
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-13-13

Extending a probabilistic
language based upon
Sampling Functions to

model correlation

Leonardo Bartoloni Andrea Canciani Antonio Cisternino
Davide Morelli

September 3, 2013
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726





Extending a probabilistic language based upon

Sampling Functions to model correlation

Leonardo Bartoloni Andrea Canciani Antonio Cisternino
Davide Morelli

September 3, 2013

Abstract

Probability is permeating many applications of computer science, rang-
ing from probabilistic reasoning to stochastic simulations. Therefore, re-
searchers have started working on domain specific languages to target
probabilistic computations, in order to support better understanding and
development of probabilistic models. Among the proposed approaches
sampling functions is one of the most promising: distributions are de-
scribed as functional mappings from the unit interval (0,1] to probabil-
ity domains which allows expressing a very broad class of distributions.
The key advantage of this approach lies in its ability of lifting operations
on values into operations on related distributions. The current state of
the art frameworks, however, lack the ability to properly express vari-
able correlation in a clean and composable way, which is a major issue
of many real-world problems. In this paper we present Liχely, a proba-
bilistic DSL which extends the sampling functions approach by providing
explicit means for expressing variable correlation in a composable way and
its implementation in F#.

1 Introduction

Probabilistic approaches are interesting for solving computational problems be-
cause often they overcome practical limitations of deterministic modeling when
dealing with the uncertainty of reality. They have been applied successfully in
many fields of computer science such as artificial intelligence [5] and scientific
computing [1]. This led to an effort to define domain specific programming
languages which provide types describing distributions to address probabilistic
computations. The goal of those languages is to express probabilistic algorithms
with a concise and simple code by hiding the mapping of probabilistic compu-
tation onto deterministic machines.

Most of those languages only deal with finite support distributions [2, 6],
while in many applications the domain is infinite or continuous (for example
the distributions representing positions in localization problems). Park et al.
have shown with λ© [4] that it is possible to extend the expressivity of the
language by forfeiting an analytical representation of the measure function and
by specifying a distribution as the algorithm which generates samples according
to it. Limiting the queries allowed on a distribution to sampling is an acceptable

1



trade-off for expressiveness, because sampling allows to calculate approximate
answers to expectation queries by using the Monte Carlo method [3] and to
improve those answers simply by averaging over more samples.

The λ© language however does not offer support for modeling correlation
explicitly: while it is possible to define a distribution of correlated sample tu-
ples, is it not possible to preserve correlation between two different distribution
objects.

Correlation is a characterizing feature of most probabilistic scenarios, yet it
is easy to forget about it even for experienced researchers, introducing subtle
errors in the results (for example averaging away systematic error on a series of
data). To the best of our knowledge, no other sampling probabilistic language
addresses correlation explicitly.

In this paper we describe how it is possible to describe correlation by in-
troducing random variable types. Random variables are distributions enriched
with identity information, which encodes dependency and correlation.

A straightforward implementation of the random variable concept requires
a global mutable status to ensure that the identity information is different for
each random variable. We have chosen to give the first implementation of this
extension in F# because of its double nature: the functional syntax allows a one
to one mapping of the λ© language, and its object-oriented interface provides an
easy way to implement the equality by instance required for the implementation
of random variables.

2 Distributions in Liχely

We want to describe distributions as generalized sampling functions, by imple-
menting the semantics described in λ©. A generalized sampling function for a
distribution is an algorithm which any number1 of independent uniform samples
in the interval (0, 1] to generate a sample for that distribution. In Liχely we
use an imperative syntax to define generalized sampling functions, in a similar
way as in λ©. The syntax to specify distributions in Liχely uses the following
constituents2:

• The dist{ } bracketing delimits the environment where the custom syn-
tax is used in addition to the standard F# one.

• The uniform keyword represents the uniform distribution in the (0, 1]
interval, which is given as a language constant.

• The let! keyword represents the operation of extracting a sample from
an existing distribution to use its value in the enclosed expression.

