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Abstract

To fully appreciate cloud computing powers, design and development of cloud ap-
plications should be eased and supported. The OASIS TOSCA standard enables
developers to design and develop cloud applications by specifying their topologies as
orchestrations of typed nodes and relationships. However, building such application
topologies often results in reinventing the wheel multiple times when similar solutions
are manually created for different applications by different developers having the same
requirements. Thus, the reusability of existing TOSCA solutions is crucial to ease and
support design and development processes. In this paper, we tackle this issue. We
introduce TOSCA-MART, a method that enables deriving valid implementations for
custom components from a repository of complete and validated cloud applications.
The method enables developers to specify individual components in their application
topologies, and illustrates how to match, adapt, and reuse existing (fragments of) ap-
plications to implement these components while fulfilling all their compliance require-
ments. We also characterize and validate TOSCA-MART by means of a prototypical
implementation based on an open source toolchain and a case study.

1 Introduction

Cloud computing recently gained a lot of attention due to its economical and
technical benefits. However, current cloud technologies suffer from a lack of stan-
dardization, with various providers offering similar resources in a different man-
ner [2]. Furthermore, reusing software artifacts in different cloud applications is
a serious challenge due to technical as well as conceptual interoperability prob-
lems. As a result, to provision cloud applications on heterogeneous providers by
fulfilling their individual requirements, developers are often asked to model and
configure the whole middleware and infrastructure layers from scratch. This
requires deep technical expertise, and results in error-prone development pro-
cesses which significantly increase the cost of cloud application development,

*The research leading to these results has been supported by the European project Sea-
Clouds (EU-FP7-ICT-610531) and by the BMWi project CloudCycle (01MD11023).
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deployment and management. To tackle these issues, OASIS recently released
the Topology and Orchestration Specification for Cloud Applications (TOSCA)
[25], a standard to describe cloud applications in a portable and interoperable
way. Based on application topologies (which define the structure of an ap-
plication, as well as the concrete artifacts implementing its components) and
on executable management plans, TOSCA-based applications can be deployed
on, maintained in, and migrated across TOSCA-compliant cloud environments
(e.g., OpenTOSCA [6]). Furthermore, TOSCA supports the reuse of individual
application components by providing a type system, which enables the creation
of modular building blocks to be reused for developing new applications [7, [24].
Although this eases modelling topologies, combining appropriate components
and defining effective configurations for these combinations is still an open issue
and mainly done in an ad-hoc manner. In addition, enterprises often define con-
crete compliance requirements that must be fulfilled by the applications, which
makes the development of proper topologies even harder. Thus, we need a mean
to enable reusing not only single components, but also complete topologies that
are proven to be effective thanks to their employment in already existing enter-
prise applications [15].

In this perspective, we introduce TOSCA-MART (TOSCA-based Method for
Adapting and Reusing application Topologies), a method which allows to con-
cretely implement application components with certain requirements by adapt-
ing and reusing fragments of existing application topologies. More precisely,
TOSCA-MART allows developers to define custom TOSCA application com-
ponents by declaring the offerings and requirements they need to be properly
operated. These features are then matched against those provided by each of
the topologies available in a repository of existing cloud applications, so as to
determine the topology fragments which are able to provide the desired features.
Afterwards, TOSCA-MART automatically selects the “best” fragments among
the matched ones and adapts them by creating new TOSCA specifications which
fulfil the desired requirements. In this way, TOSCA-MART is able to discover
complete topologies as well as middleware and infrastructure fragments to host
new applications. Thus, instead of modeling complete topologies, application
developers can define only the offerings and requirements (needed to deploy and
manage their solutions) in terms of abstract components. TOSCA-MART will
then automatically implement them, thus significantly decreasing the effort and
cost needed for developing cloud applications.

The implementations are obtained by adapting the determined TOSCA
topology fragments to ezactly match desired components [13]. This suffices
to reuse such fragments to deploy cloud solutions that rely on the desired com-
ponents [I4]. This is thanks to the powerful way in which TOSCA supports
the processing of cloud application specifications. TOSCA permit to pack in a
CSAR (Cloud Service ARchive) file an application specification together with
the actual installable/executable files to be deployed/run on a cloud platform.
When a CSAR file is given in input to a TOSCA container, the latter takes care
of deploying and executing the application specification contained in the CSAR
file [24]. Therefore, in order to adapt a fragment of a specification to deploy
an application that relies on a desired component ¢, it suffices to adapt such
fragment into a new specification that matches ¢ — without having to generate
any implementation of the specified adaptation.
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The rest of this paper is structured as follows: Sect. 2]overviews TOSCA and
illustrates a first way to match TOSCA cloud applications. Sect. [3|illustrates
a scenario which motivates the need for our approach. Sects. [4 and [f detail
and characterize the TOSCA-MART method, respectively. Sect. [f] evaluates
TOSCA-MART by means of its prototype implementation. Finally, Sects. [7]
and [8| discuss related work and draw some concluding remarks.

2 Background and Fundamentals

In this section we provide the fundamental notions needed to present the TOSCA-
MART approach. Namely, we first overview the Topology and Orchestration
Specification for Cloud Applications (TOSCA), and then we illustrate how to
properly match the features of cloud applications described with such a specifi-
cation.

2.1 TOSCA

TOSCA [25] is an emerging standard whose main goals are (i) to enable the spec-
ification of portable cloud applications and (ii) the automation of their deploy-
ment and management. In this perspective, TOSCA provides an XML-based
modeling language which allows to formalize the structure of a cloud application
as a typed topology graph, and the deployment/management tasks as plans.
More precisely, each cloud application is represented as a ServiceTemplate
(Fig. , which consists of an application topology (called TopologyTemplate)
and a set of management Plans. The TopologyTemplate is essentially a typed
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Fig. 1: TOSCA ServiceTemplate.

directed graph whose purpose is to describe the topological structure of the
composite cloud application. Its nodes (called NodeTemplates) are the appli-
cation components, while its edges (called RelationshipTemplates) are the
relations between these application components. The connotation of such com-
ponents and relations is defined by typing the aforementioned NodeTemplates
and RelationshipTemplates by means of NodeTypes and RelationshipTypes,
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respectively. A NodeType defines (i) the observable properties of an applica-
tion component, (ii) the management operations it offers, (iii) the requirements
needed to properly operate it, and (iv) the capabilities it offers to satisfy other
components’ requirements. Syntactically speaking, properties are described
with PropertiesDefinitions, operations with Interface and Operation ele-
ments, requirements with RequirementDefinitions (of certain Requirement-
Types), capabilities with CapabilityDefinitions (of certain CapabilityTy-
pes). Plans enable the description of application deployment and/or man-
agement aspects. Fach Plan is a workflow that orchestrates the operations
offered by the application components (i.e., NodeTemplates) to address (parts
of) the management of the whole cloud application. Properties, capabilities,
requirements and operations externally exposed by a ServiceTemplate can be
described in its BoundaryDefinitions.

