
Transparent Process Monitoring in a Virtual
Environment

Fabrizio Baiardi1 Dario Maggiari2

Polo G. Marconi, Università di Pisa, La Spezia, Italy
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Abstract

PsycoTrace is a system that integrates static and dynamic tools to protect a process from attacks that alter
the process self as specified by the program source code. The static tools build a context-free grammar that
describes the sequences of system calls the process may issue and a set of assertions on the process state,
one for each invocation. The dynamic tools parse the call trace of the process to check that it belongs to
the grammar language and evaluate the assertions. This paper describes the architecture of PsycoTrace,
which exploits virtualization to introduce two virtual machines, the monitored and the monitoring virtual
machines, to increase both the robustness and the transparency of the monitoring because the machine that
implements all the checks is strongly separated from the monitored one. We discuss the modification to
the kernel of the monitored machine to trace system call invocations, the definition of the legal traces and
the checks to prove the trace is valid. We describe how PsycoTrace applies introspection to evaluate the
assertions and analyze the state of the monitored machine and of its data structures. Finally, we present
the security and performance results of the dynamic tools, and the implementation of the static tools.
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1 Introduction

Even if buffer overflows and format strings were discovered and analyzed in 1972 [2],
they are still quite popular and effective nowadays. A classic attack that exploits
a buffer overflow sends data to a network process coded in a type unsafe language
such as C and, if the faulty listening process stores the data in an undersized stack
buffer, the attack overwrites some information on the call stack. If the attacker
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has properly crafted the data, she can overwrite the value of the function return
pointer to implement a control hijacking attack that transfers control to malicious
code in the data itself [1]. In 1988, the Morris worm exploited a buffer overflow.
More recently, at least two Internet worms have exploited buffer overflows. In 2001,
the “Code Red Worm” exploited a vulnerability in Microsoft’s IIS, whereas in 2003
the “SQL Slammer Worm” damaged several hosts running Microsoft SQL Server.

PsycoTrace is a set of static and dynamic tools to protect a process program,
i.e. the process self, from attacks that modify its intended behavior [28], such as
those exemplified by buffer overflows. PsycoTrace static tools analyze the program
source code and return both a context-free grammar that describes any sequence
of system calls (i.e. trace) the process may generate, and a set of invariants on
the process state, i.e. on the program variables. Each invariant is paired with a
system call invocation and it constrains the values of the process variables and of
the parameters of the system call. Starting from the data generated by the static
tools, the dynamic tools verify that: (i) the trace currently generated by the process
belongs to the language generated by the grammar; (ii) the assertion paired with
the call is satisfied.

To check the run-time behavior in a robust and transparent way, PsycoTrace
fully exploits virtualization by concurrently executing two virtual machines (VMs)
on the same physical machine, namely the monitored VM and the introspection
VM. The former executes the system that runs the monitored process, while the
latter implements the monitoring system, i.e. it is a privileged VM that checks that
the grammar is satisfied and exploits virtualization to directly access the physical
memory of the monitored VM to inspect the process state and evaluate the asser-
tions. Our approach is transparent because it does not require updating the code
of the monitored process. However, the current version of PsycoTrace is not fully
transparent because it inserts a module into the kernel of the monitored VM to
intercept system calls and alert the introspection VM. The adoption of two VMs
strongly increases the complexity of an attack against the dynamic tools, because
an attacker should at first subvert in an undetected way the kernel of the monitored
VM and then exploit a vulnerability of the virtual machine monitor to attack the
introspection VM.

This paper presents PsycoTrace and it discusses the security results and the
efficiency of the current implementation. Section 2 introduces the main concepts
underlying the static tools that compute the expected behavior of a process and
presents a first algorithm that is applied to the process source code to compute this
behavior. Section 3 presents PsycoTrace’s run-time architecture and the current
prototype implementation. Section 4 shows the security evaluation of the prototype
and a set of performance results. Section 5 reviews some related works. Finally,
Section 6 draws a set of conclusions, discusses the current limitations and outlines
future developments.
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2 Static Tools and Process Expected Behavior

This section describes PsycoTrace static tools that compute the expected behavior
of the process to be protected.

