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Fair Least Core: efficient, stable and unique
game-theoretic reward allocation

in Energy Communities by row-generation
Davide Fioriti, Giancarlo Bigi, Antonio Frangioni, Mauro Passacantando, and Davide Poli

Abstract—Energy Communities are increasingly proposed as a
tool to boost renewable penetration and maximize citizen partic-
ipation in energy matters. These policies enable the formation of
legal entities that bring together power system members, enabling
collective investment and operation of energy assets. However,
designing appropriate reward schemes is crucial to fairly in-
centivize individuals to join, as well to ensure collaborative and
stable aggregation, maximizing community benefits. Cooperative
Game Theory, emphasizing coordination among members, has
been extensively proposed for ECs and microgrids; however, it
is still perceived as obscure and difficult to compute due to its
exponential computational requirements. This study proposes a
novel framework for stable fair benefit allocation, named Fair
Least Core, that provides uniqueness, replicability, stability and
fairness. A novel row-generation algorithm is also proposed that
allows to efficiently compute the imputations for coalitions of
practical size. A case study of ECs with up to 50 members
demonstrates the stability, reproducibility, fairness and efficiency
properties of proposed model. The results also highlight how the
market power of individual users changes as the community
grows larger, which can steer the development of practical
reliable, robust and fair reward allocations for energy system
applications.

Index Terms—Energy Community, game theory, Fair Least
Core, EnergyCommunity.jl, Mixed-Integer Linear Programming
(MILP), coalition fairness and stability

I. INTRODUCTION

A. Motivation

SEVERAL governments worldwide [1], [2] are promoting
Energy Communities (EC) as a mean to stimulate invest-

ments in renewable assets and increase citizenship participa-
tion in energy matters. New policies enable the creation of
a legal entity, called ”Energy Community”, that aggregates
households, companies and public institutions as members.
ECs are entitled to own and operate energy assets, and promote
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the coordination of demand and supply among the members
exploiting them [2]. Hence, there is a pressing need for their
optimal design, taking into account suitable reward schemes
to incentivize member participation.

To maximize collective benefits [3], Cooperative Game
Theory has been extensively proposed, also in the field of
Energy Communities and microgrids. The Shapley Value has
been widely considered the reference indicator for fairness
[4], but suffers from stability concerns [5]. On the other hand,
the Core and Nucleolus techniques ensure stable allocations
[6], but not necessarily fair ones. Both approaches are, in
general, costly from the computational viewpoint, so that their
use in practice may be challenging. Recent indicators based on
convex measures such as the variance, combined with stability-
enforcing methods, have shown promising results to achieve
fair and stable allocations; yet, computational burden is still a
major concern and uniqueness is not guaranteed [6], [7].

This study proposes novel algorithmic procedures and ef-
ficient implementation techniques to plan the proper design
of Energy Communities and guarantee fair and stable reward
allocation within them.

B. Design of Energy Communities and aggregators

In recent times, governments worldwide have introduced
supportive policies for renewable energy communities [8].
Their main target is the promotion of no-profit social, environ-
mental, and economic targets [3], while meeting the technical
challenges that the energy transition is demanding. Beyond
fostering decarbonization, these initiatives have yielded broad
benefits for power systems, including enhanced reserve provi-
sions [9], reduced grid congestions [10], increased renewable
penetration [11], and social welfare improvement [2]. How-
ever, to fully realize these advantages, effective coordination
among assets, consumers, and prosumers is essential. This
responsibility falls on aggregators, tasked with implementing
efficient planning and operation, as well as defining incentive
mechanisms that promote community goals and cohesion.

Traditionally, aggregators are for-profit entities that monitor
and manage the energy system on behalf of consumers and
prosumers. As per EU regulation, aggregators cannot be ECs
themselves, given their for-profit nature [3]. However, they can
have a support role in its creation, management and operation;
for this reason, they can be regarded as a player in the EC and,
as such, they shall be rewarded appropriately, also not to incur
in the so-called agency problem [6]. Previous studies have
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primarily emphasized economically-driven techniques devoted
to optimally operate the aggregate [12], using Mixed-Integer
Linear Programming (MILP). Some of them have explored
maximizing the aggregate’s social welfare, but may have
overlooked the fair distribution of profits among participants
[13], [14]. In particular, the fair stable reward of aggregators—
a critical but complex topic—has been rarely considered in
the literature [6]. For these reasons, in this study we develop a
MILP planning model able to account for the role of members,
including the aggregator, and their fair and stable reward.

C. Competitive and Cooperative reward allocations

In the context of local energy markets and ECs, competitive
or cooperative incentive mechanisms are commonly employed.
In competitive approaches, users operate independently to
maximize their individual benefits, potentially competing with
each other for scarce common resources [14]. In this case,
there is no guarantee that the solution maximizes the utility
of the aggregate, thus competition can be detrimental. Non-
cooperative strategies, such as those proposed in [15] and [16],
focus on optimizing the actions of individual aggregators or
users in a local energy market or network. Nash’s theory is
widely adopted in this context to identify the market equilib-
rium [17], [18]. Even if competition may suit some scenarios,
cooperation can be limited, thus potentially leading to sub-
optimal results, which can oppose the social goal desirable by
policies, such as the EU regulation [8].