2.2 Matching cloud applications in TOSCA

In our previous work [I3], we formally defined when a ServiceTemplate ezactly
or plug-in matches a desired NodeType. A ServiceTemplate S ezactly matches
a NodeType N (viz., S = N) if the capabilities, requirements, properties, poli-
cies and interfaces exposed by S exactly match those of N, namely: (i) the
requirements, capabilities and properties of S and N have the same name and
type, and they are in a one-to-one correspondence, (ii) the policies exposed by
S are applicable to N, and (iii) the interfaces of S and N have the same name,
contain the same operations, and are in a one-to-one correspondence.

On the other hand, we say that a ServiceTemplate S plug-in matches a
NodeType N (viz., S ~ N) if, intuitively speaking, the former “requires less”
and “offers more” than the latter. Namely, (i) for each requirement r of S there
exists a requirement of N which has the same name as r and whose type is a
sub-type of r’s type, (ii) for each capability ¢ of N there exists a capability of
S which has the same name as ¢ and whose type is a super-type of ¢’s type,
(iii) for each property p of N there exists a property of S which has the same
name as p and whose (XML) type is a sub-type of p’s type, (iv) the policies
exposed by S are applicable to N, and (v) for each interface operation o of N
there exists an operation of S which exactly matches o.

Consider for instance the NodeType NN and the ServiceTemplates S1, S2
and S3 in Fig. Eﬂ where C' is a capability of type CType, R is a requirement
of type RType, pl, p2 and p3 are string properties, i1, i2 and i3 are interfaces,
and ol, 02, 03, 04, and 05 are operations. Assume also that the services S1, S2
and S3 do not have policies, and that same-named operations have the same
input/output parameters. It is easy to see that S1 exactly matches N (i.e.,
S1 = N) since S1 has the same capabilities, requirements, properties, and in-
terfaces of N, while the same does not hold for S2 and S3 (i.e., S2 # N and
S3 £ N). However, S2 plug-in matches N (i.e., S2 ~ N) because S2 and N
expose the same requirements and capabilities, and S2 features “more” proper-
ties and interface operations than N. On the other hand, S3 does not plug-in
match N (i.e., S3 % N) since their property names differ.

1 For readability reasons, and since internal topologies are not considered by the our previ-
ous matchmaking approach, Fig. [2] focuses only on the boundaries of the available Service-
Templates.
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Fig. 2: Example of NodeType and ServiceTemplates.

3 Motivating scenario

A typical issue that arises after finishing the development of Web-based applica-
tions is where to host them. Typically, multiple cloud providers are appropriate
as many focus on such kind of applications (e.g., Amazon’s and Google’s PaaS
and TaaS$ offerings). Thus, finding an appropriate provider (i.e., finding a suitable
topology that describes the provisioning on this provider) is a time-consuming
challenge. For instance, suppose that a Web application developer needs to
host a PHP application on a cloud environment, along with a MySQL database
containing application data. Currently, the developer is required to select the
appropriate cloud provider and to explicitly describe the provisioning of her
PHP application on this provider. Furthermore, in case she decides to move
her application to another provider, this may require to re-describe (and re-
implement) the deployment and management of the whole solution (even from
scratch). It would be much better to abstractly describe the desired hosting
environment and to provide such description as input to a tool which automat-
ically derives a topology implementing the environment needed to deploy and
manage the PHP application.

EntryPoint (PHPModule)

M SQLConn

(MysQL
Database)

Required Runtime

) (MySQLRuntime)
RuntimeSupport RuntimeSupport
(PHPRuntime)

Application _ (Desired -@-0DeployPHPApp(...)
HostD™!  Environment) |

Req Database
(DBConnection)

RequiredRuntime
(PHPRuntime)

Fig. 3: Motivating scenario.

In TOSCA, this can be done as shown in Fig. [3] The environment required
to host the PHP and MySQL modules is represented by a node whose type
is DesiredEnvironment. This node is used by the application developer to de-
scribe the capabilities needed to host her application, to specify that the desired
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environment must provide an operation for deploying PHP applications, and to
instruct that the environment’s application ID must be available as property.
Based on this simple NodeType, TOSCA-MART can derive a concrete imple-
mentation by searching among existing and validated cloud applications (as we
will see in the next section).

4 The TOSCA-MART method

In this section, we illustrate TOSCA-MART as a solution to derive possible
implementations of desired NodeTypes from a repository of validated cloud ap-
plications. We first overview the method as a whole, and then illustrate its steps
separately.

Mc,Mg,Mp,Mo

CANDIDATESUNION o

A i

N
MATmMAKE—»—D—» RATE —-D—» FILTER —D—» Cut —D—
_ i _ Candidates - _ Rated _ Filtered ' _ Elected
Repo [e— Candidates Candidates Candidates

for each
Tiin Repo

MAPPING MANUAL
ADAPTATION
SELECTION REFINEI\/IENT
Elected Reusable Refined
Candidates Implementations Implementations

Fig. 4: The TOSCA-MART matchmaking and adaptation method.