The main assumption underlying PsycoTrace is that a process can implement
security critical operations through system calls only. Thus, provided that the
kernel is trusted, an attempt to inject malicious code into a process memory can be
detected by checking the sequence of system calls a process issues, i.e. the process
trace, and the call parameters. These elements contribute to the definition of the
process expected behavior and are computed by PsycoTrace static tools. The output
of these tools is the input of the PsycoTrace dynamic tools that, as discussed in
the next section, monitor the actual process behavior and compare it against the
expected one.

As a first approximation of an optimal compromise between accuracy and effi-
ciency, PsycoTrace static tools describe any trace the execution of P may generate
through a context-free grammar CFG(P ). At run-time, the trace generated by P

up to a given instant is legal or coherent with CFG(P), if and only if it is a prefix
of at least one string of L(P ), i.e. the language generated by CFG(P ). We assume
that the high complexity of parsing due to a context-free grammar is justified by
the better accuracy of the checks. As far as concerns the checks on the parameters
of system calls, we generalize them by pairing an invariant I(P, i) with each point
i of the program where P issues a system call, i.e. I(P, i) is an assertion on P vari-
ables that holds any time P reaches i. These checks increase PsycoTrace robustness
with respect to mimicry attacks [29] that replace the parameters of a call without
modifying the trace. For the time being, to verify the feasibility of our framework,
we manually extract the assertions from our test programs. We plan to integrate
the analysis that computes the invariants in the compilation phase, by properly
analyzing the abstract syntax tree (AST) generated by the GCC compiler.

Terminal and non-terminal symbols of CFG(P ) depend upon the system calls
that P invokes and the functions defined in the source code. Formally, the context-
free grammar CFG(P ) is a tuple < T, F, S, R >, where:

• T is the set of terminal symbols, each corresponding to a distinct system call that
P invokes;

• F is the set of non-terminal symbols, one for each function defined in the source;
• S is the starting symbol, which corresponds to the main function;
• R is the set of production rules.

We have defined an algorithm GGA, Grammar Generating Algorithm, to com-
pute CFG(P ) by linearly analyzing each function defined in the source code of P .
For each definition of a function fun, GGA adds a new symbol FUN to F and a new
rule Rnew to R with FUN as its left-hand-side. To generate the right-hand-sides of
Rnew, GGA linearly analyzes the definition of fun and it applies the following rules
to each block B of instructions inside fun:

• if B is a block of instructions without conditional or loop statements, GGA ap-
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pends the system calls and functions invoked inside B in the same order to the
right-hand-sides of Rnew;

• if B is a if(cond) {block1} statement, GGA generates the rule:
· <A> → <B> |ε
where B is a new non-terminal symbol that is the left-hand-side of the production
generated by recursively applying GGA to block1. Moreover, GGA appends the
symbol A to the right-hand sides of Rnew;

• if B is a if(cond) {block1} else {block2} statement, GGA generates a new
rule:
· <A> → <B> | <C>
where B and C are the left-hand-sides of the productions generated by the recursive
application of GGA to block1 and block2 respectively. Furthermore, it appends
the symbol A to the right-hand of Rnew;

• if B is a if(cond) {block1} else if(cond) {block2} ... else if(cond)
{blockn} statement or, equivalently, a switch statement, it generates a new
rule:
· <A> → <B1> | <B2> | ... | <Bn>
where B1, B2 ... Bn are the left-hand-sides of the productions generated by the
recursive application of GGA to block1, block2 ... blockn respectively. Further-
more, it appends the symbol A to the right-hand of Rnew;

• finally, if B is a while(cond) {block1} or, equivalently, a for cycle, GGA ap-
pends (A)∗ to the right-hand side of R, and it generates a new non-terminal
symbol A that is the left-hand-side of the productions generated by the recursive
invocation that applies GGA to block1.

