Synthesis of glycose carbamides and evaluation of the induction of erythroid differentiation of human erythroleukemic K562 cells

Martina Landi, ${ }^{\text {a }}$ Giorgio Catelani, ${ }^{\text {ad }}$ Felicia D'Andrea, ${ }^{\text {a }}$ Eleonora Ghidini, ${ }^{\text {b }}$ Gabriele Amari, ${ }^{\text {b }}$ Puccini Paola, ${ }^{\mathrm{b}}$ Nicoletta Bianchi, ${ }^{\mathrm{c}}$ Roberto Gambaric ${ }^{\text { }}$
${ }^{a}$ Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno, 33-I-56126, Pisa (Italy) ${ }^{b}$ Chiesi Farmaceutici S.p.A., Via Palermo 26/A - I-43100, Parma (Italy)
${ }^{c}$ Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Via Borsari, 46 - I-44100, Ferrara (Italy)

Abstract

A series of carbamides derived from 1,2:5,6-di- O-isopropylidene-d-gluco- (1) and d-allofuranose (3) as well as their 5,6-O-deprotected analogues (2 and 4) and methyl 3,4-O-isopropylidene- α - and β-d-galactopyranosides ($\mathbf{5}$ and $\mathbf{6}$) have been prepared in order to evaluate their ability to induce erythroid differentiation of human erythroleukemic K562 cells. Twenty out of the 51 carbamides tested exhibit an appreciable activity as inducers of erythroid differentiation and have been fully characterised and described.

1. Introduction

The K562 cell line, isolated and characterized by Lozzio and Lozzio ${ }^{1}$ from a patient with chronic myelogenous leukemia in blast crisis, has been proposed as a very useful experimental model system to identify inducers of γ-globin gene expression of possible interest in the therapy of several haematological diseases, including β-thalassemia and sickle cell anaemia. ${ }^{2}$

K562 cells exhibit a low proportion of hemoglobin-synthetizing cells under standard cell growth conditions, but are able to undergo erythroid differentiation when treated with a variety of compounds, including short fatty acids, 5-azacytidine, mithramycin, and chromomycin, cisplatin and cisplatin analogues, tallimustine, rapamycin, everolimus, psoralens and resveratrol. ${ }^{3}$ Following erythroid induction, a sharp increase of expression of human ε and γ globin genes is observed in K562 cells, leading to a cytoplasmic accumulation of Hb Portland $\left(\zeta_{2} \gamma_{2}\right)$ and Hb Gower $1\left(\zeta_{2} \varepsilon_{2}\right)$, ${ }^{4-7}$ Among possible biological response modifiers, one of the most studied classes of compound is represented by short fatty acids, especially butyric and pivalic acids and related esters. Glycide

[^0]esters have been initially proposed merely as convenient prodrugs, able to gradually release the pharmacophore following the in vivo action of esterases. ${ }^{8}$

In recent papers regarding the synthesis and evaluation of some partially acetonated monosaccharide esters of several fatty acids we have highlighted the role of the structure of either the ester and the carbohydrate residue in the antiproliferative effects and erythroid differentiation activity of K562 cells. ${ }^{9}$ Furthermore, it was observed that some glycose isobutyrates and pivaloates stimulate erythroid differentiation to higher levels than the corresponding free fatty acids. ${ }^{9}$ Consequently, we assumed that, at least in the case of isobutyrates and pivaloates, the biological activity of monosaccharide esters might be related to the whole structure prior to the occurrence of the hydrolysis takes place, rather than to the release of the free fatty acid acting as biologically active component.
Unfortunately, fast in vivo ester hydrolysis on rabbit ${ }^{10}$ precludes the possibility of any therapeutic use of glycide esters. Therefore, we turned our efforts to investigate some more stable isosters of active glycose esters. Among various possibilities, we decided to focus on the substitution of the ester group with an amide one, which would offer the advantage of a simple synthetic access.

The present paper deals with the synthesis and the biological evaluation of part of a library of glycose carbamides 1-6 (chart 1) in which the carbohydrate scaffoldings where the same of the previously described biologically active glycide esters. ${ }^{9}$ Besides butyrates and pivaloates, we have selected a wide set of acyl residues classified into three groups (Chart 1): the first one includes linear and branched fatty acids (group A), the second one contains residues characterized by the presence of aromatic or heteroaromatic rings (group B) and the third one is a miscellaneous group (group C) including residues with heteroatoms or unsaturations within the chain.
A subset of 51 compounds, out of 174 glycose carbamides represented in Chart 1, were synthesised and tested towards for biological activity on the K562 cellular system a subset, 20 of them showed an appreciable erythroid differentiation inducing activity on K562 cells. Synthesis, characterization and ability to induce erythroid differentiation of these biologically active compounds are herein presented.

1

2

5

6

GROUP A

a: $\mathrm{R}=\mathrm{CH}_{3}$, b: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$, $\mathbf{c}: \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$, $\mathbf{d}: \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$,
e: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$, f: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathbf{g}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$,
h: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, i: $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{j}: \mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$,
k: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{5}$, $\mathrm{I}: \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{~m}: \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}$,
n: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}, \mathbf{o}: \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{6}$

GROUP B

a: $\mathbf{R}=\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$, $\mathbf{b}: \mathrm{R}=\mathrm{CH}_{2}-(3-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{c}: \mathrm{R}=\mathrm{CH}_{2}-(4-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$,
d: $\mathrm{R}=\mathrm{CH}_{2}-(2,5-\mathrm{di}-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{e}: \mathrm{R}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}, \mathrm{f}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$,
g: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$, h: $\mathrm{R}=\left(4-\mathrm{C}_{6} \mathrm{H}_{5}\right)-\mathrm{C}_{6} \mathrm{H}_{4}$, i: $\mathrm{R}=(4-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{j}: \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}$

GROUP C

a: $\mathbf{R}=\mathbf{C} \equiv \mathrm{CCH}_{3}$, $\mathbf{b}: \mathbf{R}=\mathrm{CH}_{2} \mathrm{OCH}_{3}, \mathbf{c}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$,
d: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$

Chart 1

2. Chemistry

3-Amino-3-deoxy-1,2:5,6-di- O-isopropylidene- α-d-hexofuranose scaffolds 7^{11} and $\mathbf{8}^{12}$ (Scheme 1) were prepared according to literature procedures. The synthesis of methyl α - and $\beta-6-a m i n o-6-$ deoxy-3,4-O-isopropylidene-d-galactopyranosides 15 and 16 was easily achieved starting from the corresponding anomeric diols $\mathbf{9}^{13}$ and $\mathbf{1 0}^{13}$ and employing the same reaction sequence. Reaction ofboth $\mathbf{9}$ and $\mathbf{1 0}$ with a slight excess of p-toluenesulphonyl choride caused the expected selective ${ }^{14,15}$ tosylation of primary OH group. The resulting 6 -sulphonates were subjected to nucleophilic
displacement with NaN_{3}, followed by reduction of resulting azides to furnish $\mathbf{1 5}$ and $\mathbf{1 6}$ in satisfactory overall yield (39 and 45\%, respectively).

9: $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OMe}$
11: $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OMe}$
13: $R=H, R^{\prime}=O M e$
15: $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OMe}$
10: $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}$
12: $R=O M e, R^{\prime}=H$
14: $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}$
16: $R=O M e, R^{\prime}=H$
Conditions: i) $\mathrm{TsCl}, \mathrm{Py}$. ii) $\mathrm{NaN}_{3}, \mathrm{DMF}$. iii) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$

Scheme 1

The glycose carbamide of type $\mathbf{1 , 3}, \mathbf{5}$ and $\mathbf{6}$ were prepared through parallel synthesis by treatment of the four aminated scaffolds $\mathbf{7}, \mathbf{8}, \mathbf{1 5}$ and $\mathbf{1 6}$ with an excess of the appropriate commercial acyl chlorides in methylene chloride in the presence of PS-piperidinomethyl resin (Scheme 2).

Partially protected furanosic carbamides of type 2 and $\mathbf{4}$ (scheme 1) were obtained from protected ones (1 and 3) through selective hydrolytic removal of 5,6 acetonide group with 80% aqueous AcOH . In the case of the D -allose series (3) acid hydrolysis was conducted under milder temperature conditions $\left(45^{\circ} \mathrm{C}\right)$ with respect to that used for D -glucose analogues $\left(60^{\circ} \mathrm{C}\right)$, in order to prevent complete removal of the two acetal groups. As pointed out by Collins, ${ }^{16}$ in fact, the hydrolysis rate of the 1,2-O-isopropylidene functionality in the D -allose series is higher with respect to that observed for analogous acetonide functionality in the d-glucose series. ${ }^{16}$ All the compounds were fully characterized by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and standard analytical parameters (see the Experimental section).