4.1 Overview

Our goal is to derive an implementation for a target NodeType N by excerpting
it from an repository Repo of cloud applications. Hence, NE| and Repo must be
input of the TOSCA-MART method illustrated in Fig. |4] (see Sect. . Once
N and Repo are available, each application topology T; € Repo is compared with
N by employing the MATCHMAKE procedure. As a partial result, we obtain the
set Candidatest,, whose elements are

<Ti7 Ca {m17m27 ﬂm’ﬂ}>

(where C is a candidate fragment of the topology T;, i.e., a fragment of T;
whose elements offers all the features declared in IV, and m; is a potential map-
ping between the features in N and those in C'). Then, all the Candidatesr,
are unified to obtain the set Clandidates, containing all the candidate topology
fragments (see Sect. . Due to the potentially huge number of already avail-
able topologies and to the possibility of having multiple candidates for each of
these topologies, the set Candidates may become huge. Thus, providing the
user with all these candidates is not appropriate. We reduce the number of

2 In the following, we assume that N is defined in such a way that needed features are not
redundant (e.g., it is not possible to match more than one capability of N with one of the
available capabilities).
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available candidates by employing three subsequent steps (see Sect. . First,
RATE computes a score for each candidate using the rating function r. As a
result, the set Candidates is transformed in the set RatedCandidates, whose
elements are (T;, C,r(C),{m1,ma,...,m,}). Second, FILTER reduces the num-
ber of RatedCandidates by removing duplicatesﬂ (i.e., candidates that have the
same topology fragment C, the same rating r(C') and the same sets of potential
mappings, independently from the topology T; they come from). Finally, CuT
reduces the number of candidates according to a threshold ©. More precisely,
the set FilteredCandidates is reduced to the set ElectedCandidates, which
contains only the “best” © candidates (according to r). Afterwards, each of
the FlectedCandidates has to be adapted to properly implement the target V.
First, in order to avoid the user to select mappings on her own, we need to se-
lect the most proper mapping among the available ones. This is the purpose of
the MAPPINGSELECTION step, which can be implemented in various ways (e.g.,
ontologies, heuristics, compliance rules, etc.). Once the mappings are selected,
each of the ElectedCandidates is adapted by resolving the unsatisfied depen-
dencies of the selected components, and by enclosing the candidate fragments
into standalone application specifications which implement the target NodeType
N. All these specifications compose the set ReusableImplementations, which
is the output of the TOSCA-MART method (see Sect. [£.5). Finally, an op-
tional MANUALREFINEMENT step may be done to allow the cloud application
developer to manually modify the outputted NodeType implementations, if they
are not designed as desired.

4.2 Repository of application topologies

The repository Repo of application topologies is the knowledge base from which
the TOSCA-MART method extracts the implementations for the target Node-
Type N. Thus, a prerequisite for this work is to have a large set of diverse
topologies to be included in Repo. We include application models, which de-
scribe components, structure and configuration of applications. TOSCA ap-
plication models can be retrieved from modelling environments (e.g, Winery
[22]), as well as from configuration management systems. For instance, [27]
shows how descriptions used by configuration management systems, such as
Chef, can be wrapped into TOSCA application models. We can also include
applications already operated in organizations (i.e., application instances). De-
spite such instances are usually not available as topology models, we can cope
with them by employing Enterprise Topology Graphs (ETG) [10]. An ETG is a
technically-detailed instance model that represents a snapshot of one or multi-
ple applications, including all components, configuration and their relations. [§]
shows how to semi-automatically create complete and technically detailed ETGs
from existing enterprise applications. These ETGs can then be transformed into
TOSCA topologies (as shown in [9]) so as to include them into Repo.

For instance, the repository Repo can be populated with the concrete ap-
plication topologies illustrated in Fig. [5} namely with three instantiable topolo-
gies implementing (a) a Moodle application, (b) a Wiki application, and (c) a
SendSMS web service. In the following, we will show how the TOSCA-MART

3 Duplicates are maintained because they do not significantly impact on the approach’s
complexity and they allow the definition of smarter rating functions (e.g., by enabling to
count how many times a topology fragment is recurring).
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(MysQLDB)
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Fig. 5: Three examples of application topologies that can be included in Repo.

(UbuntuQS)

(AmazonEC2)

method leverage of this repository of instantiable topologies to derive an imple-
mentation for the DesiredEnvironment illustrated in Fig. [3] It is easy to see
that the former two topologies are offering the desired features (i.e., the Moodle
application offers all the features via the ApachePHPModule, ApacheWebServer
and MySQLDBMS components, while the Wiki application offers them in a more
integrated fashion via the XAMPP server). Thus, TOSCA-MART has to detect
that both can be reused to implement the desired node, and (by supposing
© = 1) it also has to return only the adaptation of that having the highest
rating. On the other hand, the topology implementing the SendSMS web ser-
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vice is offering only one of the desired features (i.e., the ApplicationHostID
property via the GlassFishServer). Thus, TOSCA-MART has to discard it
during the matchmaking phase (since it cannot be reused to implement the
DesiredEnvironment).

4.3 Finding the candidate topology fragments

In order to find the candidate topology fragments, we apply the procedure
MATCHMAKE to each topology T; € Repo, as shown in Fig. 4l This allows us to
detect the sets C'andidatest,, which are then unified by CANDIDATESUNION to
obtain Candidates, the set of all candidate topology fragments. The MATCH-

MATCHMAKE(N, T, Mo, Mg, Mp, Mo)

mCaps = MATCHCAPS(M¢, {}, Caps(IN), Caps(T'), {});
if((Caps(N) # {} AmCaps = {}) return {};

mReqs = MATCHREQS(MRg, {}, Reqs(N), Reqs(T), {});
if(Reqs(N) # {} A mRegs = {}) return {};

mProps = MATCHPROPS(Mp, {}, Props(N), Props(T'), {});
if(Props(IN) # {} A mProps = {}) return {};

mOps = 1VIATCH()PS(]\407 {}7 OpS(N), OpS(T), {})1
if(Ops(N) # {} AmOps = {}) return {};

9 candidates = {}

10 mappings = mCaps X mReqs X mProps X mOps;

11 for each m € mappings {

12 C = CoLoUR(T, m);

13 if AT, C’, mappingsc:) € candidates : C = C’

14 mappingsc: = mappingsc: U {m};

0O Uk WN

15 else
16 candidates = candidates U {(T,C,{m})};
17 }

18 return candidates;

Fig. 6: MATCHMAKE procedure.