2.1 Meta-Compiler-Compiler Approach

We currently build CFG(P ) by exploiting Bison [5] to generate a parser for the
C language in which system calls are new tokens of the language. This parser
implements GGA and its semantic actions generate CFG(P ). Moreover, we also
exploit Bison to build a second parser that checks that the trace of P is a string
of L(P ). In more detail, we follow a meta-compiler-compiler approach (see Fig. 1)
implemented in three steps. The first step does not depend upon the code of P and
each of the remaining steps builds a distinct parser:

(i) define an extended C grammar (ECG) in the Bison syntax in which system
calls are added as new tokens. We also define the semantic actions of ECG
that generate the system call grammar CFG(P ) by implementing GGA;

(ii) apply Bison to ECG to produce the parser that generates CFG(P ) from the
source program of P . Future versions will include semantic actions for CFG(P )
that define the assertion that holds at each system call invocation;

(iii) apply Bison to CFG(P ) to build the parser that checks that P generates a legal
trace. The semantic actions paired with this parser include the evaluation of
assertions.
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Thus, in (i) a Flex-generated scanner recognizes system calls as tokens of the
language. To create CFG(P ), the parsing of the source code in (ii) is decomposed
into two further steps. In the first step, the semantic actions of the generated parser
export an AST. The internal nodes of this tree represent either functions defined
in the source code of P or statements/expressions, whereas leaf nodes represent
system calls. In the second step, the parser visits the AST to build CFG(P ) by
applying GGA. CFG(P ) is represented through the Bison syntax so that in (iii) we
can exploit Bison to generate the parser for L(P ) that is used at run-time to check
that the trace of P is legal.

Fig. 1. Meta-Compiler-Compiler Approach.

3 Run-Time Architecture

PsycoTrace’s run-time architecture monitors the actual process behavior and com-
pares it against the expected behavior returned by the static tools and its implemen-
tation is built around virtualization and virtual machine introspection. The virtual-
ization technology introduces the concept of Virtual Machine Monitor (VMM) [14],
a thin software layer that creates, manages and monitors Virtual Machines (VMs),
i.e. execution environments, which emulate the underlying physical machine. Vir-
tualization simplifies the implementation of introspection, a generic technique that
detect signs of intrusions by analyzing in detail the state of the machine to rebuild
and check the consistency of data structures used either by the kernel or by user-
level processes. In general, introspection requires specialized hardware units that
access the physical memory of a machine [16]. However, by executing the monitored
kernel and applications inside a VM, PsycoTrace can exploit Virtual Machine In-
trospection (VMI) [11] to implement introspection at the hardware/firmware level
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without introducing additional units. VMI enables a privileged VM to analyze the
state of the processes and kernel hosted on distinct VMs. It is very hard to elude
or attack VMI, because it is implemented through a distinct VM and at a lower
level than the one an attacker can access. Thus, the advantages of VMI are: (i) full
visibility of the systems running on the VMs, because the VMM can access every
VM component, such as the main memory or the processor’s registers; (ii) more
robustness, because the VMM is isolated from the monitored VM.

The input of dynamic tools defines the self of P as computed by the static
analysis and it consists of: (i) a context-free grammar CFG(P ) that defines the
legal system call traces; (ii) a set of invariants Inv(P ) = {I(P, 1), . . . , I(P, n)}, each
paired with a program point i where P invokes a system call. The implementation
of the run-time support introduces two virtual machines:

(i) the monitored VM (Mon-VM), i.e. the VM executing P ;

(ii) the introspection VM (I-VM), i.e. the VM monitoring P through virtual ma-
chine introspection.

The I-VM can access each component of the Mon-VM, for example any memory
region and any processor register, to inspect its running state and evaluate assertions
on P state, i.e. on the values of its variables. Each invariant is paired with a system
call [23] and, in general, it constrains the values of the system call parameters or
relates them to variable values. During the execution of P , the Mon-VM transfers
control to the I-VM each time P invokes a system call. At this point, the I-VM
checks that the current trace satisfies CFG(P ) and it evaluates the invariant I(P, i)
paired with the point i that P has reached.