Scheme 2

3. Biological activity

The human leukemia K562 cell line ${ }^{17}$ was kept in a humidified atmosphere of $5 \% \mathrm{CO}_{2} /$ air in RPMI 1640 medium (Sigma, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS; celbio, MI, Italy), 50 Units $/ \mathrm{mL}$ penicillin and $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin. ${ }^{18}$ In order to determine the ability of the tested compounds to inhibit the cell growth and induce the erythroid differentiation, K562 cells (30,000 cells $/ \mathrm{mL}$) were cultured both in the absence and in the presence of the indicated concentrations of compounds and the cell number $/ \mathrm{mL}$ determined with a ZF Coulter Counter (Counter Electronics, Hialeah, FL, USA) at different days from the culture set-up. In order to verify possible effects on erythroid differentiation, the proportion of benzidine-positive K562 cells was determined and compared to the values obtained employing other known inducers of erythroid differentiation, including cytosine arabinoside (ara-C), ${ }^{19}$ mithramycin, ${ }^{3}$ rapamycin ${ }^{3}$ and butyric acid. ${ }^{3}$

Among the tested carbamides (1Ca, $\mathbf{1 A c}, \mathbf{1 A l}, \mathbf{2 A a}, \mathbf{2 A b}, \mathbf{2 A c}, \mathbf{2 A d}, \mathbf{2 A e}, \mathbf{2 A f}, \mathbf{2 A g}, \mathbf{2 A h}, \mathbf{2 A i}$, 2Aj, 2Ak, 2Am, 2An, 2Ao, 2Be, 2Ca, 2Cb, 3Ab, 3Ad, 3Af, 3Ah, 3Al, 3An, 3Ba, 3Bb, 3Bc, 3Bd,

Table 1. Effects of active carbamides on in vitro growth and erythroid differentiation of human leukemic K562 cells

Compound	IC_{50} value(mM)	Erythroid induction ${ }^{\text {a }}$ (\% of benzidinepositive cells)
1Ca	0.5 mM	19 ± 3.5
2 Ab	30.0 mM	20 ± 4.4
2 Ac	0.5 mM	20 ± 4.5
2Ad	5.0 mM	18 ± 3.2
2 Ae	10.0 mM	28 ± 6.5
2Af	5.0 mM	25 ± 5.2
2Ah	5.0 mM	15 ± 3.3
3Ab	7.5 mM	19 ± 4.5
3An	1.0 mM	21 ± 3.2
4Ac	20.0 mM	20 ± 3.7
4Aj	20.0 mM	25 ± 7.2
4Bi	2.5 mM	24 ± 4.7
5 Ac	0.1 mM	18 ± 4.4
6AI	0.25 mM	27 ± 5.5
Ara-C	500 nM	78. ± 24.5
mithramycin	100 nM	$86 . \pm 48.3$
rapamycin	1.0 mM	75.5 ± 7.5
butyric acid	2.0 mM	32.5 ± 3.4
${ }^{\text {a }}$ Results are presented as average $\pm \mathrm{SD}$ (three independent experiments performed) of $\%$ of benzidine-positive (haemoglobin-containing) cells after 6 days induction period at the indicated concentrations of the tested compounds.		

3Bf, 3Bg, 3Bi, 3Bj, 3Ca, 4Ac, 4Ac, 4Ai, 4Aj, 4Al, 4An, 4Bb, 4Bg, 4Bh, 4Bi, 4Bj, 4Cc, 4Cd, 5Ac, $\mathbf{6 A l}, \mathbf{6 A c}$) fourteen ($\mathbf{1 C a}, 2 \mathrm{Ab}, 2 \mathrm{Ac}, 2 \mathrm{Ad}$, 2Ae, 2Af, 2Ah, 3Ab, 3An, 4Ac, 4Aj, 4Bi, 5Ac, 6AI) were found to exhibit appreciable ($\geq 15 \%$) erythroid differentiation effect, while nine ($\mathbf{2 A c}, \mathbf{2 A} \mathbf{j}$, $\mathbf{3 B b}, \mathbf{3 B f}, \mathbf{3 B d}, \mathbf{4 A c}, \mathbf{4 A i}, \mathbf{4 B h}, \mathbf{4 A j}$), three of which ($\mathbf{2 A c}, \mathbf{4 A c}$ and $\mathbf{4 A j}$) active on their own, were the compounds resulted active in synergism, potentiating erythroid induction of K562 cells treated with sub-optimal concentrations of ara-C. The data obtained on erythroid differentiation are shown into Tables 1 and 2.

Table 2. Synergism between ara-C and carbamides on in vitro growth and erythroid differentiation of human leukemic K562 cells

Compound	Concentration (mM)	Erythroid induction ${ }^{\text {a }}$ (\% of benzidine-positive cells)
$\mathbf{2 A c}$	$0,5 \mathrm{mM}$	$35 \pm 3.8 \%$
$\mathbf{2 A j}$	5.0 mM	68 ± 5.5
$\mathbf{3 B f}$	0.75 mM	49 ± 6.1
$\mathbf{3 B b}$	1.0 mM	43 ± 4.4
$\mathbf{3 B d}$	$0,5 \mathrm{mM}$	50 ± 4.3
$\mathbf{4 A c}$	20 mM	40 ± 3.5
$\mathbf{4 A i}$	8.0 mM	66 ± 7.8
$\mathbf{4 A j}$	20 mM	40 ± 5.6
$\mathbf{4 B h}$	0.1 mM	33 ± 4.4
$\mathbf{A r a - C}$	500 nM	22 ± 2.8

${ }^{a}$ Results are presented as average \pm SD (three independent experiments performed) of \% of benzidine-positive (haemoglobin-containing) cells after 6 days induction period at the indicated concentrations of the tested compounds. Sub-optimal concentrations of ara-C (200 nm) were used in combination with the tested compounds.

When the analysis of the structure of carbamides active in the stimulation of erythroid differentiation was performed, it was found that seven of those exhibited linear saturated fatty acid residues, three branched saturated fatty acid residues and two alicyclic residues. However, we underline that many amides of linear, branched and most of alicyclic fatty acid residue are present in the list of inactive tested amide (i.e. $\mathbf{2 A k}, \mathbf{3 A f}, \mathbf{5 A c}, \mathbf{2 A n}$). In addition, it should be note that, despite the well known activity of phenylbutyrates and phenylacetates, ${ }^{20}$ only one of the fourteen aromatic rings containing the tested amides exhibits activity. In contrast, among the nine carbamides active in synergism with ara-C, four bear aromatic rings.
With respect to the role of sugar scaffold, we did not recognise any clear structure-activity relationship either related to the protection/deprotection of glycide [compare couples 1Ac (inactive)/2Ad (active) and $\mathbf{1 C a}$ (active)/2Ca (inactive)] or to the stereochemistry of carbon bearing the pharmacophore [compare couples 2Ac (active)/4Ac (active), 2Ai (inactive)/4Ai (active in synergism) and $\mathbf{2 A j}$ (active in synergism)/4Aj (active)].

In conclusion, the majority of active glycose carbamides act with a mechanism resembling ara-C (no synergism observed with ara-C); three carbamides ($\mathbf{2 A c}, \mathbf{4 A c}$ and $\mathbf{4 A j}$) display a mechanism of action presumably different compared to that exhibited by sub-optimal concentrations of ara-C; six $(\mathbf{2 A j}, \mathbf{3 B f}, \mathbf{3 B b}, \mathbf{3 B d}, \mathbf{4 A i}$ and 4Bh$)$, which are not active by themselves, are however able to enhance ara-C mediated erythroid induction. Whether they induce a part of the erythroid differentiation program complementary to that stimulated by sub-optimal concentrations of ara-C remains to be investigated.

As far as structure-activity relationship (SAR) analysis, we like to underline that compounds of type 2 display the highest probability (35% in our set) to induce differentiation ($6 / 17$, compared to $2 / 15$ and $3 / 13$ of compounds of type $\mathbf{3}$ and $\mathbf{4}$, respectively). Compounds carrying residues of group \mathbf{A} display the highest probability (36%) to induce erythroid differentiation (11/31, compared to $1 / 14$ and $1 / 6$ of compounds carrying residues of group \mathbf{B} and \mathbf{C}, respectively).

More in detail, all the compounds carrying the residue $\mathbf{A b}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and three out of five compounds carrying residue $\mathbf{A c}\left[\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]$ were found able to induce differentiation (two of them, $\mathbf{2 A c}$ and $\mathbf{4 A c}$, also in synergism with ara-C). With respect to synergism with ara-C, only the compounds carrying the residue $\mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{2} \mathbf{A j}$ and $\mathbf{4} \mathbf{A j})$ were found to be active in inducing high level of differentiation.
Despite being limited, this SAR analysis suggest that the most promising molecules able to induce differentiation are glycose carbamides of type $\mathbf{2}$ or those displaying residues $\mathbf{A b}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and Ac $\left[\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]$. Residue $\mathbf{A j}\left[\mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ appears to be involved in the property to act in synergism with ara-C. Obviously, this hypothesis is not conclusive, due to our choice of a diversity oriented selection of compounds within the complete library of carbamides. This choice has allowed to explore some representative of each class of acyl residue, but it has prevented the performance of a systematic sight on the effect of glycide scaffold in biological activity when a same acyl residue is considered. The SAR analysis here discussed should be considered a starting point for further synthetic activity toward the generation of other oriented set of analogues, thus helping to verify this hypothesis.

4. Experimental section

4.1. General methods

Melting points were determined with a Kofler hot-stage apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at $20 \pm 2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were recorder in appropriate solvents (internal standard $\mathrm{Me}_{4} \mathrm{Si}$) with a Bruker AC 200 instrument at 200

MHz and with a Bruker AvanceII operating at $250 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were recorder with the spectrometers operating at 50 and 62.9 MHz . Assignments were made with the aid of DEPT, HETCOR and COSY experiments and by comparison with values for known compounds and applying the known additivity rules. ${ }^{21}$ All reactions were followed by TLC on Kieselgel $60 \mathrm{~F}_{254}$ (E. Merck) with detection by UV light and/or with ethanolic 10% phosphomolybdic or sulphuric acid, and heating. Kieselgel 60 (E. Merck, 70-230 and 230-400 mesh, respectively) was used for column and flash chromatography. Parallel reactions were followed by HPLC-MS analyses (Waters Acquity UPLC, with Waters Acquity PAD detector and Micromass ZQ 2000 mass analyzer, controlled by PC with MassLynx TM 4.1, column Waters Acquity UPLC BEH C18 $2.1 \times 50 \mathrm{~mm}$, 1.7 micron, eluent: $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{HCOOH} 95 / 5 / 0,05 \mathrm{v} / \mathrm{v} / \mathrm{v}\right)$. Solvents were dried by distillation according to standard procedures, ${ }^{22}$ and storage over $4 \AA$ molecular sieves activated for at least 24 h at $250{ }^{\circ} \mathrm{C} . \mathrm{MgSO}_{4}$ was used as the drying agent for solutions. Acyl chlorides were purchased from Aldrich, with the exception of cyclopropanecarbonyl chloride prepared from corresponding acid according to literature procedure. ${ }^{23}$ PS-piperidinomethyl resin and polyamine resin were purchased from Novabiochem.

