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Abstract In this work, we address the problem of locally estimating the size of a Peer-
to-Peer (P2P) network using local information. We present a novel approach
for estimating the size of a peer-to-peer (P2P) network, fitting the sum of new
neighbors discovered at each iteration of a breadth-first search (BFS) with a
logarithmic function, and then using Lambert’s W function to solve a root of
a ln(n)+b−n = 0, where n is the network size. With rather little computation,
we reach an estimation error of at most 10 percent, only allowing the BFS to
iterate to the third level.
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1. Introduction
In this work, we address the problem of locally estimating the size of a Peer-

to-Peer (P2P) network using local information. Our approach is motivated by a
breadth-first search (BFS) at a node to calculate the total number of “unknown”
nodes in the joint neighborhoods of the already discovered nodes. The rest of
this article is organized as follows: in Section 2 we present the algorithm for
P2P network-size estimation. In Section 3 we evaluate of our algorithm in
terms of the estimation error (in percentages of the real network size). Finally,
conclusions and future work are presented in Section 4.

1.1 Motivation
The potential applications of accurate estimates of network size are various.

One broad class of applications are the numerous algorithms that either require
knowledge of the network size or greatly benefit from such information, which
is the case in some routing tasks. Essentially, in many distributed protocols the
knowledge of the network size is implicitly assumed.

For example, when estimating the information spread or the gossiping cov-
erage [11], knowing the network size helps. These algorithms have direct ap-
plications in the field of P2P recommendation schemes. Knowing the network
size is also useful in estimating the latency of gossip based broadcast, espe-
cially in setting up a time-to-live (TTL) mechanism for gossips.

Secondly, many parameters that control the provisioning of resources in
commercial P2P applications (such as data or video on demand) should be
based on the network size [7]. To give a concrete example, the performance of
BitTorrent can be improved by selecting the choking/unchoking count and rate
dynamically, which eliminates a a potential source of poor performance [8].

Horowitz and Malkhi [9]propose a scheme for dynamically estimating net-
work size at each node of the network as the network evolves (that is, nodes
join and leave the network), by maintaining an estimate of the logarithm of
network size. We, however, aim to estimate directly and more accurately the
actual number of nodes in the network on demand, whenever a node happens
to need that information, without maintaining activity at all nodes as all times.

1.2 Data Validity
For modelling Peer-to-Peer networks, we used the Delft BitTorrent DataSet

21, which is the outcome of a large-scale measurement of the BitTorrent net-
work during one week in May 2005 [6]. The data set tracks over 450,000

1The Delft BitTorrent DataSet 2 is available online at http://multiprobe.ewi.tudelft.nl/
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BitTorrent users coming from PiratesBay, the largest BitTorrent community at
the time of the measurements.

The measurement tracked peers participating in any swarm of size 40 or
above. By tracking peers interested in a broad range of file types and sizes, the
measurement captured the characteristics of a world-wide community of users.

There are over 35 million BitTorrent peer events recorded in the data set,
making it the largest publicly available P2P dataset. The measurement also
included the Internet routes used by peers to exchange information. This infor-
mation was gathered through multi-sourced traceroutes and spanned about 20
million IP addresses.

2. Peer-to-Peer network size
The work of Faloutsos et al. [12]studied the structure of the Internet in terms

of different distributions, including the “hop-count” distribution of how many
nodes are at a given distance.

It was one of three seminal papers — along with the small-world networks
of Watts and Strogatz [13]and the scale-free networks of Barab«asi and Albert
[14]that gave rise to extensive research of model and properties of nonuniform
networks [15]. Nonuniform networks are graph models of real-world systems
where the edges are not placed uniformly at random among the vertices. In
such systems, the structure of the network is typically nontrivial and the net-
work behavior is complex. Among such networks are practically all P2P sys-
tems — usually not every possible pair of peers in the network is equally likely
to be neighbors.

Returning to the problem of network-size estimation, upon plotting the the
number of new nodes discovered upon visiting each vertex during a BFS, we
discovered a fuzzy, hard-to-model function, but when we instead summed the
contributions of the neighbors and plotted the values

Si(v) =
i∑

j=1

|Λi(v)| (1)

with Λi(v) of Equation 5 for a start vertex, we noted that the resulting plot
was soft, approachable function. In the rest of this paper we present the results
obtained by studying the function Λi(v) varying the starting node v. Si(v)
eventually levels off as Λi(v) falls to zero, meaning that the entire network has
been traversed and new nodes can no longer be found.

