize/Software/PCGCat.html.

Calling M the class of graphs that are PCGs of a caterpillar, in viewhafofem 1, this proves
the following result:

Theorem 8 The wheels Wn=7,...,11do not belong toM.

We recall that each gragBwith at most 7 vertices is a PCG, and the witness tree is apzid|
except in the case dlV;, whose witness is a more general tree [4]. So, the previcesrém
concludes the study of the graphs with at most 7 vertices.

5 PCGsof general trees

In the general case, the ILP model can be used to check whatgmen graph is PCG or not
implementing it by choosing the possible witness ffe@mong all then leaf trees. Of course, this
is impracticable. For this reason, in this section we stu@%PR of general trees with the aim of
understanding if there exists a unifying tree structurevalhg one to check only it instead of all
possiblen leaf trees, so taking a role that is analogous to the cergifadall the caterpillars.

Theorem 9 Let G be a graph, and T a tree. If G PCET, W, dnin, dmay, then there always
exists a full binary tree\, a new edge-weight function’ wand a new value /d,, such that G=
PCGA, W, Amin, 00

Proof. GivenT with a positive edge-weight functiow, we will first constructA, with a non
negative edge-weight function” and then we deduce a positive edge-weight functofor A,
modifying the value ofi, o« accordingly.

We perform a breadth first search ©neach time we examine a vertexand its children ofT,
we construct a portion ok inserting bothv and its children, guaranteeing that the new structure is
a full binary tree. Namely, let us cath(v) the number of children of andN*(v) the subtree o
induced by and by all its childrerty(v), . . . Ceny (V). If ch(v) > 3, then we substitutl*(v) with a
ch(v) leaf complete binary tree (that is, all levels, except fgagshe deepest one are fully filled,
and, if the last level is not complete, the nodes of that lavelfilled from left to right) whose root
corresponds t@, and whose leaves correspond to the childrem iofthe same order from left to
right. On this portion ofA we define the weight functiow”: calling p(u) the parent vertex of a
vertexu, for each edged(v), p(ci(v))), 1 <i < dedVv), definew”((ci(v), p(ci(v)))) = w(ci(v), v); the
weights of all the other edges of the complete binary treesar¢o 0. This portion oA must be
merged with the previous currently constructed part, bylapping the two copies of, the one
generated whew is considered as child of its father and the one just genér&ace that all the
vertices ofT have been examined,is completely constructed. An example of execution of this
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procedure is depicted in Figure 2.

Itis easy to check that is a full binary tree and th&®C (T, W, dmin, dmay) andPCGE(A, W, Amin, Amay)
are in fact the same grajih

It remains to modify the non negative edge-weight functighinto a positive functionw’,
varying the value ofl,,ox accordingly. Let us define:

L= min {d-—d (]
(UVZEG) | min A,w’(u v)

dmax - d/\,w” (Iu, |v)|}

N = ‘{e: ee E(A),w(e) = O}‘.

L is the smallest distance between the quantiigs dnax and the weighted distances on the
tree of the paths corresponding to non-edgeS;dfl is the number of edges of of weight 0.

Observe that, unless coincides with the cliqu&, (which trivially is PCG of a full binary
tree), there always exists a pair of leaves such that thsfamice onA falls out of the interval
[dmin, dmax] @nd hencel > 0. Furthermore, as any edge incident to a leaAirs strictly greater
than 0, it is not diicult to see that in a full binary tred < 2n. So, the value = ﬁ is well
defined.

Now define a new weight functiow on A by assigning the weight to any edge of weight
0. More formally,w'(e) = w”’(e) if w’(e) # 0 andw'(e) = e otherwise. In this way the distance
between any two leaves ik can result increased by a value upper boundedNbyx L. Set the
new valued’..., = dmax+ €N.

max

The following three observations conclude the proof:

e any distance between leavesirthat was strictly smaller thadh,, with respect to the weight
functionw” remains so after this transformationed¢ < L;

e any distance that was strictly greater thdy, with respect to the weight functiow” is
strictly greater thal’ .. due to the definition ok;

max

¢ any distance that was in the interval,[,, dmad With respect to the weight functiow” is
now in the interval flmin, d,4.d-

m Unfortunately, the previous theorem does not guaranteawe & unique tree, but it is anyway an
important improvement in the complexity of the pairwise @atibility tree construction problem,
as it leads to consider only a particular subclass of alhtleaf trees.

6 Conclusionsand Open Problems

In this paper we consider the pairwise tree constructiomlpro with particular attention to the
cases when the pairwise compatibility tree is a caterpilldris was first motivated by the fact
that in the literature, the pairwise compatibility tree stnction problem of many graphs has as
a solution a tree that is a caterpillar. Moreover, due to thgke and symmetric structure of this
class of trees it is also one of the first non trivial cases todresidered when trying to identifying
the class of PCGs generated by a specific tree structure.
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a. b.

Figure 2: a) An example of treé. b) T transformed into a full tree; edges without a weight are
intended to have weight O.

It is known that every graph that is PCG of a caterpillar is P&@ centipede (for opportune
values of weight functiond,i, anddnay). In view of this, we first characterize the claBs of
graphs that are PCGs of a unit edge-weight centipede, andiegut it in relation with the class
I, of unitinterval graphs, that are all the PCGs of a unit edgggim caterpillar in the special case
whendqin = 0.

For what concerns arbitrary edge-weighted centipedesjweesgme conditions ow anddnax
so thatPCHIT,, w, dmin, dmax) IS triangle free or has a certain fan as a subgraph.

Then, we propose an ILP model when the structure of the trgevé. We apply it to the
special case when the graph is the 7 vertex wki¢ednd the tree a centipede, so proving that
(that is known to be PCG) cannot be PCG of a caterpillar. Asrs@eguence, caterpillars cannot
generate all the PCGs, so we focus on a more general treéuse&ruwith the aim of understanding
if there exists a unifying structure allowing one to checkyaninstead of all possibl@ leaf trees,
so taking for all trees a role that is analogous to the cedéper all the caterpillars. We individuate
this general structure in the full binary trEg Unfortunately for our purposes, this structure is not
as good as the centipede as, for a fixedhere is a uniqua leaf centipede but many leaf full
binary trees. Nevertheless, they are much less than ati fewef trees.

Clearly this work gives rise to many open problems.

First, reminding thatM denotes the class of PCGs generated by a caterpillar, itdiosil
interesting to solve the following:

ProeLEM 1: Give a complete characterization of the clads

Moreover, we have shown th¥¥; is the smallest graph which is not a PCG of a caterpillar.
As the same holds falg, ... Wy4, it is natural to ask if this results extends to the whole slafs
wheels, i.e., if every wheel graph), with n > 9 is not a PCG of a caterpillar. In this context, we
state the following conjecture:

Conjecture 1l Let n be an integer such thatn7, then W, ¢ M.
In fact, it is not even known if wheels on at least eight vegiare PCGs. We do not propose a
conjecture here, although there is some evidence that ¢fneps are not PCGs: for example, the
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tree presented in [4] fON; cannot be generalized and it seems it is an ad hoc constdotithis
particular case.

Finally, it would be clearly interesting to generalize thd°Imodel in order to enlarge the
class of problems it can solve. For instance, it could beiptesglthough not straightforward) to
extend it to determine whether a fixed graphs the PGC of any tree (with fixed leaf d€j that
is a subgraph of another given gragh Even modeling the problem of proving whether or Got
is a PCG of any tred@, without any assumption on the shapelgfappears more flicult, but it
would obviously be very helpful for the study of this problem
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