The important assumptions underlying the adopted approach are that: (i) the
source code executed by P is known; (ii) the VMM can be trusted; (ii) introspection
safely extends the Trusted Computing Base (TCB). Two reasons support the latter
two assumptions. Firstly, the VMM has full visibility of the Mon-VM, because it can
access every components of it. Secondly, the VMM is more robust than commodity
OSes because: (i) it exports a simple interface to the higher levels, which is more
difficult to subvert than, for example, the one of a kernel that implements hundreds
of system calls; (ii) the small size of the VMM code reduces the likelihood of a
compromise and makes it possible to validate its correct implementation through a
formal analysis. Notice that the kernel of the Mon-VM does not belong to the TCB
because its integrity can be checked by the I-VM. In conclusion, since the VMM has
full visibility of the VMs but it is strongly isolated from them, the complexity of
compromising the VMM or of eluding the introspection monitoring capabilities of
the Mon-VM is very high. Nonetheless, there are known threats against the VMM
that also have to be considered [9].

Xen [6] is the adopted technology to create the VMs that implement the dynamic
tools. We adopted the Xen VMM mainly for its high performance and complete
integration with the Linux kernel. PsycoTrace exploits the para-virtualization ap-
proach, in which OSes are aware of the existence of the Xen VMM.
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Fig. 2. Tracing a Process.

3.1 System Call Tracing

The current dynamic tools are the HiMod and the Analyst, that run, respectively,
in the kernel of the Mon-VM, and at the user-level of the I-VM. The HiMod is a
kernel module that hijacks the system calls that P invokes. Every time P invokes
a system call, HiMod notifies the Analyst, which can apply the consistency checks
on the self of P . The Analyst includes the Bison-generated parser and an Assertion
Checker that, respectively, check the traces of P and evaluate the invariants. The
Analyst starts by listening for communications from the HiMod about system call
invocations. This interaction is synchronous, i.e. each time a system call is invoked,
P is paused and the execution is resumed only after the Analyst has completed the
security checks. Notice that the ability of implementing the Analyst at the user
level strongly simplifies its implementation with respect to the case in which it is
implemented at the kernel level in the Mon-VM.

When HiMod is loaded, it allocates a kernel memory page to store the param-
eters of every system call that P will invoke and the system call number. Then,
the Analyst maps the shared page in its address space and, whenever a system
call is invoked, it reads the system call number and the parameter values and then
it resumes the execution of P so that the current system call can be completed.
To notify the Analyst that P has issued a system call, HiMod allocates an event
channel shared with the I-VM. This channel is a Xen data structure that emulates
the interrupt mechanism. PsycoTrace uses this mechanism to synchronize the Hi-
Mod and the Analyst. When the Analyst allocates a new evt chn data structure,
it receives an integer value that represents the port number used to capture the
notifications from the Mon-VM kernel module. At this point, the Analyst bounds
itself to the specified port of the I-VM and waits a notification from the Mon-VM.
Each notification corresponds to a system call invocation issued by P (see Fig. 2).

PsycoTrace exploits the XenStore database, a common data-structure shared
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by the VMs in the Xen architecture, which enables a privileged machine to access
information about the running VMs. HiMod stores the base address of the shared
page in a well-known token in the XenStore tree. The Analyst accesses the token
and uses the address to map the page in its address space. The overall solution
enables the Analyst to retrieve the information about the system call in the shared
memory page.

Because of the large number of system calls in the Linux kernel, and since most
of them are difficult to exploit to attack a process, PsycoTrace monitors only the
system calls that are critical from the security point of view [3].

3.2 Virtual Machine Introspection

Any time P invokes a system call, the Mon-VM is suspended and the Analyst is
informed. The Analyst knows the processor registers in the Mon-VM, the system
call number, its parameters and it can retrieve the values of any program variable.
As a consequence, the Analyst can check that both the resulting trace is legal and
that the invariant paired with the call is verified. To check a trace is legal, HiMod
transmits the system call number to the Analyst lexical analyzer which, in turn,
returns the system call token to the parser as an input. If the current call does not
belong to the terminal alphabet symbols, the parser returns an error. Otherwise, it
checks the call by resuming the parsing from the point reached by the analysis of the
previous call. Thus, PsycoTrace implements a stream-oriented parsing as opposed
to the usual parsing of a whole sequence of tokens in a single step. This strongly
simplifies the implementation with respect to the case where each invocation starts
a new derivation from the starting symbol of the grammar and its parsing. The
corresponding performance improvement may favor the adoption of a context-free
grammar and of a GLR parser.