• The return keyword is used to yield the value of the computed sample
for the distribution which is currently being described.

Here we show an example of how a Bernoulli distribution (i.e. a binary distri-
bution which is true with probability p) is expressed in the language:

1A single uniform sample can always be split in two (by separating odd and even digits of
its decimal representation), therefore this formalism is mathematically equivalent to sampling
functions which use exactly one sample, even if this is not true for limited precision numbers
as the ones we usually have in calculators

2the syntax is extended using F# computational expressions[7]

2



let bernoulli p = dist {
let! u = uniform in
return u < p }

A sampling algorithm is a standard algorithm over values, hence it inherits all
the advantages of classical algorithms. For example, it is possible to define a
distribution in terms of another one, and also to give a recursive definition:

let rec binomial x n = dist {
if n = 0 then

return 0
else
let! b = (bernoulli x) in
let! r = binomial x (n-1) in
if b then
return 1 + r

else
return r

The language can also describe combinations of discrete and continuous distri-
butions over the same domain. The following one is a distribution whose value
is 0.5 with 50% probability, and uniformly distributed between 0 and 1 in the
other half of the cases:

let point_uniform = dist {
let! x = uniform in
if x > 0.5 then

return 0.5
else
return 2.0 * x

}

Outside of the sub-language, is it possible to get a sample sequence by using a
random source for uniform samples:

let sampleSeq = getSamples distribution generator

3 Modeling dependence and correlation

Two random variables X and Y defined respectively on domains DX and DY are
independent when for any pair of events SX ⊆ DX and SY ⊆ DY the probability
of them occurring together is the same as the product of the probabilities of them
occurring separately, i.e.

∀SX ⊆ DX , SY ⊆ DY : P ((X,Y ) ∈ SX × SY ) = P (X ∈ SX) · P (Y ∈ SY )

If we characterize a random variable only with its distribution, it is impossible
to have two random variables which are not independent.

To understand why, let us consider a basket of dice. Half of them are normal
dice, the other half are loaded dice, which when thrown always show odd num-
bers. We pick one die at random from the basket, and roll it twice, considering
only whether the result is even or odd. Then, we put it back in the basket, pick
another one and roll it once. Let us call X, Y and Z the random variables repre-
senting the result of the three rolls in chronological order. Their distribution is

3



the same: 1/4 probability of getting an even number, 3/4 probability of getting
an odd number. If we suppose that the distribution is enough to characterize a
random variable, we would not be able to distinguish between any of them, in
particular Y and Z. However, this is not correct, because Y is correlated with
X while Z is not: if we compute the joint probabilities we obtain

Y even Y odd Z even Z odd
X even 1/8 1/8 1/16 3/16
X odd 1/8 5/8 3/16 9/16

We want to enrich the definition of random variables with meta-information
about their dependencies, which would allow to calculate the distribution for any
expression of random variables in a general way, without assumptions on their
correlation. We will show how this information is tracked in random variable
inside Liχely and allow us to correctly model this scenario.

4 Random variables

To overcome the inability to model correlation with distributions alone, we add
another sub-language to define random variables declaratively. In our model a
random variable is characterized by

• an instance identity, i.e. two random variables are equal only if they are
aliases of the same object

• a dependency list, i.e. a list of the random variables it depends from

• a conditional distribution function, i.e. a function which calculates the
distribution for the random variable given the value of the dependencies.

