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Abstract 

The number of studies reporting a relationship between DNA sequence variants and cancer 

treatment outcome are increasing in number. In particular, the following associations were found: 

dihydropyrimidine dehydrogenase (DPD) gene mutations and severe 5-FU toxicity, epidermal 

growth factor receptor mutations (EGFR) and responsiveness of NSCLC to gefitinib, ERCC1 

polymorphisms and activity of cisplatin, genetic variants of UGT1A1 gene and severe neutropenia 

by irinotecan, thymidylate synthase (TS) gene polymorphisms and 5-FU sensitivity, and cytidine 

deaminase (CDA) genotype and expression of equilibrative nucleoside transporter-1 (hENT1) and 

response to gemcitabine. The next step in pharmacogenetic research should be the validation of 

these findings in randomized prospective trials, specifically designed to compare the outcome of 

treatment selected on the basis of patient’s genotype vs. standard approach. In conclusion, the 

improvement in genotyping technologies, combined with efficient and cost-effective analytical 

methods, may fulfill the promise of personalizing the treatment offered to cancer patients. 
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Introduction 

Cancer is the result of a multistep process of mutations in key regulatory genes and epigenetic 

alterations that result in loss of balanced gene expression. Dominant oncogenes contribute to 

malignant transformation by promoting uncontrolled cell proliferation, blocking normal 

differentiation and preventing apoptosis, whereas recessive tumour suppressor genes encode 

proteins that negatively regulate cell proliferation. Within the past two decades, the molecular 

pathology of cancer has achieved a wider recognition and now encompasses a rapidly expanding 

field that discovers novel targets for drug development. Cancer chemotherapy has progressed since 

its introduction into clinical practice and represents the most promising treatment modality. Its use, 

however, is limited by the inability to predict the response of the tumor, and the choice of treatment 

protocols is still mostly empirical. This approach has important limitations because it does not take 

account of tumor (somatic) and host (germline) genetic variability and it is not surprising that 

patients with apparently identical tumors do not always respond to the same drugs or have the same 

severity of adverse reactions (1). 

The individualization of therapy is the longstanding goal of pharmacologists; since the 1950s, in 

vitro tests have been developed that identify effective drugs and avoid unnecessary toxicity (1). 

With the completion of the Human Genome Project and identification of genes implicated in the 

development of cancer, the next tasks were to understand the influence of oncogenes and tumor 

suppressor genes on drug susceptibility and apply genetic profiling to the choice of pharmacological 

treatment. The influence of the genetic background on responses to anti-cancer agents is particularly 

interesting considering that the reasons for the success of chemotherapy in some cancers (i.e. 

testicular seminoma) and the discouraging results in others (i.e. exocrine pancreas cancer) are still 

unclear. In this context, pharmacogenetics seeks to identify genetic factors that contribute to 

interpatient and interdrug variation in responses to anti-neoplastic chemotherapy (1). 
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Polymorphisms in genes coding for metabolizing enzymes and drug transporters can affect drug 

efficacy and toxicity (2). Pharmacogenomics aims to identify individuals predisposed to high risk of 

toxicity and low response from standard doses of anticancer drugs. The present article focuses on 

the clinical significance of polymorphisms in drug-metabolizing enzymes and drug transporters in 

influencing efficacy and toxicity of anticancer therapy. The most important examples to 

demonstrate the influence of pharmacogenetics on anticancer therapy are dihydropyrimidine 

dehydrogenase (DPD) gene mutations and severe 5-fluorouracil (5-FU) toxicity, epidermal growth 

factor receptor mutations (EGFR) and responsiveness of non-small cell lung cancer (NSCLC) to 

gefitinib, ERCC1 polymorphisms and activity of cisplatin, genetic variants of UDP 

glucuronosyltransferase 1A1 (UGT1A1) gene and severe neutropenia by irinotecan, thymidylate 

synthase (TS) gene polymorphisms and 5-FU sensitivity, and cytidine deaminase (CDA) genotype 

and expression of equilibrative nucleoside transporter-1 (hENT-1) and response to gemcitabine. 