In typical ECs, users are less likely to individually perform
active trading, and therefore cooperative approaches are par-
ticularly relevant [6], [11]. In these approaches users cooperate
towards the best outcome for the entire community and dis-
tribute rewards according to each individual contribution [14],
with no detrimental effect on the global benefit. The Shapley
Value is generally considered the reference indicator for fair
reward sharing [4], [19]. However, it suffers from stability
issues, i.e., there is no guarantee that no subset of users is
better off from leaving the community [20], [21], as proven
in [6] in the context of ECs. The set of reward allocations
(a.k.a., imputations) that guarantee stability is named “Core”,
and is typically not a singleton. However, imputations within
the Core may be marginally stable, i.e., a subset may be
equally better off inside or outside the community. For these
reasons, the stricter formulations of the “Least Core” [22] and
“Nucleolus” [23] have been proposed: the former maximizes
the benefit of the coalition that is most likely to exit the
community, whereas the latter iteratively applies the same
concept to each most likely coalition to leave. Conversely to
Core and Least Core, Nucleolus is proven to be unique [24],
which is a desirable property.

D. Computational challenges of game-theoretic allocations

Despite its benefits, the combinatorial nature of cooperative
game theory is a significant barrier to its practical use. In
case studies involving a small number of members, their
enumerative formulation can be used [6], [25], but with com-
munities exceeding 20-30 members the computational require-
ments quickly become prohibitive. In [26] an approximation

for the Shapley Value has been proposed that reduces the
combinations by about 99%; yet, concerns on stability still
apply. Nucleolus and Least Core have been used in various
studies but only for system operation [21], [27], with no
application to ECs. One of the few exceptions is [6], but the
computational approach used there does not scale efficiently
with size. A decomposition algorithm of Nucleolus based on
Benders’ decomposition is proposed in [21], but it is not
applicable in the EC field given the intrinsic binary nature
of membership of each user to the EC. To overcome that, a
simplification of Nucleolus has been proposed using a pure
Variance equivalence [7], but stability concerns were over-
looked. For these reasons, in [6] a methodology is proposed
to stabilize imputation; yet, the approach is still combinatorial
and limited to few members. An alternative solution is offered
by the Owen sharing method [22] that distributes the reward
based on the equivalent market prices created by the dual
solution of the optimization problem for the bidding of wind
generators. However, while being simple to calculate, the
Owen solution may not achieve desirable properties such as
these of Least Core, Nucleolus or Shapley Value [28]. Row-
generation has been shown to be a promising approach for
decomposing Nucleolus-like formulations [29], among other
problems [30], but it has not been applied to EC. For these
reasons, it is considered in this study and combined with Core,
Least Core and Variance mechanisms.

E. Contributions and organization of the paper

The main contributions of our work are as follows:
1) definition of generalized reward allocation schemes,

named Fair Core and Fair Least Core, that aim at
maximizing fairness and stability of reward allocations;

2) uniqueness for Fair Core and Fair Least Core;
3) novel algorithm to efficiently calculate reward allocation

methods for ECs, including row-generation and smart
decomposition of the EC planning problem;

4) application and validation of the algorithm to several
reward allocation mechanisms and comparison with ex-
isting methodologies, e.g. Shapley Value and Nucleolus;

5) evaluation of the impact of EC size into the fair reward
allocation to provide policy recommendations;

6) open-source implementation of the methodologies in
EnergyCommunity.jl [31] and TheoryOfGames.jl [32].

The remainder of the paper is organized as follows. Sec-
tion II describes the EC and its mathematical optimization
problem. Section III reviews the literature about reward al-
location by game theory. Section IV details the general fair
stable reward allocation proposed in this study, whose efficient
computation is detailed in Section V and Section VI. The
case study and results are reported in Section VII and VIII,
respectively. Finally, conclusions are drawn.

II. THE ENERGY COMMUNITY PLANNING

A. Business model

According to the literature [6] and the European Union
regulation [1], an EC operates as a non-profit entity, sharing
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Fig. 1. Business model of the Energy Community

all revenues among its members after fulfilling its obliga-
tions; technical support by third-parties, e.g. aggregators, is
admitted. Accordingly, this study focuses on the business
model depicted in Fig. 1, where members create the legal
entity Energy Community and can engage with an aggregator
to maximize the overall benefits. An EC coordinated by an
aggregator is denoted with ”CO”. Without the aggregator,
the community is still able to create an EC, referred to as
Aggregated Non-Cooperative (ANC), but it cannot coordinate
consumption and production nor the investments to achieve
the maximum economic performance. The EC is awarded an
economic benefit for every unit of energy that is produced by
a user and virtually consumed by another user in the same
time step [33]. Each user can invest in renewable assets or
storage and owns such devices. In the CO configuration, users
collaborate to maximize the overall benefit measured with Net
Present Value (NPV) [34], and they shall be remunerated fairly.
Finally, in cases where no EC is established, referred to as
the Non-Cooperative (NC) configuration, users invest in local
decentralized resources to maximize their own profits. This
scenario serves as the baseline for the analysis.