Let us model the network as a graph G = (V,E), with |V | = n being the
total number of nodes. We denote the set of neighbors of a node v ∈ V by

Γ(v) = Γ1(v) = {w | (u,w) ∈ E} , (2)
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we define the second-neighborhood of v as

Γ2(v) =
⋃

w∈Γ(v)

Γ(w) (3)

and recursively from thereon the k-distance neighborhood of v as

Γk(v) =
⋃
w ∈ Γk−1(v)Γ(w). (4)

One can compute iteratively for a starting node v ∈ V the following value for
i = 1, 2, 3, . . . until the value drops to zero:

Λi(v) = Γk(v) \
k−1⋃
j=1

Γj(v), (5)

that is, the number of new nodes reached at step i of the BFS.
In BFS, nodes “pass on messages” to their neighbors, who then pass mes-

sages on to their neighbors – the messages being in a sense recursive procedure
calls. This process resembles that of how a rumor spreads in a population, al-
though in BFS the nodes pass the information or the request onto all of their
neighbors, whereas rumors tend to spread less efficiently. Supposing that each
node was to pass the message to just one random neighbor, the process of
spreading would effectively be a random walk. Pittel [1]studies the coverage
that a rumor achieves given the number of “rounds” of gossip-passing. An-
other good analogy comes from epidemic spreading, where it is of interest to
estimate the number of infected individuals at a given time [2]. Analogies to
epidemic spreading have been applied in data-base system design [3].

We use the Lambert’s W function [4], which is the inverse function of f(w) =
wew and cannot be directly expressed in terms of elementary functions, to es-
timate the network size based on the form of plots of accumulated sums of
|Λi(v)| for different nodes v.

The details on how this is done are presented in Section 2, where we justify
the application of the W function in estimating the network size based on the
shape of the plot of the accumulated sums for fixed v, which has the shape
of f(i) = a log(i) + b. Our choice of the W function bases on the work of
Corless et al. [5], where a recurrence relation is used to calculate W, providing
fast convergence to the desired result in less than 100 iterations.

In a P2P network, technically every node could explicitly calculate the net-
work size by running a BFS (see pseudo-code in Figure 1).

In large networks, this is a long and communication-intensive procedure, as
each edge of the network must be traversed. The size of list at each iteration
is the number of new nodes discovered, |Λi(v)|. We found that the shape of
the curve of Si(v) (Equation 1) can be approximated by

Si(v) ≈ y = a ln(i) + b (6)
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procedure BFS(node s, graph G)

queue q;

// put the starting node s into the queue
put(q, s);

N = 1; // initial known network size

// while the queue is not empty
while (!empty(q)) {

// retrieve the first element of the queue
v = get(q);

// mark the node v to have been visited
mark_visited(v);

// retrieve the list of neighboring nodes to v
list = neighbours(v);

// remove from the list all previously visited nodes
list = remove_visited(list);

// add to the known network size the newly encountered nodes
n = n + size(list);

// add the elements of list to the end of the queue
put(q, list);

}

Figure 1. The BFS algorithm that would need to be executed to determine the size of the
network n given the network as a graph G and a starting node s.

as is shown in Figure 1. We found an even better fit with a function with an
additional term with ln(ln(i)), but we could only work with such a function
using numerical methods. Nevertheless, the simpler form of Equation 6 serves
our purposes and gives a reasonable fit, we saw no need to complicate the fitted
function further.

The value of Si(v) as it levels off is exactly n, as the maximum value of
Si(v) is the size of the whole network. Hence, the points that interest us are
those with Si(v) = n, which is necessarily the case for Sn(v) = n, although
the leveling off can occur much earlier, depending on the network structure2.