However, in most other anticancer therapies no clear association has been found for polymorphisms 

in drug-metabolizing enzymes and drug transporters and pharmacokinetics or pharmacodynamics of 

anticancer drugs. Evaluation of different regimens and tumor types showed that polymorphisms can 

have different, sometimes even contradictory, pharmacokinetic and pharmacodynamic effects in 

different tumors in response to different drugs (2). The clinical application of pharmacogenetics in 

cancer treatment therefore requires more detailed information regarding the different 

polymorphisms in drug-metabolizing enzymes and drug transporters. A greater understanding of 

complexities in pharmacogenetics is needed before individualized therapy can be applied on a 

routine basis (2). This review focuses on the influence of selected genes on the activity of anti-

cancer agents: examples described illustrate the range of responses and toxicities that result from 

the interaction of drugs with genes expressed within tumor and non-tumor cells, highlight how 

genetics will impact on pharmacology, and underscore the role of pharmacogenetics in making 

therapeutic decisions and optimizing treatment. 
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DPD gene mutations and severe 5-FU toxicity 

The identification of genetic factors associated with either responsiveness or resistance to 5-FU 

chemotherapy, as well as genetic factors predisposing patients to the development of severe 5-FU-

associated toxicity, is increasingly being recognised as an important field of study. DPD plays a key 

role in the catabolism of 5-FU to 5-fluoro-5,6-dihydrouracil (5-FDHU), and as such, an impairment 

of DPD has been recognized as an important factor for altered 5-FU and 5-FDHU 

pharmacokinetics, predisposing patients to the development of severe 5-FU-associated toxicity (3). 

Patients with DPD deficiency have an increased risk of developing grade IV neutropenia. In 

addition, the onset of toxicity occurred twice as fast compared with patients with a normal DPD 

activity. To date, 39 different mutations and polymorphisms have been identified in DPYD. The 

IVS14+1G>A mutation proved to be the most common one and was detected in 24-28% of all 

patients suffering from severe 5-FU toxicity. Thus, a deficiency of DPD appears to be an important 

pharmacogenetic syndrome (3). In order to identify patients at risk of toxicity by 5-FU, several 

methods have been proposed, including germline genotypization (4) and phenotyping through 

administration of 5-FU test-dose (5). In a recent study the pharmacokinetics of 5-FU/5-FDHU and 

DPD activity in peripheral blood mononuclear cells (PBMCs) were examined in gastrointestinal 

cancer patients given a test dose of 5-FU, 250 mg/m2 before the planned 5-FU treatment of 370 

mg/m2 plus L-folinic acid, 100 mg/m2. The 5-FU test dose was well tolerated in all patients; in 3 of 

them marked alterations of 5-FU/5-FDHU pharmacokinetics (i.e., increased 5-FU half-life and 

reduced 5-FU total body clearance) were observed; they were excluded from 5-FU treatments and 

given irinotecan, which was well tolerated. A significant correlation between 5-FU AUC and 5-

FDHU AUC was found, whereas a weaker correlation between PBMC DPD activity and both 5-

FDHU AUC and 5-FDHU Cmax was observed. No relationships between PBMC DPD activity and 

5-FU toxicities were found, whereas 5-FDHU pharmacokinetics was associated with the risk of 

moderate to severe neutropenia and diarrhea (5). 
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Indeed, 5-FU and 5-FDHU pharmacokinetics is an important parameter to predict response to 

adjuvant chemotherapy in radically-resected colorectal cancer patients. Individual plasma 

pharmacokinetic parameters of 5-FU and 5-FDHU were determined at the first cycle and correlated 

with disease-free survival. The main finding was a lower area under the time/concentration curve 

(AUC) of 5-FU in patients who recurred with respect to other patients. Furthermore, AUC values 

lower than 8.4 h x mg/L together with lymph node involvement and the interruption of treatment or 

reduction of doses were identified as risk factors at univariate analysis, thus suggesting that 

pharmacokinetics of 5-FU is an important factor for predicting disease recurrence in colorectal 

cancers (6). 