4.2. Amino scaffolds

3-Ammino-3-deoxy-1,2:5,6-di- O-isopropylidene- α-d-glucofuranose ${ }^{11}$ (7) and 3-ammino-3-deoxy-1,2:5,6-di- O-isopropylidene- α-D-allofuranose ${ }^{12}(\mathbf{8})$ were synthesized as reported.

4.2.1. Methyl-3,4-O-isopropylidene-6-O-methylsulphonyl- α-D-galactopyranoside (11)

A solution of $\mathbf{9}^{13}(1.00 \mathrm{~g}, 4.27 \mathrm{mmol})$ in pyridine $(25 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ under stirring with commercial methylsulphoyl chloride ($896 \mathrm{mg}, 4.70 \mathrm{mmol}$). The solution was allowed to warm to room temperature and stirred until the TLC analysis (EtOAc) showed the complete disappearance of the starting material (74 h) and the formation of one component $\left(R_{\mathrm{f}} 0.51\right)$. The reaction mixture was repeatedly coevaporated with toluene $(5 \times 15 \mathrm{~mL})$ under diminished pressure. The crude residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$ and the organic ones were collected, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under diminished pressure. Flash chromatography on silica gel (petroleum ether-EtOAc 2:1) of the crude solid led to pure $15(1.07 \mathrm{~g}, 64 \%)$ as a white solid. $R_{\mathrm{f}} 0.51$ (EtOAc); mp (EtOAc) 127-129 ${ }^{\circ} \mathrm{C}$; $\mathrm{lit}^{24} 129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.82$ (AA' XX ', 2H, Ar-H), 7.35 (AA'XX', 2H, Ar-H), $4.70(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{H}-1), 4.28-4.12$ (m, 5H, H-6a, H-6b, H-2, H-3, H-4), 3.79 (m, 1H, H-5), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}, 2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MePh})\right.$, 1.42, $1.29\left(2 \mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CMe}$) ${ }^{13}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 133.2,144.8$ ($2 \mathrm{x} \mathrm{Ar}-\mathrm{C}$), 128.0, 129.8 ($4 \mathrm{x} \mathrm{Ar-CH}$), $110.0\left(\mathrm{CMe}_{2}\right)$, 97.8 (C-1), 75.6 (C-3), 72.4
(C-4), 68.7, 69.2 (C-2, C-5), 66.5 (C-6), 55.5 (OMe), 25.7, 27.4 (CMe_{2}), 21.6 (MePh). Compound 11 was stored at $4{ }^{\circ} \mathrm{C}$ or lower temperature to prevent degradation.

4.2.2. Methyl-3,4-O-isopropylidene-6-O-methylsulphonyl- β-D-galactopyranoside (12)

This compound was prepared starting from $\mathbf{1 0}^{13}(3.10 \mathrm{~g}, 13.3 \mathrm{mmol})$ by a procedure analogous to that of $\mathbf{1 1}$. White solid, $3.61 \mathrm{~g}(70 \%) . R_{\mathrm{f}} 0.57$ (EtOAc); mp (EtOAc) $157-159{ }^{\circ} \mathrm{C}$; lit ${ }^{15} 154-155{ }^{\circ} \mathrm{C}$; optical rotation $\left(c+1.0, \mathrm{CHCl}_{3}\right):[\alpha]_{\mathrm{D}}+1.0 ; \mathrm{lit}^{15}\left(c 2.3, \mathrm{CHCl}_{3}\right):[\alpha]_{\mathrm{D}} 1.0 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 7.81$ (AA'XX', 2H, Ar-H), 7.35 (AA'XX', 2H, Ar-H), $4.28\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.2 \mathrm{~Hz}, \mathrm{H}-1\right)$, 4.23, 4.07 ($2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$), 3.47 (dd, $1 \mathrm{H}, J_{2,3}=6.5 \mathrm{~Hz}, \mathrm{H}-2$), 3.47 ($\mathrm{s}, 3 \mathrm{H}$, OMe), $2.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MePh}), 1.44,1.29\left(2 \mathrm{~s}\right.$, each $\left.3 \mathrm{H}, \mathrm{CMe}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 145.1$, 132.1 ($2 \mathrm{x} \mathrm{Ar}-\mathrm{C}$), 127.9, 128.9 ($4 \times \mathrm{Ar}-\mathrm{CH}$), $110.5\left(\mathrm{CMe}_{2}\right), 103.0(\mathrm{C}-1), 78.5(\mathrm{C}-3), 73.4,72.9,71.0$ (C-2, C-4, C-5), $68.6(\mathrm{C}-6), 57.0(\mathrm{OMe}), 27.9,26.2\left(\mathrm{Me}_{2} \mathrm{C}\right), 21.6(\mathrm{MePh})$. Compound 12 has to be stored at $4{ }^{\circ} \mathrm{C}$ or lower temperature to prevent degradation.

4.2.3. Methyl-6-azido-6-deoxy-3,4-O-isopropylidene- α-D-galactopyranoside (13)

A solution of $\mathbf{1 1}(1.00 \mathrm{~g}, 2.58 \mathrm{mmol})$ in DMF and $(35 \mathrm{~mL})$ was treated with commercial sodium azide ($355 \mathrm{mg}, 5.15 \mathrm{mmol}$). The suspension was warmed to $120^{\circ} \mathrm{C}$ and stirred until the TLC analysis (petroleum ether-EtOAc 1:1) showed the complete disappearance of the starting material (28 h) and the formation of one component ($R_{\mathrm{f}} 0.35$). The reaction mixture was allowed to cool to room temperature and concentrated under diminished pressure. The crude residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 25 \mathrm{~mL})$ and the organic ones were collected, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under diminished pressure. Flash chromatography on silica gel (petroleum ether-EtOAc 1:1) of the crude syrup led to pure $\mathbf{1 3}$ ($677 \mathrm{mg}, 77 \%$) as a syrup. $R_{\mathrm{f}} 0.35$ (petroleum ether-EtOAc 1:1); optical rotation (c $1.2, \mathrm{CHCl}_{3}$) $[\alpha]_{\mathrm{D}}$ +89.4 . ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 4.78\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.9 \mathrm{~Hz}, \mathrm{H}-1\right), 4.29\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=6.1\right.$ $\mathrm{Hz}, \mathrm{H}-3), 4.14$ (m, 2H, H-5, H-4), 3.85 (m, 1H, H-2), 3.59 (dd, $1 \mathrm{H}, J_{5.6 \mathrm{~b}}=8.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 3.50 (s , $3 \mathrm{H}, \mathrm{OMe}), 3.33\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.9 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=4.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 2.53\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{OH}}=5.7 \mathrm{~Hz}, \mathrm{OH}\right), 1.51$, 1.35 (2 s , each $3 \mathrm{H}, \mathrm{CMe}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 109.9\left(\mathrm{CMe}_{2}\right)$, $98.1(\mathrm{C}-1)$, $75.6(\mathrm{C}-3)$, 73.1 (C-4), 68.8, $67.9(\mathrm{C}-5, \mathrm{C}-2), 55.6(\mathrm{OMe}), 51.2(\mathrm{C}-6), 27.4,25.7(\mathrm{CMe} 2)$. Anal. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$. Calc. (\%): C, 46.33; H, 6.61; N, 16.21. Found (\%): C, 44.66; H, 6.47; N, 15.66.

4.2.4. Methyl-6-azido-6-deoxy-3,4-O-isopropylidene- β-d-galactopyranoside (14)

This compound was prepared starting from $12(1.50 \mathrm{~g}, 3.87 \mathrm{mmol})$ by a procedure analogous to that of 13. White solid, 792 mg (79\%). $R_{\mathrm{f}} 0.22$ (petroleum ether- EtOAc $1: 1$); mp (hexane) $80-82{ }^{\circ} \mathrm{C}$;
optical rotation (c 1.0, $\left.\mathrm{CHCl}_{3}\right):[\alpha]_{\mathrm{D}}-16.6 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 4.14\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}\right.$, $\mathrm{H}-1$), 4.10 (m, 2H, H-3, H-4), 3.94 (ddd, $1 \mathrm{H}, J_{4.5}=1.7 \mathrm{~Hz}, \mathrm{H}-5$), 3.73 (dd, $1 \mathrm{H}, J_{5,6 \mathrm{~b}}=8.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $3.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.33\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.9 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=4.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 2.85(\mathrm{bs}$, $1 \mathrm{H}, \mathrm{OH}), 1.35,1.53(2 \mathrm{~s}$, each $3 \mathrm{H}, \mathrm{CMe} 2) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 110.4\left(\mathrm{CMe}_{2}\right), 103.1(\mathrm{C}-1)$, 78.6 (C-3), 73.5, 73.7, 72.9 (C-2, C-5, C-4), 57.0 (OMe), 51.0 (C-6), 26.2, 27.9 (CMe $)$. Anal. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$. Calc. (\%): C, 46.33; H, 6.61; N, 16.21. Found (\%): C, 44.28; H, 6.32; N, 16.32.