To evaluate the assertions in Inv(P ), we have implemented an Introspection
Library which supports an x86/32 architecture, both regular paging and PAE. The
library enables the Assertion Checker to access any memory region of P . The
Introspection Library exploits the libxc library to access a page in the Mon-VM.
The Introspection Library enables the Assertion Checker to traverse the page tables
for P to translate a virtual address of P into a machine address, i.e. a physical
address in Xen terminology. This address is used to map a page in the Assertion
Checker process space. In this way, the Assertion Checker can map into its address
space the pages of the traced process that store the values of interest to evaluate an
assertion. The monitored process is killed as soon as PsycoTrace verifies that the
trace is not coherent with the grammar, or that an assertion is false.

4 Effectiveness and Performance Tests

This section shows a preliminary evaluation of the attacks PsycoTrace can detect
and a first set of results to evaluate the run-time overhead of the current imple-
mentation. The PsycoTrace dynamic tools are implemented through 450 lines of
Perl code, which generate the HiMod by parsing the definition of the Linux system
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calls. The HiMod consists of 2.5K lines of C code, while the Analyst is composed of
about 3K lines of C code, including the Introspection Library. The definition of the
extended C grammar including the semantic actions to generate CFG(P ) is about
1K lines of C++ code. Finally, the generated Bison parser for CFG(P ) is about
2.5K lines of C code.

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <netdb.h>
#include <unistd.h>

#define BUFF 1024
#define SMALL_BUFF 512

int n = 10;

void logfile()
{

int fd = open(‘‘log.txt’’, O_CREAT|O_WRONLY|O_APPEND, S_IRWXU);
n--;
write(fd, ‘‘log’’, 3);
if(n>0) logfile();
else (n=10);
close(fd);

}

int parse_str(char *buff)
{

char smallbuff[SMALL_BUFF];
if(!strncmp(buff, ‘‘copy’’, 4)) strcpy(smallbuff, buff); /* VULNERABILITY*/
if(!strncmp(buff, ‘‘file’’, 4)) logfile();
if(!strncmp(buff, ‘‘exit’’, 4)) return 1;
return 0;

}

int main()
{

int fd, sockfd, ret, yes=1;
socklen_t sin_size;
struct sockaddr_in sin;
struct hostent *h;
char buffer[BUFF];
fd = socket(AF_INET, SOCK_STREAM, 0);
memset(&sin, 0, sizeof(sin));
h = gethostbyname(‘‘localhost’’);
sin.sin_family = AF_INET;
sin.sin_port = htons(5555);
sin.sin_addr.s_addr = INADDR_ANY;
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int));
ret = bind(fd, (struct sockaddr *) &sin, sizeof(sin));
ret = listen(fd, 5);
sin_size = sizeof(struct sockaddr_in);
sockfd = accept(fd, (struct sockaddr *)&sin, &sin_size);
dup2(sockfd, STDIN_FILENO);
dup2(sockfd, STDOUT_FILENO);
dup2(sockfd, STDERR_FILENO);
while(1)
{

memset(buffer, 0, BUFF);
read(sockfd, buffer, BUFF);
if(parse_str(buffer) == 1) break;
write(sockfd, ‘‘ok\n’’, 3);

}
close(sockfd);

}

Table 1
Testbed Server Program
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<MAIN>: "dup2" "dup2" "dup2" ("read" <PARSE_STR>
("write")?)* "close".

<PARSE_STR>: (<LOGFILE>)?.

<LOGFILE>: "open" "write" (<LOGFILE>)? "close".

