
 
 
 
 
 
 

UNIVERSITÀ DI PISA 

DIPARTIMENTO DI INFORMATICA 

TECHNICAL REPORT 

Different Decomposition Strategies to Solve 

Stochastic Hydrothermal Unit Commitment 

Problems 

 
Murilo Reolon Scuzziato  Erlon Cristian Finardi  Antonio Frangioni  

May 18, 2017 

LICENSE: Creative Commons: Attribution-Noncommercial - No Derivative Works 

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy - Tel. +39 050 221270



 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

Different Decomposition Strategies to Solve 

Stochastic Hydrothermal Unit Commitment 

Problems 
 
 

Murilo Reolon Scuzziato1, Erlon Cristian Finardi2, Antonio Frangioni3 

 
Abstract 

 

Solving very-large-scale optimization problems frequently require to decompose them 

in smaller subproblems, that are iteratively solved to produce useful information. One such 

approach is the Lagrangian Relaxation (LR), a broad range technique that leads to many 

different decomposition schemes. The LR supplies a lower bound of the objective function 

and useful information for heuristics aimed at constructing feasible primal solutions. In this 

paper, we compare the main LR strategies used so far for Stochastic Hydrothermal Unit 

Commitment problems, where uncertainty mainly concerns water availability in reservoirs 

and demand (weather conditions). This problem is customarily modeled as a two-stage 

mixed-integer optimization problem. We compare different decomposition strategies (unit 

and scenario schemes) in terms of quality of produced lower bound and running time. The 

schemes are assessed with various hydrothermal systems, considering different configuration 

of power plants, in terms of capacity and number of units. 
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I. INTRODUCTION 

Most real-world problems can be mathematically represented by formulations using 

nonlinear functions and integer variables, which leads to hard Mixed-Integer Nonlinear 

Problems (MINLP). In general, the constraints of these MINLPs have a high degree of 

structure, encouraging the use of techniques that decomposes them. One of the most 

appealing methods to strategically exploit structure is the Lagrangian Decomposition or 

Lagrangian Relaxation (LR) [1]–[3], in which the original problem is decomposed into 

several independent subproblems, possibly with different sizes and mathematical nature. For 

further basic information of LR, as well as its applications, see references [4], [5]. The LR 

technique is very flexible: for the same primal problem several different decomposition 

schemes can be developed, with complex trade-offs between the computational cost and the 

quality of the results [2]. In this paper, we assess this flexibility applying the LR in electrical 

power systems based on real data. The main information produced by LR approaches are 

bounds on the optimal value of the problem and the corresponding Lagrangian multipliers 

that have possible uses (e.g., to estimate prices of resources). However, they also provide 

valuable primal information, such as the “convexified” primal solution composed of the 

integer solutions computed at each iteration, that is the basis of heuristic approaches for 

producing feasible solutions [2], [6]. The LR requires the solution of a convex 

nondifferentiable optimization problem, for which one of the most effective approaches is the 

Bundle Method (BM) [7], [8]. One of the advantages of the BM is allowing independent 

models (disaggregate bundles) for an objective function given by a sum of separate terms [9], 

as is invariably the case in Unit Commitment problems. When some of this models 

(components) are simple to solve (continuous and linear optimization problems) they can be 

treated as exact models by basically copying the corresponding constraints in the formulation 

of the master problem, instead of iteratively approximating them by inner linearization. This 

has so far been applied to different problems [9], but we will show that the approach is very 

useful for Stochastic Unit Commitment (SUC) problems. In SUC, the goal is finding a 

production schedule that satisfies the unit’s and system constraints considering the 

uncertainties, which in our case are mainly related to water availability in reservoirs and 

weather conditions. This optimization model is a step of the power system planning studies, 

where the operator needs to determine the power plants operation for a day-ahead in a 

hydrothermal power system. The resulting problem is a large-scale, non-convex, uncertain 

(stochastic, robust, chance-constrained) MINLP, which is extremely challenging to solve. 