 

EGFR mutations and responsiveness of NSCLC to gefitinib 

The disappointing results of long-term survival among patients with NSCLC may reflect the lack of 

knowledge of the ways in which molecular abnormalities of neoplastic cells affect responsiveness 

to anticancer therapy. Remarkable advances in the understanding of NSCLC cancer biology have 

been made over the past decade, including the discovery of critical mutations in oncogenes (i.e., 

mutation of K-Ras and c-myc gene), as well as the loss of tumor-suppressor genes, such as TP53, 

p16INK4, or Rb. The future challenge of NSCLC chemotherapy relies on the identification of 

molecular markers that are predictive of drug sensitivity and help in the selection of 

chemotherapeutic agents best suited to the individual patient. Other intriguing issues will be the 

identification of the optimal drug sequence in combination regimens, as well as polymorphisms of 

genes involved in severe toxicities (7). 

The EGFR family, including EGFR, HER2, HER3, and HER4, is implicated in the development 

and progression of cancer, and is expressed in many human epithelial malignancies, including 

NSCLC. Several molecules were synthesized to inhibit the extracellular domain of EGFR, such as 

cetuximab, or the EGFR tyrosine kinase domain, such as gefitinib and erlotinib. Gefitinib and 
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erlotinib produce objective response rates in about 10% of advanced NSCLC. Among clinical 

characteristics, female gender, adenocarcinoma histology, never smoking history, East Asian 

ethnicity are probably the most relevant factors. The presence of specific EGFR gene mutations or 

EGFR gene amplification confers a particularly sensitive phenotype (8).  

The EGFR mutations are distributed throughout the kinase domain, but a deletion in exon 19 and 

the point mutation L858R in exon 21 account for approximately 90%, which confer a greater 

response to gefitinib treatment, compared with other types of EGFR mutations. These EGFR 

mutations in the tyrosine kinase domain are somatic and involve a subset of lung cancers patients; 

the pathogenesis of these tumors does not involve the carcinogenic effect of smoke. In Japan, the 

EGFR mutations are detected in approximately 30% of overall NSCLC and approximately 40% of 

surgically resected adenocarcinomas. The morphological features of adenocarcinomas harboring the 

mutations were reported to be frequent in those with bronchioloalveolar features (9). 

Finally, an important issue in EGFR target-specific therapy is the combination with standard 

cytotoxic agents. Patients with NSCLC stage IIIa/b pN2/3 were treated with at least three cycles of 

chemotherapy before undergoing surgery. EGFR expression was evaluated on mediastinal nodes at 

the time of initial diagnosis and on both the primary tumor and residual metastatic nodes after 

treatment (10). Chemotherapy was not associated with disappearance of EGFR immunoreactivity 

and in most patients the initial score was maintained. Moreover, in 6 patients with negative EGFR 

immunostaining before chemotherapy, 4 turned on the expression of EGFR from 0 to 2+/3+, thus 

suggesting a very good agreement of EGFR status before and after chemotherapy in EGFR-positive 

NSCLC (10). 

 

ERCC1 polymorphisms and activity of cisplatin 

Cisplatin has a broad range of activity in malignant disease and is used to treat many types of 

cancer. It is particularly active against germ cell tumors and epithelial ovarian cancer and play a 
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primary role in the treatment of SCLC and NSCLC, cervical cancer, head and neck cancer, 

colorectal cancer, and bladder cancer. Resistance to platinum-based chemotherapy can be intrinsic 

or acquired and may be mediated by factors outside or within the cancer cell or at its cell membrane 

(11). Resistance to platinum chemotherapy is multifactorial; there are DNA repair pathways that 

protect DNA from chemical injury: nucleotide excision repair (NER), mismatch repair (MMR), 

double-strand break repair (DSBR), base excision repair (BER), and direct repair. NER seems to 

play a key role in mediating resistance or sensitivity to platinum chemotherapeutic agents (11). 

NER is a highly conserved DNA repair pathway that repairs DNA lesions which alter the helical 

structure of the DNA molecule and interfere with DNA replication and transcription. Important 

steps in this pathway include the recognition of DNA damage and demarcation of the specific area 

affected, followed by the formation of a complex to unwind the damaged portion and excise it (11). 

Finally, the excised area is resynthesized and ligated to maintain the integrity of the DNA molecule. 