MAKE procedure is listed in Fig.[6] Given the NodeType N and the topology T,
it employs the procedure MATCHCAPS to check whether all the capabilities de-
clared in N (viz., Caps(N)) can be matched by those offered by the components
of T (viz., Caps(T')), according to the matchmaking operator M¢ (e.g., M¢c may
be =¢ or ~¢c — see Sect. . The detected capability mappings are stored in
mCaps (line 1). Afterwards, MATCHMAKE checks whether all the required ca-
pabilities have been matched. If not, it ends by returning the empty set, which
means that no fragments of T can match the target N (line 2). Analogously,
the procedures MATCHREQS, MATCHPROPS, and MATCHOPS are employed to
determine mReqs, mProps, and mOps, respectively (lines 3-8). Once the sets
of potential mappings are available, MATCHMAKE starts computing the set of
candidate topology fragments (line 9). First, all the possible combinations of
mappings are created (line 10). Then, for each mapping m, COLOURE| deter-
mines the fragment C of T which exposes the features referred in m, and the

4 Due to its straightforward behaviour, we omit the presentation of COLOUR. Essentially, it
“colours” the elements of the topology which offer the matched features, and returns the set
of coloured elements.
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candidate (T, C,.) is added or updated in the set of candidates (lines 11-17).
Finally, the set of candidates is returned (line 18).

As illustrated above, the MATCHMAKE procedure employs the MATCHCAPS,
MaTcHREQS, MATCHPROPS, and MATCHOPS to detect the subsets of available
capabilities, requirements, properties and operations which match the set of de-
sired ones. MATCHCAPs (Fig. [7) is a recursive procedure which inputs the

MATCHCAPS(M, matched, needed, available)
if(Ven € needed, required(cy) = 0) return {matched};
if(available = {}) return {};
select Capability c4 from available;
available’ = available — {ca};
solutions = MATCHCAPS(M, matched, needed, available’)
if(3 CapabilityDefinition cy € needed :
caMcn Arequired(cy) > 0) {
needed’ = needed — {cn},
en' = en;
9 required(cy’) = required(cy) — 1;
10 if(required(cn’) > 0)
11 needed’ = needed’ U {cn'}
12 solutions’ = MATCHCAPS(M, matched U {(cn,ca)},
needed’, available’, {});
13 solutions = solutions U solutions’;
14}
15 return solutions;

S UL W

Fig. 7: MATCHCAPS procedure.

parameters M, matched, needed, and available. M is the matchmaking oper-
ator to be employed when comparing available capabilities with respect to the
needed ones (e.g., =¢, ~¢), while matched, needed, available, and solutions
are the parameters used to maintain the state of the recursive computation
(viz., matched contains the set of matchings discovered by the current instance
of MATCHCAPS, needed contains the set of capability definitions which still
need to be matched, and available contains the set of available capabilities).
MATCHCAPS starts by checking whether there are no more requirecﬁ capabil-
ities in needed. If so, it returns matched since it contains a potential mapping
between available and desired capabilities (line 1). It then check whether there
no more available capabilities, which means that no mapping can be detected
(line 2). If not, a capability c4 is removed from available (line 3-4), and the
solutions without mappings to ¢4 are computed (line 5). Then, if ¢4 matches
a needed capability ¢y, a new instance of MATCHCAPS (with the sets matched
and needed properly updated) is started so as to determine the solutions which
comprise the mapping between ¢y and c4 (line 6-12). The computed solutions’
are then incorporated in the set solutions determined by the current instance
(line 13). Finally, the set of computed solutions is returned (line 15). The other
procedures (i.e., MATCHREQS, MATCHPROPS, and MATCHOPS) are analogous.

We are now able to matchmake N with respect to a single topology T of our

5 required is defined as follows: If not explicitly assigned (as in line 10), required(x) returns
a default value. Such value is z.lower Bound when x is a capabililty /requirement definition.
Otherwise, it is 1.
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CANDIDATESUNION(N, Repo, Mc, Mg, Mp, Mo)

1 candidates = {};

2 for each T; € Repo {

3 newCandidates = MATCHMAKE(N, T, Mc, Mp, Mp, Mo);
4 candidates = candidates U newCandidates;
5
6

}

return candidates;

Fig. 8: CANDIDATESUNION procedure.

repository Repo. In order to matchmake N with the entire repository, we just
have to iteratively apply MATCHMAKE to all the topologies T' € Repo and to
unify the discovered candidates (Fig. . For instance, by iterating the M ATCH-
MAKE algorithm over the repository of applications in Fig. [5] we end up with
the candidates illustrated in Fig. @ The candidate (a) is composed by the
software components of the Moodle application that offer the desired features,
namely ApachePHPModule, ApacheWebServer and MySQLDBMS, while (b) is com-
posed only by the XAMPP server belonging to the Wiki application, since it offers
all the desired features in a more integrated fashion. On the other hand, the
topology implementing the SendSMS web service is removed from considera-
tion, since MATCHMAKE fails at the very beginning (because none of the nodes
appearing in SendSMS’s topology is offering the required PHPHost capability).

RuntimeSupport
(PHPRuntime). RuntimeSupport

Application (Apache .@ (MySQLRuntime)
HostiD ™| PHPModule)

— O
(Apache
[
WebServer) | g gpeployPHPApP...
S —
(a)
RuntimeSupport RuntimeSupport
(PHPRuntime) (MySQLRuntime)

Application
HostID

Fig. 9: Determined Candidates.

4.4 Election of the “best” candidate(s)

As we already mentioned, the number of detected candidates may be huge,
and providing the user with all these candidates is not appropriate. We reduce
them by employing the RATE, FILTER and CuUT steps (Fig. |4)) presented in this
section.
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RATE(candidates, )

1 ratedCandidates = {};

2 for each (T, C,mappingsc) € candidates {

3 rc = r(C, mappingsc, candidates);

4 ratedCandidates = ratedCandidates U
{{T, C,rc, mappingsc)};

5 return ratedCandidates;

Fig. 10: RATE procedure.

RaTE (Fig. inputs a set of candidates and a rating function r. It then
constructs and outputs the set of ratedCandidates by applying r to each of the
candidate topology fragments (lines 2-5). Please note that we do not prescribe
which rating function r to employ, since this depends on what the user wants
to privilege. For instance, in our reference example we may look for the most
integrated solutions, i.e., we may try to minimize the amount of components
appearing in a candidate:

r(C) =1/[C|

(where C' is a candidate, and |C| is the number of components it contains)lﬂ
The candidates in Figs. [9](a) and [0}(b) will then be rated 1/3 and 1, respec-
tively. Accordingly, TOSCA-MART will privilege the latter with respect to the
former.