4.2.5. Methyl-6-amino-6-deoxy-3,4-O-isopropylidene- α-D-galactopyranoside (15)

To a suspension of $\mathrm{LiAlH}_{4}(93 \mathrm{mg}, 2.5 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ a solution of $\mathbf{1 3}(260$ $\mathrm{mg}, 1.0 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added drop wise and under stirring. The suspension was warmed to reflux and stirred until the TLC analysis (petroleum ether-EtOAc 1:1) showed the complete disappearance of the starting material (30 min) and the formation of one component (R_{f} 0). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and treated in sequence with 1 mL of water, 2 mL of 10% aqueous NaOH and 3 mL of water, obtaining the formation of a white precipitate. The mixture was filtered, the solid washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{~mL})$ and the organic ones were collected, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under diminished pressure to provide crude $\mathbf{1 5}$ ($184 \mathrm{mg}, 79 \%$). Crystallization (EtOAc) of the crude solid furnished $\mathbf{1 5}$ as a white crystalline solid. mp 152-157 ${ }^{\circ} \mathrm{C}$; optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+145.7$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 4.76$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, \mathrm{H}-1\right), 4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.79\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=5.7\right.$ $\mathrm{Hz}, \mathrm{H}-3), 3.45$ (s, 3H, OMe), 3.05 (dd, $1 \mathrm{H}, J_{5,6 \mathrm{~b}}=7.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $2.91\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a} .6 \mathrm{~b}}=13.3 \mathrm{~Hz}, J_{5.6 \mathrm{a}}\right.$ $=4.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 1.35,1.50(2 \mathrm{~s}$, each $\left.3 \mathrm{H}, \mathrm{CMe} 2) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 109.5\left(\mathrm{CMe}_{2}\right), 98.7$ (C-1), 76.4 (C-3), 74.0 (C-4), 69.3, 69.7 (C-5, C-2), 55.4 (OMe), 42.8 (C-6), 25.9, 27.8 (CMe_{2}). Anal. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{5}$. Calc. (\%): C, 51.49; H, 7.95; N, 6.00. Found (\%): C, 50.97; H, 8.25; N, 5.77.

4.2.6. Methyl-6-amino-6-deoxy-3,4-O-isopropylidene- β-D-galactopyranoside (16)

This compound was prepared starting from $14(630 \mathrm{mg}, 2.44 \mathrm{mmol})$ by a procedure analogous to that of 15. White solid 463 mg (81%); mp (hexane) $146-153{ }^{\circ} \mathrm{C}$; optical rotation (c $1.0, \mathrm{CHCl}_{3}$): $[\alpha]_{\mathrm{D}}-18.9 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 4.11(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-1), 4.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4)$, 3.73 (ddd, $\left.1 \mathrm{H}, J_{4,5}=1.9 \mathrm{~Hz}, \mathrm{H}-5\right), 3.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.49(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2), 3.14$ (dd, 1H, $\left.J_{5.6^{6}}=7.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 2.96\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=13.3 \mathrm{~Hz}, J_{5,6}=4.7 \mathrm{~Hz} \mathrm{H}-6 \mathrm{a}\right), 2.48(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.50,1.34$ (2s, each 3H, CMe $).{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 110.0\left(\mathrm{CMe}_{2}\right)$, $103.4(\mathrm{C}-1), 79.3(\mathrm{C}-3), 74.4$, 74.1, 73.3 (C-2, C-5, C-4), 56.8 (OMe), 42.6 (C-6), 28.1, 26.2 CMe). Anal. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{5}$. Calc. (\%): C, 51.49; H, 7.95; N, 6.00. Found (\%): C, 50.93; H, 7.83; N, 5.85.

4.3. General method for the parallel synthesis of amides of type 1, 3, 5 and $\mathbf{6}$

A 0.2 M solution of amine scaffold in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a 0.4 M solution of the selected acyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ where prepared under anhydrous conditions.

In each reactor 1.00 g of resin PS-piperidinomethyl was put and in sequence 5 mL of the solution containing the amine and 5 mL of the solution containing the acyl chloride were added. The reaction mixture was stirred a room temperature for 12 hours. The reaction proceeding was checked by HPLC-MS. A 1.00 g of resin polyamine (loading $=3.2 \mathrm{mmol} / \mathrm{g}$) to extract the excess the acyl chloride was added after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and vortically stirred for two hours. The suspension were filtered on paper and the clear solutions were evaporated under diminished pressure to give oils that were purified by a Combi Flash chromatographic system (ISCO, using columns Redisep of 10 g eluting with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gradient from 98:2 to 95:5. After evaporation of the solvent pure products were obtained.

4.4. General method of the synthesis of selectively deprotected furanosic amides of type $\mathbf{1}$ and $\mathbf{3}$

The fully protected amides of type 1 and 3 ($1.5-3.0 \mathrm{mmol}$), prepared following the general procedure reported above, were dissolved in 80% aqueous $\mathrm{AcOH}(20 \mathrm{~mL})$ and the resulting solutions were warmed to $60^{\circ} \mathrm{C}$ in the case of hydrolysis of amides of type 1 and to $45{ }^{\circ} \mathrm{C}$ in the case of amides of type 3. Reaction mixtures were maintained under stirring until the TLC analysis (Hexane-EtOAc) revealed the disappearance of starting material ($1-4 \mathrm{~h}$). The solution were repeatedly coevaporated with toluene ($5 \times 10 \mathrm{~mL}$) under diminished pressure. The crude residues were purified by a Combi Flash chromatographic system (ISCO, using columns Redisep of 10 g and as eluted a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gradient from 98:5 to $90: 10$. After evaporation of the solvent pure products were obtained.