We now present reasonably complete, although somewhat
stylised, mathematical models for EC planning and operations
that underpin our development and will be used in the final
computational study. We remark that more sophisticated EC
models (including, e.g., other generation units with more
complex operational constraints, multi-energy aspects, and
even explicit representation of stochastic aspects) could be
used without significantly impacting the proposed approach.

B. Users’ objective

When no EC is established, the objective of each user j
is to maximize its own NPV, reported in (1), composed of
the net profit for selling/buying electricity to/from the market
(Ry) for each year y ∈ Y , the investment costs (Iy) that
are non-null only at the first year (y = 0), the operating
charges due to peak tariffs and maintenance charges (OPy), the
replacement costs of the assets (RPy) and the recovery value
(RVy), which is non-null only at the end of the project. Net
economic flows with the energy market are modelled in (2),
accounting for selling price (π+

t ), buying price (π−
t ), including

grid tariffs and taxes, and excise (πex
t ) for each time step t ∈ T

having weight mT
t , which accounts for granularity and number

of representative days; PU±
t denotes the power exchanged

at the Point of Delivery (POD), where positive apex stands
for injection into the distribution grid; PL

t is the consumer
demand. According to (4), for every tariff horizon w ∈W (for
instance in Italy corresponding to a month), the peak charges

OPy are dynamically accounted for considering the peak tariff
cPw and the actual maximum power exchanged PUmax

w at
the POD. Yearly maintenance costs OPy , represented by the
second term of (4), are proportional to the investment capacity
xa of each asset a of the set of assets Aj of user j, according
to a coefficient ca,M . Replacement charges RPy detailed in
(5) apply when an asset reaches its end of life NY,a, while
the residual value of assets is recovered as described in (6). r
represents the discount rate.

NPV j =
∑
y∈Y

Rj,y − Ij,y −OPj,y −RPj,y +RVj,y
(1 + r)y

(1)

Rj,y =
∑

tm
T
t

(
π+
j,tP

U+
j,t − π−

j,tP
U−
j,t − πex

j,tP
L
j,t

)
(2)

Ij,0 =
∑

a c
a,I
j xaj (3)

OPj,y =
∑

wm
W
w cPj,wP

Umax
j,w +

∑
a∈Aj

xaj c
a,M
j (4)

RPj,y =

{∑
a∈Aj

xaj c
a,I
j if mod (y,NY,a

j ) = 0

0 else
(5)

RV j,|Y | =
∑
a∈Aj

xaj c
a,I
j

NY,a
j − mod (|Y | − 1, NY,a

j )

NY,a
j

(6)

C. Constraints

This section details the major technical constraints of each
user. The power balance within each internal system is en-
sured through (7), where PU±

j,t denotes the power dispatch
at the user’s POD, P c±

j,t represents the power dispatch of the
battery converter (with + indicating supply and − indicating
absorption), PR

j,t corresponds to the renewable production, and
PL
j,t is the demand. AC

j denotes the converters of user j.

PU+
j,t − PU−

j,t +
∑
c∈AC

j

[
P c−
j,t − P c+

j,t

]
− PR

j,t = −PL
j,t ∀ t (7)

The peak power at the user POD is calculated with (8), where
T̂w denotes the set of time steps corresponding to the peak
power period w ∈ W . Constraint (9) specifies the maximum
renewable power dispatch available at every time step for every
user; xr,Uj represents the installed capacity of the renewable
asset r and pr,Uj,t is its specific power production. AR

j denotes
the renewable assets of user j.

PUmax
j,w ≥ max

{
PU+
j,t̂

, PU−
j,t̂

}
∀w, t̂ ∈ T̂w (8)

PR
j,t ≤

∑
r∈AR

j
pr,Uj,t x

r,U
j ∀t (9)

The energy balance of the batteries is modeled using (10), em-
ploying cyclical notation (Eb,U

j,0 = Eb,U
j,|T |); equations account

for the roundtrip efficiency ηbj of the battery b, including its
corresponding converter c = c(b) ∈ AC

j , belonging to the
set AB

j . The peak power capacity is ensured by (11), while
the maximum and minimum allowed state of charge are taken
into account in (12) using coefficients βb,max

j and βb,min
j . The

variables xbj and x
c(b),U
j represent the rated energy capacity

of battery b and the power capacity of the corresponding
converter, respectively.

Eb
j,t = Eb

j,t−1 −∆P
c(b)+
j,t /

√
ηbj +∆P

c(b)−
j,t

√
ηbj ∀b, t (10)
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P c±
j,t ≤ xc,Uj ∀c, t (11)

xbjβ
b,min
j ≤ Eb

j,t ≤ xbjβ
b,max
j ∀b, t (12)

D. Energy Community objective and shared energy

In a Cooperative Energy Community, the overall goal is
to maximize the so-called social welfare SWCO(K) of the
community K, which includes the NPV of each member j
and the total reward RSH

y allocated to the community, as
detailed in (13). The total reward annually awarded to an EC is
formulated in (14), where πSH

t is the regulated unitary reward
and PSH

t is the shared energy virtually net-metered. PSH
t is

defined as the minimum between the overall production and
consumption, as modelled in (15).