The excision repair cross-complementation group 1 (ERCC1) protein plays a key role in nucleotide 

excision repair. ERCC1 dimerizes with xeroderma pigmentosum complementation group F (XPF), 

and this complex is required for the excision of the damaged DNA. Evaluation of ERCC1 transcript 

levels in tumor samples taken from ovarian (12) and colorectal (13) tumor tissues had shown an 

inverse correlation with either response to platinum therapy or survival. 

More recently, tumor samples from patients with metastatic lung cancer who participated in the 

International Adjuvant Lung Cancer trial were retrospectively evaluated by immunohistochemical 

analysis of ERCC1. This study showed a statistically significant survival benefit in patients with 

low levels of ERCC1 who had received platinum-based chemotherapy, compared to patients with 

low levels of ERCC1 who did not receive chemotherapy and patients with high levels of ERCC1 

who received cisplatin chemotherapy (14). These data, however, were not confirmed by other 

studies (15). 
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Genetic variants of UGT1A1 gene and severe neutropenia by irinotecan 

The uridine diphosphate glucuronosyltransferase (UGT) 1A1 and 1A9 isoforms are involved in the 

phase II biotransformation of the irinotecan metabolite, SN-38 (16). An exceptionally large number 

of UGT1A and 2B variants have been described with altered functionality in vitro (17), one of the 

most common being UGT1A1*28 (17). A clinical association between the drug's active metabolite 

SN-38 and toxicity has been found and by performing UGT1A1 genetic testing, some studies have 

been able to predict which patients receiving irinotecan will experience the toxicity (reviewed by 

Perera et al. [18]). The functional consequence of the UGT1A1 TATA box variants [A(TA)6TAA 

to A(TA)7TAA, UGT1A1*28], UGT1A9 766G>A (D256N; UGT1A9*5), and UGT1A9 98T>C 

(M33T; UGT1A9*3) genotypes was assessed in Caucasian patients treated with irinotecan (19). 

The pharmacogenetic/pharmacokinetic study was performed after the first course of irinotecan in 

patients with solid tumors. For UGT1A9*5, non-variant alleles were observed, whereas for 

UGT1A9*3, 1 patient with the variant allele was found (allele frequency, 0.633%). The distribution 

of UGT1A1*28 showed 51.1% wild-type patients (Wt), 43.1% heterozygotes (Het), and 5.8% 

homozygotes (Var). The median AUC ratio of SN-38G to SN-38 was significantly reduced in 

carriers of the variant UGT1A1*28 allele. It is concluded that UGT1A9 functional variants are rare 

in Caucasians and likely to be clinically insignificant in irinotecan regimens. Screening for the 

UGT1A1*28 polymorphism may identify patients with altered SN-38 pharmacokinetics (19). 

 

TS gene polymorphisms and 5-FU sensitivity 

TS is an important target for 5-FU, 5-fluorodeoxyuridine (FUDR), UFT, S-1, and capecitabine. 

Overexpression of TS is linked to resistance to TS inhibitors. The TS gene promoter enhancer 

region (TSER) contains two different polymorphisms which can influence TS mRNA 

transcriptional and translational efficiency: a polymorphic tandem repeat sequence (2 or 3 repeats; 

2R and 3R) and a single nucleotide polymorphism (SNP), G > C, within the second repeat of the 3R 



10 

 

alleles.  Polymorphic tandem repeats located in the TS enhancer region (TSER) have been shown to 

influence protein expression. Three copies (TSER*3) of the tandem repeat give a 2.6-fold greater in 

vitro TS levels than 2 copies (TSER*2) (20), while the effect of alleles containing 4 (TSER*4), 5 

(TSER*5), and 9 (TSER*9) copies of the tandem repeat have unclear significance. Stage III 

colorectal cancer patients with the TSER*3/TSER*3 genotype do not enjoy the clinical benefit of 

adjuvant 5-FU observed in patients with the TSER*3/TSER*2 or TSER*2/TSER*2 genotype (20). 

This finding is clinically relevant because the frequency of TSER*3/TSER*3 genotype is 30% in 

Caucasian patients. Prospective clinical trials should be able to confirm the impact of TSER 

genotype on clinical outcome of patients treated with TS inhibitors (20). 