S0: DUP2 DUP2 DUP2 F0;
F0: READ F1 CLOSE |

READ F1 WRITE F0 CLOSE;
F1: /* empty */ | F2;
F2: OPEN WRITE F2 CLOSE |

OPEN WRITE CLOSE;

Table 2
Context-Free Grammar of The Example and its Bison Representation

4.1 Effectiveness

First of all, we describe the process P we used to test PsycoTrace effectiveness
in attack detection. P implements a single server application that opens a socket
and reads from its stream a sequence of characters. Table 1 shows the source code
of P . Table 2 shows the CFG(P ) generated by the GGA and the corresponding
grammar in Bison syntax. Semantic actions are not shown. For the sake of concise-
ness, the CFG(P ) only describes the behavior of P after the accept system call.
Notice that the LOGFILE non-terminal generates a recursive production which de-
fines the language (open write)n(close)n, which cannot be handled by a regular
grammar. The parse_str function parses the received string. If the string begins
with “copy”, P invokes strcpy to copy the receiving string in a local small buffer.
strcpy is an insecure function that could be exploited to compromise the security
of the application. If, instead, the received string begins with “file”. P invokes
the logfile function. Lastly, if the string begins with “exit” the server closes the
connection with the client. An example of a trace generated by the execution of P

is the following string: (DUP2)3; READ; (WRITE; READ; (OPEN; WRITE)10;
(CLOSE)10)2; (WRITE; READ)2; CLOSE.

We have implemented an attack that exploits the vulnerable strcpy function on
the server-side, to manipulate a parameter from the client-side. The exploit over-
flows the server buffer by transmitting a string that contains a shellcode and that is
built by appending to the string “copy” a sequence of nop instructions, the shellcode
itself and finally a repetition of the jump address of the shellcode to overwrite the
parse_str return address in the server stack. The execution of this exploit results
in a remote shell with the privileges of the remote server process. The trace of P

after a successful attack is: (DUP2)3; READ; SETUID; BRK; OPEN; CLOSE;
(OPEN; READ; CLOSE)3; OPEN; CLOSE; (BRK)3; TIME; BRK; IOCTL; BRK;
(OPEN; READ; CLOSE)2; BRK. In this case, the PsycoTrace parser signals an in-
consistency with respect to the expected behavior after the fourth system call, P is
stopped and no shell is spawned. The corresponding string is: DUP2; DUP2; DUP2;
READ; syntax error [SETUID] → process killed (pid=1054).

4.2 Performance Evaluation

The system to run the prototype tools included a Pentium Centrino Duo T2250
1.7GHz. In all the tests, 128MB of physical RAM were allocated to the Mon-VM,
running a Linux Debian distribution, and 874 MB RAM to the I-VM. The Xen
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version was 3.1.0, while the Mon-VM Linux kernel version was 2.6.18-xen.
We evaluated the average time to execute the bunzip2 tool to uncompress the

Linux kernel on the Mon-VM in two cases, during a normal execution and when we
only traced the bunzip2 process. The execution time increased from 19.896 sec to
24.268 sec. The overhead, 21.97%, is rather high in this case because bunzip is a
tool that invokes system calls at high rate. Table 3 shows the average execution
time of three system calls executed on the Mon-VM in three cases: during the
normal execution, while tracing the system calls and when the Analyst checks the
trace and evaluates the assertions by accessing one page of P . In these tests, the
traced program loops on each of such system call.

Fig. 3 displays the average execution time of the time system call in a loop when
the Analyst evaluates the assertions, as the number of mapped pages varies from
1 to 10. Complex assertions correspond to a larger number of pages because they
access several variables. The overhead is linear in the number of mapped pages.