In the literature, there are basically two kinds of decomposition strategies for the SUC: 

Scenario Decomposition (SD), and Unit (or Space) Decomposition (UD). The reference 

works [10], [11] in the former group separates the stochastic problem in many sets of 

deterministic subproblems, using methods such as Progressive Hedging [12] and Branch and 

Bound [13] combined with LR to solve the whole problem. The latter group [14], [15] rather 



 
 
 
 
 
 
decomposes the problem by power plant, using stochastic Lagrange multipliers calculated 

using the expected value of each scenario. The mathematical representation of the 

uncertainties can also be done by other techniques, for instance chance constraints [16]. The 

work [17] compares different approaches to represent the uncertainties in large scale 

problems. The review [16] presents and describes the main strategies to model and to solve 

the SUC. 

The aim of this paper is to compare the two main decomposition strategies, SD and 

UD, using the same algorithm to solve the SUC. Therefore, we avoid biased results, since we 

are applying and setting the same solver for both. Besides, we use several different cases, 

considering different configuration of power plants, in terms of capacity and number of units. 

The results are assessed by means of the produced lower bound, quality of the solutions 

provided by Lagrangian heuristics, and running time. 

This paper is organized as follows: in sections II and III we describe the mathematical 

representation of the SUC and briefly reference and comment the data for all the test cases. In 

section IV we present several different variants of the two main of decomposition strategies 

for the SUC, i.e., Unit and Scenario Decomposition. The computational comparison between 

the decomposition schemes is presented in section V. Finally, in section VI, we state the 

conclusion and some recommendations regarding the decomposition approaches. 

II. UNIT COMMITMENT DESCRIPTION DATA 

A very common problem in the operation of electrical power systems is to determine in 

advance which units of a power plant will operate and their level of generation for the day 

ahead. This depends on the electrical energy industry regulation, i.e., if the dispatch is 

centralized or if power plants can offer bids for the energy production in a market framework. 

This paper deals with the first case, the Brazilian one, in which an Independent System 

Operator (ISO) executes a series of planning studies. The Unit Commitment (UC) problem is 

the last part of these studies, closer to the real-time operation, so more detailed mathematical 

models are required. In this section, we present the mathematical representation of each 

component of the power system, while in the following section we discuss the complete 

formulation for a general hydrothermal SUC problem. 

For our study we use five hydrothermal test systems defined in Table I, considering 

different power installed capacity and number of units. The hydro power systems are based 

on real information of the Brazilian system, their data having been extracted from a data base 

of the HydroByte software [18]. The data for the thermal power plants is instead taken from 

the (UC) instances of [19]. Finally, the transmission system and demand for each bus were 

adapted from an equivalent system from the south of the Brazilian electric power system. All 

the data is available at http://www.di.unipi.it/optimize/Data/UC.html. We now discuss the 

mathematical representation and a description of the data for each test system. 



 
 
 
 
 
 

 

A. Thermal Power Plants 

Thermal plants production cost depends on the fuel cost and varies accordingly to the 

power generation output, following a quadratic relationship. This nonlinear relation is 

approximated using the perspective cuts approach [20], resulting in linear constraints and a 

variable to represent the operational cost of each thermal plant. The operation of thermal units 

has some technical conditions that must be satisfied, such as minimum and maximum 

generation, minimum up and down times and ramp generation limits. All these constraints are 

represented by means of the mixed-integer and linear model of [21], [22] and represented by 

the set of constraints: 

T ( , , , , ),C pt u up ud F  (1) 

where: 

pt vector of thermal power generation (MW); 

u vector of commitment status; 

up vector of startup status; 

ud vector of shutdown status; 

F vector of the production cost (R$); 

B. Hydro Power Plants 

Hydro plants produce energy using the potential energy of the water in the reservoir. 

The energy transformation process depends on the net head, the turbine and generation 

efficiencies and the units’ turbined outflow. This complex relationship results in a non-

convex function [23] that in this paper is simplified to mixed-integer linear constraints. This 

simplification includes the representation of a group of identical units by a single equivalent 

unit and a piecewise linearization of the production function for each equivalent unit. The 

following figures illustrate the simplification applied. Figure 1 represents the power 

generation for a hydro power plant with four identical units, while Figure 2 presents the final 

piecewise-linear (polyhedral) model that we have used.  