4.5. Active carbamides

4.5.1. 3-N-(2-Butynoyl)-3-deoxy-1,2:5,6-di-O-isopropylidene- α-d-glucofuranose (1Ca). From 7 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 2-butynoyl chloride. white solid $705 \mathrm{mg}(72 \%) ; R_{\mathrm{f}} 0.32$ (hexane-EtOAc 3:7); mp (chrom) $160-162{ }^{\circ} \mathrm{C}$; optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}-47.3 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 5 and $\delta 1.93$ (s, $3 \mathrm{H}, \mathrm{MeC}$), 1.44, 1.36, 1.28, 1.26 (4 s , each $3 \mathrm{H}, 2 \times$ CMe_{2}); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 6 and $\delta 153.7(\mathrm{CO})$, $112.6,110.0\left(2 \times \mathrm{CMe}_{2}\right)$, 84.9 ($\equiv C \mathrm{CO}$); $75.2(\mathrm{MeC} \equiv)$, 27.9, 27.8, 26.3, $25.4\left(2 \times \mathrm{CMe}_{2}\right), 3.5(\mathrm{MeC} \equiv)$; Anal. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{6}$. Calc (\%): C, 59.07; H, 7.13, N, 4.30. Found (\%): C, 58.87; H, 7.16, N, 4.28.
4.5.2. 3-N-Propanoyl-3-deoxy-1,2-O-isopropylidene- α-d-glucofuranose (2Ab). From 7 (778 mg, 3.00 mmol) by acylation with propanoyl chloride and subsequent hydrolysis; colourless syrup 504 mg (61\%); $R_{\mathrm{f}} 0.27$ (EtOAc-MeOH 9:1); optical rotation (c 1.0, MeOH): $[\alpha]_{\mathrm{D}}+15.4 ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 2.30$ (bs, $2 \mathrm{H}, \mathrm{OH}-5, \mathrm{OH}-6$), 2.25 (t, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $1.45,1.27\left(2 \mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CMe}$), $1.08(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Me})$; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 176.6(\mathrm{CO}), 112.4\left(\mathrm{CMe}_{2}\right), 29.7\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, 26.7, $26.3\left(\mathrm{CMe}_{2}\right), 10.2(\mathrm{Me})$. Anal. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{6}$. Calc (\%): C, $52.35 ; \mathrm{H}, 7.69, \mathrm{~N}, 5.09$. Found (\%): C, 52.16; H, 7.72, N, 5.07.
4.5.3. 3-N-Butanoyl-3-deoxy-1,2-O-isopropylidene- α-D-glucofuranose (2Ac). From 7 ($778 \mathrm{mg}, 3.00$ mmol) by acylation with butanoyl chloride and subsequent hydrolysis; colourless syrup 564 mg (65\%); $R_{\mathrm{f}} 0.43$ (EtOAc-MeOH 9:1); optical rotation (c 1.0, MeOH): $[\alpha]_{\mathrm{D}}+19.8 ;{ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table 3 and $\delta 3.60(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}-5, \mathrm{OH}-6), 2.23\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.58$ (m, 2H, CH ${ }_{2} \mathrm{Me}$), 1.50, $1.30\left(2 \mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CMe}$) , $0.91(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right)$: see Table 4 and $\delta 175.2(\mathrm{CO}), 111.7\left(\mathrm{CMe}_{2}\right), 37.8\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, 26.2, $25.8\left(\mathrm{CMe}_{2}\right), 18.9$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 13.5$ (Me). Anal. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{6}$. Calc (\%): C, 53.97; H, 8.01, N, 4.84. Found (\%): C, 54.18; H, 8.04, N, 4.86.
4.5.4. 3-N-Pentanoyl-3-deoxy-1,2-O-isopropylidene- α-D-glucofuranose (2Ad). From 7 (778 mg , 3.00 mmol) by acylation with pentanoyl chloride and subsequent hydrolysis; colourless syrup 574 $\mathrm{mg}(52 \%) ; R_{\mathrm{f}} 0.25$ (EtOAc); optical rotation (c 1.4, MeOH): $[\alpha]_{\mathrm{D}}+25.7 ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 4.30,2.38$ (2 bs , each $1 \mathrm{H}, \mathrm{OH}-5, \mathrm{OH}-6$), $2.20(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}$), $\left.1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.45,1.27(2 \mathrm{~s} \text {, each } 3 \mathrm{H}, \mathrm{CMe})^{2}\right), 0.90(\mathrm{t}$, $3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 176.0(C O), 112.5,\left(\mathrm{CMe}_{2}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 28.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 26.7,26.4\left(\mathrm{CMe}_{2}\right), 23.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 14.1(\mathrm{Me})$. Anal. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, $55.43 ; \mathrm{H}, 8.31, \mathrm{~N}, 4.62$. Found (\%): C, $55.21 ; \mathrm{H}, 8.34, \mathrm{~N}, 4.58$.
4.5.5. 3-N-hexanoyl-3-deoxy-1,2-O-isopropylidene- α-D-glucofuranose (2Ae). From 7 ($778 \mathrm{mg}, 3.00$ mmol) by acylation with hexanoyl chloride and subsequent hydrolysis; colourless syrup 628 mg (66\%); $R_{\mathrm{f}} 0.42$ (EtOAc-MeOH 95:5); optical rotation (c 1.0, MeOH): $[\alpha]_{\mathrm{D}}+23.2 ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}^{2} \mathrm{D}_{2} \mathrm{O}$): see Table 3 and $\delta 2.18\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$, $1.27\left[\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 1.44,1.26(2 \mathrm{~s} \text {, each } 3 \mathrm{H}, \mathrm{CMe})_{2}, 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}\right.$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$): see Table 6 and $\delta 176.5(\mathrm{CO}), 112.7\left(\mathrm{CMe}_{2}\right), 36.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 32.0$
$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$, 26.6, $26.2\left(\mathrm{CMe}_{2}\right)$, 26.1, $23.0\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 14.2(\mathrm{Me})$. Anal. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{6}$. Calc (\%): C, 56.77; H, 8.57, N, 4.41. Found (\%): C, 57.02; H, 8.61, N, 4.39.
4.5.6. 3-N-(3-Methylbutanoyl-3-deoxy-5,6-O-isopropylidene- α-D-glucofuranose (2Af). From 7 (778 $\mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 3-methylbutanoyl chloride and subsequent hydrolysis; white solid $501 \mathrm{mg}(55 \%) ; R_{\mathrm{f}} 0.28$ (EtOAc); mp (hexane) $115-116{ }^{\circ} \mathrm{C}$; optical rotation (c $0.4, \mathrm{CHCl}_{3}$): $[\alpha]_{\mathrm{D}}+46.3 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 4.23$ (bs, $1 \mathrm{H}, \mathrm{OH}-5$), 2.77 (bt, 1 H , OH-6), $2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe} \mathrm{e}_{2}\right), 1.45,1.27(2 \mathrm{~s}$, each $3 \mathrm{H}, \mathrm{CMe}$) , $0.92(\mathrm{~d}, 6 \mathrm{H}, J$ $=6.2 \mathrm{~Hz}, 2 \times \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 175.2(\mathrm{CO}), 112.5,\left(\mathrm{CMe}_{2}\right), 45.7$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 26.9\left(\mathrm{CHMe}_{2}\right), 26.8,26.3\left(\mathrm{CMe}_{2}\right), 22.6(2 \mathrm{x} \mathrm{Me})$. Anal. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, 55.43 ; H, 8.31, N, 4.62. Found (\%): C, 55.30; H, 8.34, N, 4.60.
4.5.7. 3-N-(3,3-Dimethylbutanoyl)-3-deoxy-1,2-O-isopropylidene- α-D-glucofuranose (2Ah). From 7 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 3,3-dimethylbutanoyl chloride and subsequent hydrolysis; colourless syrup, 505 mg (53\%); $R_{\mathrm{f}} 0.47$ (EtOAc-MeOH 95:5); optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}$ $+35.4 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 4.31,2.85$ (2 bs , each $1 \mathrm{H}, \mathrm{OH}-5, \mathrm{OH}-6$), $2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.45,1.27(2 \mathrm{~s} \text {, each } 3 \mathrm{H}, \mathrm{CMe} \text {), } 1.01 \text { (} \mathrm{s}, 9 \mathrm{H}, \mathrm{CMe})_{3}$); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$: see Table 4 and $\delta 174.5(\mathrm{CO}), 112.5\left(\mathrm{CMe}_{2}\right), 50.0\left(\mathrm{CH}_{2} \mathrm{CO}\right), 31.4\left(\mathrm{CMe}_{3}\right), 30.1\left(\mathrm{CMe}_{3}\right)$, 26.8, $26.4\left(\mathrm{CMe}_{2}\right)$. Anal. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{6}$. Calc (\%): C, 56.77; H, 8.57, N, 4.41. Found (\%): C, 56.59; H, 8.55, N, 4.43.
4.5.8. 3-N-Pivaloyl-3-deoxy-1,2-O-isopropylidene- α-D-glucofuranose (2Aj). From 7 ($778 \mathrm{mg}, 3.00$ mmol) by acylation with 3,3-Dimethylbutanoyl chloride and subsequent hydrolysis; white solid, $821 \mathrm{mg}(90 \%) ; R_{\mathrm{f}} 0.44$ (EtOAc-MeOH 95:5); mp (chrom) $161-163{ }^{\circ} \mathrm{C}$; optical rotation (c 1.0 , CHCl_{3}): $[\alpha]_{\mathrm{D}}+22.3$; Compound $\mathbf{2 A j}{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table 3 and $\delta 4.35,3.02$ (2bs, each $1 \mathrm{H}, \mathrm{OH}-5, \mathrm{OH}-6), 1.51,1.31\left(2 \mathrm{~s}\right.$, each $\left.\left.3 \mathrm{H}, \mathrm{CMe}_{2}\right), 1.21(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe})_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see Table 4 and $\delta 180.3(\mathrm{CO}), 111.9,\left(\mathrm{CMe}_{2}\right), 38.8\left(\mathrm{CMe}_{3}\right), 27.4\left(\mathrm{CMe}_{3}\right), 26.4,26.2$ $\left(\mathrm{CMe}_{2}\right)$. Anal. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, 55.43; H, 8.31, N, 4.62. Found (\%): C, 55.62; H, 8.35, N, 4.60.
4.5.9. 3-N-Propanoyl-3-deoxy-1,2:5,6-di-O-isopropylidene- α-D-allofuranose (3Ab). From 8 (778 $\mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with propanoyl chloride; white solid, $833 \mathrm{mg}(88 \%)$; $R_{\mathrm{f}} 0.60$ (EtOAc$\mathrm{MeOH} 9: 1$); mp (hexane) $93-95{ }^{\circ} \mathrm{C}$; optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+71.1 ;{ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 5 and $\boldsymbol{\delta} 2.15\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.50,1.34,1.29,1.27$ (4s, each
$3 \mathrm{H}, 2 \times \mathrm{CMe} 2$), $1.05(\mathrm{t}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 6 and $\delta 174.3(\mathrm{CO})$, 112.9, $109.9\left(2 \times \mathrm{CMe}_{2}\right), 29.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 26.9,26.6,26.5,25.4\left(2 \times \mathrm{CMe}_{2}\right), 10.1(\mathrm{Me})$. Anal. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, 57.13; H, 7.99, N, 4.44. Found (\%): C, 57.39; H, 8.02, N, 4.42.

4.5.10. 3-N-Cyclopentanecarbonyl-3-deoxy-1,2:5,6-di-O-isopropylidene- α-D-allofuranose (3An).