A study on matched tumor and normal mucosa demonstrated no differences in TS mRNA levels 

between cancer and normal tissue. High-grade, undifferentiated tumors (WHO grade 3) had 

significantly higher mRNA levels of TS with respect to moderately differentiated (WHO grade 2) 

carcinomas. However, TS mRNA expression was significantly decreased in homozygous 

TSER*3G/3G with respect to pooled homozygous TSER*2/2 and heterozygous TSER*2/3 

genotypes. Thus, TSER*3G/3G and high-grade histology are associated with significant variation in 

TS gene expression in tumour samples (21). 

 

CDA genotype and expression of hENT-1 and response to gemcitabine 

Gemcitabine (2',2'-difluorodeoxycytidine) is a deoxycytidine analogue with antineoplastic activity 

against solid tumors. Gemcitabine is transported into cells by the equilibrative and concentrative 

nucleoside transport systems (ENT and CNT), followed by 1) metabolic activation to form 

phosphate derivatives that are either incorporated into DNA or competitively inhibits ribonucleotide 

reductase, or 2) inactivation by deamination catalyzed by cytidine deaminase (CDA) (22). 

A study characterized the expression pattern of genes involved in gemcitabine activity in pancreas 

cancer and correlated this finding with treatment outcome. The transcription analysis of human 
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equilibrative nucleoside transporter-1 (hENT1), deoxycytidine kinase (dCK), 5'-nucleotidase (5'-

NT), cytidine deaminase (CDA), and ribonucleotide reductase subunits M1 and M2 (RRM1 and 

RRM2) was done by quantitative reverse transcription-PCR in tumor tissue isolated by laser 

microdissection from surgical or biopsy samples of patients. hENT1 expression was significantly 

correlated with clinical outcome. Patients with high levels of hENT1 had a significantly longer 

overall survival. Similar results were obtained with disease-free survival and time to disease 

progression, and the multivariate analysis confirmed the prognostic significance of hENT1 (23). 

The analysis of CDA Lys27Gln polymorphism in blood samples of advanced NSCLC patients 

treated with cisplatin-gemcitabine combination demonstrated a significant association with 

improved clinical benefit, occurrence of severe neutropenia and thrombocytopenia, as well as 

longer time ti progression and overall survival in patients with CDA Lys27Lys genotype. These 

results may be explained by the higher systemic gemcitabine exposure associated with Lys27Lys 

CDA (24). 

 

Genetic variants of VEGF and VEGFR and clinical outcome of anti-angiogenic treatments 

The concept of targeting tumor angiogenesis has moved from a pioneering research field into 

clinical practice and the novel drugs now available are defining a new and promising avenue of 

targeted cancer therapy. As with many other target-specific treatments, however, the need for a 

rational selection of patients to be administered anti-angiogenic treatments is emerging, since the 

clinical activity of these agents appears to be limited to specific patients and is not predictable on 

the basis of standard approaches. Candidate targets for treatment optimization are VEGF and their 

VEGFR, and the activity of drugs inhibiting VEGF and VEGFR signal transduction pathways are 

likely to be influenced by their intrinsic biological activities and the regulation of the gene 

expression of VEGF and VEGFR as well (for review see 25). The pharmacogenetic approach to 

anti-angiogenic therapy should be considered a possible strategy for delivering the optimal 
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treatment to specific groups of patients affected by tumors as well as by other pathological 

conditions dominated by pathological angiogenesis, including age-related macular degeneration or 

endometriosis. While pharmacogenetic studies are building stronger foundations for the systematic 

investigations of phenotype-genotype relationships in many fields of medicine, pharmacogenetic 

data regarding anti-angiogenic drugs are still lacking. Many genetic variants are being discovered 

and single nucleotide polymorphisms of VEGF and VEGFR genes appear to be able to affect VEGF 

transcription, affinity to its receptor and biological activity of signal transduction pathway. 

A number of studies demonstrated a significant association between prostate (27), thyroid (28), 

bladder (29) and breast cancer (30) risk and VEGF polymorphisms but definitive data correlating 

VEGF genotypes with response to anti-angiogenic treatments are lacking. 
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