Once the ratings are available, we can remove the “duplicates”, namely the
candidates having the same topology fragment C', the same rating rc, and the
same set of possible mappings mappingsc, independently from the topology
T they come from. Please note, that both r¢ and mappingsc depend on the
candidate topology fragment elems, since the former is a function of C', and the
latter is the set of possible mappings between the features of N and those of the
elements in C'. Thus, we can consider duplicates those candidates having the
same topology fragment C'. This means that, in order to remove the duplicates
from the output of RATE (by also optimizing the performances of the method),
we can merge RATE and FILTER into RATEANDFILTER (Fig. 7 so as to add
candidates to the output only if they are not already there (lines 4-5). The
procedure is also modified in such a way that its output is a list (instead of a
set — line 2), whose elements are sorted in descending order according to the
value of re (line 5).

Finally, CuUT is implemented by cutting the list ratedCandidates so as to
maintain only the first © elements (Fig. . The value of © depends on the
usage context. For fully-automated approach, © = 1 instructs TOSCA-MART

6 There are many other possible rating functions. For instance, r could privilege not only
the fragments having fewest components, but also the most frequent ones (by exploiting the
amount of duplicates a candidate has).

duplicates(C, candidates)

r(C, candidates) = 1/|C| +

|candidates| ’

where duplicates(C, candidates) computes the number of duplicates of C' among the
candidates.
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RATEANDFILTER (candidates, 1)

1 ratedCandidates = [J;

2 for each (T, C,mappingsc) € candidates

4 if(A(T',C’, rcr,mappingsc:) € ratedCandidates :
C=cn{

5 rc = r(C, mappingsc, candidates);

6 addsorteq (T, C,rc, mappingsc) to ratedCandidates;

7}

8 return ratedCandidates;

Fig. 11: RATEANDFILTER procedure.

to proceed with the highest rated candidate. For instance, with ® = 1, our ref-
erence example (Fig. [0) proceeds by electing (b) as the candidate to be adapted
(since its rating is 1, while (a) has a rating of 1/3).

Cut(ratedCandidates, ©)

1 for i = |ratedCandidates| to © + 1

2 remove ratedCandidates[i] from ratedCandidates;
3 return ratedCandidates;

Fig. 12: CuT procedure.

4.5 Adaptation of the elected candidate(s)

The ElectedCandidates have to be adapted so as to become concrete implemen-
tations of the NodeType N. This is the purpose of the MAPPINGSELECTION and
ADAPTATION steps. For each candidate (T, C,rc, mappingsc) in ElectedCan-
didates, MAPPINGSELECTION determines the mapping m¢c € mappingsc, that
makes the candidate work as implementation of V. Despite there is no chance
to ensure that the selected mapping is the one the user desires, we can approach
the problem in a heuristic way, by selecting the mapping m¢ which maps each
feature to the “uppermost” available and compatible one. As a result, each
candidate (T, C, r¢, mappingsc) is transformed into (T, C, rc, me), where m is
the selected mapping to be employed. The selected mapping is then employed
by the ADAPTATION procedure to transform the available TOSCA definitions
in a standalone implementation of N. First, the unsatisfied dependencies of the
elements in elems must be resolved. This is done by applying the following
rules until the set C' is no more modified by their operation:

A1) For each application component in C, its outgoing relationships must be
added to C| if not already present. This rule does not affect the outgoing
relationships whose sources are requirements that have been matched with
those of the target node N.

A2) For each relationship in C, the components representing its source and
target must be added to C, if not already present.
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Once all (unsatisfied) dependencies have been processed, the actual adaptation
can take place. The adaptation is analogous to the one proposed in [13], [14]: (i)
we create a new ServiceTemplate which contains the application components
and relationships stored in C, (ii) we define its BoundaryDefinitions by ex-
posing only the features declared by N, and (iii) we employ m¢ to map these
features to the corresponding ones exhibited by the elements of the topology.
The resulting ServiceTemplate ezactly matches the desired NodeType N, and
thus can be employed to concretely implement and substitute N.

™M ™M

4 hd Y N
RuntimeSupport : ¢ RuntimeSupport
(PHPRuntime)). 4 (MySQLRuntime)

Application
HostID

<

-@—@DeployPHPApP(...)

(XAMPP)

R oo
(Debian0S)

(AmazonEC2)

Fig. 13: Implementation derived by TOSCA-MART.

In our reference example, TOSCA-MART follows this approach to adapt
the candidate fragment in Fig. [0fb). Namely, MAPPINGSELECTION selects the
only available mapping and ADAPTATION starts extending the fragment ac-
cording to Al and A2. First, Al causes the introduction of the XAMPP node’s
outgoing relationships. Then, A2 causes the introduction the Debian0S oper-
ating system component. Similarly, ADAPTATION introduces the relationship
starting from Debian0S, as well as the AmazonEC2 virtual machine, and this
makes the candidate fragment be no more modifiable by A1 and A2. ADAPTA-
TION then employs this fragment as the topology of a new ServiceTemplate,
say DesiredEnvironmentImplementation. It then defines the boundaries of
the new ServiceTemplate according to the selected mapping (Fig. . As
a result, DesiredEnvironmentImplementation exactly matches the Desired-
Environment target NodeType (Fig. , thus being a valid implementation for
such a NodeType [I5].

4.6 TOSCA-MART

All the aforementioned procedures must be orchestrated so as to operate the
TOSCA-MART method illustrated in Fig. [d] This can be easily done by imple-
menting the procedure in Fig. First, we need to invoke CANDIDATESUNION
so as to derive all the candidates which can be excerpted from the topologies
in Repo (line 2). These candidates are rated and filtered by employing the
RATEANDFILTER procedure (line 3). The obtained filteredCandidates are
then reduced by CUT to the “best” © ones (line 3), whose mapping is sub-
sequently determined by MAPPINGSELECTION (line 4). Finally, the resulting
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mappedCandidates are given to ADAPTATION so as to generate the reusable-
Implementations to be returned by TOSCA-MART (lines 5-6).

TOSCA-MART(N,T,r,©,Mc, Mr, Mp, Mo)

1 candidates = CANDIDATESUNION(N, T, M¢c, Mg, Mp, Mo);

2 filteredCandidates = RATEANDFILTER(candidates, r);

3 electedCandidates = CuT(filteredCandidates, ©);

4  mappedCandidates =
MAPPINGSELECTION(electedCandidates);

reusableImplementations =
ADAPTATION(mappedCandidates);

6 return reusableImplementations;

ot

Fig. 14: TOSCA-MART orchestrating procedure.