TABLE I 

TEST SYSTEMS FOR HYDROTHERMAL SUC PROBLEMS 

 
Number of 

power plants 

Generation 

capacity (%) 

Generation 

capacity (MW) 

Storage 

capacity (hm3) 

 H T H T   

A 7 14 25.0 75.0 21,297.5 5,635.1 

B 7 14 75.0 25.0 9,224.0 9,309.0 

C 10 10 50.0 50.0 16,132.2 10,737.5 

D 14 7 76.3 23.7 16,046.5 14,944.1 

E 14 7 25.2 74.8 9,671.0 5,507.2 

H means hydro and T means thermoelectric power plants. 



 
 
 
 
 
 

 

 
The hydraulic connection between reservoirs (water flow balance equation) and the 

operational limits are taken into account as standard mixed-integer linear equations [23], [24]. 

Then, the set of hydro constraints is: 

H ( , , , , , , ),C ph v d s phg q z  (2) 

where: 

ph vector of hydro power generation (MW); 

v vector of water volume in the reservoirs (hm3); 

d vector of total hydro plant outflow, i.e., sum of total turbined outflow and the 

spillage (m3/s); 

s vector of spillage (m3/s); 

phg vector of generation of the group of units (MW); 

q vector of turbined outflow by the group of units (m3/s); 

z vector of commitment status of the group of units; 

The operation of the reservoirs is coordinated with medium-term scheduling problem 

by means of target volumes at the end of the scheduling horizon, represented by constraints 

that are also included in (2). 

C. Transmission network 

In this paper, the electrical network constraints are represented by DC power flow 

equations and spinning reserve requirements. In Brazil, only hydro power plants provide 

spinning reserve. All the transmission network constraints are represented by the set: 

D ( , )C pt ph  (3) 

III. TWO-STAGE UNIT COMMITMENT MODEL 

The hydrothermal SUC aims at finding the optimal generation schedule while meeting 

operational and system wide constraints at a minimum expected cost. The latter takes into 

account a level of uncertainty due to the high dependence of the hydro production and the 

demand on the weather conditions. The uncertain data are the system load requirements (set 

CD) and the water inflows (set CH) represented by scenario trees. Figure 3 illustrates the 

 
Fig. 1. Equivalent nonconvex production function. 

 
Fig. 2. Linear piecewise production function of equivalent unit. 



 
 
 
 
 
 
combination of the uncertain data: two realizations of inflow and two of load profile result in 

four possible realizations for the second stage. In the illustration, each stage refers to 24 

hours, representing each one the operation of one day. As a consequence, the corresponding 

scenario tree has a total of 120 nodes. 

 
All in all, the model for the hydrothermal SUC problem is given by: 

N

1

min ( , )n n in in

n

p f up F


   (4) 

H

T

D

s.t.: ( , , , , , , ),  

( , , , , ),                   ,

( , ),                            

n rn rn rn rn jrn jrn jrn

in in in in in in

n in rn

C ph v d s phg q z n

C pt u up ud F n i

C pt ph n







 (5) 

where: 

n index of nodes in the scenario tree (n = 1, N); 

N number of nodes of the scenario tree; 

pn discrete probability of node n; 

fn operational cost function, given by the thermal generation and start up costs; 

i index of thermal plants (i = 1, I); 

I number of thermal plants; 

r index of hydro plants (r = 1, R); 

R number of hydro plants; 

j index of the group of units in the plant r (j = 1, Jr); 

Jr number of groups in the reservoir r. 

In the compact formulation (4)-(5), each variable is related to a specific node of the 

scenario tree. For instance, variable phrn represents the power of hydro plant r and node n. 

IV. DECOMPOSITION STRATEGIES 

Applying LR to problem (4)-(5) can be done in different ways. The most common 

approaches are the unit decomposition (UD) and the scenario decomposition (SD). In the 

former, the whole problem is splitted by its physical characteristics, typically a subproblem 

for each power plant. On the other hand, the SD separates the stochastic problem in many 

deterministic UC subproblems, each one related with a specific scenario. The different 

strategies are illustrated in the Figure 4, which are described in the next sections. 