We describe a syntax for expressing random variables which is oriented to condi-
tional distributions. The new syntax is introduced by the rndvar{ } bracketing.
It uses the same let! and return keywords used for distributions, but with a
different semantic. The code fragment defines the random variable var

let var = rndvar {
let! x1 = X1 in
let! x2 = X2 in
...
let! xn = XN in
return f(x1,x2, ..., xn)
}

meaning that

∀x1, x2, . . . , xn : Dist(var |(X1 = x1)∧(X2 = x2)∧. . .∧(Xn = xn)) = f(x1, x2, . . . , xn)

The let! keyword introduces a dependency, and the return keyword expresses
the conditional distribution function. We exploit the object-oriented nature
of F# to have instance identity, i.e. we want to preseve the ability to create
two random variables with the same definition as different objects, and thus
distinguish them in the dependency tree. This is important because we want to
have aliasing (i.e. to be able to address the same event with multiple different
names), yet we want to keep the possibility of creating different events with the
same definition, for example:

4



let coinflip1 = rndvar { return bernoulli 0.5 }
let coinflip2 = rndvar { return bernoulli 0.5 }
let same x y = rndvar {

let! a = x in
let! b = y in
return dist { return a = b }
}

in this example we want the distribution associated to same coinflip1 coinflip1

to be always true, while we expect same coinflip1 coinflip2 to be true only
half of the times.

Now, let us consider how the example from section 3 can be modeled using
rndvar. First we define the distributions of results for normal and loaded die

let fairDieDistribution = dist {
let! isEven = bernoulli 0.5 in
if isEven
return Even

else
return Odd

}
let loadedDieDistribution = dist { return Odd }

let basketDiceDistribution = dist {
let! isLoaded = bernoulli 0.5 in
if isLoaded then

return LoadedDie
else
return FairDie

}

When we pick a die from the basket we do not know whether it is a normal die
or a loaded die, hence we represent the result of this operation with a random
variable. Since the result of picking a die from the basket is an independent
random variable, we define the pickDie function as a random variable con-
structor, and we define two random variables representing whether the first and
the second die we pick are loaded or not:

let pickDie () = rndvar {
return basketDiceDistribution
}

let D1 = pickDie ()
let D2 = pickDie ()

Rolling a die is a similar operation. We define it as a random variable construc-
tor, where the distribution of the roll results depends on which kind of die we
picked:

let dieRoll pickedDie = rndvar{
let! d = pickedDie in
match d with
| LoadedDie -> return loadedDieDistribution
| FairDie -> return fairDieDistribution
}

let X = (dieRoll D1)
let Y = (dieRoll D1)

5



let Z = (dieRoll D2)

Finally, we use the same function defined above to express some interesting two
variables joint distributions:

let XandYsame = same X Y
let XandZsame = same X Z
let XandXsame = same X X

Remembering that the sum of two even number or two odd numbers is even,
those variables express respectively the events “the sum of the first and second
die roll is even”, “the sum of the first and third die roll is even”, “twice the
value of the first roll is even”.

4.1 Getting the distribution of a random variable

As promised before, we show a general algorithm to retrieve the distribution of
any random variable expression.

let getDist r =
let rec memoizedSampling context var =
match var with
| rndvar { return E } ->

dist {
let! s = E in
return context,s

}
| rndvar { let! x = R in E } ->

if context.ContainsKey R.instanceId then
let x = context.Item(R.instanceId) in
memoizedSampling context (rndvar{ E })

else
dist {
let! context,v = memoizedSampling context R in
let context = context.Add(R.instanceId,v)
let! context,v = memoizedSampling context var in
return context,v

}
dist {
let! context,v = memoizedSampling Map.empty r
return v

}

The function memoizedSampling calculates a distribution of states for all the
variables in the dependency tree of the input variable, conditioned by the values
of the variables already bound in the input context. To understand why this
algorithm is correct we should notice these properties:

1. When we enter the function memoizedSampling context var, the vari-
able var is not defined in context.

2. In every sample of the returned distribution the context is an extension of
the input context, i.e. any variable bound in the input context is bound
to the same value in the extension.

6



3. Only random variables appearing in a let! instruction are inserted in the
context, and only if they are not there already.

4. In the returned distribution samples, the context contains a binding for
every dependency of the input variable but not the variable itself. For this
reason, at any step of the computation if a variable is bound in a context
every other variable it depends from is bound in the same context.

5. The distributions of contexts returned from memoizedSampling are sam-
pled exactly once for each time getDist r is sampled.