SWCO(K) =
∑
j∈K

NPV j +
∑
y∈Y

RSH
y

(1 + r)y
(13)

RSH
y =

∑
t π

SH
t mT

t P
SH
t (14)

PSH
t = min

{∑
j∈K PU+

j,t ,
∑

j∈K PU−
j,t

}
∀t (15)

E. Energy Community problems

1) Coordinated EC problem (CO): In abstract terms, let uj
be the operation (PU±

j,t , PUmax
j,w , PR

j,t, P
c±
j,t , Eb

j,t) and invest-
ment variables (xa,Uj,t ) of each user j, and s the power shared
in an EC. The mathematical problem for the coordinated EC
is shown in (16), where matrix Mj and vector bj denote the
constraints in Section II-C, while constants cj and lj represent
the cost coefficients discussed in Section II-B. The shared
power s is constrained to be lower than or equal to the total
energy production and consumption, by using matrices D±,
through the identity PU±

j = D±uj ; δ > 0 represents the
weighted reward for every unit of shared power.

SWCO(K) = max
∑

j∈K(cTj uj + lj) + δT s

s.t. Mjuj ≤ bj ∀j ∈ K
s ≤ ∑

j∈K D+uj
s ≤ ∑

j∈K D−uj

(16)

This formulation turns out to be useful in the discussion of
the other EC problems described below.

2) Non-Coordinated users problem (NC): As discussed
in Section II-B, in this case each user maximizes its own
profitability regardless of the others. Let SWNC(K) be the
optimal objective function of the optimization of the whole
community with no user interaction, as in (17). No shared
energy applies and hence no coordination is incentivized.

SWNC(K) =
∑

j∈K max cTj uj + lj
s.t. Mjuj ≤ bj

(17)

It is worth noticing that the problem in (17) is similar to (16),
but no shared energy applies. That indeed leads each user
problem to be independent.

3) Aggregated-Non-Coordinated EC problem (ANC): Fi-
nally, we consider the so-called Aggregated-Non-Coordinated
EC problem, where users create an EC, but no aggregator
is present to coordinate the operation of the system, nor to
recommend coordinated investments to the users. In this case,

the users are expected to behave as in the NC problem, but also
benefit from the (probably low) shared energy corresponding
to the non-coordinated system operation. Let uNC

j be the
optimal decision vector of user j in the NC problem, then
the overall objective function of the whole community under
ANC conditions can be described as in (18):

SWANC(K) = SWNC(K)+max δT s

s.t. s ≤ ∑
j∈K D+uNC

j

s ≤ ∑
j∈K D−uNC

j

(18)

It is worth noticing that the problem in (18) is similar to (16),
but the decision variables uj are set to the NC optimal solution.
Accordingly, users constraints (Mju

NC
j ≤ bj) are satisfied by

definition of uNC
j , and hence excluded from the optimization.

III. GAME-THEORETIC REWARD ALLOCATION

A. Preliminary definitions: benefit and surplus of a coalition

A cooperative game with transferable utility can be devised
to reward the participants in the EC. The set of players I is
made by the set J of users that may join the community and
the aggregator A. The characteristic function v measures the
common benefit of the possible ECs between the players who
agree to join it eventually including the aggregator. Each user
can always choose its own NC optimal solution, therefore this
is considered as the base case configuration. When the Aggre-
gator A participates, the CO optimal solution can be achieved
and the corresponding benefit is the difference between the
optimal performance of CO and NC configurations; otherwise,
no coordination is created and the benefit of the community
is limited to the difference between the optimal ANC and NC
configurations.

The mathematical expression of the characteristic function
for any coalition K ⊆ I is given by

v(K) =

{
SWCO(KA)− SWNC(KA) if A ∈ K,

SWANC(K)− SWNC(K) if A /∈ K,
(19)

where KA = K \ {A}.
To identify the improvement of benefit for each user or

aggregator in the presence of the community, we consider the
set

B =
{
∆ ∈ R|I|

+ :
∑

i∈I ∆i = v(I)
}

(20)

which describes the possible ways the overall improvement
v(I) is shared between them. Once an allocation ∆ ∈ B is
chosen, the improved NPV of each user j with respect to the
base case (NC) is given by

NPV F
j = NPV NC

j +∆j . (21)

For ease of presentation, we introduce the concept of surplus
σ(K,∆) of a coalition K ⊆ I with respect to allocation ∆ as

σ(K,∆) =
∑

i∈K ∆i − v(K). (22)

When σ(K,∆) is positive, the users are better off within the
community rather than being on their own.
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B. Core

The Core [35] is the set of reward allocations that guarantees
that no coalition of the whole community I is worse off within
the community than outside, i.e.,

C(I, v) = {∆ ∈ B : σ(K,∆) ≥ 0 ∀K ∈ P} , (23)

where P = {K ⊂ I : K ̸= ∅} is the set of proper subsets of
I . This property ensures the stability of the coalition, in that
no user is expected to benefit from leaving the community. As
it is defined by a finite number of linear inequalities, C(I, v)
is a polytope and may contain uncountably many allocations.

C. Least Core

The Least Core [36] is the set of allocations that maximize
the benefit for the least profitable coalition, i.e.,

LC(I, v) =
{
∆ ∈ B : σ(K,∆) ≥ θLC ∀K ∈ P

}
, (24)

where

θLC = max θ
s.t. σ(K,∆) ≥ θ ∀K ∈ P

∆ ∈ B
(25)

While the Core might be empty, the Least Core is always
nonempty. In particular, if θLC < 0 then the Core is empty.
Otherwise, if θLC > 0 the Least Core is a proper subset of
the Core, while they coincide whenever θLC = 0. Clearly, the
computational burden of LC is equivalent to the Core.