Finally, we considered the execution time of the program described in Sect. 4.1,
when a client generated and sent to P a continuous stream of requests. Three cases
were analyzed: (i) a normal execution of P ; (ii) when system calls generated by P

are traced and notified to the Analyst but no check is applied; (iii) when tracing
the system calls, checking the grammar and evaluating the assertions, by accessing
one page of P . The total number of traced system calls generated by P was 63234.
In the worst case, a 48% overhead arises.

system call normal traced traced + introspection

time 2 μsec 55 μsec 141 μsec

open 3 μsec 58 μsec 116 μsec

write (1k buffer) 8 μsec 67 μsec 177 μsec

Table 3
Overhead of System Calls

Fig. 3. Assertion Checker Overhead.
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5 Related Work

Forrest et al. [10,15] firstly described a model that defines a process self through a
set of short sequences of system calls. Any sequence that does not belong to the
statistical-based set signals an intrusion. In [17,18] the authors propose a solution
that pairs a program with a specification of its intended behavior, i.e. the program
policy. The policy specification language is based upon predicate logic and regu-
lar expressions. A similar approach is discussed in [25], which exploits a language
for capturing patterns of normal or abnormal behaviors of processes in terms of
sequences of system calls and their arguments. An approach to detect anomalous
program behaviors is proposed in [24], through a finite-state automaton (FSA) that
learns a program behavior expressed as sequences of system calls, and it does not
require access to the program source code. In [30,21] the authors propose data
mining-based approaches to generate rules from system call sequences. Association
rules and frequent episodes algorithms are used to compute the consistent patterns
from audit data. Wagner and Dean [28] define a static analysis of the application
source code that returns a specification of the expected application behavior. In-
trusions are signaled by system call traces that are not coherent with the transition
system that models the application. The paper introduces the callgraph model, built
by analyzing the control-flow of the program. Then, this model is extended to the
abstract stack model to take into account impossible paths. Finally, it considers a di-
graph model to simplify the implementation of the framework. Instead, PsycoTrace
derives a context-free grammar directly from the source code rather than from the
control-flow and the abstract stack. Furthermore, it exploits virtualization to apply
introspection and take advantages of its isolation properties.

An approach to detect malicious system call through a static analysis of the bi-
nary program is proposed in [13], by building a model representing any remote call
stream the process could generate. As the process executes remotely, the local agent
operates on the model incrementally, ensuring that any call received does not violate
the model. Each model is defined in terms of finite-state machines. Control-flow
graphs generated from the binary code are used to build either a non-deterministic
finite-state or a push-down automaton to mirror the execution control-flow of the
executable. The Dick Model [12] includes a stack to record function call return loca-
tions, by using precalls and postcalls, and null system calls to eliminate impossible
path and to simulate stack operations. VtPath [8] is an anomaly detection method
that utilizes return addresses extracted from the call stack to generate the abstract
execution path between two execution points in the program and it decides whether
this path is valid according to what has been learned from the program normal
runs. Moreover, since pushdown automata (PDA) model are rather inefficient be-
cause of non-determinism, Feng et al. [7] explore the VPStatic model, a variant of
the VtPath model, which extracts context information about stack activity of the
monitored program to define a deterministic model. Paid [19,20] is a compiler-based
intrusion detection system that derives an accurate system call model from the ap-
plication source code. It derives a deterministic FSA model that captures system
call sites, their ordering and partial control-flow information. Moreover, Paid ex-
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ploits run-time information to minimize the degree of non-determinism of the static
analysis to extract the system call graph, and it also computes a set of constraints
on the arguments of sensitive system calls. A kernel run-time verifier compares the
process system call pattern against the statically derived model. An approach to
prevent the execution of system calls due to code injection attacks is discussed in
[22], which exploits a table of addresses of allowed system calls to decide whether a
system call was executed inside the injected code.

Janus,goldberg96secure is a sandbox-based secure environment that restricts an
untrusted application access to the OS by tracing the process activities. Similarly,
Ostia,ostia is a system call interposition-based sandbox system that relies on a
delegating architecture, which includes a kernel module to enforce a hard-coded
policy to prevent the execution of sensitive calls, and a user-level application that
accesses sensitive resources on behalf of the sandboxed process. When the process
issues a sensitive system call, an emulation library intercepts the call and transmits
the request to the user-level agent via an IPC channel. Among the tools to protect a
process, StackGuard,cowanstackguard is a kernel patch aimed at preventing smash
stacking attacks by protecting the return address on the stack. StackGuard places
a canary word, i.e. a randomly generated value, next to the return address and it
generates code to check this value each time a function is called. If the canary has
been altered when the function returns, then some attempt to overflow the stack
has been successful. Moreover, libsafe library [26] provides a way to invoke insecure
functions in a secure way.