Hence it is easy to see that for each sample of getDist r the conditioned distri-
bution of each random variable in the dependency tree is computed and sampled
exactly once. Applying this function results in the following distributions for
the random variables expressing joint probability:

getDist XandYsame =
dist {
let! d1 = basketDiceDistribution in
match d1 with
| LoadedDie -> // 50% probability to enter this branch
let! x = loadedDieDistribution in
let! y = loadedDieDistribution in
return x = y // 100% probability to be true in this branch

| FairDie -> // 50% probability to enter this branch
let! x = fairDieDistribution in
let! y = fairDieDistribution in
return x = y // 50% probability to be true in this branch

} // true in 50% + 25% = 75% cases

getDist XandZsame =
dist {
let! d1 = basketDiceDistribution in
match d1 with
| LoadedDie -> // 50% branch
let! x = loadedDieDistribution in
let! d2 = basketDiceDistribution in
match d2 with

| LoadedDie -> // 25% branch
let! z = loadedDieDistribution in
return x = z // 100% truth

| FairDie -> // 25% branch
let! z = fairDieDistribution in
return x = z // 50% truth

| FairDie -> // 50% branch
let! x = fairDieDistribution in
match d2 with
| LoadedDie -> // 25% branch
let! z = loadedDieDistribution in
return x = z // 50% truth

| FairDie -> // 25% branch
let! z = fairDieDistribution in
return x = z // 50% truth

} // true in 25% + 12.5% + 12.5% + 12.5% = 62.5% cases

7



getDist XandXsame =
dist {
let! d1 = basketDiceDistribution
match d1 with
| LoadedDie -> // 50% branch
let! x = loadedDieDistribution in
return x = x // 100% truth

| FairDie -> // 50% branch
let! x = fairDieDistribution in
return x = x // 100% truth

} // true in 50% + 50% = 100% cases

As expected X is always identical to itself, and it is more likely to be the same
as Y which is from the same die than Z (the results are consistent with the
probabilities calculated in the previous section)

5 Conclusions

In this paper we introduced Liχely, a probabilistic language based on sampling
functions, implemented in F#, that extends the state of the art in this field
(the handling of arbitrary random distributions) offering an explicit construct
to express random variables, making correlation easy to handle.

Our work shows that sampling functions can be extended to model random
variables as well as distributions, and that correlation between random variables
can be expressed naturally and handled automatically by the language. There-
fore, random variables can be used as values in expressions. Moreover, because
it has been implemented in F#, it can be used in every .NET dialect, and it
can be included in real world systems.

We aim to apply this language to those problems where a probabilistic ap-
proach is already being used (e.g. Hidden Markov Models, Montecarlo, etc.),
because it allows the developer to describe the problem in terms of distributions
and random variables. We believe this could improve the readability of the en-
coding of the problem. We also aim to apply this language to those problems
where a probabilistic approach is not yet being used, because both continu-
ous distributions and an explicit handling of the correlation between random
variables are needed.

References

[1] Kurt Binder and Dieter W. Heermann. Monte Carlo Simulation in Statistical
Physics: An Introduction. Springer, January 2010.

[2] Daphne Koller, David McAllester, and Avi Pfeffer. Effective bayesian infer-
ence for stochastic programs. In Proceedings of the National Conference on
Artificial Intelligence, page 740–747, 1997.

[3] D. J. C. Mackay. Introduction to monte carlo methods. In Michael I. Jordan,
editor, Learning in Graphical Models, number 89 in NATO ASI Series, pages
175–204. Springer Netherlands, January 1998.

8



[4] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic lan-
guage based on sampling functions. ACM Trans. Program. Lang. Syst.,
31(1):4:1–4:46, December 2008.

[5] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[6] Avi Pfeffer. IBAL: a probabilistic rational programming language. In
International Joint Conference on Artificial Intelligence, volume 17, page
733–740, 2001.

[7] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F# 3.0. Apress,
October 2012.

9