 
Fig. 3. Illustration of the uncertain data. 
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A. Unit Decomposition 

Considering the coupling constraints of problem (4)-(5), the most logical is to separate 

the problem by it characteristics: a set of subproblems for thermal power plants, another set 

for all the hydro power plants, and yet another set for the transmission network (which is not 

a unit). Further, each set of subproblem can be divided even more. Given the predominance of 

hydropower generation as energy source in Brazil, we propose three different schemes for the 

UD. These schemes are illustrated in Figure 5 for a problem with three time periods in each 

stage, two scenarios, five hydro power plants (located in two cascades), three thermal power 

plants and an electrical network with seven buses and ten transmission lines. The continuous 

line represents the time coupling between each node (in this paper, one-hour period), and 

dotted line indicates that there is not time coupling. 

The first scheme (UD1) splits problem (4)-(5) in: 

a) many Linear Programing (LP) subproblems, representing the electrical network 

constraints; 

b) many Mixed-Integer Linear Programming (MILP) subproblems, each one representing 

a thermal plant operation; 

c) a MILP subproblem, coupled in time and space, representing the operation of all the 

hydro power plants. 

 
Figure 6 shows coupling structure of UD1. 

 
Fig. 4. Illustration of unit and scenario decomposition schemes. 
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Fig. 5. Illustration of different kinds of unit decomposition. 
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To decompose the problem, one can apply the variable splitting technique [25], 

resulting in the following dual problem. 

 
N I R

UD1 min

1 1 1

, min ( , ) ( ) ( )n in in in in in in i rn rn rn

n i r

pt ph f up F pt pta pt u pt ph pha ph
  

 
              


    (6) 
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T

D
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n in rn

in in in in in

n rn rn rn rn jrn jrn jrn

C pt u up

C pt

C ph v d s phg q z

a pha

n id F

n

n

u




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 (7) 

where: 

λpt vector of dual variables related to thermal power generation; 

λph vector of dual variables related to hydro power generation. 

Then the dual function (6) can be evaluated by means of (1+I+N) independent 

subproblems. 

I N
UD1 H T D

1 1

i n

i n 

        (8) 

where: 

ΦD set of subproblems a), one for each node; 

ΦT set of subproblems b), one for each thermal plant; 

ΦH a single subproblem c) concerning all hydro plants. 

The second scheme (UD2), which derives from UD1, is obtained applying the same 

decomposition and relaxing the spinning reserve constraints. The set of subproblem a) and b) 

are the same, but the subproblem c) changes as follows: 

d) a set of MILP subproblems, representing the operation of the hydro power plants for 

each cascade. 

 
In this case, besides the strategy used in UD1, the spinning reserve constraint is relaxed 

applying the classical LR technique. Despite this constraint formally belongs to the set CD, it 

just couples the operation of hydro plants. The new set for hydro constraints CHC in Figure 7 

is defined for each cascade separately, as shown in (9)-(10). 

 
Fig. 6. Illustration of the relationship between variables for UD1. 
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Fig. 7. Illustration of the relationship between variables for UD2. 
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 (9) 

where: 

λres vector of dual variables related to spinning reserve constraint. 

Then the dual function in (9) can be evaluated by means of many (CA+I+N) 

independent subproblems, as follows: 

CA I N N
UD2 HC T D

1 1 1 1

ca i n n n

ca i n n

res Res
   

              (10) 

where: 

ΦHC set of subproblems d); 

CA number of cascades. 

The third scheme (UD3 – Figure 8), which derives from UD2, separates even more the 

hydro set of subproblems. In this decomposition, the set of subproblems a) and b) are the 

same, but the set of subproblems d) in UD2 changes to: 

e) a set of LP subproblems, representing the constraints between the reservoirs for each 

cascade; 

f) a set of MILP subproblems, each one representing the operation of a hydro plant. 

 
To achieve UD3 we use the same relaxation strategy used in UD2, but splitting two 

more variables: v (volumes in the reservoirs) and d (total water discharged). The new sets for 

hydro constraints CHA and CHE, shown in Figure 8, derive from CH without the spinning 

reserve constraint. The first represents hydraulic constraints of the reservoirs, defined for each 

cascade, and CHE represent the constraints of the operation for each hydro plant. 