D. Nucleolus

Given any allocation ∆, let ψ(∆) be the order vector of
satisfaction, i.e., the vector of surpluses arranged in non-
decreasing order. The Nucleolus [24] is the unique allocation
that lexicographically maximizes the vector ψ. In comparison
with core and least core, Nucleolus is computationally harder
to compute. Indeed, the computation of θLC is just the first
step of the lexicographic maximization of ψ.

E. Shapley Value

The Shapley Value is the only allocation that jointly satisfies
efficiency, symmetry, dummy, and linearity properties [37].
The allocation of each player i ∈ I is the weighted average
of its marginal contribution to every coalition:

∆SV
i =

1

|I|
∑
K⊆I

(|I| − 1

|K|

)−1

[ v(K)− v(K \ {i}) ]. (26)

The Shapley Value may not belong to the Core and it is as
computationally intensive as the Core calculation.

F. Variance Core and Variance Least Core

In order to select an allocation in the Core or Least Core, [6]
proposed to minimize the squared distance from the uniform
allocation. The corresponding unique minima

∆V C = argmin

{∑
i∈I

[
∆i −

v(I)

|I|

]2
: ∆ ∈ C(I, v)

}
(27)

∆V LC = argmin

{∑
i∈I

[
∆i −

v(I)

|I|

]2
: ∆ ∈ LC(I, v)

}
(28)

have been named Variance Core (VC) and Variance Least
Core (VLC). In the authors’ opinion this approach appears
promising; in the following, we generalize its formulation also
including proof of uniqueness.

G. Computational concerns

The common computational issues involved in the reward
distributions schemes described above stem from the need
of computing the value of v(K) for every subset K ⊆ I .
This involves solving a number of optimization problems,
described in Section II-E, that is exponential in the size |I|
of the community. Consequently, these models can hardly be
used, with a naı̈ve computation approach, for problems larger
than 10-20 users [6]; this has so far limited the use of game
theoretical approaches in ECs and in the power systems field.

The complexity issue clears comes from the fact that the
above formulations involve a number of variables that grows
linearly with the size of the community I , but a number of
constraints that is exponentially in the number of coalitions
K, i.e., of the order of 2|I|. Yet, it is well-known that in such
a case only a small fraction of the constraints are going to be
binding, i.e., that there exists a formulation with a manageable
number of constraints—corresponding to a small, well-chosen
set of coalitions—that is in fact equivalent to the full one. The
issue is that this set is not known in advance: however, row-
generation approaches have proven able to efficiently solve
problems of this type, provided that a proper separation oracle
can be developed to efficiently identify constraints (coalitions)
violated by a given solution. In the following, we show how
this can be done for a large class of practical EC models,
thereby allowing the actual use of game-theoretic concepts
for community of the scale required by practical applications.

IV. FAIR CORE AND FAIR LEAST CORE

A. Definition

Different measures of fairness rather than variance can be
considered. Therefore, we propose the general Fair Core (FC)
and Fair Least Core (FLC) reward allocation schemes in
the same fashion, by maximizing a generic strictly concave
function f that measures the fairness of allocation ∆ over the
Core or Least Core:

∆FC = argmax {f(∆) : ∆ ∈ C(I, v)} , (29)

∆FLC = argmax {f(∆) : ∆ ∈ LC(I, v)} . (30)

B. Uniqueness

When the Core is empty, ∆FC is not even defined. On the
contrary, ∆FLC always exists. Moreover, the choice of strict
concavity guarantees the uniqueness of the optimal solution of
the above problems, see for instance [38], so that (29) and (30)
define unique allocations. Note that VC and VLC are special
cases of FC and FLC, respectively: minimizing variance is
equivalent to maximizing negative variance, that is a (strictly)
concave function.
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V. THE PROPOSED COMPUTATIONAL ALGORITHM

A. The algorithm

We focus on the solution of problem (30), since it is more
complex than (29) and than the computation of just one point
in the Core and Least Core.

The algorithm is divided into two consecutive stages. The
first aims at computing θLC together with one point of the
Least Core and, once the former is approximately known, the
second stage actually solves (30). In order to solve (29) the first
stage is not needed, as the Core is nothing else than the Least
Core (24) with θLC = 0. As a consequence, the computation
of just a point in the Core can be performed through the second
stage with the particular choice of f = 0.

Since the problems in both stages involve an exponential
number of constraints, we propose the use of a row-generation
technique to efficiently deal with them. The overall algorithm
is sketched in Fig. 2. Each stage proceeds by iteratively exe-
cuting a Master Problem (MP) and a Separation Problem (SP).
The MP generates candidate reward allocations by considering
only the constraints corresponding to a (small) subset Γ of
proper coalitions, that is iteratively revised. Given the optimal
solution of the MP, the SP seeks to find the coalition with the
lowest surplus, that is therefore added to the set Γ.