5 Properties of the approach

In this section we informally illustrate the termination, soundness, and time
complexity of TOSCA-MART. In the following, please remember that the def-
initions of the topologies T; € Repo, as well as that of the target NodeType IV,
are necessarily finite.

5.1 Termination

According to Fig. the termination of TOSCA-MART directly follows from
that of its steps. First, we need to ensure that MATCHMAKE (Fig. [6]) even-
tually terminates. Consider MATCHCAPS (Fig. [7)), which recurs on the set
of awvailable capabilities until it becomes empty. Each recursive invocation is
performed after the removal of a capability from the set available. Thus, since
available is initially finite, it eventually becomes empty, causing the termination
of MATCHCAPS (which returns a finite set of solutions). Since the same holds
for MATCHREQS, MATCHPROPS, and MATCHOPS, to prove the termination of
MATCHMAKE, we just need to ensure that lines 8-14 eventually terminate. The
set mappings is computed as the product of finite sets, and thus both its com-
putation and cardinality are finite. This, along with the fact that COLOUR can
at most “colour” the whole finite topology, implies that the loop at lines 9-14
eventually terminates. Thus, MATCHMAKE eventually terminates.

The termination of CANDIDATESUNION, RATEANDFILTER, and CUT (Figs.
and obviously follows from the fact that MATCHMAKE produces a finite
set of Candidates. Thus, we only have to prove the termination of MAPPING-
SELECTION and ADAPTATION (Sect. MAPPINGSELECTION selects one of
the potential mappings, for each of the candidates. Since the set of candidates
and those containing their mappings are finite, we can conclude that MAPPING-
SELECTION eventually terminates. This (along with the fact that the generation
of the adapted ServiceTemplates obviously terminates) implies that to prove
the termination of ADAPTATION we just need to ensure that A1 and A2 eventu-
ally become no more applicable (see Sect. . This can happen only if the size
of the fragment can eventually be no more increased by their operation, which
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is true because the fragment is upperbounded by the topology it comes from.
It follows the termination of ADAPTATION, and thus that of TOSCA-MART.

5.2 Soundness

We want to ensure that TOSCA-MART returns © standalone ServiceTemplates
which exactly match the target NodeType N (see Sect. , by properly adapt-
ing the © candidates having the highest ratings.

First, we have to ensure that CANDIDATESUNION (Fig.8)) computes all pos-
sible candidates (with all possible mappings) which can be excerpted from the
cloud application topologies in Repo. This directly follows from the fact that
MATCHMAKE computes all the possible mappings (and thus all the possible
candidates) which can be derived from a single topology: Suppose (by con-
tradiction) that MATCHMAKE misses one of these mappings. This can hap-
pen only if (at least) one among the procedures MATCHCAPS, MATCHREQS,
MaTcHPROPS, and MATCHOPS misses a mapping between a needed and an
available feature. Suppose (without loss of generality) that MATCHCAPS misses
a mapping between a needed capability definition ¢y and a matching available
capability c¢4. This can happen only if the pair (ca,cn) is never added to a
matched set, which in turns requires c4 to be never analyzed (otherwise, since
¢4 matches cy, line 12 would add (ca,cy) to a set of matched pairs). Nev-
ertheless, according to the recursive definition of MATCHCAPS (Fig. [7)), c4 is
eventually analyzed, and thus we come to a contradiction which allows us to
deduce what we wanted to prove.

Then, we have to ensure that RATEANDFILTER and CUT remove the du-
plicates and reduce the set of available candidates to the © highest rated ones.
This can be easily deduced from their definition (Figs. [11{and . RATEAND-
FILTER avoids the insertion of duplicate candidates through the check at line 4
and outputs the list of rated Candidates sorted in descending order, according
to r. Afterwards, CUT removes all the candidates whose index is higher than
O, thus maintaining only the © candidates having the highest ratings.

For each of the © candidates, MAPPINGSELECTION selects a mapping among
those available. Thus, after this step, ADAPTATION is provided with the © can-
didates with the highest value of r, and each of them only contains one mapping.

Finally, ADAPTATION has to ensure that each of the © candidates is trans-
formed into a ServiceTemplate which (a;) is standalone and (ag) exactly
matches N. (a;) means that all the dependencies of the elements composing a
candidate are satisfied, which can be easily proven by relying on the eventual
non-applicability of the rules Al and A2. (ag) is ensured by the fact that the
boundaries of each returned ServiceTemplate are built by including all the
features declared by N (and by employing the selected mapping to map such
features onto the internal ones which have been matched). Since the output of
ADAPTATION is also the output of TOSCA-MART, it follows what we wanted
to prove.

5.3 Time complexity

The time complexity of TOSCA-MART is given by the maximum among the
complexities of its step. Consider MATCHCAPS, and let a = |available| and
n = |needed|. In the base case, MATCHCAPS goes through the set of needed
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features, and thus its complexity can be approximated with O(n). Otherwise,
its complexity is dominated by the two recursive calls (whose a is decreased by
1) and by the union of the disjoint sets solutions and solutions’. This, along
with the fact that the size of solutions and solutions’ can be upperbounded by
the size 2%™ of the power set of the cartesian product available x needed, allows
us to derive the following recurrence relatiorﬂ

_ [ O(n) ifa=0
T(a) = { 2T(a —1) + O(an) if a>0

By induction on ¢, it is possible to prove that the solution of the above relation is
T(a) = O(2%n). This, along with the fact that initially ¢ = maxpegepo |Caps(T)|
and n = Caps(V), allows us to conclude that

T(MATCHCAPS) = O(2°%P*(T) Caps(NV)).

Furthermore, since each recursive invocation having the set available = {} can
at most generate one mapping, we deduce that the maximum number of map-
pings can be 2¢2P5(T) (each of which contains ZmECaps(N) required(z) mappings).
Similarly:
T(MATCHREQS) = O(2R%(T)Reqs(NV)),
T(MATCcHPROPS) = O(2°°P(1) Props(N)),
T(MAaTcHOPS) = O(2°P(1) 0ps(N)),

and the produced mappings can be upperbounded with 2Reas(T) = 9Props(T) " 54
20ps(T) ' respectively.