The point Sn(v) = n corresponds in the fitted function (Equation 6) to the
solution of this equation:

n = a ln(n) + b. (7)

2When i reaches diam(G), the diameter of G, which is the maximum distance in terms of number of edges
on the shortest paths between any two nodes, necessarily the BFS has reached the entire network regardless
of the starting vertex v. Typically diamG� n, although in the worst case diamG = n− 1.
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Figure 2. Accumulated sum of new neighbors (in color) along with their representative func-
tion (drawn black)

Equation (8) in itself is solved by

n = −a ·W (−e
−b/a

a
), (8)

where W (z) is the Lambert’s function [4](also known as the Omega function).
Lambert’s W function can be calculated by the following recurrence relation
[5],

wj+1 = wj −
wje

wj − z
ewj (wj + 1)− (wj+2)(wjewj−z)

2wj+2

, (9)

included in mathematical software packages such as Matlab and Maple.
Our equation a ln(n) + b− n = 0 (Eq. 7) has two roots (see Figure 3), and

the network size is given by the second root. To obtain this second root using
Lambert’s W function, is its non-principal value which has to be calculated. In
our case, as z ∈ [−1/e,−0.1], an initial value of w0 = −2 should be used in
the recurrence (Eq. 9).

Seeking to simplify the situation, we studied the correlations of the coef-
ficients a and b of Equation 6 in the fits to the real-world data obtained by
computing the values of Si(v) from different nodes of the data set up to i = n.
As a positive surprise, we found a strong, stable correlation:

b = c1a+ c2, (10)
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Figure 3. The two roots of a ln(x) + b− x = 0

where c1 and c2 are constants that do not appear to depend strongly on the
starting node v and could be obtained numerically from a small data set of the
P2P network. From our data set, we estimated the values of c1 = −2.0552 and
c2 = −7840 that turned out to be well-behaving. We can therefore replace the
constant a by the following substitution:

a =
y − c2

ln(x) + c1
. (11)

The precision of our estimate of n will depend on the correctness of the
estimation of a. Once the estimation algorithm reaches a stable value for a, the
estimate of n can be computed. The estimation of a is done by starting a BFS
at a node v, setting a0 at an initial guess (we used 5, 000), computing at each
iteration i the value

a′ =
Si(v)− c2

ln(i) + c1
, (12)

based on which ai is computed as

ai =
1
i
((i− 1)ai−1 + a′). (13)

The BFS is cut off when ai ≈ ai−1, that is, when the estimate of a no longer
significantly changes. In the next section, we study at which number of itera-
tions i the estimate of a, and hence the estimate of n, typically stabilizes.
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Should this iteration count be significantly smaller than the diameter of the
P2P network (around 14 in our data set), the estimation method would provide
an estimate on the network size with less communication overhead than the
straightforward method. Another option would be to simply give a TTL for
the BFS to explicitly cut it off after a fixed number of iterations.

3. Evaluation of the estimation method
We evaluate our algorithm by computing the estimation error, defined as

ε =
100|real size− estimated size|

real size
% (14)

by each new neighbor visited and by the depth-level i of the BFS. Figure 4
shows that, for small networks (with less than 80, 000 nodes), running 5, 000
iterations (10% of whole network) is sufficient to reach an estimation error of
10 percent, and around 26, 000 iterations suffice for larger networks (with over
100, 000 nodes) to achieve same estimation error.

Figure 4. Estimation error (% of the network real size, Eq. 14) by iteration.

Using a fixed TTL for the BFS, our experiments show that for all networks,
finishing the third depth-level of BFS, the estimation error is at most 10 percent
(see Figure 5). This is a promising result for quickly estimating the size of a
P2P network.
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Figure 5. Estimation error (% of network real size, Eq. 14) using a fixed TTL for the BFS.

4. Conclusions and Future Work
We presented a novel approach for estimating the size of a peer-to-peer

(P2P) network, fitting the sum of new neighbors discovered at each iteration of
a breadth-first search (BFS) with a logarithmic function, and then using Lam-
bert’s W function to solve a root of a ln(n)+b−n = 0, where n is the network
size. With rather little computation, we reached an estimation error of at most
10 percent, only allowing the BFS to iterate to the third level.

As future work, we plan to study the effect of fitting instead a function
d ln(ln(x)) that have a better fit to the real data. This function is more difficult
to manage analytically, but could enable us to fine-tune of the parameters of
the proposed method. Additionally, possible effects of network structure, such
as the presence of clustering, on the values of c1 and c2 (of Equation 10) are of
interest. We also plan to implement our estimation algorithm in real systems,
where it can be of direct practical use.
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