In the first stage, convergence is reached when the surplus
of MP matches the optimal value of SP. In the second stage, it
is reached when the coalition found by SP is feasible for the
MP, and this happens when the approximated value of θLC

computed at the first stage matches the optimal value of SP.
An important aspect to improve the performance of the

algorithm is the initialization of Γ with a well-chosen pre-
defined set of coalitions.

B. Initialization

The aim of the initialization is to populate the set Γ with
a pre-set, low number of coalitions, for each of which the
quantity v(K) must be computed. While computing v(K) has
generally lower computational requirements with respect to
the SP, doing so an exponential number of times is prohibitive.
Pre-populating Γ has a cost proportional to the chosen size,
but on the other hand, a larger Γ can be expected to yield
faster convergence. Therefore, a trade-off exists that will be
explored in the computational section. Besides the number of
coalitions, we will show that their effective choice is crucial.

C. First stage

Given the set Γ, the Master Problem is

ωM = max { θ : ∆ ∈ B , σ(K,∆) ≥ θ ∀K ∈ Γ} , (31)

which is the relaxation of (25) obtained by only considering
the constraints corresponding to the coalitions in Γ. If the set
Γ is reasonably small, then (31) can be efficiently solved since
it has |I|+ 1 variables in total (θ and the allocation ∆). This
provides an optimal allocation ∆M and its value ωM . Since
(31) has less constraints than (25), then ωM ≥ θLC .

START

Initialization
Preload a set Γ of coalitions

Solve Master Problem (31) to get ωM and ∆M

Solve Separation Problem (32) to get ωS and KS

ωM − ωS < ε Add KS to Γ

First stage

Set θ̂LC = ωM

Solve Master Problem (33) to get ∆M

Solve Separation Problem (32) to get ωS and KS

θ̂LC − ωS < ε Add KS to Γ

Second stage

STOP

No

Yes

No

Yes

Fig. 2. Proposed solution algorithm for the Fair Least Core.

The Separation Problem checks if ∆M is actually feasible
for (24) by finding the coalition KS with lowest surplus

ωS = min
{
σ(K,∆M ) : K ∈ P

}
. (32)

If ωM = ωS , then θLC = ωM and ∆M belongs to the Least
Core. To lower the computational burden, the above equality
between the optimal values is checked up to some desired
precision ε, the approximate value θ̂LC = ωM is exploited
in the second stage and the first stage is considered over.
Otherwise, KS is added to Γ and the Master Problem (31)
is solved again.

D. Second stage

Given θ̂LC and the set Γ provided by the first stage, the
Master Problem in the second stage is

max
{
f(∆) : ∆ ∈ B , σ(K,∆) ≥ θ̂LC ∀K ∈ Γ

}
, (33)

which is an approximation of (30) since θ̂LC is kept fixed.
When θ̂LC = θLC , any optimal allocation ∆M of (33)
provides an upper bound f(∆M ) of the optimal value of (30)
and it is optimal if it is feasible for (30). Therefore, we stop
the second stage whenever ∆M is feasible in any case since
θ̂LC is always expected to be very close to the true value
θLC . Feasibility can be checked by solving the Separation
Problem (32) and comparing ωS with θ̂LC . If they are (ap-
proximately) equal, then ∆M is feasible, otherwise the optimal
coalition KS is added to the set Γ and a new iteration is
performed.
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VI. THE SEPARATION PROBLEM

While the MP is a continuous optimization problem, the SP
is combinatorial. Yet, by exploiting the mathematical formu-
lation for the EC problems of Section II-E, it can be recast as
a MILP, and therefore solved efficiently for communities of
practical size, as shown in the following.

A. Mapping a generic coalition

The crucial challenge is to develop a proper row-generation
algorithm to efficiently solve the Separation Problem (32).
This requires in particular to describe the surplus function
defined in (22) for a generic coalition K ⊆ I . The funda-
mental modelling trick we exploit is to augment the models
of Section II-E with membership binary variables z ∈ {0, 1}|I|
to represent the chosen coalition; that is, zi equals 1 when
member i belongs to the coalition K, and 0 otherwise.

B. Benefit of a coalition

We now describe how to model the benefit v(K) of a coali-
tion, defined in (19), for any coalition K represented by the
variable z. Since the presence of the aggregator significantly
changes the structure of the mathematical problem in (19)
that must be solved, we separate the function v into the two
components, vW and vW/O, which represent the case with and
without the aggregator, respectively; that is,

v(K) = v(z) =

{
vW (z) if zA = 1,

vW/O(z) if zA = 0,
(34)

where zA is the membership variable of the aggregator.
1) Coalition with the aggregator: The benefit vW (z) rep-

resents the difference between (16) and (17), namely

vW (z) = max
u,s

∑
j∈J(c

T
j uj − cTj ū

NC
j zj) + δT s

s.t. Mjuj ≤ bjzj ∀j ∈ J
s ≤ ∑

j∈J D
+uj

s ≤ ∑
j∈J D

−uj

(35)

where the variables u of all members are formally included
together with the energy exchange s. Anyway their actual
occurrence is driven by the choice of the coalition addressed
by z. In fact, since Mjuj ≤ bj includes box constraints, zero-
ing the right-hand-side forces all variables uj to be zero, as
{uj : Mjuj ≤ 0} = {0}. This suggest to replace bj with
bjzj . Indeed, choosing zj = 0 implies uj = 0: member j
“disappears” from the problem and cannot contribute to the
energy exchange variables s and their reward, while on the
other hand not incurring in any cost. Conversely, when zj = 1
the constraint reads Mjuj ≤ bj and member j “operates
normally”, thereby contributing to the community but having
to pay its normal costs.