Consider now MATCHMAKE, which is dominated either by the matching
procedures (lines 1-4) or by the generation of the candidates (lines 9-14). By
properly combining the above computed quantities of mappings, we can con-

clude that the set mappings can contain (at most) 2¢ mappings, each consisting
of n pairs, where:

t = |Caps(T") U Regs(T) U Props(T') U Ops(T)|
n= Eme(:aps(N)uReqs(N)uProps(N)LJOps(N)TeqUiIred(x)

Thus, candidates can be generated with a time complexity of O(2'n), which is
higher than those of the matchmaking procedures. It follows that

T(MATCHMAKE) = O(2'n).

However, in practice we have n < t, and this allows us to approximate T (MATCHMAKE)
as follows.

T(MATCHMAKE) = O(2").

From T'(MATCHMAKE), we can deduce the complexity of CANDIDATESUNION.
Since the latter performs the union of disjoint sets, we can approximate the com-
plexity of CANDIDATESUNION as that which comes out by operating MATCH-
MAKE against each topology in Repo, namely

T(CANDIDATESUNION) = O(r2").

7 According to [17], the union of two disjoint sets having size 2° leads to a worst case
complexity of O(s).
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where r = |Repo|. Furthermore, since all the remaining activities are domi-
nated by set operations performed against candidates (which can be viewed
as a different representation of the above counted mappings), the steps from
RATEANDFILTER afterwards can lead to a complexity which is at most O(r2tn).
Thus, the worst-case complexity of TOSCA-MART is

T(TOSCA-MART) = O(r2").

6 Prototype and Performances

To illustrate the feasibility of TOSCA-MART, we implemented a Java proto-
type integrated into the open source OpenTOSCA ecosystem [6, 12 22]. As

Vinothek
.tosca I L
TOSCA-MART -——--- ¥  Winery OpenTOSCA

.tosca

Fig. 15: TOSCA-MART in the OpenTOSCA ecosystem.

shown in Fig. our prototype processes TOSCA specifications taken from
a shared TOSCA Repository. It then produces new specifications which can
then be imported into Winery [22], the graphical TOSCA modeling tool of the
aforementioned open source ecosystem. As we already mentioned in the intro-
duction, the creation of new application specifications does suffice to enact the
actual reuse of the matched fragments. Indeed, by employing Winery to replace
the available specifications with the adapted ones, the existing TOSCA appli-
cation packages (i.e., Cloud Service ARchives) can be processed as if they were
only implementing the to-be-reused fragment. This is because each CSAR is
processed by TOSCA containers (like OpenTOSCA [6]) according to the cloud
application specification it contains [24]. From the above, it follows that the
adapted CSARs can also be provided to users through the Vinothek self-service
portal [12].

We comparatively assessed the TOSCA-MART prototype with respect to
a GREEDY implementation of our previous matchmaking and adaptation ap-
proach [I3} [14]. With respect to TOSCA-MART, GREEDY access randomly
the shared repository and returns the first specification matched according to
the definitions we recalled in Sect. We employed both prototypes to au-
tomatically generate an implementation of DesiredEnvironment (see Sect.
by relying on a plastic repository containing 279 validated TOSCA solutions.
Among them, 135 application can offer the desired features, and only 27 can
gain the highest rating. In the following, we illustrate the time performances of
both prototypesﬂ

8 All tests were repeated 300 times on a Windows 8.1 machine having an AMD A6-5400K
APU (3.60GHz) and 4 GBs of RAM.



7 Related work 19

6.1 Time Performances

We evaluated the time performances of TOSCA-MART and GREEDY with re-
spect to the size r of the available repository, the maximum amount ¢ of features
available in a topology, and the amount n of features described in the desired
NodeType. In order to test the prototypes under the same input conditions, we
varied r by repeating multiple times the applications appearing in the repository,
and ¢ by making each application composed by multiple copies of its starting
topology.

As expected, the completion time of TOSCA-MART grew linearly with re-
spect to growth of r (Fig. (a)). The expectations were respected also when
varying n, since the completion time was independent from 7 itself (Fig. (b))
This is because we had n < ¢, and this allows us to approximate T(TOSCA-MART)
with O(r2?), which is independent from n (see Sect. . On the other hand,
when we increased ¢, the completion time was not growing exponentially as
expected. It instead grew linearly (Fig. (c)) This is because, by prop-
erly implementing the matchmaking operators, the situations in which MATCH-
CaAps, MATCHREQS, MATCHPROPS, and MATCHOPS performed two recursive
calls became negligible with respect to those in which they performed one re-
cursive call. It follows that their complexity, as well as the number of de-
tected mappings, can be approximated with O(t), which in turn implies that
T(TOSCA-MART) = O(rt). From the above, it follows that when (i) n < ¢
and (ii) the repository and matchmaking operators are such that matchings is
negligible with respect to that of non-matchings (see Fig. [7] line 5), we have
that the time complexity of TOSCA-MART can be approximated with

T(TOSCA-MART) = O(rt).

Please note that, in practice, these conditions are most probably true: (i) the
features declared on a component are much fewer than those available in com-
plex applications, and (ii) each complex application is composed by heteroge-
neous components offering different features, thus causing a negligible amount
of matches among the performed checks — if the employed matchmaking oper-
ators are not dummy.

As shown in Fig. [I6] we also compared the time performances of TOSCA-
MART with respect to those registered by the GREEDY (in the luckiest case
of having all applications exposing all available features on their boundaries).
As expected, TOSCA-MART always required a completion time much higher
than that of GREEDY, since the former always analyze all available applica-
tions, while the latter returns the first match. This is the price for providing
the user with the topology fragments that best match the desired nodes, instead
of providing the first match as a whole. However, it is worth noting that the
development of complex application topologies is a process requiring days to
be performed. Despite our solution requires a few seconds to complete, it al-
lows cloud application developers to drastically reduce the time and effort they
currently devote to the implementation of their cloud solutions.

7 Related work

The development of systematic approaches to adapt and reuse existing soft-
ware is widely recognized as one of the crucial problems in software engineering
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[16, 28]. In spite of the increasing availability of cloud solutions, currently
platform-specific code often needs to be manually modified to reuse existing
solutions in cloud-based applications. This is obviously an expensive and error-
prone activity, as pointed out in [26], both for the learning curve and for the
testing phases needed.