 From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with cyclopentanecarbonyl chloride; white solid, 960 mg (90\%); $R_{\mathrm{f}} 0.33$ (hexane-EtOAc 1:1); mp (chrom) $102-104{ }^{\circ} \mathrm{C}$; optical rotation (c $1.0, \mathrm{CHCl}_{3}$): $[\alpha]_{\mathrm{D}}$ +65.5 ; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 5 and $\delta 2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.63(\mathrm{~m}, 8 \mathrm{H}$, cyclopentyl H), $1.50,1.34,1.29,1.26\left(4 \mathrm{~s}\right.$, each $\left.3 \mathrm{H}, 2 \times \mathrm{CMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: see Table 6 and δ $176.8(\mathrm{CO}), 113.0,110.0\left(2 \times \mathrm{CMe}_{2}\right), 45.8(\mathrm{CH}) ; 31.3,30.7\left(2 \times \mathrm{CH}_{2}\right), 26.9,26.7,26.6,25.6(2 \times$ $\mathrm{CMe} 2), 26.7\left(2 \times \mathrm{CH}_{2}\right)$. Anal. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{6}$. Calc (\%): C, 60.83 ; H, 8.22, N, 3.94. Found (\%): C, 60.58; H, 8.25, N, 3.94.4.5.11. 3-N-(3-Methoxyphenylacetyl)-3-deoxy-1,2:3,4-di-O-isopropylidene- α-D-allofuranose (3Bb). From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 3-methoxyphenylacetyl chloride; colourless syrup, $1004 \mathrm{mg}(82 \%) ; R_{\mathrm{f}} 0.50$ (EtOAc); optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+70.1 ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CD}_{3} \mathrm{CN}$): see Table 5 and $\delta 7.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{6^{\prime}, 5^{\prime}}=8.0 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=8.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, H-6'), 6.82 (ddd, 1H, J $2.5 \mathrm{~Hz}, J 1.0 \mathrm{~Hz}, \mathrm{H}-4$ '), 3.77 (s, 3H, OMe), 3.47 (s, 2H, PhCH_{2}), 1.48, 1.31, $1.28,1.25\left(4 \mathrm{~s}\right.$, each $3 \mathrm{H}, 2 \times \mathrm{CMe}$) ; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 6 and $\delta 171.3(\mathrm{CO})$, 160.8 (C-3'), 138.3 (C-1'), 130.5 (C-5'), 122.4, 115.8, 113.1 (C-2', C-4', C-6'), 113.0, $110.0(2 \times$ $\left.C \mathrm{Me}_{2}\right), 55.8(\mathrm{OMe}), 43.4\left(\mathrm{PhCH}_{2}\right), 26.7,26.6,26.5,25.5\left(2 \times \mathrm{CMe}_{2}\right)$; Anal. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{7}$. Calc (\%): C, 61.90; H, 8.31, N, 3.44. Found (\%): C, 61.87; H, 8.35, N, 3.43.
4.5.12. 3-N-(2,5-Dimethoxyphenylacetyl)-3-deoxy-1,2:3,4-di-O-isopropylidene- α-D-allofuranose ($\mathbf{3 B d}$). From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 2,5-dimethoxyphenylacetyl chloride; colourless syrup, $998 \mathrm{mg}(76 \%) ; R_{\mathrm{f}} 0.39$ (hexane-EtOAc1:9); optical rotation (c 1.2, CHCl_{3}): $[\alpha]_{\mathrm{D}}$ +57.1 ; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 5 and δ 6.91-6.78 (m, 3H, H-3', H-4', H-6'), 3.78, $3.72(2 \mathrm{~s}$, each $3 \mathrm{H}, 2 \times \mathrm{OMe}), 3.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.47,1.29,1.28,1.25\left(4 \mathrm{~s}\right.$, each $\left.3 \mathrm{H}, 2 \times \mathrm{CMe}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 6 and $\delta 171.4$ (CO), 154.5, 152.4 (C-3', C-5'), 126.0 (C-1'), 118.1, 113.4, 112.6 (C-3', C-4', C-6'), 113.0, $110.0\left(2 \times \mathrm{CMe}_{2}\right), 56.6,56.2(2 \times \mathrm{OMe}), 38.9$ ($\mathrm{CH}_{2} \mathrm{CO}$), 26.8, 26.6, 26.5, $25.5\left(2 \times \mathrm{CMe}_{2}\right.$); Anal. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{8}$. Calc (\%): C, 60.40; H, 7.14, N , 3.20. Found (\%): C, 60.37; H, 7.14, N, 3.19.
4.5.13. 3-N-Hydrocinnammoyl-3-deoxy-1,2:3,4-di-O-isopropylidene- α-d-allofuranose (3Bf). From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with hydrocinnammoyl chloride; colourless syrup, 846 mg (72\%); $R_{\mathrm{f}} 0.72$ (EtOAc-MeOH 9:1); optical rotation ($c+1.0, \mathrm{CHCl}_{3}$): $[\alpha]_{\mathrm{D}}+66.6 ;{ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 5 and $\delta 7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.89,2.47\left(2 \mathrm{t}\right.$, each $2 \mathrm{H}, J 8.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}$), $1.49,1.34,1.28,1.28(4 \mathrm{~s}$, each $3 \mathrm{H}, 2 \times \mathrm{CMe} 2) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 6 and δ 172.9 (CO), 142.3 ($\mathrm{Ar}-\mathrm{C}$), 129.3-127.0 ($\mathrm{Ar}-\mathrm{CH}$), 113.0, $110.0\left(2 \times \mathrm{CMe}_{2}\right), 38.2,32.1\left(2 \times \mathrm{CH}_{2}\right)$, 26.9, 26.6, 26.5, $25.5\left(2 \times \mathrm{CMe}_{2}\right.$); Anal. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{6}$. Calc (\%): C, 64.43; H, 7.47, N, 3.58. Found (\%): C, 64.38; H, 7.50, N, 3.57.
4.5.14. 3-N-Butanoyl-3-deoxy-1,2-O-isopropylidene- α-d-allofuranose (4Ac). From 8 ($778 \mathrm{mg}, 3.00$ mmol) by acylation with butanoyl chloride and subsequent hydrolysis; white solid, 556 mg (64%); $R_{\mathrm{f}} 0.32$ (EtOAc); mp (chrom) 123-124 ${ }^{\circ} \mathrm{C}$; optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+4.4 ;{ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 3.76\left(\mathrm{~d}, 1 \mathrm{H}, J_{5, \mathrm{OH}}=4.6 \mathrm{~Hz}, \mathrm{OH}-5\right), 2.80\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, \mathrm{OH}}=5.4 \mathrm{~Hz}\right.$, $\left.J_{6 \mathrm{~b}, \mathrm{OH}}=6.5 \mathrm{~Hz}, \mathrm{OH}-6\right), 2.17\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.53$ (sestetto, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$); 1.50, $1.30(2 \mathrm{~s}$, each $3 \mathrm{H}, \mathrm{CMe} 2$), $0.90(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, M e) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 175.0$ (CO), $113.0\left(\mathrm{CMe}_{2}\right), 38.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 26.9,26.7,\left(\mathrm{CMe}_{2}\right), 19.7\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, 13.9 (Me); Anal. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{6}$. Calc (\%): C, $55.97 ; \mathrm{H}, 8.01, \mathrm{~N}, 4.84$. Found (\%): C, $55.88 ; \mathrm{H}, 8.04, \mathrm{~N}, 4.86$.
4.5.15. 3-N-(2-Methylpropanoyl)-3-deoxy-1,2-O-isopropylidene- α-D-allofuranose (4Ai). From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 2-methylpropanoyl chloride and subsequent hydrolysis; white solid, 460 mg (53\%); $R_{\mathrm{f}} 0.26$ (EtOAc-MeOH 95:5); mp (chrom) $105-107^{\circ} \mathrm{C}$; optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+4.6 ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: see Table 3 and $\delta 3.73\left(\mathrm{~d}, 1 \mathrm{H}, J_{5, \text { OH }}=4.8\right.$ $\mathrm{Hz}, \mathrm{OH}-5), 2.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, \mathrm{OH}}=5.3 \mathrm{~Hz}, J_{6 \mathrm{~b}, \mathrm{OH}}=6.6 \mathrm{~Hz}, \mathrm{OH}-6\right), 2.45\left(\mathrm{ept}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, C H \mathrm{Me}_{2}\right)$, $1.51,1.30$ (2 s , each $3 \mathrm{H}, \mathrm{CMe}$), $1.06,1.07$ (2 d , each $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH} M e_{2}$); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$: see Table 4 and $\delta 178.8(\mathrm{CO})$, $113.0\left(\mathrm{CMe}_{2}\right)$, $35.6\left(\mathrm{CHMe}_{2}\right)$, 26.9, $26.7\left(\mathrm{CMe}_{2}\right), 19.7$ (CHMe e^{2}). Anal. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{6}$. Calc (\%): C, 53.97; H, 8.01, N, 4.84. Found (\%): C, 53.99; H, 7.99, N, 4.82.
4.5.17. 3-N-Pivaloyl-3-deoxy-1,2-O-isopropylidene- α-D-allofuranose (4Aj). From 8 ($778 \mathrm{mg}, 3.00$ mmol) by acylation with pivaloyl chloride and subsequent hydrolysis; white solid, 510 mg (56%); $R_{\mathrm{f}} 0.36$ (EtOAc-MeOH 95:5); mp (chrom) $107-108{ }^{\circ} \mathrm{C}$; optical rotation (c $1.0, \mathrm{CHCl}_{3}$): $[\alpha]_{\mathrm{D}}+8.5$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 3.58$ (bs, $1 \mathrm{H}, \mathrm{OH}-5$), 2.76 (bt, $1 \mathrm{H}, \mathrm{OH}-6$), 1.51, 1.31 (2s, each $3 \mathrm{H}, \mathrm{CMe}$), 1.16 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and δ
$172.6(C O), 113.0,\left(\mathrm{CMe}_{2}\right), 39.4\left(\mathrm{CMe}_{3}\right), 27.5\left(\mathrm{CMe}_{3}\right), 26.8,26.7$, $\left(\mathrm{CMe}_{2}\right)$. Anal. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, 55.43; H, 8.31, N, 4.62. Found (\%): C, 55.47; H, 8.32, N, 4.64.
4.5.16. 3-N-(Biphenyl-4-carbonyl)-3-deoxy-1,2-O-isopropylidene- α-D-allofuranose (4Bh). From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with biphenyl-4-carbonyl chloride and subsequent hydrolysis; white solid, $685 \mathrm{mg}(57 \%)$; $R_{\mathrm{f}} 0.29$ (EtOAc); mp (chrom) $176-178{ }^{\circ} \mathrm{C}$; optical rotation ($c 1, \mathrm{CHCl}_{3}$): $[\alpha]_{\mathrm{D}}+107.0 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 3 and $\delta 7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ H), $7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.65\left(\mathrm{~d}, 1 \mathrm{H}, J_{5, \text { OH }}=4.7 \mathrm{~Hz}, \mathrm{OH}-5\right), 2.88\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, \mathrm{OH}}=5.7 \mathrm{~Hz}, J_{6 \mathrm{~b}, \mathrm{OH}}=6.3\right.$ $\mathrm{Hz}, \mathrm{OH}-6), 1.55,1.33\left(2 \mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CMe}$) ; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 168.8$ $(C O), 145.1,140.7,133.7(3 \times \mathrm{Ar}-\mathrm{C}), 130.0-128.0(\mathrm{Ar}-\mathrm{CH}), 113.1,\left(\mathrm{CMe}_{2}\right), 27.0$, 26.7, $\left(\mathrm{CMe}_{2}\right)$. Anal. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, 66.15; H, 6.31, N, 3.51. Found (\%): C, 66.17; H, 6.32, N, 3.50.
4.5.18. 3-N-(4-Methoxybenzoyl)-3-deoxy-1,2-O-isopropylidene- α-D-allofuranose (4Bi). From 8 ($778 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with 4-methoxybenzoyl chloride and subsequent hydrolysis; white solid, 583 mg (55%); $R_{\mathrm{f}} 0.35$ (EtOAc-MeOH 9:1); mp (chrom) $180-182^{\circ} \mathrm{C}$; optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+26.7 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}^{2} \mathrm{D}_{2} \mathrm{O}$): see Table 3 and $\delta 7.70\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$, $2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$), 6.97 ($\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}, 2 \mathrm{H}, \mathrm{H} 3^{\prime}, \mathrm{H}-5^{\prime}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 1.51, 1.28 (2 s , each 3 H , $\mathrm{CMe})_{2}$; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 168.7(\mathrm{CO}), 163.5\left(\mathrm{C}-4{ }^{\prime}\right), 126.8$ (C-1'), 130.3 (C-2', C-6'), 114.8 (C-3', C-5'), 113.3 (CMe_{2}), 56.2 (OMe), 26.9, 26.6, (CMe_{2}). Anal. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{7}$. Calc (\%): C, 57.78; H, 6.56, N, 3.96. Found (\%): C, 67.72; H, 6.59, N, 3.95.
4.5.19. Methyl-6-N-butanoyl-6-deoxy-3,4-O-isopropylidene- α-D-galactopyranoside (5Ac). From 15 ($700 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with butanoyl chloride; colourless syrup, 737 mg (81%); $R_{\mathrm{f}} 0.30$ (EtOAc-MeOH 95:5); optical rotation (c 1.0, CHCl_{3}): $[\alpha]_{\mathrm{D}}+111.0 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-$ $\mathrm{D}_{2} \mathrm{O}$): see Table 5 and $\delta 3.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.70(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.10\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.43,1.29\left(2 \mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CMe}$) , $0.89(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): see Table 4 and $\delta 173.9(\mathrm{CO}), 109.8\left(\mathrm{CMe}_{2}\right)$, $55.7(\mathrm{OMe})$, $38.7\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, 28.3, $26.5\left(\mathrm{CMe}_{2}\right), 19.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 14.0(\mathrm{Me})$. Anal. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{5}$. Calc (\%): C, 51.49; H, 8.21, N, 6.00. Found (\%): C, 51.50; H, 8.23, N, 5.58.
4.5.20. Methyl-6-N-cyclopropanecarbonyl-6-deoxy-3,4-O-isopropylidene- β-d-galctopyranoside ($\mathbf{6 A l}$). From 16 ($700 \mathrm{mg}, 3.00 \mathrm{mmol}$) by acylation with cyclopropanecarbonyl chloride; white solid, $679 \mathrm{mg}(75 \%) ; R_{\mathrm{f}} 0.40$ (EtOAc-MeOH 9:1); mp (chrom) $65-67^{\circ} \mathrm{C}$; optical rotation (c 1.1, CHCl_{3}): $[\alpha]_{\mathrm{D}}+37.2 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}^{2}-\mathrm{D}_{2} \mathrm{O}\right)$: see Table 5 and $\delta 3.47(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.28(\mathrm{bs}, 1 \mathrm{H}$,