2) Coalition without the aggregator: The benefit vW/O(z)
is the difference between (18) and (17), which corresponds to

vW/O(z) = max
s

δT s

s.t. s ≤ ∑
j∈J D

+uNC
j zj

s ≤ ∑
j∈J D

−uNC
j zj

(36)

The summation in the constraints is extended to the whole set
of users J , but each term is multiplied by the membership
attribution zj to ensure no contribution to the shared energy
when the member does not belong to the community. The
above optimization problem has only the shared energy vari-
ables s, hence it is significantly smaller than (35) and this is
exploited in the subsequent decomposition.

C. Procedure for SP decomposition
The Separation Problem (32) can be formulated by exploit-

ing the membership variables as the following MILP

min
z

∑
i∈I ∆

M
i zi − v(z)

s.t. 1 ≤ ∑
i∈I zi ≤ |I| − 1

z ∈ {0, 1}|I|
(37)

The objective function involves an inner maximization prob-
lem so that a min-max structure seems to appear. Since v(z)
compares with minus sign, the problem is actually a standard
minimization problem.

To further increase the efficiency of the algorithm, since the
computation of vW/O(z) involves significantly less variables
than vW (z), the restriction of (37) without the aggregator
fixing zA = 0 is solved first. If the optimal value is enough
to identify a coalition to add to Γ, then it is added without
fully solving (37). Otherwise, also the case with the aggregator
(zA = 1) is analyzed. The following steps summarize the
above procedure:

1) solve (37) with the additional constraint zA = 0 to get
the optimal value ωS

0 and the corresponding optimal
solution KS

0 ;
2) add KS

0 to Γ in the first stage if ωM − ωS
0 ≥ ε, in the

second if θ̂LC − ωS
0 ≥ ε;

3) otherwise, solve (37) with the additional constraint zA =
1 to get ωS .

VII. CASE STUDY

A. Description
To validate the methodology, we apply the proposed ap-

proach to a realistic case study that describes ECs of various
sizes (10-50) for a peri-urban area in Italy; yet, the approach
does not depend on specifics of the Italian case. The demand
data have been adapted from the dataset measured from a
Portuguese substation [39], whose consumption patterns are
similar to the Italian ones, with average peak demand in
the range 12-40 kW. Given their abundance, solar and wind
resources have been considered, and their time series have
been obtained from [40]. To avoid market distortion, the
market prices of 2019 have been selected.

B. Users composition
In this study, we considered the four EC sizes of 10, 20, 30

and 50 members, which aligns to expected values in the Italian
context. To keep results comparable, the ECs with size larger
than 10 have been obtained by replicating the composition
of the 10-user EC. For instance, in the 30-user EC, members
11 and 21 perfectly match user 1. This is justified by the
observation that typical consumers in the power grid do have
similar habits and, consequently, similar demand patterns.
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TABLE I
PERCENTAGE DIFFERENCE BETWEEN FINAL SURPLUS ωS AND TRUE

VALUE.

EC size Precoal. Core LC VC VLC
10 All 0.0* 0.0* 0.0* 0.0*
20 [1, 20] 0.0* 0.0* 0.0* 0.0*

*below 10−3

C. Main techno-economic parameters

The cost of installing photovoltaic (PV) systems is between
1.4 and 1.7 kC/kWp, with a space limitation up to 100
kWp. Wind turbines cost 3 kC/kW. Lithium batteries cost
400 C/kWh plus 200 C/kW (converter) and have a round-trip
efficiency of 92%. The lifetime of PV is 25 years, while wind
turbines, batteries, and converters have a lifespan of 20, 15,
and 10 years, respectively. Yearly maintenance charges have
been estimated between 1 and 2% of the initial investment.
Purchase and selling prices of 18 cC/kWh, including taxes,
and 5 cC/kWh, respectively, have been assumed, with monthly
peak power charges of 3 C/kW/month [33].

D. Testing procedure

To validate the proposed framework, we used Shapley
Value, Nucleolus, Core, Least Core, Variance Core and Vari-
ance Least Core as reward allocation functions for the con-
sidered ECs. We applied the approach described in Section V
and Section VI to the latter four allocation functions for all
EC configuration. In order to compare the effectiveness of
our approach, we also performed the complete enumeration
of all coalitions. Due to obvious computational limitations,
this has been done only for the cases of 10 and 20 users.
For our approach we performed a sensitivity analysis on the
pre-coalition set Γ, considering up to 6 configurations. The
notation of the pre-loading is as follows: [1] denotes that Γ is
pre-loaded with all the coalitions with up to 1 member, [1, |J |]
denotes the coalitions with 1 or |J | members, and so on.

In the following section, we first compare the enumerative
approach with the iterative one, to show the equivalence of
their results but the far superior performances of the latter,
which makes it usable for large ECs. We then perform a
sensitivity analysis with respect to the size of the community,
to suggest guidelines for fair stable reward allocations.