6 Current Status, Limitations and Developments

PsycoTrace integrates static tools, which build a specification of the process ex-
pected behavior, with dynamic tools that exploit virtualization technology to build
a robust monitor of the actual process behavior. If the dynamic tools detect either
a system call that is incompatible with the grammar, or a false assertion, Psyco-
Trace deduces that the process has been successfully attacked and it kills it. No
false positive is possible, because the specification over-approximates the behavior
of the program. Furthermore, this specification strongly reduces the number of false
negatives due to conditional statements, unbounded iterations and recursion. We
believe that PsycoTrace can prevent and detect most attacks against the program
self, i.e. attacks that modify its intended behavior. The current status of the work
shows promising results and an acceptable performance overhead.

The model underlying the definition of PsycoTrace is focused on those attacks
that modify the behavior of a process as expressed in the source code, such as those
that inject and execute malicious code. As a consequence, there are several security
problems that PsycoTrace does not cover which are due to flawed application logic,
such as time of check time of use (TOCTOU) errors [4]. Moreover, there are several
non-standard control-flows that a static analysis cannot handle very easily. As an
example, a function pointer could be used to indirectly invoke a system call. To
take into account function pointers, the static analysis should predict all the possible
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targets of every indirect call through a function pointer. For the time being, we
neglect function pointers, so our approach may miss some system call invocation.
Moreover, we currently do not handle GOTO statements and inline assembly.

Additionally, we neglect linked libraries, such as the Gnu C library (glibc).
There are two approaches to deal with this problem. If the source code of the li-
brary is available, we can apply the static analysis previously discussed. If, instead,
the source code is not available, we can apply some reverse-engineering technique,
such as disassembly [27], to define the context-free grammar paired with each library
function. Since our approach exploits Bison to generate the system-call context-free
grammar, this would require the definition of an extended assembly grammar, in-
stead of the extended C grammar, in the first step of the meta-generation approach.
The handling of dynamic linking is even more complex, because a process can load
at run-time any library by exploiting a function such as dlopen(). This requires a
run-time update of both the grammar of system call invocations and of the set of
assertions, each time a new library is loaded. In both cases, an alternative solution
inserts null calls into the program code to signal the invocation of a library function
to stop/resume the consistency checks.

A further aspect of interest is related to system call invocations. In fact, the
source code can directly invoke a system call without using the C library wrap-
per functions. Thus, direct invocations of system calls, using the int $0x80 or
sysenter assembly instructions should also be located and correctly decoded. Fi-
nally, another non-standard control-flow mechanism that, for the time being, we
neglect, is the OS signal facility, which enables a process to register a callback
function so that each time it receives a particular signal it can handle it with the
corresponding callback function. This handler could issue one or more system calls
as well and, since signals may be delivered at any moment, a static analysis can-
not deduce their order. Thus, it would be cumbersome to consider all the possible
ordering of OS signals because we should take into account that a process P may
receive a signal after each system call, and the corresponding handler may invoke a
sequence of system calls.

A last issue to be considered is monitoring transparency. In the current version,
the monitoring is fully transparent with respect to the application because it is
not modified. Instead, transparency is not achieved with respect to the OS of the
Mon-VM because of the tracing module that it is inserted into the kernel. We
are currently developing a fully transparent solution based upon interception of
int instructions at the hardware/firmware level, by exploiting recent processors’
features.

In the current PsycoTrace prototype, the HiMod monitors a single PID. This
implies that a process that forks some children processes is not correctly monitored.
Thus, PsycoTrace also needs to monitor the children, for example by retrieving
their PID through introspection anytime a fork is called. Finally, we are currently
working on the definition of the static tools that extract the set of assertions from
the source code.
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