Mathematically, UD3 is given by: 

 
Fig. 8. Illustration of the relationship between variables for UD3. 
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where: 

λv vector of dual variables related to water volume; 

λd vector of dual variables related to water discharged; 

Then the dual function (11) can be evaluated by means of many (CA+N∙R+I+N) 

independent subproblems. 

CA N R I N N
UD3 HA HE T D

1 1 1 1 1 1

ca rn i n n n

ca n r i n n

res Res
     

                (12) 

where 

ΦHA set of subproblems e); 

ΦHE set of subproblems f). 

B. Scenario Decomposition 

This strategy separates the stochastic problem in single-scenario deterministic 

subproblems, applying the variable splitting technique for the linking variables of the first 

stage; in other words, the non-anticipativity constraints are relaxed. In this case, the 

constraints are rearranged and the sets are separated by scenario. For instance, all the 

constraints belonging to nodes of the scenario one, set of nodes N(1), make up the set C1
C, 

which is derived from CT, CH and CD regarding the nodes of scenario one. Figure 9 illustrates 

the sets of constraints for the problem of Figure 4, representing the variables that couples the 

subproblems. The set Nx represents all the nodes of period x. 

 
Relaxing the non-anticipatively constraints results in the following dual problem: 

 
Fig. 9. Illustration of the relationship between variables for SD. 
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 (13) 

where: 

γpt vector of dual variables related to thermal power generation; 

γph vector of dual variables related to hydro power generation; 

γv vector of dual variables related to water volume; 

ω index of scenarios (ω = 1, Ω); 

Ω number of scenarios; 

N(ω) set of all the nodes of scenario ω. 

Then the dual function (13) can be evaluated by means of as many independent 

subproblems (Ω) as scenarios, as follows: 

SD C

1







    (14) 

where: 
C

  UC subproblem associated with scenario . 

C. Algorithm 

The Lagrangian duals corresponding to all of the strategies described in the previous 

section are solved by means of a Bundle-type method [26]. In particular, it is a “generalized” 

Bundle method [27], in that the Master Problem (MP) does not necessarily need to be a 

Quadratic Program. For this work, we used the linear (box) stabilizing term, which is known 

to significantly reduce master problem time w.r.t. the usual quadratic term [9]. Solving the 

MP provides an estimate of the optimal Lagrangian multipliers that are fed to the 

subproblems, which in turn provide dual function values and subgradients that are used to 

update the MP, iterating the process until convergence is attained. 

The problem solved in this work has a dual function with a disaggregated structure, i.e., 

the dual function is a sum of many components, as can be seen in (8), (10), (12) and (14), and 

in similar works [28], [29]. Both the MP and the subproblems are solved by means of a 

general optimization solver. Table II presents, for the different strategies, the size of the dual 

problem and associated subproblems. 



 
 
 
 
 
 

 
The disaggregated model allows to use the “easy component” technique [9], whereby 

some of the components (subproblems), the “easy” ones, are included into the MP. This 

increases its size, but provides an exact description of the easy components, instead of an 

approximated iteratively refined by means of cuts. All the LP subproblems are candidate to be 

treated as easy components. 

V. RESULTS 

All the results have been obtained on an Intel Xeon CPU X5690 (3.47 GHz) computer 

with 32.0 GigaBytes of RAM. The LP and MILP subproblems are solved using the 6.0.5 

Gurobi optimization solver. In the tests, we have various hydrothermal systems, different 

initial conditions and distinct scenarios trees to produce a wide range of results. The results 

are compared mainly using the performance profile technique [30]. It allows defining a 

distribution function for some metric (number of iteration, processing time, quality of the 

objective function, etc.) comparing algorithms by means of this metric. The performance 

profiles are cumulative distribution functions for a metric, as follows: 

   *number of cases which 
( ) ,

total of evaluated cases

X

X

p mf p
mf

  
   (15) 

where: 

ΦX probability for method X; 

mf multiplying factor; 

ηX (p) performance metric for method X to solve case p; 

η*
 (p) best performance metric found with whatever method; 

p a case of the problem, where p belongs to a representative set of cases. 

The results of the tests are presented in the next sections using these performance 

profiles and the usual statistical metrics (average values and standard deviation). 