The methodology has been solved using Gurobi 9 and 10
threads on a 72-core Xeon computer with 1.2TB RAM. A
relative tolerance of 1% or an absolute tolerance of 1C have
been used as stopping criterion of the algorithm.

VIII. RESULTS

A. Validation of results

Table I and Table II validate the iterative technique de-
scribed in Section V-VI by reporting the percentage difference
between its results and those of the traditional enumerative
computation. Table I confirms that the iterative approaches
successfully capture the true surplus value, computed by
complete enumeration, with differences compatible with the
target tolerance. Table II rather shows the maximum per-
centage difference across users in reward allocation. The

TABLE II
MAXIMUM PERCENTAGE DIFFERENCE OF USERS’ ALLOCATION BETWEEN

THE ITERATIVE AND ENUMERATIVE APPROACHES.

EC size Precoal. Core LC VC VLC
10 [1] 100.00 50.26 0.0* 0.27
10 [1, 2] 75.04 50.26 0.0* 0.27
10 [1, 10] 142.73 50.22 0.0* 0.0*
10 [1, 2, 3] 116.02 36.29 0.0* 0.27
10 [1, 9, 10] 100.00 95.51 0.0* 0.0*
20 [1, 20] > 1000 38.66 0.0* 0.95

*below 10−3

results show that the VC and VLC allocations have negli-
gible differences with respect to the exact solutions, which
confirms reproducibility in agreement with the theory. On the
contrary, the computations of allocations in Core and Least
Core are merely feasibility problems. Therefore, it is natural
that different procedures point to allocations that are far from
each other, although having comparable surplus. This is in
agreement with the theory and further confirms the importance
of finding allocations that are uniquely defined, such as the
F[L]C proposed in Section IV.

B. Convergence characteristics

Fig. 3 and Fig. 5 highlight the computational time and the
convergence characteristics of the proposed method for the 10-
and 20-member ECs. Fig. 3 clearly confirms that the iterative
algorithm can dramatically reduce computational requirements
by 20x even for the 10-member EC, and beyond 16000x for
the 20-member EC. As the enumerative technique required
longer than 2 months to compute, and the computational
requirements grew exponentially, no validation was possible
for larger ECs. A proper pre-loading can have a significant
impact on the iterative algorithm, as the [1, |J |] choice reduced
the computational cost by about 64% with respect to [1]; this
is why it is selected as the reference case for the subsequent
investigations.

The efficiency of the algorithm is confirmed in Fig. 4, which
shows that the computational cost scale relatively proportional
to the size of the community. This is a significant improvement
with respect to the exponential requirements of traditional
techniques illustrated in Fig. 3. Moreover, in Fig. 5 we plot
the difference ωM − ωS in the first stage and θ̂LC − ωS

in the second stage that is used as convergence criterion of
the proposed algorithm (Section V); the picture shows that
the algorithm generally converges fairly quickly in a limited
number of iterations.

Overall, these results confirm the ability of the proposed
algorithm to scale in size and make game-theoretical allocation
approaches feasible for large ECs.

C. Benefit and reward allocation by size of community

Finally, we show in Fig. 6 and Fig. 7 the effect of EC
size on the community surplus and reward allocation by
user, respectively. Fig. 6 interestingly shows that the surplus
decreases the larger the EC size. Indeed, the larger the EC,
the lower each user’s market power within the community,
which in turn decreases the LC value. However, the marginal
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reduction decreases the larger the community. As the LC
changes, the users’ relative reward allocation changes, to

reflect the different market power within the community.
Fig. 7 shows the expected user benefit in terms of ∆ by

member type and reward allocation. For simplicity, as for 20-
member EC or larger the users are identically replicated, error
bars depict the maximum and minimum benefit allocation
between the same member types. First, it is worth noting
that error bars are negligible, which means that each member
type is remunerated in the same way. For example, in the 50-
member EC, there are 5 instances of member types ”user1”
that are all remunerated with the same value, which goes in
favor of stability and fairness.

IX. CONCLUSION

Based on the state-of-the-art on game-theoretic allocations,
this paper proposes and discusses the novel fair stable reward
allocations Fair Core and Fair Least Core for Energy Commu-
nities. These successfully maximize fairness of benefit alloca-
tion, while enforcing stability by ensuring that no member is
worse off within the community than outside (by the largest
possible margin in the Least Core variant). The new allocations
guarantee uniqueness and reproducibility, which go in favor of
the practical use of the methodology.

Crucially, the work also proposes a row-generation algo-
rithm to reduce the hitherto staggering computational re-
quirements for game-theoretic benefit allocations. The new
algorithm is extensively validated on communities up to 50
members, which was before impossible. The results suggest
that the methodology is a breakthrough that makes game-
theoretic allocations practical for large coalitions while ensur-
ing uniqueness, reproducibility, and stability. As an example
of the managerial insights that the methodology offers, our
case study shows that the larger the community, the higher
the influence of market power within the community, which
has impact on reward allocation.

This paper lays the foundations for reproducible, fair, and
stable reward allocations, and it can be expected to steer
research in the design of incentive schemes for Energy Com-
munities, power systems, and beyond.
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