OH), $1.48(\mathrm{~m}, 1, \mathrm{CH}), 1.43,1.30(2 \mathrm{~s}$, each $3 \mathrm{H}, \mathrm{CMe} 2), 0.85-0.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: see Table 4 and $\delta 174.6(\mathrm{CO}), 110.3\left(\mathrm{CMe}_{2}\right)$, $56.9(\mathrm{OMe}), 28.4,26.6\left(\mathrm{CMe}_{2}\right), 14.6$ (CH), $7.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. Anal. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calc (\%): C, 55.43; H, 8.31, N, 4.62. Found (\%): C, 55.45; H, 8.33, N, 4.62.

Acknowledgements

R.G. is granted by Associazione Italiana Ricerca sul Cancro (AIRC), Fondazione Cariparo (Cassa di Risparmio di Padova e Rovigo), Associazione Veneta per la Lotta alla Talassemia - Rovigo, Italy (AVLT), Telethon (grant GGP07257) and STAMINA Project. We thank the EU Project ITHANET (eInfrasctructure for Thalassemia Research Network) for support. M.L. was supported by a fellowship from AVLT and from"Associazione per la Lotta alla Talassemia di Ferrara - Ferrara, Italy". Partial support from Universities of Pisa and Ferrara is also acknowledged.

References

1. Lozzio, B.B; Lozzio, C.B. Blood 1975, 45, 321-334.
2. (a) Lampronti, I.; Bianchi, N.; Borgatti, M.; Fibach, E.; Prus, E.; Gambari, R. Eur. J. Haematol. 2001, 71, 189-195; (b) Gambari, R. Minerva Biotecnol. 2003, 15, 123-128.
3. (a) Fibach, E.; Bianchi, N.; Borgatti, M.; Prus, E.; Gambari, R. Blood 2003, 102, 1276-1281; (b) Zuccato, C.; Bianchi, N.; Borgatti, M.; Lampronti, I.; Massei, F.; Favre, C.; Gambari, R. Acta Haematol. 2007, 117, 168-176; (c) Fibach, E.; Bianchi, N.; Borgatti, M.; Zuccato, C.; Finotti, A.; Lampronti, I.; Prus, E.; Mischiati, C.; Gambari, R. Eur. J. Haematol. 2006, 77, 437-441; (d) Gambari, R.; Fibach, E. Curr. Med. Chem. 2007, 14, 199-212.
4. Jeannesson, P.; Lahlil, R.; Chenais, B.; Devy, L.; Gillet, R.; Aries, A.; Morceau, F.; Trentesaux, C. Leuk. Lymphoma 1997, 26, 575-587.
5. Bianchi, N.; Osti, F.; Rutigliano, C.; Ginanni Corradini, F.; Bosetti, E.; Tommasetti, M.; Mischiati, C.; Feriotto, G.; Gambari, R.; Br. J. Haematol. 1999, 104, 258-265.
6. Bianchi, N.; Ongaro, F.; Chiarabelli, C.; Gualandi, L.; Mischiati, C.; Bergamini, P.; Gambari, R. Biochemical Pharm. 2000, 60, 31-40.
7. Bianchi, N.; Chiarabelli, C.; Borgatti, M.; Mischiati, C.; Fibach, E.; Gambari, R. Br. J. Haematol. 2001, 113, 951-961.
8. Pouillart, P.; Ronco, G.; Cerutti, I.; Trouvin, J.H.; Pieri, F.; Villa, P. J. Pharm. Sci. 1992, 81, 241-244.
9. (a) Catelani, G.; Osti, F.; Bianchi, N.; Bergonzi, M.C.; D'Andrea, F.; Gambari, R. Bioorg. Med. Chem. Lett. 1999, 9, 3153-3158; (b) Bergonzi, M.C.; Bianchi, N.; Catelani, G.; D’Andrea, F.; Gambari, R.; Lipucci di Paola, M.; Osti, F. Eur. Patent 1004590 A2, 2000, Chem. Abstr. 2000, 133, 4898; (c) Catelani, G.; D’Andrea, F.; Mastrorilli, E.; Bianchi, N.; Chiarabelli, C.; Borgatti, M.; Martello, D.; Gambari, R. Bioorg. Med. Chem. 2002, 10, 347-353; (d) Catelani, G.; D’Andrea, Landi, M.; Zuccato, C.; Bianchi, N.; Gambari, R. Carbohydr. Res. 2006, 341, 538-544.
10. Unpublished results from Chiesi Laboratories.
11. Kunz, H.; P. Schmidt, Liebigs Ann. Chem. 1982, 1245-1260.
12. (a) Baer, H.; Gan, Y. Carbohyd. Res. 1991, 210, 233-245; (b) Fernandez, J.; Mellet, C.; Jimenez, J.; Fuentes, J., J. Org. Chem. 1994, 59, 5565-5572.
13. Catelani, G.; Colonna, F.; Marra, A. Carbohydr. Res. 1988, 182, 297-300.
14. Wolfrom, M.L.; Shafizadeh, F.; Armstrong, R.K.; Shen Han, T.M. J. Am. Chem. Soc. 1959, 81, 3716-3718.
15. Brimacombe, J.S.; Ching, O.A. J. Chem. Soc. (C) 1968, 1642-1646.
16. Collins, P.M. Tetrahedron 1965, 21, 1809-1815.
17. Lozzio, B.B.; Lozzio, C.B. Int. J. Cancer 1977, 19, 136.
18. Gambari, R.; Del Senno, L.; Barbieri, R.; Vola, L.; Tripodi, M.; Raschella, G.; Fantoni, A. Cell Differentiation 1984, 14, 87-97.
19. Watanabe, T.; Mitchell, T.; Sariban, E.; Sabbath, K.; Griffin, J.; Kufe, D. Mol. Pharmacol. 1985, 27, 683-688.
20. (a) Fibach, E.; Burke, L.P.; Schechter, A.N.; Noguchi, C.T.; Rodgers, G.P. Blood 1993, 81, 1630-1635; (b) Fibach, E.; Prasanna, P.; Rodgers, G.P.; Samid, D. Blood 1993, 82, 2203-2209.
21. Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27-66.
22. Perrin, D.D; Armarengo, W.L.F.; Perrin, D.R. Purification of Laboratory Chemicals; 2nd ed; Pergamon Press: Oxford, 1980.
23. Manganiello, F.J.; Christensen, L.W.; Jones, W.M. J Organometallic Chem. 1982, 235, 327-334.
24. Rao, P.A.; Smith, F. J. Chem. Soc. 1944, 229-232.