A. Easy components 

The goal of this section is to explore the effect of applying the easy component 

technique. We consider 30 cases: 15 deterministic cases and 15 stochastic ones. The 15 are 

different regarding the kind of system (five hydrothermal systems) and the initial conditions 

(three initial volume conditions). For this test, we compare the two kinds of decomposition 

where the use of easy components is possible and cause more impact: UD2 and UD3. Figure 

10 report the performance profile for the number of iterations, where “ccs” is the variant with 

easy component, while “scs” (dashed) is the one without it. Figure 10 shows that the use of 

easy component does not have a major impact in the resolution of UD2, although on average 

TABLE II 

CHARACTERISTIC OF THE DECOMPOSITION STRATEGIES 

Decompositio

n 

Number of dual 

variables 

Number of 

subproblems 

  LP MILP 

UD1 N∙(I+R) N 1+I 

UD2 N∙(I+R+1) N CA+I 

UD3 N∙(I+1+3∙R) N+CA N∙R+I 

SD T1∙Ω∙(2∙I+R) 0 Ω 

T1 is the number of nodes in stage 1. 



 
 
 
 
 
 
it results 18% less iterations. The impact for UD3 is much more significant: in about 85% of 

the cases there is less iterations, and more importantly, the average reduction of iterations in 

UD3 is around 600%. In terms of computational times, using easy components on average 

reduces them by 22% and 2,544%, for UD2 and UD3, respectively. Since the technique is 

clearly beneficial, in all the tests presented in the following sections it is applied. 

 

B. Deterministic instances 

In this section we present a comparison between the decomposition strategies using 

deterministic data for the five test systems (Table I) with three initial conditions, resulting in 

15 cases. We present the average values (and standard deviation, in brackets) in Table III. All 

the unit decomposition schemes are compared by means of the duality gap (gap1) and gap for 

the continuous relaxation solution (gap2), given by: 

1 2,   ,
UB LB LB CR

gap gap
LB CR

 
   (16) 

where the upper bound UB is best known solution for the problem, the lower bound LB is the 

optimum of the corresponding Lagrangian Dual, and CR is the lower bound provided by the 

continuous relaxation. We also present the total processing time, the oracle time and the 

number of iterations for all the schemes. 

 
The table shows that strategy UD3 is the preferable one, considering the very 

significant difference in the processing time and in the number of iterations, while the 

difference in the gaps is comparatively much smaller. The main reason for this large 

advantage is the difficulty of the subproblem that represents the hydro constraints. In UD1 

and UD2 this subproblem is rather complex and consumes almost all the time. Indeed, Table 

III shows that for these strategies the fraction of time spent in solving the subproblems is 

much larger than for the UD3. 

 
Fig. 10. Performance profile for UD2 and UD3 (iterations count). 

TABLE III 

RESULTS FOR DETERMINISTIC CASES 

Strategy gap1 [%] gap2 [%] Time* Oracle time [%] Iterations* 

UD1 1 (2) 139 (292) 9 (17) 88 (10) 4 (5) 

UD2 2 (4) 137 (290) 10 (9) 86 (16) 2 (2) 

UD3 5 (5) 122 (259) 1 (1) 39 (12) 1 (1) 

*The time and the number of iterations are presented with regard to the smaller values, which are the 

ones obtained by UD3. 



 
 
 
 
 
 
C. Stochastic instances 

In this section, we compare all the strategies for stochastic data. We consider two sizes 

of scenario tree, with four and nine scenarios, for the five test systems with three initial 

conditions, resulting in 30 cases. Figures 11 and 12 show the performance profiles for the 

number of iterations and the processing times, respectively. 

 

 
Figure 11 shows that the SD converges in less iteration than the other methods in about 

90% of the cases. However, its running time is one of the worst, as shown in Figure 12. This 

is due to the fact that it has to solve rather hard subproblems, which is where most of the time 

is spent. UD3 is still the best choice in terms of running times, with the trade-off again being 

its optimal dual function, which is not so good, as it can be seen in Figure 13. Conversely, SD 

results in the best lower bound in most cases. However, as we can see in Table IV (which 

presents the results by means of statistical metrics, similarly to Table III), the bounds found 

by the four strategies are close. 