Various efforts have been recently oriented to try devising systematic ap-
proaches to reuse cloud applications. For instance, [23] and [20] propose two ap-
proaches to transform platform-agnostic source code of applications into platform-
specific applications, provided that they developed according to model-driven
methodologies. In contrast, our approach does not restrict to applications devel-
oped with a specific methodology, nor it requires the availability of applications’
source code, and it is hence applicable also to non open-source, third-party ser-
vices. [19] proposes a framework which allows developers to develop cloud-based
services as if they were “in-house” applications. Cloud deployment information
must be provided in a separate file, and a middleware layer employs source and
deployment information to generate the artifacts to be deployed on cloud plat-
forms. We believe that our approach improves that of [19] in three ways. First,
only some cloud platforms are targeted by [19], while our method can be applied
on any (TOSCA-compliant) platform. Moreover, in their approach the reuse of
a cloud service requires invoking the middleware layer, while in our method
adaptation is performed only once. Finally, [I9] always requires to write source
code, while our method only requires to edit the application specification. In
general, most existing approaches to the reuse of cloud services support a from-
scratch development of cloud-agnostic applications, and do not account for the
possibility of adapting existing (third-party) cloud-based services. In contrast,
our method proposes a way to adapt existing cloud applications, by relying on
TOSCA [25] as the standard for cloud interoperability, and to support an easy
reuse of third-party services.

In this perspective, we are in line with the research directions individuated
by [I5], and in particular with the easy reuse of existing TOSCA specifications.
We already proposed a way to instantiate desired NodeTypes by reusing entire
ServiceTemplates in [I3 1T4]. TOSCA-MART goes a step further, by allow-
ing to reuse not only entire application topologies, but also fragments of such
topologies. Other approaches may be those proposed by [3, 4], and [1]. [3] 4]
provide a method to deploy and provision SOA solution, in which patterns are
used to structure and constraint composite applications, without binding to
specific resources, and without specifying provisioning actions. [I] propose a
way to detect the optimal deployment for a cloud-based solution, by employing
a highly abstracted topology. Nevertheless, these approaches require an appli-
cation developer to structure the topology of the IT solution to provision, and
based on this structure the provisioning can be detected. In contrast, TOSCA-
MART gives developers all the freedom in choosing whether to structure the
whole topology or to abstract all the needed components as a single (and stan-
dalone) module. The latter solution obviously eases the development of cloud
applications, thus flatting the learning curve needed to provision them. Further-
more, [3, 4], and [I] focus only on the provisioning of cloud application, while
TOSCA-MART gives developers the means to also describe the configuration
operations needed to manage their applications.

Finally, it is worth noting that the novelty of TOSCA-MART does not re-
side in the type of adaptation techniques applied to ServiceTemplates. In-
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deed, our method exploits well-know adaptation patterns (e.g., [I8,[5]) to adapt
TOSCA templates. The novelty of TOSCA-MART is rather that, in contrast
with traditional adaptation approaches (e.g., [I1}, 21]), no additional code must
be developed to reuse existing cloud-based services. We exploit the possibili-
ties provided by TOSCA of mapping exposed features onto internal ones, and
of entirely delegating the management of such mappings to TOSCA containers
[24].

8 Conclusions

Migrating applications across different clouds often results in remodeling and re-
configuring the whole middleware and infrastructure layers from scratch. This
requires technical expertise and results in error-prone development processes,
thus increasing the costs for developing, deploying and managing cloud appli-
cations. In this paper, we reduced these costs by introducing TOSCA-MART,
a method which allows developers to abstractly describe application compo-
nents, and to automatically excerpt their implementations from a repository
of existing cloud application topologies. Since TOSCA-MART is able to dis-
cover complete topologies, as well as middleware and infrastructure fragments
to host new applications, developers do not have to model complete topologies
any more. Instead, they only have to pay the effort of defining (in terms of
the to-be-implemented components) the compliance requirements which must
be satisfied to properly run and manage their applications.

Such an approach would be really useful also in the emerging field of dockeﬂ
Docker is an open platforms allowing developers and system administrators to
build, ship, and run distributed applications. More precisely, docker enables
composite applications to be manually assembled from existing components in
a way pretty much similar to that of TOSCA. Thus, by modeling docker com-
ponents through TOSCA NodeTypes and docker applications through TOSCA
ServiceTemplates, our approach can be applied as-is to detect also fragments
of existing docker solutions.

Finally, it is worth stressing that the development of complex applications,
as well as of the topologies needed to provision and manage them, is a process
requiring days to be performed. This means that TOSCA-MART helps devel-
opers to significantly reduce the time needed for building their solutions, even
if it may require an exponential time complexity. As we highlighted in Sect. [6]
this exponential complexity holds in theory, while in practice TOSCA-MART
will most probably exhibit a linear time complexity. By employing optimization
techniques (e.g., parallelization, pre-fetching, etc.), its completion time can be
further decreased, and by returning partial results (like in flight booking ser-
vices), the user may not be annoyed by the seconds spent in computing the
results. In addition, it is important to stress that, thanks to the powerful way
in which TOSCA supports the processing of cloud application specifications,
the proposed adaptation of matched TOSCA topology fragments does suffice
to reuse such fragments to deploy cloud solutions that rely on the desired com-
ponents [14]. Namely, in order to adapt an application fragment to deploy a
solution that relies on a desired component c, it suffices to adapt such fragment
into a new specification that matches ¢ — without having to generate any im-

9mttps://www.docker.com
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plementation of the specified adaptation.

The extensions of this work we are going to immediately investigate are
twofold. First, (i) we shall understand whether there exists specific use case in
which it is required to explicitly rate the mappings, so as to provide the user
with the set of most promising mappings for each candidate (instead of selecting
only one). If so, we aim at extending our approach by treating the MAPPING-
SELECTION in a way which is similar to that actually devoted to the selection of
candidates (i.e., by employing subsequent steps analogous to RATEANDFILTER
and CuT). Second, (ii) since our method only focuses on the topologies of
TOSCA applications, it produces implementations which can only be declara-
tively processed [24]. In order to cope also with imperative processing, we aim at
extending TOSCA-MART by also considering management plans when excerpt-
ing the implementation of an abstract component from a repository of validated
application topologies.
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