Table 3: ${ }^{1} \mathrm{H}$ NMR data ($\delta, \mathrm{ppm} ; J, \mathrm{~Hz}$) for compounds of type $\mathbf{2}$ and $\mathbf{4}$

Compound	Solvent	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	$\mathbf{N H}$	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$\boldsymbol{J}_{3, \mathrm{NH}}$	$J_{4,5}$	$J_{5,6 \mathrm{a}}$	$J_{5,6 \mathrm{~b}}$	$J_{6 \mathrm{a}, \text { b }}$
2Ab	$\mathrm{CD}_{3} \mathrm{CN}$	5.84	4.59	4.20	4.01	3.50	3.50	3.64	6.87	3.7	0	3.2	7.6	8.4	n.d.	2.2	10.4
2 Ac	CDCl_{3}	5.89	4.58	4.36	4.10	3.70	3.70	3.70	7.49	3.7	0	3.2	7.1	7.3	n.d.	n.d.	n.d.
2Ad	$\mathrm{CD}_{3} \mathrm{CN}$	5.83	4.50	4.21	4.01	3.49	3.49	3.66	6.96	3.7	0	3.2	7.7	8.3	n.d.	n.d.	n.d.
2 Ae	$\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$	5.83	4.49	4.21	4.02	3.55	3.55	3.62	--	3.6	0	3.2	--	7.9	n.d.	2.7	10.7
2 Af	$\mathrm{CD}_{3} \mathrm{CN}$	5.83	4.50	4.20	4.00	3.53	3.53	3.53	6.84	3.6	0	3.1	7.8	8.2	n.d.	n.d.	n.d.
2Ah	$\mathrm{CD}_{3} \mathrm{CN}$	5.84	4.50	4.21	4.02	3.48	3.48	3.64	6.90	3.7	0	3.2	7.4	8.3	n.d.	2.6	10.3
2Aj	CDCl_{3}	5.89	4.56	4.31	4.15	3.90	3.70	3.70	6.84	3.7	0	3.4	6.4	6.4	n.d.	n.d.	n.d.
4Ac	$\mathrm{CD}_{3} \mathrm{CN}$	5.76	4.59	4.23	3.77	3.65	3.42	3.51	6.62	3.8	5.1	9.2	8.9	4.8	6.6	4.0	11.3
4Ai	$\mathrm{CD}_{3} \mathrm{CN}$	5.76	4.59	4.23	3.80	3.66	3.40	3.51	6.56	3.8	5.1	9.2	9.0	4.6	6.7	3.8	11.5
4Aj	$\mathrm{CD}_{3} \mathrm{CN}$	5.79	4.62	4.17	3.82	3.66	3.40	3.52	6.46	3.8	5.3	9.2	8.2	4.9	6.7	4.0	11.2
4Bh	$\mathrm{CD}_{3} \mathrm{CN}$	5.84	4.76	4.47	4.04	3.79	3.48	3.58	7.15	3.8	5.0	9.4	8.1	4.7	6.6	4.2	11.4
4Bi	$\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$	5.81	4.72	4.45	4.08	3.80	3.44	3.55	--	3.8	4.9	9.7	--	4.1	7.1	4.2	11.5

Table 4: ${ }^{13} \mathrm{C}$ NMR data (δ, ppm) for compounds of type $\mathbf{2}$ and $\mathbf{4}$

Compound	Solvent	$\mathbf{C - 1}$	$\mathbf{C - 2}$	$\mathbf{C - 3}$	$\mathbf{C - 4}$	$\mathbf{C - 5}$	$\mathbf{C - 6}$
$\mathbf{2 A b}$	$\mathrm{CD}_{3} \mathrm{CN}$	105.6	84.8	57.0	79.8	70.0	64.4
$\mathbf{2 A c}$	CDCl_{3}	104.2	83.7	56.3	78.5	69.4	63.7
2Ad	$\mathrm{CD}_{3} \mathrm{CN}$	105.5	84.8	57.1	79.8	70.1	64.4
2Ae	$\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$	105.5	84.8	56.7	79.4	70.0	64.1
2Af	$\mathrm{CD}_{3} \mathrm{CN}$	105.6	84.8	57.1	79.9	70.2	64.5
2Ah	$\mathrm{CD}_{3} \mathrm{CN}$	105.6	84.8	57.1	79.7	70.2	64.4
2Aj	CDCl_{3}	104.0	84.1	56.7	78.1	69.9	63.5
4Ac	$\mathrm{CD}_{3} \mathrm{CN}$	105.1	80.6	53.3	80.5	73.2	63.8
4Ai	$\mathrm{CD}_{3} \mathrm{CN}$	105.2	80.7	53.3	80.5	73.1	63.8
4Aj	$\mathrm{CD}_{3} \mathrm{CN}$	105.2	80.9	53.6	80.3	73.1	63.8
4Bh	$\mathrm{CD}_{3} \mathrm{CN}$	105.3	80.4	54.1	80.2	73.1	63.8
4Bi	$\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$	105.2	80.3	53.5	79.6	72.7	63.4

Table 5. ${ }^{1} \mathrm{H}$ NMR data ($\delta, \mathrm{ppm} ; J, \mathrm{~Hz}$) for compounds of type 1, 3, 5 and $\mathbf{6}$

Compound	Solvent	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	NH	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{3, \mathrm{NH}}$	$J_{4,5}$	$J_{5,6 \mathrm{a}}$	$J_{5,6 \mathrm{~b}}$	$J_{6 a, 6 \mathrm{~b}}$
1-a	$\mathrm{CD}_{3} \mathrm{CN}$	5.81	4.46	4.33	4.10	4.20	3.83	4.05	7.05	3.7	0	3.7	8.8	7.2	5.5	6.1	8.4
3Ab	$\mathrm{CD}_{3} \mathrm{CN}$	5.75	4.55	4.13	3.90	4.13	3.90	3.90	6.43	3.7	4.3	n.d.	8.1	n.d.	n.d.	n.d.	n.d.
3An	$\mathrm{CD}_{3} \mathrm{CN}$	5.75	4.54	4.19	3.91	4.11	3.91	3.91	6.43	3.6	4.3	9.5	8.8	n.d.	n.d.	n.d.	n.d.
3Bd	$\mathrm{CD}_{3} \mathrm{CN}$	5.75	4.53	4.09	3.84	4.12	3.79	3.94	6.60	3.8	4.6	9.3	8.4	3.5	6.8	6.6	8.0
3Bf	$\mathrm{CD}_{3} \mathrm{CN}$	5.75	4.52	4.10	3.86	4.07	3.82	3.95	6.48	3.8	4.7	9.9	8.8	3.4	6.3	6.6	7.9
3Bb	$\mathrm{CD}_{3} \mathrm{CN}$	5.75	4.56	4.13	3.87	4.11	3.81	3.96	6.59	3.8	4.9	9.8	8.4	4.0	6.6	6.6	8.2
5Ac	$\mathrm{CD}_{3} \mathrm{CN}$	4.59	3.57	4.02	4.15	3.96	3.23	3.48	6.62	3.6	7.5	5.5	--	2.4	7.8	4.4	13.7
6AI	$\mathrm{CD}_{3} \mathrm{CN}$	4.02	3.28	3.94	4.10	3.80	3.28	3.53	6.90	8.2	7.0	5.5	--	2.1	8.4	4.2	13.8

Table 6: ${ }^{13} \mathrm{C}$ NMR data (δ, ppm) for compounds of type 1, 3, 5 and 6

Compound	Solvent	$\mathbf{C - 1}$	$\mathbf{C - 2}$	$\mathbf{C - 3}$	$\mathbf{C - 4}$	$\mathbf{C - 5}$	$\mathbf{C - 6}$
1Ca	$\mathrm{CD}_{3} \mathrm{CN}$	105.6	85.2	56.4	79.5	73.7	67.5
3Ab	$\mathrm{CD}_{3} \mathrm{CN}$	105.3	80.1	53.6	78.9	76.4	65.4
3An	$\mathrm{CD}_{3} \mathrm{CN}$	105.3	80.1	53.7	79.0	76.5	65.6
3Bd	$\mathrm{CD}_{3} \mathrm{CN}$	105.3	80.0	53.5	79.2	76.3	65.2
3Bf	$\mathrm{CD}_{3} \mathrm{CN}$	105.4	80.0	53.7	78.8	76.3	65.3
3Bb	$\mathrm{CD}_{3} \mathrm{CN}$	105.4	80.0	54.0	79.1	76.5	65.6
$\mathbf{5 A c}$	$\mathrm{CD}_{3} \mathrm{CN}$	100.4	70.8	77.4	74.7	66.8	40.7
$\mathbf{6 A l}$	$\mathrm{CD}_{3} \mathrm{CN}$	104.4	74.2	80.3	75.1	72.1	41.1

[^0]: Authors for correspondence. G.C.: phone +39050 2219678, fax +39050 2219660, e-mail giocate@farm.unipi.it; R.G: phone +390532 424443, fax +390532 202723, e-mail gam@unife.it