 
As the table IV shows, two strategies stand out. The SD presents the smaller values for 

gap1, with a processing time that is close to that of UD1. On the other hand, the UD3 presents 

by far the smaller processing times, with a gap1, slightly bigger than the others strategies, but 

 
Fig. 11. Performance profile for number of iterations – stochastic cases. 

 
Fig. 12. Performance profile for processing time – stochastic cases. 

 
Fig. 13. Performance profile for dual function – stochastic cases. 



 
 
 
 
 
 
still reasonable. We finish this section by presenting more detailed results regarding the 

distribution of power plants for each test system presented in Table I. Table V shows the 

values of gap1, in %, considering the deterministic and stochastic cases (but for the SD that is 

not applicable for deterministic instances). 

 

 
As the Table V shows, systems with predominance of hydro plants (systems B, C and 

D) present larger values for the gap1, and, in general, take more time to converge. Test system 

B results in the largest values of the gap1 for all the strategies. On the other hand, the system 

A, which has a larger participation of thermal plants presents the smallest values of gap1. 

VI. CONCLUSIONS 

Lagrangian Decomposition is a fundamental technique for solving very-large-scale, 

hard optimization problems like SUC and others [9]. It exploits the problem structure, 

splitting it in many subproblems. However, applications like SHUC have actually more than 

one forms of exploitable structure, such as unit and scenarios, each with possibly different 

variants. Although some theoretical guidelines exist [2], [16], choosing the best variant is 

never obvious, as complex trade-offs between bounds and iterations have to be taken into 

account. Although there are studies comparing different kinds of decomposition for the SUC 

problem [11], [15], to the best of our knowledge no one has compared the use of scenario and 

unit decomposition to the same UC problem, in particular with the three different variants of 

the Unit (Space) Decomposition and the use of “easy components”. Our results show that 

TABLE IV 

RESULTS FOR STOCHASTIC CASES 

Strategy Gap1 [%] Gap2 [%] Time* 
Oracle time 

[%] 
Iterations* 

4 SCENARIOS 

UD1 2 (2) 169 (518) 21 (14) 70 (13) 32 (31) 

UD2 10 (21) 142 (287) 11 (6) 80 (21) 12 (14) 

UD3 7 (7) 171 (370) 1 (1) 24 (8) 4 (6) 

SD 2 (2) 198 (425) 10 (5) 100 (1) 1 (1) 

9 SCENARIOS 

UD1 4 (3) 20 (47) 13 (20) 49 (21) 8 (10) 

UD2 4 (4) 24 (44) 27 (28) 62 (26) 9 (13) 

UD3 7 (7) 123 (378) 1 (1) 16 (6) 1 (1) 

SD 2 (2) 143 (436) 16 (10) 99 (1) 1 (1) 

The value within brackets represents the standard deviation. 

*The time and the number of iterations are presented with regard to the smaller values, i.e., UD3 for 

the time and SD for the iterations. 

TABLE V 

RESULTS FOR DIFFERENT SYSTEMS 

System UD1 UD2  UD3 SD 

A 0.3 (0.2) 0.4 (0.2) 0.4 (0.2) 0.2 (0.1) 

B 10.9 (28.0) 10.4 (20.4) 12.8 (7.6) 4.1 (3.2) 

C 4.6 (3.0) 8.2 (5.4) 7.3 (3.4) 1.6 (1.4) 

D 2.4 (2.0) 9.8 (22.4) 9.7 (5.0) 2.0 (1.0) 

E 2.1 (1.1) 2.4 (0.8) 2.1 (0.8) 0.8 (0.4) 

The value within brackets represents the standard deviation. 



 
 
 
 
 
 
Scenario Decomposition, although providing the best duality gap, is not competitive in terms 

of computational burden. On the other hand, UD, and in particular UD3 (using “easy 

components”) has worse gaps, but only slightly so, while being much more efficient 

computationally. Furthermore, we have found that solution difficulty of dual problem 

depends on the amount of hydro in the system. This work provides solid foundations for a 

subsequent one, in which we will analyze the performance of the different decompositions 

schemes in the primal recovery phase, i.e., either the inexact augmented Lagrangian or the 

Lagrangian Heuristics that are used to construct the actual feasible solution required by the 

users. 
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